

You have downloaded a document from RE-BUŚ
 repository of the University of Silesia in Katowice

Title: On the K-Riemann integral and Hermite-Hadamard inequalities for K-convex functions

Author: Andrzej Olbryś

Citation style: Olbryś Andrzej. (2017). On the K-Riemann integral and HermiteHadamard inequalities for K-convex functions. "Aequationes Mathematicae" (Vol. 91, no. 3 (2017), s. 429-444), doi 10.1007/s00010-017-0472-0

Uznanie autorstwa - Licencja ta pozwala na kopiowanie, zmienianie, rozprowadzanie, przedstawianie i wykonywanie utworu jedynie pod warunkiem oznaczenia autorstwa.

On the \mathbb{K}-Riemann integral and Hermite-Hadamard inequalities for \mathbb{K}-convex functions

Andrzej Olbryś

Abstract

In the present paper we introduce a notion of the \mathbb{K}-Riemann integral as a natural generalization of a usual Riemann integral and study its properties. The aim of this paper is to extend the classical Hermite-Hadamard inequalities to the case when the usual Riemann integral is replaced by the \mathbb{K}-Riemann integral and the convexity notion is replaced by \mathbb{K}-convexity.

Mathematics Subject Classification. 26A51, 26B25, 26D15.
Keywords. \mathbb{K}-convexity, \mathbb{K}-Riemann integral, Radial \mathbb{K}-derivative, Hermite-Hadamard inequalities.

1. Introduction

Throughout this paper $I \subseteq \mathbb{R}$ stands for an interval and \mathbb{K} denotes a subfield of the field of real numbers \mathbb{R}. Clearly, $\mathbb{Q} \subseteq \mathbb{K}$, where \mathbb{Q} denotes the field of rational numbers. We denote the set of the positive elements of \mathbb{K} by \mathbb{K}_{+}. In the sequel the symbol $[a, b]_{A}$ will denote an A-convex hull of the set $\{a, b\}$, where $A \subseteq \mathbb{R}$ i.e.

$$
[a, b]_{A}=\{\alpha a+(1-\alpha) b: \alpha \in A \cap[0,1]\} .
$$

In the case when $A=\mathbb{R}$ we will use the standard symbol $[a, b]$ instead of $[a, b]_{\mathbb{R}}$.
Definition 1. A mapping $f: \mathbb{R} \rightarrow \mathbb{R}$ is called additive if it satisfies Cauchy's functional equation

$$
f(x+y)=f(x)+f(y)
$$

for every $x, y \in \mathbb{R}$. A mapping f is called \mathbb{K}-linear if f is additive and \mathbb{K} homogeneous i.e.

$$
f(\alpha x)=\alpha f(x)
$$

is fulfilled for every $x \in \mathbb{R}$ and $\alpha \in \mathbb{K}$.
It is well-known that every additive function is \mathbb{Q}-homogeneous.
Definition 2. A function $f: I \rightarrow \mathbb{R}$ is said to be Jensen-convex if

$$
f\left(\frac{x+y}{2}\right) \leq \frac{f(x)+f(y)}{2}
$$

for every $x, y \in I$. A map f is called \mathbb{K}-convex if

$$
f(\alpha x+(1-\alpha) y) \leq \alpha f(x)+(1-\alpha) f(y)
$$

for every $x, y \in I$ and $\alpha \in \mathbb{K} \cap(0,1)$.
It is known that a given function f is Jensen-convex if and only if it is \mathbb{Q} convex (see $[2,9]$). On the other hand, if f is \mathbb{K}-convex then it is also \mathbb{Q}-convex.

In this place we introduce the following definitions
Definition 3. A function $f: I \rightarrow \mathbb{R}$ is called radially \mathbb{K}-continuous at a point $x_{0} \in I$ if for every $u \in I$

$$
\lim _{\mathbb{K}_{+} \ni \alpha \rightarrow 0} f\left((1-\alpha) x_{0}+\alpha u\right)=f\left(x_{0}\right)
$$

We say that f is radially \mathbb{K}-continuous if it is radially \mathbb{K}-continuous at every point from the domain.

Definition 4. We say that a function $f: I \rightarrow \mathbb{R}$ is uniformly radially \mathbb{K} continuous if for any $x_{0} \in I$ and $u \in I$ the mapping

$$
[0,1] \cap \mathbb{K} \ni \alpha \longrightarrow f\left(x_{0}+\alpha\left(u-x_{0}\right)\right)
$$

is uniformly continuous.
It is easy to see that any continuous and any uniformly continuous function $f: I \rightarrow \mathbb{R}$ in the usual sense is radially \mathbb{K}-continuous, and uniformly radially \mathbb{K}-continuous, respectively. However, it can happen that a uniformly radially \mathbb{K}-continuous function is discontinuous at every point in the usual sense. An easy example is provided by any discontinuous \mathbb{K}-linear map. On the other hand, every uniformly radially \mathbb{K}-continuous function is also radially \mathbb{K}-continuous, but the converse is not true. We start with the following easy-to-prove propositions.

Proposition 5. A function $f: I \rightarrow \mathbb{R}$ is radially \mathbb{K}-continuous if and only if for every $a, b \in I$ the function $f_{[a, b]_{\mathrm{K}}}$ is continuous.
Proposition 6. A function $f: I \rightarrow \mathbb{R}$ is uniformly radially \mathbb{K}-continuous if and only if for any $a, b \in I$ the map $f_{\left.\right|_{[a, b]_{\mathbb{K}}}}$ is uniformly continuous.

2. Construction of the \mathbb{K}-Riemann integral

Now, we introduce a notion of the \mathbb{K}-Riemann integral as a natural generalization of the classical Riemann integral. For the theory of the classical Riemann integral see for instance $[10,14,15]$.

