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Abstract A group of immune systems is similar to a multi-
population system. Immune systems can be influenced by
vaccines and serums, similarly to that which occurs in nature.
The discussed algorithm has more parameters of work con-
trol than other immune algorithms. Fractal and multi-fractal
analyses of the proposed algorithm, supported by quantita-
tive analysis, are discussed. Fractal and multifractal analyses
illustrate the algorithmbehaviour. These analyses allow com-
paring algorithm settings considering their impact on the
exploration and exploitation of the solution space. Fractal
and multifractal analyses will be a valuable completion of
knowledge of their work mechanisms.

Keywords Immune algorithm · Group of immune algo-
rithms · Genetic material exchange · Fractal analysis ·
Multifractal analysis · Optimization method · Artificial
intelligence · Entropy

1 Introduction

In evolutionary algorithms, individuals, represented by a set
of features (genomes) search the solution space in a way
which is directed by evolutionary mechanisms. In evolu-
tionary algorithms, and especially in the group of genetic
algorithms, multi-population systems are known. Individual
populations are developed independently and the exchange
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Bȩdzińska 39, 41-200 Sosnowiec, Poland

of information between them consists in the exchange of
individuals.

This approach has some advantages—among them are the
case of computation parallelization and the increase in explo-
ration efficiency (it also means a decrease in the probability
of algorithm stagnation). Information exchange mechanisms
are widely discussed for multi-population genetic algo-
rithms (Trojanowski and Wierzchoń 2003). A discussion
of how artificial immune systems work can be found in
many studies—among others in Trojanowski andWierzchoń
(2009), White and Garrett (2003) and Wierzchoń (2001)
as well as in monography (Dasgupta 1998). The immune
algorithms have the best balance between exploration and
exploitation (Gaspar and Collard 1999) and owing to their
particular features are often applied to computation of the
non-stationary environment (Trojanowski and Michalewicz
1999). They are not devoid of the algorithm stagnation
effect.

The clones—and especially their way of mutation—play
an important role in the exploitation of solution space (Kelsey
and Timmis 2003, Trojanowski and Wierzchoń 2009). The
analysis of evolutionary algorithm work is complicated and
in the majority of cases resolves itself into a comparison of
error counting of local or global extreme.

However, such an approach seems to be insufficient
and even incorrect. Instead, clonal selection algorithms are
considered here. (De Castro and von Zuben 2000). The
developed version of the algorithm presented in the paper
(Gosciniak 2008) is described, and an original algorithm
of clonal selection is proposed. In it, the autoimmuniza-
tion was implemented to eliminate the stagnation effect. The
concept presented in the article builds the base algorithm
described in Gosciniak (2015). The article (Gosciniak 2015)
also shows the behaviour of semi-PSO algorithm using mul-
tifractal analysis.
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3946 I. Gosciniak

Moreover, the paper’s main aim is to prove the research
process, showing the algorithm’s behaviour and the influence
of genetic material exchange on its functioning. The value of
fractal andmultifractal analyses of immune algorithmwork is
shown. Fractal andmultifractal analyses effectively illustrate
the changes in the distribution of antibodies and antigens in
the solution space resulting from the application of algorithm
operators.

2 The idea of algorithm processing

The algorithm implements cooperation (co-evolution) of two
systems, named as elements of sample points and seed points
(similarly to the stochastic one). The algorithm description
can be presented as follows: a set of sample points is greater
than a set of seed points. The sample point moves in the
direction of the local extrema under the influence of seed
point and other sample points. The density of sample points
in the areas of local extrema is higher than in the other areas.
On the basis of information on active sample points, seed
points define their new positions (they are moving to local
extrema). The velocity of movement (of both active elements
of sample points and seed point) depends on the density of
the sample points. The velocity is greater when the density is
less. Thanks to this, the active seed point, by using the infor-
mation from active sample points, movesmuch faster outside
the local extrema than inside them. It is themovement of seed
point which is similar to eye tracking (Gosciniak 2015). Gen-
erally, sample points move slower than seed points. Sample
points are responsible for the exploration of solution space,
and the seed points for the exploitation of local extreme.
Close correlation is observed between these elements. The
reduction of seed points demonstrates the identification of
the local extrema as well as helps in the exploration of the
environment. The reduction of sample points is the indicator
of local extrema exploitation as well as indicates the explo-
ration of solutions space. Sample points perform some kind
of approximation of the environment function. Seed points
initiate the process of optimization in the location of these
points. This cooperation significantly reduces the impact of
the environment during the algorithm operation. Stop crite-
rion is based on the monitoring of solutions generated by the
algorithm in relation to information on the reduction para-
meters. This concept has been implemented as a metaphor
for the artificial immune algorithm and the PSO algorithm.
These metaphors are not implemented as a canon of these
algorithms and will be named as semi-immune and semi-
PSO.

The antigen is represented by a particle, and not by the
environment—it is an exception from the standard approach
to the immune algorithm. Furthermore, antigens change their
position under the influence of antibodies. A similar situa-

tion happens in the nature when viruses mutate to defend
themselves against the immune system. The discussion of
this algorithm is described below.