Let $\mathcal{P}_{[a, b]}$ denote the set of partitions of the interval $[a, b]$ i.e.

$$
\mathcal{P}_{[a, b]}:=\bigcup_{n=1}^{\infty}\left\{\left(t_{0}, t_{1}, \ldots, t_{n}\right): a=t_{0}<t_{1}<\cdots<t_{n}=b\right\}
$$

Following Zs. Páles [12] we define the set of \mathbb{K}-partitions of the interval $[a, b]$ in the following way

$$
\begin{align*}
\mathcal{P}_{[a, b]}^{\mathbb{K}}:= & \left\{\left(t_{0}, t_{1}, \ldots, t_{n}\right) \in \mathcal{P}_{[a, b]}: \frac{t_{i}-a}{b-a} \in \mathbb{K}, i=1,2, \ldots, n\right\} \\
= & \left\{\left(t_{0}, t_{1}, \ldots, t_{n}\right) \in \mathcal{P}_{[a, b]}: t_{i}=a+\alpha_{i}(b-a): \alpha_{i}\right. \tag{1}\\
& \in \mathbb{K} \cap[0,1], i=1,2, \ldots, n\} \\
= & \left\{\left(t_{0}, t_{1}, \ldots, t_{n}\right) \in \mathcal{P}_{[a, b]}: t_{i} \in[a, b]_{\mathbb{K}}, i=1,2, \ldots, n\right\} .
\end{align*}
$$

Now, suppose that $f:[a, b] \rightarrow \mathbb{R}$ is a bounded function on the set $[a, b]_{\mathbb{K}}$ with

$$
M:=\sup _{x \in[a, b]_{\mathrm{K}}} f(x), \quad m:=\inf _{x \in[a, b]_{\mathbb{K}}} f(x) .
$$

For a given \mathbb{K}-partition $\pi=\left(t_{0}, t_{1}, \ldots, t_{n}\right) \in \mathcal{P}_{[a, b]}^{\mathbb{K}}$ let

$$
M_{i}:=\sup _{x \in\left[t_{i-1}, t_{i}\right]_{\mathbb{K}}} f(x), \quad m_{i}:=\inf _{x \in\left[t_{i-1}, t_{i}\right]_{\mathbb{K}}} f(x), \quad i=1,2, \ldots, n .
$$

These suprema and infima are well-defined, finite real numbers since f is bounded on $[a, b]_{\mathbb{K}}$. Moreover,

$$
m \leq m_{i} \leq M_{i} \leq M, \quad i=1,2, \ldots, n
$$

We define the upper \mathbb{K}-Riemann sum of f with respect to the partition π by

$$
U_{\mathbb{K}}(f, \pi):=\sum_{i=1}^{n} M_{i}\left(t_{i}-t_{i-1}\right),
$$

and the lower \mathbb{K}-Riemann sum of f with respect to the partition π by

$$
L_{\mathbb{K}}(f, \pi):=\sum_{i=1}^{n} m_{i}\left(t_{i}-t_{i-1}\right) .
$$

Note that

$$
m(b-a) \leq L_{\mathbb{K}}(f, \pi) \leq U_{\mathbb{K}}(f, \pi) \leq M(b-a)
$$

Now, we define the upper \mathbb{K}-Riemann integral of f on $[a, b]$ by

$$
\int_{a}^{b} f(t) d_{\mathbb{K}} t:=\inf \left\{U_{\mathbb{K}}(f, \pi): \pi \in \mathcal{P}_{[a, b]}^{\mathbb{K}}\right\}
$$

and the lower \mathbb{K}-Riemann integral by

$$
\int_{a}^{b} f(t) d_{\mathbb{K}} t:=\sup \left\{L_{\mathbb{K}}(f, \pi): \pi \in \mathcal{P}_{[a, b]}^{\mathbb{K}}\right\} .
$$

Definition 7. A function $f:[a, b] \rightarrow \mathbb{R}$ bounded on $[a, b]_{\mathbb{K}}$ is said to be \mathbb{K} Riemann integrable on $[a, b]$ if its upper and lower integrals are equal. In that case, the \mathbb{K}-Riemann integral of f on $[a, b]$ is denoted by

$$
\int_{a}^{b} f(t) d_{\mathbb{K}} t
$$

In the case when $\mathbb{K}=\mathbb{R}$ we will use the standard symbol $\int_{a}^{b} f(t) d t$ instead of $\int_{a}^{b} f(t) d_{\mathbb{R}} t$.

The following theorem gives a criterion for \mathbb{K}-Riemann integrability.
Theorem 8. A function $f:[a, b] \rightarrow \mathbb{R}$ is \mathbb{K}-Riemann integrable on $[a, b]$ if and only if for every $\varepsilon>0$ there exists a partition $\pi \in \mathcal{P}_{[a, b]}^{\mathbb{K}}$ such that

$$
U_{\mathbb{K}}(f, \pi)-L_{\mathbb{K}}(f, \pi)<\varepsilon .
$$

Proof. Let $\varepsilon>0$ and choose a partition $\pi \in \mathcal{P}_{[a, b]}^{\mathbb{K}}$ that satisfies the above condition. Then, since

$$
\bar{\int}_{a}^{b} f(t) d_{\mathbb{K}} t \leq U_{\mathbb{K}}(f, \pi), \quad \text { and } \quad L_{\mathbb{K}}(f, \pi) \leq \underline{\int}_{a}^{b} f(t) d_{\mathbb{K}} t \leq U_{\mathbb{K}}(f, \pi)
$$

we have

$$
0 \leq \bar{\int}_{a}^{b} f(t) d_{\mathbb{K}} t-\underline{\int}_{a}^{b} f(t) d_{\mathbb{K}} t \leq U_{\mathbb{K}}(f, \pi)-L_{\mathbb{K}}(f, \pi)<\varepsilon
$$

Since this inequality holds for every $\varepsilon>0$,

$$
\bar{\int}_{a}^{b} f(t) d_{\mathbb{K}} t=\underline{\int}_{a}^{b} f(t) d_{\mathbb{K}} t
$$

Conversely, suppose that f is \mathbb{K}-Riemann integrable. Given any $\varepsilon>0$, there are partitions $\pi_{1}, \pi_{2} \in \mathcal{P}_{[a, b]}^{\mathbb{K}}$ such that

$$
U_{\mathbb{K}}\left(f, \pi_{1}\right)<\bar{\int}_{a}^{b} f(t) d_{\mathbb{K}} t+\frac{\varepsilon}{2}, \quad L_{\mathbb{K}}\left(f, \pi_{2}\right)>\int_{a}^{b} f(t) d_{\mathbb{K}} t-\frac{\varepsilon}{2} .
$$