The Semi-PSO algorithm implements a strategy of round-
up. It seems to be a kind of predator–prey strategy as the
cooperation of two particles systems: predators and prey.
Prey is encircled by a group of predators. Predators move in
the direction of their group leader and prey. The group leader
tries to cut off the escape route of the prey. Prey, on the basis
of both observations of the leader and the weakest predator,
runs towards a safe place (a local extreme). Encirclement of
more than one prey results in the elimination of the weak-
est one. However, excessive approach of predators causes the
eliminationof theweakest one.Thesemechanisms seem tobe
the natural elements of a struggle for survival. The semi-PSO
algorithm is discussed in Gosciniak (2015) and verification
based on typical stationary test environments also presented.

3 A group of artificial immune systems

A group of artificial immune systems is similar to a multi-
population system. For example, we can consider the situ-
ation of co-operating systems (robots working together) or
when the analysed space should be divided into smaller areas
during parallel computing or in cases of artificial life and in
games.

Solution spaces of artificial immune systems can be cov-
ered or have only a common part. The group of artificial
immune systems can influence each other by means of
genetic material exchange. Each of the artificial immune sys-
tems can be influenced by vaccines and serums, similarly to
nature; hence, the artificial immune system can also have
certain dysfunctions.

Living tissues of an organism, hitherto tolerated by the
immune system, can be the target of attack for many rea-
sons. Tolerance breaking in relation to their own antigens
leads to autoaggression disease—autoimmunization disease.
The autoaggression in the artificial immune system can be
described in the following way:

From antibodies concentrated at a lower distance than the
given one, only that with the highest value of fitness function
remains. The removed antibodies are replaced by randomly
created antibodies. Antigens can also reveal a similar behav-
iour. Theweakest of the antigens, which are grouped together
and surrounded by the antibodies, are removed. It is the inter-
pretation of the mechanism of their reduction.

To achieve this result, a tolerance parameter was applied.
This defines the area within which the antibodies or antigens
are considered to be identical as well (this parameter for
antigens and antibodies can be different).
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Implementation of autoimmunization causes a form of
immune system instability. It prevents excessive antibodies
grouping, and consequently algorithm stagnation.

Living organisms can receive vaccines and serums. Vac-
cines are substances of biological origin, which are applied
to activate an immune response. Serums aremedical prepara-
tions, including specific antibodies that have an effect against
exotoxins. Diseases cause a kind of immune system destabi-
lization, whereas vaccines and serums have the function of
aiding the immune system.

The definitions of vaccine and autoimmunization, in ref-
erence to an artificial immune system, are presented below.
Methods of genetic engineering will be applied to the arti-
ficial immune system—namely genetic material analysis,
modification and production. The genetic material can be
used, for example, as a serum or vaccine. Vaccines and
serums must be produced, as occurring in the living organ-
ism’s immune system.

The vaccine (cloned antigens) is produced by another
immune system and activated by an antigen which is most
similar to the active antigen of the immune system (which is
located in the common area of the environment).

The serum is created by antibodies of other immune sys-
tems and activated by antigen, which is most similar to the
active antigen of the immune system derived from the serum
(which is located in the common area of the environment).
Cloned antibodies are “serum I” and clones produced by anti-
bodies are “serum II”. In this case, the antigen is responsible
for the production of vaccine and serum.

The clonal selection algorithm, implementing autoimmu-
nization activity and genetic material exchange based on
serum and vaccine injection, is presented below. This is the
enhanced version of the algorithm from paper (Gosciniak
2008).

4 An artificial immune system with
auto-immunization

The author discusses the enhanced version of the algorithm
from paper (Gosciniak 2008). The pseudo-code of the algo-
rithm is presented in Algorithm 1.

1. An initial population of antibodies and antigens is ran-
domly created.

2. A single active antigen is randomly selected from the
set of antigens. Because antigens are responsible for
the antibodies activation and consequently for environ-
mental exploitation, they should not be concentrated (as
antibodies in the classic algorithm of clonal selection).
Antigen concentration identifies the local extreme, but
the preservation of more than one antigen identifying

the local extreme seems to be redundant. The presence
of other antigens is checked in the tolerance area of the
activated antigen. If they occur, then the local extreme
existence in this area is presumed. The antigen with the
best fitness function value becomes the active antigen
and the remaining ones are replaced by the randomly
created antigens. As a result, the whole area of the solu-
tion space is searched continually.

3. * Vaccination. The donor antigen, located at the smallest
distance from the receiver’s active antigen, is activated
and cloned. Areas of a donor and a receiver are different,
but they have a common part of the solution area. The
donor’s antigen must be located in the common part of
the solution area. The receiver’s antigen is replaced if the
donor’s antigen is better than the receiver’s one.

4. * Serum I. The donor’s antigen located at the smallest
distance from the receiver’s active antigen is activated.
This antigen stimulates antibodies, which are cloned and
injected into the receiver. They must be located in the
common part of the solution area. These antibodies can
be activated by the antigen in the next step of the algo-
rithm.

5. Antibodies which are most similar to active the antigen
are activated. The auto-immunization is implemented at
this point of the algorithm. This process consists of a
particular form of selection. As a result of this selection,
the best antibodies remain. The remaining antibodies are
located at a distance from each other which is no less
than the distance defined by the tolerance area (tolerance
radius). Similar antibodies are replaced by randomly cre-
ated antibodies. It prevents the excessive concentration
of antibodies in a very small area.

6. The set of activated antibodies produces clones in
amounts which depend on their fitness value—an anti-
body with a higher value of fitness function produces
more clones than others.