Now, let $\pi:=\pi_{1} \cup \pi_{2}$ be the common refinement. Keeping in mind that the \mathbb{K}-Riemann integrability of f means $\bar{\int}_{a}^{b} f(t) d_{\mathbb{K}} t=\underline{\int}_{a}^{b} f(t) d_{\mathbb{K}} t$ we can write

$$
\begin{aligned}
U_{\mathbb{K}}(f, \pi)-L_{\mathbb{K}}(f, \pi) & \leq U_{\mathbb{K}}\left(f, \pi_{1}\right)-L_{\mathbb{K}}\left(f, \pi_{2}\right) \\
& =\left(U_{\mathbb{K}}\left(f, \pi_{1}\right)-\bar{\int}_{a}^{b} f(t) d_{\mathbb{K}} t\right)+\left(\underline{\int}_{a}^{b} f(t) d_{\mathbb{K}} t-L_{\mathbb{K}}\left(f, \pi_{2}\right)\right) \\
& <\frac{\varepsilon}{2}+\frac{\varepsilon}{2}=\varepsilon .
\end{aligned}
$$

Using the above theorem we can easily obtain the following
Corollary 9. A function $f:[a, b] \rightarrow \mathbb{R}$ is \mathbb{K}-Riemann integrable on $[a, b]$ if and only if for every sequence $\left\{\pi_{n}\right\}_{n \in \mathbb{N}} \subseteq \mathcal{P}_{[a, b]}^{\mathbb{K}}, \pi_{n}=\left(t_{0}^{(n)}, t_{1}^{(n)}, \ldots, t_{k_{n}}^{(n)}\right)$ such that

$$
\max _{1 \leq j \leq k_{n}}\left(t_{j}^{(n)}-t_{j-1}^{(n)}\right) \rightarrow_{n \rightarrow \infty} 0
$$

and for any choice $s_{j}^{(n)} \in\left[t_{j-1}^{(n)}, t_{j}^{(n)}\right]_{\mathbb{K}}$ of the partition π_{n} we have

$$
\int_{a}^{b} f(t) d_{\mathbb{K}} t=\lim _{n \rightarrow \infty} \sum_{j=1}^{k_{n}} f\left(s_{j}^{(n)}\right)\left(t_{j}^{(n)}-t_{j-1}^{(n)}\right) .
$$

Proposition 10. Let $\mathbb{K}_{1} \subseteq \mathbb{K}_{2}$ be subfields of \mathbb{R}. If a function $f:[a, b] \rightarrow \mathbb{R}$ is \mathbb{K}_{2}-Riemann integrable then it is also \mathbb{K}_{1}-Riemann integrable, and

$$
\int_{a}^{b} f(t) d_{\mathbb{K}_{1}} t=\int_{a}^{b} f(t) d_{\mathbb{K}_{2}} t .
$$

Proof. Let $\pi_{n}=\left(t_{0}^{(n)}, t_{1}^{(n)}, \ldots, t_{k_{n}}^{(n)}\right) \in \mathcal{P}_{[a, b]}^{\mathbb{K}_{1}}, n \in \mathbb{N}$ be an arbitrary sequence such that

$$
\max _{1 \leq j \leq k_{n}}\left(t_{j}^{(n)}-t_{j-1}^{(n)}\right) \rightarrow_{n \rightarrow \infty} 0 .
$$

By the \mathbb{K}_{2}-Riemann integrability, for any choice $s_{j}^{(n)} \in\left[t_{j-1}^{(n)}, t_{j}^{(n)}\right]_{\mathbb{K}_{1}}$ of the partition π_{n} we have

$$
\int_{a}^{b} f(t) d_{\mathbb{K}_{2}} t=\lim _{n \rightarrow \infty} \sum_{j=1}^{k_{n}} f\left(s_{j}^{(n)}\right)\left(t_{j}^{(n)}-t_{j-1}^{(n)}\right) .
$$

Due to the arbitrariness of $\pi_{n} \in \mathcal{P}_{[a, b]}^{\mathbb{K}_{1}}$ we infer that

$$
\int_{a}^{b} f(t) d_{\mathbb{K}_{1}} t=\lim _{n \rightarrow \infty} \sum_{j=1}^{k_{n}} f\left(s_{j}^{(n)}\right)\left(t_{j}^{(n)}-t_{j-1}^{(n)}\right) .
$$

As an immediate consequence of the above proposition we obtain the following.

Corollary 11. If a function $f:[a, b] \rightarrow \mathbb{R}$ is Riemann integrable in the usual sense, then for an arbitrary field $\mathbb{K} \subseteq \mathbb{R} f$ is \mathbb{K}-Riemann integrable, moreover,

$$
\int_{a}^{b} f(t) d_{\mathbb{K}} t=\int_{a}^{b} f(t) d t
$$

Example 1. Let $\mathbb{K}_{1} \subseteq \mathbb{K}_{2}$, $\mathbb{K}_{1} \neq \mathbb{K}_{2}$ be two subfields of \mathbb{R}. Consider the following function $f:[a, b] \rightarrow \mathbb{R}$

$$
f(x)= \begin{cases}0, & x \in[a, b]_{\mathbb{K}_{1}} \\ 1, & x \in[a, b]_{\mathbb{K}_{2}} \backslash[a, b]_{\mathbb{K}_{1}} .\end{cases}
$$

It is easy to observe that f is \mathbb{K}_{1}-Riemann integrable, and $\int_{a}^{b} f(t) d_{\mathbb{K}_{1}} t=0$. On the other hand for every partition $\pi \in \mathcal{P}_{[a, b]}^{\mathbb{K}_{2}} \backslash \mathcal{P}_{[a, b]}^{\mathbb{K}_{1}}$ one can check that

$$
S_{\mathbb{K}_{2}}(\pi, f)=1, \quad \text { and } \quad L_{\mathbb{K}_{2}}(\pi, f)=0 .
$$

Therefore,

$$
0=\underline{\int}_{a}^{b} f(t) d_{\mathbb{K}_{2}} t \neq \bar{\int}_{a}^{b} f(t) d_{\mathbb{K}_{2}} t=1
$$

Observe that if we replace in the formula on f the set \mathbb{K}_{1} by the set D of diadic numbers from the interval $[0,1]$ i.e.

$$
D:=\left\{x \in[0,1] \left\lvert\, x=\frac{k}{2^{n}}\right., k \in \mathbb{Z}, n \in \mathbb{N}\right\}
$$

then we obtain an example of a function which is non- \mathbb{K}-Riemann integrable for any subfield $\mathbb{K} \subseteq \mathbb{R}$.