7. * Serum II. The donor’s antigen which is located at the
smallest distance from the receiver’s active antigen is
activated. This antigen stimulates antibodies, which pro-
duce the serum—represented by clones. The antibody
with the higher value of fitness function produces more
serum thanothers. The receiver takes the produced serum
as clones (the clones are subject to mutation in the next
step of the algorithm).

8. Clones with higher fitness value are less mutated. It is
assumed that mutated clones should be located inside the
area, limited by features of active antibodies. Therefore,
the clones realize the exploitation of the limited solution
space.

9. Clones which are most similar to the active antibodies
(that they produce) are replaced by them if their fitness
function value is higher. The task of antibodies is to cre-
ate net nodeswhichwill undergo a process of adaptation.
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Antibodies should move towards local extremes, but at
a significantly slower speed than antigens (in areas of
higher value of fitness function, the number of them
should be bigger than in the remaining ones). A clone
with higher fitness value than the active antigen replaces
it. The antigens move very quickly towards the direction
of the local extreme.

10. * The weakest antibodies are removed and replaced by
new randomly created antibodies. Antibodies removed
from areas of the lowest fitness value can make non-
stationary environment exploration difficult and this
point was omitted in the algorithm. In relation to the
classic immune algorithm, this function is taken over by
the auto-immunization mechanism. But the serum injec-
tion causes the increase in the number of antibodies. To
restore the number of antibodies to the previous value,
the weakest of them can be removed.

11. Points 2–9 of the algorithm are iterated to reach the ter-
mination criterion.

The steps 3*, 4*, 7* and 10* are optional—they modify
the clonal selection algorithm. In these steps of the algorithm,
the elements of genetic engineering can be also implemented;
they can control the development of antibody and antigen
populations. In this algorithm, the active antigenhas an essen-
tial influence on the production and mutation of clones.

The example of a mutation operator can be described in
the following way:

A mutated clone is created at a distance dCm
i −Ab∗

i
=√∑n

i=1(ki · ϑi )2 from the antigen, where K = Ci − Ag∗
i is

the distance vector from clone Ci = [ci1, . . . , cin] to active
antigen Ag∗

i = [
ag∗

i1, . . . , ag
∗
in

]
and� = [ϑ1, . . . , ϑn] is the

random vector, and n is the dimension, i = 1 . . . n. The posi-
tion of the mutated clone can be described by the equation:
Cm
i = Ci + sign( f (Ci ) − f (Ag∗

i )) · K · �. In the discussed
example i = 2, the considered mutation operator can be
described by the range of random vector:

I. ϑi ∈ (0, 1.3],
II. ϑi ∈ (0, 1.0],
III. ϑi ∈ {0.25, 0.5, 1.0}.

The following operators of mutation have more and more
grouping character. The mutated clones are created towards
the direction of the greatest increase (decrease) of the fitness
value. The mechanism of adaptation can efficiently exploit
the solution space limited by the active antibodies (much
more effectively than the classic clonal selection algorithm).

The number of produced clones depends on the value of
the fitness function. A range between the minimum and the
maximum values of the fitness function is determined in each
iteration. This range is divided into nc (maximum number

of clones) subranges. The index of such created subranges
represents the number of produced clones. Each one of the
antibodies belongs to the appropriate subrange.

The selection of antibodies in the neighbourhood of
the active antigen requires explanation. A vector of dis-
tance from the active antigen to the antibody is determined
as S = Ag∗

i − Abi . Antibodies are divided into four
groups depending on the sign of values of the vector
S({(+,+), (−,+), (−,−), (+,−)}). For each one of the
group, the antibody with the shortest distance from the active
antigen is determined. So, antibodies are selected around the
active antigen.

The data description of algorithms:
Bn

{i |d} is the subarea (Bn
{i |d} ∈ B, i is the index of an active

subarea or d is the index of a donor’s subarea, i �= d); Ab
is the set of antibodies (Ab{i |d} ⊆ Ab, Ab{i |d} is in Bn

{i |d});
Ab{i |d} is an antibody (Ab{i |d} ∈ Ab{i |d}); Ab∗{i |d} is a set of
active antibodies (Ab∗{i |d} ⊂ Ab{i |d}, Ab∗{i |d} ∈ Ab∗{i |d}); Ag
is a set of antigens (Ag{i |d} ⊆ Ag,Ag{i |d} is in Bn

{i |d});Ag is an
antigen (Ag ∈ Ag); Ag{i |d} is an antigen (Ag{i |d} ∈ Ag{i |d});
Ag∗{i |d} is an active antigen (Ag∗{i |d} ∈ Ag{i |d}); C{i |d} is a set
of clones (C{i |d} is in Bn

{i |d});C{i |d} is a clone (C{i |d} ∈ C{i |d});
Cm
i is a set of mutated clones (Cm

i is in Bn
i ); C

m
i is a mutated

clone (Cm
i ∈ Cm

i ); c is the number of produced clones; Agbest
is the best solution (Agbest ∈ Ag);VACCINE is the function
determining an antigen Agd for vaccination (Algorithm 2);
SERUM_I is the function determining a subset of antibodies
Agd as a serum (Algorithm 3); SERUM_II is the function
determining a subset of clones Cd as a serum (Algorithm 4).

5 Non-stationary environment

A non-stationary environment is widely discussed among
others in publications Branke (2002) and Branke (1999).

In the discussed example, a geometric modelling of
environmental change is proposed, baseing on 3D trans-
formations such as rotation, translation and scaling. An
additional problem is the ability to track changes (Angeline
1997). A general description of the environment is presented
below.

In the non-stationary environment the successive move-
ment of local extremes and changes in fitness function value
follows as well. Extreme of global character can become a
local extreme. The non-stationary environment was based on
changes in parameters of uni-modal function, described by
the equations:

f = max
i=1...n

fi and fi = h · 100−
(

(x−tx )2

w2
x

+ (y−ty)2

w2
y

)

, (1)

where h—-height; tx ,ty—shift x and y;wx ,wy—slope incli-
nation; n—number of peaks.
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Algorithm 1: Artificial immune system with auto-
immunization
Input: f () – solved problem; n – dimension;
nAb – number of antibodies;
nAg – number of antigens; nC – number of clones; Dn – solution
space; B – set of subarea; rAb – tolerance radius of antibodies;
rAg – tolerance radius of antigens; ϑ – range of mutation;
vaccination = {False|True} – vaccination;
serumI = {False|True} – serum I; serumI I = {False|True}
– serum II.
Output: the best solution.

foreach Bn
i ∈ B do1

Abi ←− {random initialization of nAb antibodies in subarea2
Bn
i };

Agi ←− {random initialization of nAg antigens in subarea3
Bn
i };

Agbest ←− Ag ∈ Ag;4
repeat5

foreach Bn
i ∈ B do6

Ag∗
i ←− random selection of Agi ∈ Agi ;7

foreach Agi ∈ (Agi \ { Ag∗
i }) do8

if
∥∥Ag∗

i − Agi
∥∥ < rAg then9

if f (Ag∗
i ) is better than f (Agi ) then10

Agi ←− random initialization in subarea Bn
i ;11

else12
Ag∗

i ←− random initialization in subarea Bn
i13

and unset active;
Agi ←− set active ;14

if vaccination then15
Ag∗

i ←− VACCINE;16

if serumI then17
Abi ←− Abi ∪ SERUM_I;18

foreach {Ab∗1
i , Ab∗2

i } ∈ Ab∗
i do19

if
∥∥Ab∗1

i − Ab∗2
i

∥∥ < rAb and Ab∗1
i �= Ab∗2

i then20

if f (Ab∗1
i ) is better than f (Ab∗2

i ) then21

Ab∗2
i ←− random initialization in subarea Bn

i22
and unset active;

else23

Ab∗1
i ←− random initialization in subarea Bn

i24
and unset active;

Ci ←− {∀Ab∗
i ∈ Ab∗

i Ab∗
i produces c clones depending25

on f (Ab∗
i ) and nC};

if serumI I then26
Ci ←− Ci ∪ SERUM_II;27

Cm
i ←− {Ci ∈ Ci Ci is mutated on the dependence on28 ∥∥Ci − Ag∗

i

∥∥ and ϑ};
foreach Ab∗

i ∈ Ab∗
i do29

∀Cm
i ∈ Cm

i if
∥∥Cm

i − Ab∗
i

∥∥ is minimal and f (Cm
i ) is30

better than f (Ab∗
i ) then Ab∗

i ←− Cm
i ;

∀Cm
i ∈ Cm

i if f (Cm
i ) is better than f (Ag∗

i ) then31
Ag∗

i ←− Cm
i ;

if |Abi | > nAb then32
Abi sort by f (Abi ) and cat Abi to nAb elements;33

if f (Ag∗
i ) is better than f (Agbest ) then34

Agbest ←− Ag∗
i ;35

until stop criteria are not reached;36
return Agbest ;37

Algorithm 2: VACCINE
Input: Bn

i ,Ag,Agi , Ag
∗
i .

Output: an antigen.

foreach Agd ⊆ (Ag \ Agi ) do1

Ag∗
d ←− ∀Agd ∈ Agd if

∥∥Agd − Ag∗
i

∥∥ is minimal then2
select Agd ;

if Ag∗
d is in Bn

i and f (Ag∗
d ) is better than f (Ag∗

i ) then3
return clone of Ag∗

d ;4
else5

return Ag∗
i ;6

Algorithm 3: SERUM_I
Input: Bn

i ,Ag,Agi , Ag
∗
i ,Abd ⊆ (Ab \ Abi ).

Output: set of antibodies.

foreach Agd ⊆ (Ag \ Agi ) do1

Ag∗
d ←− ∀Agd ∈ Agd if

∥∥Agd − Ag∗
i

∥∥ is minimal then2
select Agd ;

Ab∗
d ←− {∀Abd ∈ Abd if Abd is in the neighborhood of Ag∗

d3
then select Abd };
return {∀Ab∗

d ∈ Ab∗
d if Ab∗

d is in Bn
i then clone Ab∗

d};4

Algorithm 4: SERUM_II
Input: Bn

i ,Ag,Agi , Ag
∗
i ,Abd ⊆ (Ab \ Abi ).