3. Properties of the \mathbb{K}-Riemann integral

We start our investigation with the following.
Proposition 12. If $f:[a, b] \rightarrow \mathbb{R}$ is a function such that $f_{\left[[a, b]_{\mathbb{K}}\right.}$ is monotone then it is \mathbb{K}-Riemann integrable on $[a, b]$.

Proof. Assume that $f_{\mid[a, b]_{\mathbb{K}}}$ is monotonic increasing, meaning that

$$
f(x) \leq f(y), \quad \text { for } x \leq y, \quad x, y \in[a, b]_{\mathbb{K}}
$$

Fix an arbitrary sequence of partitions

$$
\pi_{n}=\left(t_{0}^{(n)}, t_{1}^{(n)}, \ldots, t_{k_{n}}^{(n)}\right) \in \mathcal{P}_{[a, b]}^{\mathbb{K}}, \quad n \in \mathbb{N}
$$

where

$$
\max _{1 \leq j \leq k_{n}}\left(t_{j}^{(n)}-t_{j-1}^{(n)}\right) \rightarrow_{n \rightarrow \infty} 0
$$

Since $f_{\mid[a, b]_{\mathrm{K}}}$ is increasing, for all $j \in\left\{1, \ldots, k_{n}\right\}$

$$
M_{j}:=\sup _{t \in\left[t_{j-1}, t_{j}\right]_{\mathbb{K}}} f(t)=f\left(t_{j}\right), \quad m_{j}:=\inf _{t \in\left[t_{j-1}, t_{j}\right]_{\mathbb{K}}} f(t)=f\left(t_{j-1}\right) .
$$

Hence, summing a telescoping series, we get

$$
\begin{aligned}
U\left(f, \pi_{n}\right)-L\left(f, \pi_{n}\right) & =\sum_{j=1}^{k_{n}}\left(M_{j}-m_{j}\right)\left(t_{j}^{(n)}-t_{j-1}^{(n)}\right) \\
& \leq \max _{1 \leq j \leq k_{n}}\left(t_{j}^{(n)}-t_{j-1}^{(n)}\right) \sum_{j=1}^{k_{n}}\left[f\left(t_{j}\right)-f\left(t_{j-1}\right)\right] \\
& =\max _{1 \leq j \leq k_{n}}\left(t_{j}^{(n)}-t_{j-1}^{(n)}\right)[f(b)-f(a)] .
\end{aligned}
$$

It follows that $U\left(f, \pi_{n}\right)-L\left(f, \pi_{n}\right) \rightarrow 0$ as $n \rightarrow \infty$ and Corollary 9 implies that f is \mathbb{K}-Riemann integrable. The proof for a monotonic decreasing function f is similar.

In our next result we use a well-known fact from mathematical analysis that every uniformly continuous function on a set $A \subset \mathbb{R}^{n}$ can be uniquely extended onto $\operatorname{cl} A$ to a continuous function (see for instance [4] p. 206).

Proposition 13. If $f:[a, b] \rightarrow \mathbb{R}$ is uniformly radially \mathbb{K}-continuous, then it is \mathbb{K}-Riemann integrable on any subset $[c, d] \subset[a, b]$.

Proof. Fix arbitrary $c, d \in[a, b], c<d$. From Proposition 6 we infer that $f_{\mid[c, d]_{\mathbb{K}}}$ is uniformly continuous. Since $\operatorname{cl}\left([c, d]_{\mathbb{K}}\right)=[c, d]$, there exists a unique continuous function $g_{c d}:[c, d] \rightarrow \mathbb{R}$ such that

$$
g_{c d}(t)=f(t), \quad t \in[c, d]_{\mathbb{K}} .
$$

On account of Corollary $11 f$ is \mathbb{K}-Riemann integrable, moreover,

$$
\int_{c}^{d} f(t) d_{\mathbb{K}} t=\int_{c}^{d} g_{c d}(t) d t
$$

In the sequel we will use the following well-known theorems (see [8] p.147) (actually these theorems were proved for Jensen-convex functions, but the proof in our case runs without any essential changes).

Theorem 14. Let $I \subseteq \mathbb{R}$ be an open interval, and let $f: I \rightarrow \mathbb{R}$ be a \mathbb{K}-convex function. Then for arbitrary $a, b \in I, a<b$ the function $f_{\left[[a, b]_{\mathbb{K}}\right.}$ is uniformly continuous.

Theorem 15. Let $I \subseteq \mathbb{R}$ be an open interval, and let $f: I \rightarrow \mathbb{R}$ be a \mathbb{K}-convex function. Then for arbitrary $a, b \in I, a<b$ there exists a unique continuous function $g_{a b}:[a, b] \rightarrow \mathbb{R}$ such that

$$
g_{a b}(x)=f(x), \quad x \in[a, b]_{\mathbb{K}}
$$

The function $g_{a b}$ satisfies the inequality

$$
g_{a b}\left(\frac{a+b}{2}\right) \leq \frac{g_{a b}(x)+g_{a b}(y)}{2}
$$

for every $x, y \in[a, b]$, in particular $g_{a b}$ is a convex function.
Now, we calculate an integral of a \mathbb{K}-linear function. Note that such a function can be discontinuous at every point and non-measurable in the Lebesgue sense (see [8]), so the usual Riemann integral may not exist.

Proposition 16. Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be \mathbb{K}-linear function. Then it is a \mathbb{K}-Riemann integrable on every interval $[a, b]$, moreover,

$$
\int_{a}^{b} f(t) d_{\mathbb{K}} t=f\left(\frac{a+b}{2}\right)(b-a) .
$$

Proof. Suppose that f is a \mathbb{K}-linear function. On account of Proposition 13 and Theorem 14 it is \mathbb{K}-Riemann integrable on every interval $[a, b]$. Consider the following sequence of partitions:

$$
\pi_{n}:=\left(t_{0}^{(n)}, t_{1}^{(n)}, \ldots, t_{n}^{(n)}\right), \text { where, } \quad t_{j}^{(n)}:=a+\frac{j}{n}(b-a), \quad j=0,1, \ldots, n
$$

From Corollary 9 we obtain

$$
\begin{aligned}
\int_{a}^{b} f(t) d_{\mathbb{K}} t & =\lim _{n \rightarrow \infty} \sum_{j=1}^{n} f\left(t_{j}^{(n)}\right) \frac{1}{n}(b-a) \\
& =\lim _{n \rightarrow \infty} f\left(n a+\frac{n(n+1)}{2 n}(b-a)\right) \frac{1}{n}(b-a) \\
& =\lim _{n \rightarrow \infty} f\left(a+\frac{n+1}{2 n}(b-a)\right)(b-a) \\
& =\lim _{n \rightarrow \infty}\left[f(a)+\frac{n+1}{2 n} f(b-a)\right](b-a) \\
& =\left[f(a)+f\left(\frac{b-a}{2}\right)\right](b-a)=f\left(\frac{a+b}{2}\right)(b-a)
\end{aligned}
$$

Now, we record some basic properties of \mathbb{K}-Riemann integration. We omit the proofs of these properties because they run in a similar way as for the usual Riemann integral.

Theorem 17. Let f, g be \mathbb{K}-Riemann integrable on $[a, b]$ and let $c, d \in \mathbb{R}$. Then
(i) the function $c f+d g$ is \mathbb{K}-Riemann integrable on $[a, b]$, moreover,

$$
\int_{a}^{b}[c f(t)+d g(t)] d_{\mathbb{K}} t=c \int_{a}^{b} f(t) d_{\mathbb{K}} t+d \int_{a}^{b} g(t) d_{\mathbb{K}} t
$$

(ii) If $f(t) \geq 0, t \in[a, b]_{\mathbb{K}}$, then $\int_{a}^{b} f(t) d_{\mathbb{K}} t \geq 0$, moreover, if f is radially \mathbb{K}-continuous on $[a, b]$ and $f(t)>0, t \in[a, b]_{\mathbb{K}}$ then

$$
\int_{a}^{b} f(t) d_{\mathbb{K}} t>0
$$

(iii) The absolute value $|f|$ is \mathbb{K}-Riemann integrable on $[a, b]$ and

$$
\left|\int_{a}^{b} f(t) d_{\mathbb{K}} t\right| \leq \int_{a}^{b}|f(t)| d_{\mathbb{K}} t
$$

Theorem 18. Suppose that $f:[a, b] \rightarrow \mathbb{R}$ and $c \in[a, b]_{\mathbb{K}}$. Then f is \mathbb{K}-Riemann integrable on $[a, b]$ if and only if it is \mathbb{K}-Riemann integrable on $[a, c]$ and $[c, b]$. Moreover, in that case,

$$
\int_{a}^{b} f(t) d_{\mathbb{K}} t=\int_{a}^{c} f(t) d_{\mathbb{K}} t+\int_{c}^{b} f(t) d_{\mathbb{K}} t
$$

Proof. Assume that f is \mathbb{K}-Riemann integrable on $[a, b]$. Then, given $\varepsilon>0$ there is a partition $\pi \in \mathcal{P}_{[a, b]}^{\mathbb{K}}$ such that

$$
U_{\mathbb{K}}(f, \pi)-L_{\mathbb{K}}(f, \pi)<\varepsilon .
$$

Let $\bar{\pi}$ be the refinement of π obtained by adding c to the endpoints of π. Then $\bar{\pi}=\pi_{1} \cup \pi_{2}$, where

$$
\pi_{1}:=\bar{\pi} \cap[a, c]_{\mathbb{K}}, \quad \pi_{2}:=\bar{\pi} \cap[c, b]_{\mathbb{K}}
$$

Obviously, $\pi_{1} \in \mathcal{P}_{[a, c]}^{\mathbb{K}}$ and $\pi_{2} \in \mathcal{P}_{[c, b]}^{\mathbb{K}}$, moreover,

$$
U_{\mathbb{K}}(f, \bar{\pi})=U_{\mathbb{K}}\left(f, \pi_{1}\right)+U_{\mathbb{K}}\left(f, \pi_{2}\right), \quad L(f, \bar{\pi})=L_{\mathbb{K}}\left(f, \pi_{1}\right)+L_{\mathbb{K}}\left(f, \pi_{2}\right)
$$

It follows that

$$
\begin{aligned}
U_{\mathbb{K}}\left(f, \pi_{1}\right)-L_{\mathbb{K}}\left(f, \pi_{1}\right) & =U_{\mathbb{K}}(f, \bar{\pi})-L_{\mathbb{K}}(f, \bar{\pi})-\left[U_{\mathbb{K}}\left(f, \pi_{2}\right)-L_{\mathbb{K}}\left(f, \pi_{2}\right)\right] \\
& \leq U_{\mathbb{K}}(f, \pi)-L_{\mathbb{K}}(f, \pi)<\varepsilon,
\end{aligned}
$$

which proves that f is \mathbb{K}-Riemann integrable on $[a, c]$. Exchanging π_{1} and π_{2}, we get the proof for $[c, b]$.

Conversely, if f is \mathbb{K}-Riemann integrable on $[a, c]$ and $[c, b]$ then there are partitions $\pi_{1} \in \mathcal{P}_{[a, c]}^{\mathbb{K}}$ and $\pi_{2} \in \mathcal{P}_{[c, b]}^{\mathbb{K}, b}$ such that

$$
U_{\mathbb{K}}\left(f, \pi_{1}\right)-L_{\mathbb{K}}\left(f, \pi_{1}\right)<\frac{\varepsilon}{2}, \quad U_{\mathbb{K}}\left(f, \pi_{2}\right)-L_{\mathbb{K}}\left(f, \pi_{2}\right)<\frac{\varepsilon}{2} .
$$

Let $\pi:=\pi_{1} \cup \pi_{2}$. Then

$$
U_{\mathbb{K}}(f, \pi)-L_{\mathbb{K}}(f, \pi)=U_{\mathbb{K}}\left(f, \pi_{1}\right)-L_{\mathbb{K}}\left(f, \pi_{1}\right)+U_{\mathbb{K}}\left(f, \pi_{2}\right)-L_{\mathbb{K}}\left(f, \pi_{2}\right)<\varepsilon,
$$

which proves that f is \mathbb{K}-Riemann integrable on $[a, b]$.
Finally, if f is \mathbb{K}-Riemann integrable, then with partitions π, π_{1}, π_{2} as above, we have

$$
\begin{aligned}
\int_{a}^{b} f(t) d_{\mathbb{K}} t & \leq U_{\mathbb{K}}(f, \pi)=U_{\mathbb{K}}\left(f, \pi_{1}\right)+U_{\mathbb{K}}\left(f, \pi_{2}\right) \\
& <L_{\mathbb{K}}\left(f, \pi_{1}\right)+L_{\mathbb{K}}\left(f, \pi_{2}\right)+\varepsilon \\
& <\int_{a}^{c} f(t) d_{\mathbb{K}} t+\int_{c}^{b} f(t) d_{\mathbb{K}} t+\varepsilon
\end{aligned}
$$