Output: set of clones.

foreach Agd ⊆ (Ag \ Agi ) do1

Ag∗
d ←− ∀Agd ∈ Agd if

∥∥Agd − Ag∗
i

∥∥ is minimal then2
select Agd ;

Ab∗
d ←− {∀Abd ∈ Abd if Abd is in the neighborhood of Ag∗

d3
then select Abd };
Cd ←− {∀Ab∗

d ∈ Ab∗
d Ab∗

d produces c clones depending on4
f (Ab∗

d ) and nC};
return {∀Cd ∈ Cd if Cd is in Bn

i then select Cd};5

Six functions were applied in the model. Their parame-
ters are below presented in Table 1. The view of exemplified
changes in the analysed environment is presented below in
Fig. 1.

Environment changes can occur continuously or gradually
per a certain number of iterations. In the analysed non-
stationary environment, discontinuous (stepwise) changes
occur and between them the stable phases are implemented.
The complete cycle of the environment changes is realized in
100 steps. Solution spaces of immune systems can be covered
or have only a common part.

Two schemes of the group of immune systems work are
considered in the article. The first one looks like the classic
multi-population system, in which areas of solution space are
covered (two immune systems in one group—Fig. 2a). In this
case, the group of two immune systems will be analysed. In
the second case, the analysed solution space is covered only
in the border areas. The covered areas take up 20.27% of
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Table 1 Parameters of enironment function

Function parameters f1 f2 f3 f4 f5 f5

h 7.6 to 15.3 10 to 15 7 to 10 10 to 14.3 5.5 to 7.5 5.5 to 6.5

tx −92 to −48 70.1 to 80 −9.5 to 89 −59 to 59 −70 50

ty −32 to 72 25 to 84 −89 to 9.7 −31 to 81.5 −70 −50

wx 75 35 50 50 100 to 300 15 to 50

wy 75 35 50 50 100 to 300 100

(h, tx , ty) (h, tx , ty) (h, tx , ty) (h, tx , ty) (h) 2.0 (h) 2.0

c 2.0 1.0 1.0 1.3 (wx ) 1.4 (wx ) 1.0

(wy) 0.8

avg(h) 11.47 12.48 8.67 11.99 6.50 6.00

c—cycle in 100 steps (1 cycle=2π rad.);
changed parameters are given in brackets.

Fig. 1 View of the environment
changes with marked changes in
the peak location

the total solution space, as shown in Fig. 2b. In this case, the
group of three immune systems will be analysed.

It is easily seen that the number of local extremes will be
changing in the life cycles. The influence of selected para-
meters on the algorithm work is described below.

The following constant parameters of the algorithm work
were assumed: the quantity of antigens amounts to 6 and
the quantity of antibodies equals 20. The algorithm takes the
form of 100 cycles of the environment changes, and between
them the stable four phases are implemented. Different toler-
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Fig. 2 Analysed areas of
solution space, a solution space
for a group of two immune
systems; b solution space for a
group of three immune systems

ance areas for two immune systems were defined in the first
scheme. For the first system, the tolerance areas of antibodies
and antigens are larger than for the second one.

6 Fractal and multifractal analyses

Fractal and multifractal analyses are applied in many disci-
plines of science and technology. The examples of fractal
analysis used with reference to genetic algorithms are pre-
sented in works Juliany and Vose (1994), Kies (2001) and
Kotowski et al. (2008). A wide discussion on the subject
matter connected with fractal and multifractal analyses, and
illustrated by numerous examples, was introduced in works
Hawkes and Kazan (1994) and Lynch (2009). Basic terms of
analyses carried out are defined below.

Fractal and multifractal analyses are based on fractal
dimensions. The imagematrices are created by counting anti-
gens and antibodies occurrence in areas of solution space
represented by subareas—matrix cells. In the analysis of
these images, theMinkowski–Bouligand’s fractal dimension
can be applied.

DM−B dimension is calculated from the relation between
the size of Minkowski’s covering and ε. For 
n space, we
receive:

DM−B = lim
ε→0

(
n − log A (ε)

log ε

)
, (2)

where A (ε) covers and ε is the coefficient of scale.
The mathematical morphology deals with the geometrical

structure analysis of the investigated object lying in the 
n

space. A function of the object can be described as follows:
f : D → W, where D is the domain of the functions (2D)
and W ⊂ R

+ (counterdomain).
Structural elements B, called probes, are used in the

analysis. Morphological transformations are the result of

dependence between the investigated object and the probe
(Haralick et al. 1987).

Dilatation δB (f) and erosion εB (f) can be defined in the
following way:

εB (f) ⇔ ∀
pεD

g (p) = min
bεB

{f (p + b)} , (3)

δB (f) ⇔ ∀
pεD

g (p) = max
bεB

{f (p + b)} , (4)

where g is the object.
The received results should have the same size as

processed data. It is necessary to expand the processed data
set with values of border samples to avoid the influence
of border effects. The result of dilatation is the expansion,
whereas the result of erosion is the shrinking of the object.
The discussed morphological transformation can be easily
applied in 
n space. A (ε) is expressed by δB (f)− εB (f)—
the difference between results of dilatation and erosion of
the object. This method can be used to evaluate the behav-
iour of antibodies and antigens. The high value of fractal
dimension illustrates an even exploration of solution space.
Similar fractal dimensions can prove similar behaviour of
antibodies or antigens. However, one should recognize that
objects with quite different appearances can have the same
fractal dimension. The notion of multifractals is not based
on sets (as in a case of fractals), but on measures connected
with these sets. As a result, we receive a spectrum of fractal
dimensions. The generalized fractal dimension Dq or spec-
trum of dimensions f (α) can be calculated by means of the
box-counting method.

Generalized fractal dimension Dq , where q ∈ 
, is
defined in the following way:

Dq = lim
i→0

1

1 − q

ln
∑N

i=1 p
q
1 (l)

− ln l
, (5)

where i is the index labels of individual boxes (l is the hyper-
cubes for n dimension space) and values pqi indicate the

123



3952 I. Gosciniak

Table 2 The selected data of
algorithm processing in the test
environments

Parameter Exchange environment None Vacine Serum I Serum II

I II I II I II I II

1. Modified antibodies 1.23 1.57 1.09 1.74 1.40 0.91 0.41 1.55

2. Modified antigens 0.59 0.37 0.42 0.37 0.71 0.31 0.58 0.38

3. Reduced antibodies 1.09 0.36 0.64 0.42 2.03 0.17 0.10 0.55

4. Reduced antigens 0.38 0.04 0.39 0.05 0.38 0.03 0.40 0.05

5. Designation error 0.28 0.06 0.24 0.05 0.25 0.05 0.23 0.06

relative weight of the i th box or the probability of object
occurrence in the box.

The spectrum of fractal dimensions f (α) can be com-
puted using the expressions (Chhabra et al. 1989)

f (q) = lim
i→∞

∑N
i=1 μi (q, l) ln μi (q, l)

ln l
(6)

and

α (q) = lim
i→∞

∑N
i=1 μi (q, l) ln pi (q, l)

ln l
, (7)

where μi (q, l) are normalized probabilities determined by
equations:

μi (q, l) = pqi (l)∑N
j=1 p

q
j (l)

. (8)

Considering the basic properties of this function f :
[αmin, αmax ] → 
, we can say that αmin and αmax are the
slopes of the asymptotes of strictly convex function.

f is continuous on [αmin, αmax ] and f (αmin)

= f (αmax ) = 0 are results from the geometry of the Legen-
dre transform.

The following information can be read from the f (α)

graph:

1. For q = 0, f (α) reaches the maximum value and is a
measure of capacitive dimension.

2. For q = 1, f (α) = α; d
dα ( f (α) − α) = q − 1 = 0;

this way, f (α) is tangent to f (α) = α at q = 1 and the
tangent point represents information dimension.

3. The remaining generalized dimensions are located along
graph, f (α)−α for positive q on the left and for negative
q on the right from the maximum and they determine
correlations between multiples of points in every box.

4. The width of graph f (α) − α delimited by asymptotic
lines (for q → ∞, the asymptote equals αmin , for q →
−∞, the asymptote equals αmax ) is a measure of points
grouping.

5. Graph f (α) − α is not symmetrical, and the left part is
considerably more steep than the right.

7 The fractal and multifractal analyses of immune
algorithm operation

During the algorithm operation, antibodies and antigens are
moved as a result of their interactions and interactions with
the environment. The following discussion is intended to
identify the essential elements of the algorithm operation.
Fractal and multifractal analyses give such possibilities as
the comparison of algorithm behaviour dependent on differ-
ent parameters of algorithm settings.

Important parameters are the number of active antibodies
and the number of produced clones. Because of the selec-
tion (see algorithm description), the average value of active
antibodies is 3.2. Its consequence is an approximately equal
amount of produced clones—the average value is 13.7 (in the
example in Table 2).

Antibody behaviour with reference to the number of pro-
duced clones can be also determined based on calculated	α

from the spectrum of multifractal dimensions (Fig. 3). The
increase in the number of clones also causes their increase in
the grouping of antibodies.

The method of clones mutation is of great importance,
because it affects the movement of active antibodies and
an active antigen. They have an impact on the precision of
extreme designation. The clones mutate under the influence
of the active antigen (see the algorithm description). The
antibody behaviour depends on the mutation operator, and
the impact of the number of produced clones on antibod-
ies behaviour is clearly visible in the fractal and multifractal
analysis. The behaviour of antibodies and antigens can be
described by means of fractal dimension—Fig. 4a, or pre-
sented as 	α = αmin − αmax computed on the basis of

Fig. 3 Influence of the number of clones on the behaviour of antibodies
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Fig. 4 Mutation operator influence on behaviour of antibodies and
antigens; a fractal analysis, b multifractal analysis

multifractal analysis (Fig. 4b). Both methods illustrate the
behaviour of antibodies and antigens in a similar way.

Fig. 5 presents the spectrum of multifractal dimensions
being the basis for calculating 	α = αmin − αmax for the
discussed mutation operators. The spectrum of multifractal
dimensions distinctly illustrates the differences in antibody
behaviour and considerably smaller differences in antigen
behaviour. The following operators of mutation limit the
range of distribution of clones. In the immune algorithm,
the mutated clones influence the behaviour of antibodies.
So, it directly affects the reduction of the solution space
exploration by antibodies. The consequence of this, resulting
from a co-evolution mechanism, is the increase in the anti-
gen grouping. The multifractal spectrum illustrates it very
clearly. The grouping increases the exploitation of solutions
space in the area of local extremes.

The average number of modified antibodies (1) and anti-
gens (2) indicates the progress of the extreme exploitation
by algorithm (the numbers in brackets refer to the example
included in Table 2, and the given values are calculated as the
average value per one cycle of algorithm operation), whereas
the parameters of reduction of antibodies (3) and antigens
(4) describe the intensity of the environmental exploration.
These reductions also confirm the convergence in the area of
local extremes.