Similarly,

$$
\begin{aligned}
\int_{a}^{b} f(t) d_{\mathbb{K}} t & \geq L_{\mathbb{K}}(f, \pi)=L_{\mathbb{K}}\left(f, \pi_{1}\right)+L_{\mathbb{K}}\left(f, \pi_{2}\right) \\
& >U_{\mathbb{K}}\left(f, \pi_{1}\right)+U_{\mathbb{K}}\left(f, \pi_{2}\right)-\varepsilon \\
& >\int_{a}^{c} f(t) d_{\mathbb{K}} t+\int_{c}^{b} f(t) d_{\mathbb{K}} t-\varepsilon .
\end{aligned}
$$

Since $\varepsilon>0$ is arbitrary, we see that

$$
\int_{a}^{b} f(t) d_{\mathbb{K}} t=\int_{a}^{c} f(t) d_{\mathbb{K}} t+\int_{c}^{b} f(t) d_{\mathbb{K}} t
$$

Remark 19. Observe that for a \mathbb{K}-linear function $f: \mathbb{R} \rightarrow \mathbb{R}$, where $\mathbb{K} \neq \mathbb{R}$ and a point $c=\alpha a+(1-\alpha) b \in(a, b)$, where $\alpha \in(0,1)$ we have
$\int_{a}^{b} f(t) d_{\mathbb{K}} t-\int_{a}^{c} f(t) d_{\mathbb{K}} t-\int_{c}^{b} f(t) d_{\mathbb{K}} t=\frac{1}{2}(f(\alpha(a-b))-\alpha f(a-b))(a-b)$.
Therefore, it can happen that for some $\alpha \in(0,1) \backslash \mathbb{K}$ the above expression is different from zero.

4. Connections between the radial \mathbb{K}-derivative and the \mathbb{K}-Riemann integral

In 2006 Z. Boros and Zs. Páles in [1] introduced and examined the notion of radial \mathbb{K}-derivative of a map at a point in the given direction.

Definition 20. A map $f: I \rightarrow \mathbb{R}$ (I stands for an open interval) is said to have a radial \mathbb{K}-derivative at a point $x \in I$ in the direction $u \in \mathbb{R}$ provided that there exists a finite limit

$$
D_{\mathbb{K}} f(x, u):=\lim _{\mathbb{K}_{+} \ni r \rightarrow 0} \frac{f(x+r u)-f(x)}{r} .
$$

We will say that f is radially \mathbb{K}-differentiable at a point x whenever $D_{\mathbb{K}} f(x, u)$ does exist for every $u \in \mathbb{R}$. A function $f: I \rightarrow \mathbb{R}$ is termed radially \mathbb{K} differentiable if f is radially \mathbb{K}-differentiable at every point $x \in \mathbb{R}$.

It is known that each \mathbb{K}-convex function $f: I \rightarrow \mathbb{R}$ is radially \mathbb{K}-differentiable. In particular, such is every \mathbb{K}-linear function $a: \mathbb{R} \rightarrow \mathbb{R}$ with

$$
D_{\mathbb{K}} a(x, u)=a(u), \quad x, u \in \mathbb{R} .
$$

On the other hand, if a function $f: I \rightarrow \mathbb{R}$ is differentiable in the usual sense at a point $x \in I$ then it is radially \mathbb{K}-differentiable at x with

$$
D_{\mathbb{K}} f(x, u)=f^{\prime}(x) u, \quad \text { for } u \in \mathbb{R} .
$$

We have the following relationship between the radial \mathbb{K}-derivative and the \mathbb{K}-Riemann integral.

Theorem 21. Suppose that $f:[a, b] \rightarrow \mathbb{R}$ is \mathbb{K}-Riemann integrable on each subset of the form $[a, x]_{\mathbb{K}}$, for any $x \in(a, b]$. Let us define the function F : $[a, b] \rightarrow \mathbb{R}$ by the formula

$$
F(x):=\int_{a}^{x} f(t) d_{\mathbb{K}} t
$$

Then, if f is radially \mathbb{K}-continuous at a point $x \in(a, b]$ then F is radially \mathbb{K}-differentiable at x in the direction $x-a$, moreover,

$$
D_{\mathbb{K}} F(x, x-a)=f(x)(x-a)
$$

Proof. Fix $x \in[a, b]$ and $\varepsilon>0$ arbitrarily. For $\alpha \in \mathbb{K}_{+}$, since $x \in[a, x+\alpha(x-$ $a)]_{\mathbb{K}}$, on account of Theorem 18 and condition (iii) from Theorem 17 we obtain

$$
\begin{aligned}
& \left|\frac{F(x+\alpha(x-a))-F(x)}{\alpha}-f(x)(x-a)\right| \\
& \quad=\left|\frac{1}{\alpha}\left(\int_{a}^{x+\alpha(x-a)} f(t) d_{\mathbb{K}} t-\int_{a}^{x} f(t) d_{\mathbb{K}} t\right)-\frac{1}{\alpha} \int_{x}^{x+\alpha(x-a)} f(x) d_{\mathbb{K}} t\right| \\
& \quad=\left|\frac{1}{\alpha} \int_{x}^{x+\alpha(x-a)} f(t) d_{\mathbb{K}} t-\frac{1}{\alpha} \int_{x}^{x+\alpha(x-a)} f(x) d_{\mathbb{K}} t\right| \\
& \quad=\frac{1}{\alpha}\left|\int_{x}^{x+\alpha(x-a)}(f(t)-f(x)) d_{\mathbb{K}} t\right| \leq \frac{1}{\alpha} \int_{x}^{x+\alpha(x-a)}|f(t)-f(x)| d_{\mathbb{K}} t
\end{aligned}
$$

Let $\alpha \in \mathbb{K}_{+}$be so small that

$$
|f(t)-f(x)|<\frac{\varepsilon}{x-a}, \quad \text { for } t \in[x, x+\alpha(x-a)]_{\mathbb{K}}
$$

Then,

$$
\begin{aligned}
& \frac{1}{\alpha} \int_{x}^{x+\alpha(x-a)}|f(t)-f(x)| d_{\mathbb{K}} t \\
& \quad \leq \frac{1}{\alpha} \int_{x}^{x+\alpha(x-a)} \frac{\varepsilon}{x-a} d_{\mathbb{K}} t=\frac{1}{\alpha} \cdot \alpha(x-a) \cdot \frac{\varepsilon}{x-a}=\varepsilon .
\end{aligned}
$$

Now, we are in a position to prove the following characterization of \mathbb{K} convex functions.