The tolerance radius has a significant influence on the
above discussed parameters (environment II has a smaller (on
average 50%) tolerance radius than environment I). Much
less exploration progress of algorithm in environment II is

also confirmed by parameters of the covered average distance
which are smaller by about 77% in relation to environment I.
The tolerance radius has a significant impact on the distribu-
tion of antibodies and antigens in the solution space—it also
shows the multifractal analysis. The parameter of average
distance of antibodies covered by outside areas of extremes
(attraction areas) is on average 51% higher than within these
areas. The contribution of antibodies within the areas of local
extremes is greater than outside of them and amounts (on
average) to 54% for the first environment and 59% for the
second one (relating it to the surface of these areas—it can
be concluded that the density of antibodies within the areas
of extremes is greater than outside them). Antigens have a
significantly higher velocity of movement towards the direc-
tion of local extremes than antibodies—on average by 64%.
Their average distance covered outside the areas of extremes
is greater by 63% for environment II and 60% for I than
the average distance covered outside them. It also causes
a greater contribution of antigens within the areas of local
extremes. It amounts to 95% (on average) for environment
II and 75% for environment I.

The velocity of antibodies and antigens can be controlled
by means of a tolerance radius. Graphs as functions of toler-
ance radius are presented in Fig. 6 in the followingway: basic
settings (A), increased tolerance radius for antigens (B), anti-
bodies (C), and antibodies and antigens (D). The increase in
the area of tolerance causes the increase in the average veloc-
ity ofmovement of antibodies or antigens. It is a consequence
of the increase in the number of elimination of weaker anti-
bodies or antigens in a common area (the area of tolerance)
and the creation of a newone—a jump into a randomposition.
The large increase in the velocity of movement of antigens
does not cause major changes in their grouping, because they
follow quickly in the direction of local extremes—a conse-
quence of this are slight differences in the value of the fractal
dimension (Fig. 6a). The slight increase in the area of toler-
ance, the consequence of which is the increase in the velocity
of movement of antibodies, will cause a more uniform dis-
tribution of them in the solution space. It results in a better

Fig. 5 Multifractal spectrum for the discussed mutation operators (marks I, II, III on the charts a, b, c are described in the text)
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Fig. 6 The influence of tolerance parameter on exploration of solution
space: a fractal dimension of antibodies and antigens; b velocity of
antibodies and antigens (v—distance per one algorithm step); c error of
extreme calculation

exploration of the solution space. Exploration and exploita-
tion of the solution space are contradictory goals. As shown
in Fig. 6, it is possible to obtain a satisfactory compromise
between exploration and exploitation.

The change in radius tolerance significantly influences the
distribution of antibodies and antigens in the solution space.
The tolerance radius also has a significant impact on thepreci-
sion of the extreme designation—the higher precision occurs
if the radius of tolerance is small (Table 2). But at this point,
it is possible to discuss obtaining a seemingly contradictory
result. The average error of all local extremes determined
decreases with the increase in the tolerance radius—it results
from the effectiveness of changes searched in the environ-
ment.

The increase in the average velocity of movement of
antibodies improves exploration, while the increase in the
average velocity of movement of antigens improves the
exploitation, the direct result of which is the reduction in
the errors of local extreme determination. It is the effect of
mechanisms of co-evolution and adaptation. The excessive
increase of tolerance area will cause a strong limitation of
these mechanisms and even their destruction—in this case,
the algorithm will work as a pseudo-random number gener-
ator. The velocity of local extreme indication and precision
of their designation are contradictory goals, but to talk about
the precise, first of all it is necessary to identify the extreme.
The solution to this problem can be, for example, a group
of two immune systems which occupy the same area of
the solution space. One of the immune system is tuned for
the precise determination of extremes and the other one for
the velocity of their determination. For their proper interac-
tion, the exchange of genetic material between them must
exist.

We will obtain similar observations (as above) while ana-
lyzing only environment I. In the first test environment, there
are two individuals and their areas of life are overlapped. For

the first individual, a tolerance radius is 25% greater than
for the second one. The average distance covered outside the
areas of local extremes is on average 53% bigger for the first
individual than for the second one. Within the area of local
extreme, the velocity of antibodies for the first individual
is also greater by approximately 40%. The velocity of the
movement of antibodies outside the areas of local extremes
is also greater than inside them on average by 48% in the first
individual and by 33% in the second one. The average dis-
tance covered by antigens outside the areas of local extremes
is on average 18% higher in the first individual and greater
by about 25% in the second one (it is obvious because of
the less number of antibodies occurring outside the areas of
extremes in the second individual).

The behaviour of antibodies and antigens was illustrated
by means of fractal dimension calculation (Fig. 7). Their
behaviour is similar. Even a small increase in the number of
cycles (inserted between changes in the environment) causes
a noticeable change in the antigens and antibodies grouping.
The effect of increase in the number of cycles is obvious, but
the fractal analysis gives the possibility to visualize it.

Exchange of genetic material is possible in the group
of immune systems. The genetic material exchanges have
also an impact on the algorithm behaviour. Analyzing the
exchange of genetic material, the following parameters were
specified: exchange rate—it determines how much (in %) of
genetic material has been obtained by the receiver (it has
100% in the case of overlapping areas), and the success
rate—it determines a percent of exchanged and activated
genetic material. Analyzing the test environment I, it was
stated that the effectiveness rate of the vaccine for both indi-
viduals is big and amounts to 46% (for the first one) and
36% (for the second one). The serum I exchange gives better
results for the second individual—the average value of effec-
tiveness rate for the second individual is 39% (on average)
and for the first one 24%. In the case of serum II, the situation
is reversed—for the first individual the effectiveness rate is
about 48% and for the second 22%.

In the case of test environment II, the exchange of genetic
material may occur only if the antigen, antibodies or clones
are in a common area. In the case of three individuals, the
exchange rate for serum is very low and amounts to about
10% and the effectiveness rate is only 3%. It does not cause

Fig. 7 The behaviour of antibodies and antigens in dependence on the
number of cycles
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visible changes in the behaviour of the algorithm—it was
not considered in the multifractal analysis. The exchange
rate of serum I is bigger than that of the vaccine—it is about
18% and the effectiveness rate amounts approximately to
8%. The exchange rate of genetic material for serum II is
8% (on average) and the effectiveness rate is about 13%.
The exchange of genetic material as serum I and II produces
visible changes in the behaviour of the algorithm—-it is also
shownbymultifractal analysis. It is also interesting that in the
environment of smaller tolerance radius, antibodies updates
are more frequent [(the exception is serum I because of the
way of exchange of genetic material (Table 2)].

The graph from Fig. 8a presents data of genetic material
exchange for two immune systems, whereas the graph from
Fig. 8b presents data for three immune systems. The fractal
dimension of antigens is higher than the fractal dimension of
antibodies in the case of vaccination.

This kind of geneticmaterial exchange causes the increase
in the distribution of uniformity of antigens in the solu-
tion space—it is larger than the distribution of antibodies as
shown in a graph of ”vaccine” in Fig. 8a. This is the exam-
ple of a strong exploration of the solution space in which
the mechanisms of adaptation and co-evolution were signif-
icantly weakened. The weakening of these mechanisms is a
result of the nature of this exchange. This kind of exchange
of genetic material does not play a significant role in the case
of narrow border areas; therefore, it was not illustrated in Fig.
8b—the environmentwith three individuals (seeFig. 2b). The
reason for it is a small probability to meet the conditions for
the geneticmaterial exchange (see the description of the algo-
rithm). The effect of serum is very clearly illustrated (Fig. 8).
The comparison shows that serum I works more efficiently.
It causes an increase in the antigen grouping (exploitation of
local extremes) and improves the exploration of the solution
space by the antibody. The effectiveness of this exchange is
especially visible when immune systems have only a com-
mon part of the solution space in the border area (Fig. 2b).
It is distinctly visible that the exploitation growth limits the
exploration of solution spaces.

Both methods of fractal and multifractal analyses are per-
fectly suitable for the evaluation of the discussed immune

Fig. 8 Data of genetic material exchange—two immune systems (a)
and tree immune systems (b)

algorithm operation. Thesemethods allow better understand-
ing of the operation of newly designed algorithms or just
operators. The above presented fractal andmultifractal analy-
ses are interesting tools for the analysis and visualization of
the algorithm operation.

8 Conclusions

Fractal and multifractal analyses are often used in graph-
ics. During these analyses, the distribution of image points
is examined. The result of these analyses is the number
determining the fractal dimension or set of numbers, called
multifractal spectrum. These methods do not depend on the
dimension of the space inwhich they are applied and it is pos-
sible to demonstrate its close relationship with the entropy.
Fractal analysis has been previously applied in relation to the
genetic algorithm during investigation on the trajectory of
individuals moving. However, this article applies the fractal
and multifractal analyses to study the distribution of anti-
bodies and antigens in the solution space. The conducted
experiments have shown their usefulness and possibilities
to use them in the analysis of the immune algorithm opera-
tion. This method depends on parameters of analysis and is
suitable only for the comparison of the effects of the work
of algorithm operators—the proposed analysis can have an
auxiliary character. For this reason, the parameter settings
of fractal and multifractal analyses are not discussed in the
paper. The proposed approach should be very useful in the
designing of new algorithms or new operators to characterize
their actions and can be applied in a wide group of evolution-
ary and stochastic algorithms.

The influence of a mutation operator on the behaviour of
antibodies and antigens was characterized by fractal analy-
sis and confirmed by multifractal analysis. The multifractal
analysis illustrates antibody behaviour very well, in relation
to the number of produced clones.

The efficiency of the immune algorithm depends on the
penetration of solution space by antibodies. The antibodies
penetrate the solution space more uniformly than antigens.
Genetic material exchange in the group of immune systems
influences the change in behaviour of antibodies and anti-
gens.

Due to the possibility to control exploration dynamics of
immune systems by means of the tolerance area, and apply-
ing the proper exchange of genetic material, it is possible
to build a group of immune systems which possesses good
exploitation and exploration properties of solution space. The
discussed algorithm has parameters suitable for their con-
trol. The accepted solutions allow effective algorithm work
on a small number of antibodies and clones. This is the
main factor influencing the velocity and cost of the algorithm
work.
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In furtherwork, the algorithm should be verified by bench-
marks of non-stationary test environments: moving peaks
benchmark and generalized dynamic benchmark generator.
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