Theorem 22. Let $I \subseteq \mathbb{R}$ be an interval, and let $f: I \rightarrow \mathbb{R}$ be a \mathbb{K}-convex function. Then, for every $a, x \in I$, we have

$$
f(x)=f(a)+\frac{1}{x-a} \int_{a}^{x} D_{\mathbb{K}} f(t, x-a) d_{\mathbb{K}} t
$$

Proof. Take arbitrary $a, x \in I, a \neq x$, say $a<x$. Since f is a \mathbb{K}-convex function, on account of Theorem 15 there exists a uniformly continuous, convex function $g:[a, x] \rightarrow \mathbb{R}$ such that

$$
f(t)=g(t), \quad t \in[a, x]_{\mathbb{K}} .
$$

Therefore, for $t \in[a, x]_{\mathbb{K}}$ we get

$$
\begin{aligned}
D_{\mathbb{K}} f(t, x-a) & =\lim _{\mathbb{K}_{+} \ni \alpha \rightarrow 0} \frac{f(t+\alpha(x-a))-f(t)}{\alpha} \\
& =(x-a) \cdot \lim _{\mathbb{K}_{+} \ni \alpha \rightarrow 0} \frac{g(t+\alpha(x-a))-g(t)}{\alpha(x-a)}=(x-a) g_{+}^{\prime}(t) .
\end{aligned}
$$

It follows from the above formula and from the fundamental theorem of calculus for the usual Riemann integral that

$$
\frac{1}{x-a} \int_{a}^{x} D_{\mathbb{K}} f(t, x-a) d_{\mathbb{K}} t=\int_{a}^{x} g_{+}^{\prime}(t) d t=g(x)-g(a)=f(x)-f(a),
$$

which was to be proved.

5. Hermite-Hadamard inequalities

There are many inequalities valid for convex functions. Probably two of the most well-known ones are the Hermite-Hadamard $[3,5-8,11,16]$ inequalities.

$$
\begin{equation*}
f\left(\frac{a+b}{2}\right) \leq \frac{1}{b-a} \int_{a}^{b} f(t) d t \leq \frac{f(a)+f(b)}{2}, \quad a<b \tag{2}
\end{equation*}
$$

They play an important role in convex analysis. In the literature one can find their various generalizations and applications. For more information on this type of inequalities see the book [3] and the references therein. We just note
here that first Hermite [7] published these inequalities with some important applications and then, 10 years later, Hadamard [5] rediscovered their left-hand side.

It turns out that each of the two sides of (2) in fact characterizes convex functions. More precisely, if I is an interval and $f: I \rightarrow \mathbb{R}$ a continuous function whose restriction to every compact subinterval $[a, b]$ verifies the lefthand side then f is convex. The same works when the left-hand side is replaced by the right-hand side. More general results are given by Rado [13].

Now, we are in a position to prove our main result. The following theorem establishes the Hermite-Hadamard inequalities for \mathbb{K}-convex functions.

Theorem 23. Let $I \subseteq \mathbb{R}$ be a nonempty open interval and let $f: I \rightarrow \mathbb{R}$ be a \mathbb{K}-convex function. Then for arbitrary $a, b \in I, a<b$ the inequalities

$$
\begin{equation*}
f\left(\frac{a+b}{2}\right) \leq \frac{1}{b-a} \int_{a}^{b} f(t) d_{\mathbb{K}} t \leq \frac{f(a)+f(b)}{2}, \quad a<b \tag{3}
\end{equation*}
$$

hold.
Proof. Let $a, b \in I, a<b$ be arbitrarily fixed. It follows from Theorem 15 that there exists a unique continuous and convex function $g_{a b}:[a, b] \rightarrow \mathbb{R}$ such that

$$
g_{a b}(x)=f(x), \quad x \in[a, b]_{\mathbb{K}}
$$

Since $g_{a b}$ is convex, it satisfies the classical Hermite-Hadamard inequalities, namely
$f\left(\frac{a+b}{2}\right)=g_{a b}\left(\frac{a+b}{2}\right) \leq \frac{1}{b-a} \int_{a}^{b} g_{a b}(t) d t \leq \frac{g_{a b}(a)+g_{a b}(b)}{2}=\frac{f(a)+f(b)}{2}$.
However, on account of Corollary 11

$$
\int_{a}^{b} g_{a b}(t) d t=\int_{a}^{b} f(t) d_{\mathbb{K}} t
$$

which finishes the proof.
Since in the proof of the above theorem we used the classical HermiteHadamard inequalities, we can not say that it is a more general result. Therefore, now we give another proof without using these inequalities.

Proof. To prove the right-hand side of (3) observe that

$$
f(x) \leq f(a)+\frac{f(b)-f(a)}{b-a}(x-a), \quad x \in[a, b]_{\mathbb{K}}
$$

so, integrating the above inequality over $[a, b]$ and dividing by $b-a$ we get

$$
\frac{1}{b-a} \int_{a}^{b} f(x) d_{\mathbb{K}} x \leq \frac{f(a)+f(b)}{2}
$$

To obtain the left-hand side of (2) we use the following easy-to-prove expression

$$
\int_{a}^{b} f(t) d_{\mathbb{K}} t=(b-a) \int_{0}^{1} f(s a+(1-s) b) d_{\mathbb{K}} s
$$

Using the above formula and the Jensen-convexity of f we get

$$
\begin{aligned}
\frac{1}{b-a} \int_{a}^{b} f(t) d_{\mathbb{K}} t & =\frac{1}{b-a}\left(\int_{a}^{\frac{a+b}{2}} f(t) d_{\mathbb{K}} t+\int_{\frac{a+b}{2}}^{b} f(t) d_{\mathbb{K}} t\right) \\
& =\frac{1}{2} \int_{0}^{1}\left[f\left(\frac{a+b-t(b-a)}{2}\right)+f\left(\frac{a+b+t(b-a)}{2}\right)\right] d_{\mathbb{K}} t \geq f\left(\frac{a+b}{2}\right)
\end{aligned}
$$

It turns out, that as with convex functions, in the class of uniformly radially \mathbb{K}-continuous functions each of the inequalities (3) is equivalent to \mathbb{K}-convexity. Namely, the following theorem holds true.

Theorem 24. If a function $f: I \rightarrow \mathbb{R}$ is uniformly radially \mathbb{K}-continuous and, for all elements $a<b$ of I, satisfies either the inequality

$$
f\left(\frac{a+b}{2}\right) \leq \frac{1}{b-a} \int_{a}^{b} f(t) d_{\mathbb{K}} t
$$

or

$$
\frac{1}{b-a} \int_{a}^{b} f(t) d_{\mathbb{K}} t \leq \frac{f(a)+f(b)}{2}
$$

then it is \mathbb{K}-convex.
Proof. Suppose that f satisfies the first inequality (for the second inequality the proof runs in a similar way). It is enough to prove that for every $a, b \in$ $I, a<b$ a unique extension $g_{a b}$ of $f_{\left[[a, b]_{\mathbb{K}}\right.}$ onto $[a, b]$ to a continuous function is convex. To see it, fix arbitrarily $c, d \in[a, b], c<d$. There exist sequences $\left\{c_{n}\right\}_{n \in \mathbb{N}}$ and $\left\{d_{n}\right\}_{n \in \mathbb{N}}$ such that $c_{n}, d_{n} \in[a, b]_{\mathbb{K}}, c_{n}<d_{n}, n \in \mathbb{N}$, and

$$
\lim _{n \rightarrow \infty} c_{n}=c, \quad \lim _{n \rightarrow \infty} d_{n}=d
$$

Since $c_{n}, d_{n} \in[a, b]_{\mathbb{K}}$, the extension $g_{c_{n} d_{n}}$ onto $\left[c_{n}, d_{n}\right]$ to a continuous function by virtue of uniqueness satisfies the condition

$$
g_{a b}(t)=g_{c_{n} d_{n}}(t)=f(t), \quad t \in\left[c_{n}, d_{n}\right]_{\mathbb{K}}, \quad n \in \mathbb{N} .
$$

By the assumption for all $n \in \mathbb{N}$
$g_{a b}\left(\frac{c_{n}+d_{n}}{2}\right)=f\left(\frac{c_{n}+d_{n}}{2}\right) \leq \frac{1}{d_{n}-c_{n}} \int_{c_{n}}^{d_{n}} f(t) d_{\mathbb{K}} t=\frac{1}{d_{n}-c_{n}} \int_{c_{n}}^{d_{n}} g_{a b}(t) d t$.
Taking limits as $n \rightarrow \infty$ gives

$$
g_{a b}\left(\frac{c+d}{2}\right) \leq \frac{1}{d-c} \int_{c}^{d} g_{a b}(t) d t
$$

We have shown that a continuous function $g_{a b}$ satisfies the left-hand side of the classical Hermite-Hadamard inequalities, so as we know, it is convex. Due to the arbitrariness of $a, b \in I$ we infer that f is \mathbb{K}-convex, which finishes the proof.

Open Access. This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

References

[1] Boros, Z.: Zs. Páles, \mathbb{Q}-subdifferential of Jensen-convex functions. J. Math. Anal. Appl. 321, 99-113 (2006)
[2] Daróczy, Z., Páles, Z.: Convexity with given infinite weight sequences. Stochastica 11, 5-12 (1987)
[3] Dragomir, S.S., Pearce, C.E.M.: Selected Topics on Hermite-Hadamard Inequalities and Applications. Victoria University, RGMIA Monographs (2002)
[4] Giaguinta, M., Modica, G.: Mathematical Analysis. Linear and Metric Structures and Continuity. Springer, New York (2007)
[5] Hadamard, J.: Étude sur les properiétés entiéres et en particulier dúne fonction considerée par Riemann. J. Math. Pures Appl. 58, 171-215 (1893)
[6] Hardy, G., Littlewood, J.E., Polya, G.: Inequalities. Cambridge University Press, Cambridge (1951)
[7] Hermite, C.: Sur deux limites dúne intégrale définie. Mathesis 3, 82 (1883)
[8] Kuczma, M.: An introduction to the theory of functional equations and inequalities. Birkhäuser, Basel (2009)
[9] Kuhn, N.: A note on t-convex functions. Gen. Inequal. 4, 269-276 (1984)
[10] Kurtz, D.S., Kurzweil, J., Swartz, C.: Theories of Integration: The Integrals of Riemann, Lebesgue, Henstock-Kurzweil, and McShane, Volume 9 of Series in Real Analysis. World Scientific (2004)
[11] Niculescu, C.P., Persson, L.E.: Convex Functions and their Applications, A Contemporary Approach CMS Books in Mathematics, vol. 23. Springer, New York (2006)
[12] Páles, Zs: Problem 2, Report of Meeting, The Thirteenth Katowice-Debrecen Winter Seminar. Ann. Math. Sil. 27, 107-125 (2013)
[13] Rado, T.: On convex functions. Trans. Am. Math. Soc. 37, 266-285 (1935)
[14] Riemann, G.F.B.: In: H. Weber (ed.) Gesammelte Mathematische Werke. Dover Publications, New York (1953)
[15] Riemann, G.F.B.: In: K. Hattendorff (ed.) Partielle Differentialgleichungen und deren Anwendung auf physikalische Fragen. Vieweg, Branschweig (1869)
[16] Roberts, A.W., Varberg, D.E.: Convex Functions. Academic Press, New York (1973)

Andrzej Olbryś
Institute of Mathematics
University of Silesia
Bankowa 14
40-007 Katowice
Poland
e-mail: andrzej.olbrys@us.edu.pl

Received: September 7, 2016
Revised: January 5, 2017

