

Title: Mandelbrot- and Julia-like Rendering of Polynomiographs

Author: Krzysztof Gdawiec

Citation style: Gdawiec Krzysztof. (2014). Mandelbrot- and Julia-like
Rendering of Polynomiographs. “Lecture Notes in Computer Science” (vol.
8671(2014), pp. 25-32), doi 10.1007/978-3-319-11331-9_4

[postprint]

brought to you by COREView metadata, citation and similar papers at core.ac.uk

https://core.ac.uk/display/197746321?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Mandelbrot- and Julia-Like Rendering
of Polynomiographs

Krzysztof Gdawiec

Institute of Computer Science, University of Silesia
Bȩdzińska 39, 41-200, Sosnowiec, Poland

kgdawiec@ux2.math.us.edu.pl

Abstract. Polynomiography is a method of visualization of complex
polynomial root finding process. One of the applications of polynomiog-
raphy is generation of aesthetic patterns. In this paper, we present two
new algorithms for polynomiograph rendering that allow to obtain new
diverse patterns. The algorithms are based on the ideas used to render
the well known Mandelbrot and Julia sets. The results obtained with the
proposed algorithms can enrich the functionality of the existing poly-
nomiography software.

Keywords: polynomiography, rendering, Julia set, Mandelbrot set, com-
puter art

1 Introduction

One of the most elusive goals in computer aided design is artistic design and pat-
tern generation. Pattern generation involves diverse aspects: analysis, creativity,
development [11]. We must deal with all the three aspects in order to obtain an
interesting pattern that could be later used in jewellery design, carpet design,
as a texture etc.

Many methods of pattern generation exist in the literature, but we will men-
tion only those which are needed in the paper. First such method is polynomiog-
raphy. The method was introduced by Kalantari and it is based on the root-
finding methods of complex polynomials [4]. Other known methods of pattern
generation are Mandelbrot and Julia sets [3]. The methods are based on the
iteration of a complex function, usually a quadratic function. In this paper, we
combine concepts taken from the rendering methods of the Mandelbrot and Julia
sets with the polynomiography, obtaining in this way new methods of artistic
pattern generation. The patterns obtained with the help of our algorithms could
find similar applications as the standard polynomiography, i.e., creating paint-
ings, carpet design, tapestry design, animations etc. [5].

The paper is organized as follows. In Sec. 2 we introduce some basic infor-
mations about polynomiography and a standard algorithm for polynomiograph
rendering. Then, in Sec. 3 we present two algorithms of polynomiograph render-
ing that are based on the ideas used in the rendering of Mandelbrot and Julia
sets. We present some exemplary polynomiographs obtained with the proposed
algorithms in Sec. 4. Finally, in Sec. 5 we give some concluding remarks.

2 Polynomiography

Polynomiography is the art and science of visualization in approximation of
the zeros of complex polynomials, via fractal and non-fractal images created
using the mathematical convergence properties of iteration functions [4]. A single
image created using the mentioned methods is called a polynomiograph.

In the polynomiography we can use different polynomial root finding meth-
ods, e.g., Newton method [9], Traub-Ostrowski method [9], Harmonic Mean New-
ton’s method [1], Halley method [1], Whittaker method [9] etc. Because in the
literature there is such multiplicity of root finding methods in the paper we will
limit to the so-called parametric basic family [6].

Let us consider a polynomial p ∈ C[Z], deg p ≥ 2 of the form:

p(z) = anz
n + an−1z

n−1 + . . .+ a1z + a0.

To define the parametric basic family we need to introduce a sequence of func-
tions Dm : C→ C. For z ∈ C the Dm function is defined as follows [6]:

D0(z) = 1,

Dm(z) = det



p′(z) p′′(z)
2! . . . p

(m−1)(z)
(m−1)!

p(m)(z)
m!

p(z) p′(z)
. . .

. . . p(m−1)(z)
(m−1)!

0 p(z)
. . .

. . .
...

...
...

. . .
. . . p′′(z)

2!
0 0 . . . p(z) p′(z)


(1)

for m ≥ 1.
Now, the parametric basic family is a sequence of functions Bm,α : C → C

for m = 2, 3, . . . and α ∈ C of the following form [6]:

∀z∈C Bm,α(z) = z − αp(z)Dm−2(z)

Dm−1(z)
. (2)

When we take m = 2 and 3 it turns out that B2 and B3 are the parametric
Newton method and the parametric Halley method (respectively):

B2,α(z) = z − α p(z)
p′(z)

, (3)

B3,α(z) = z − α 2p′(z)p(z)

2p′(z)2 − p′′(z)p(z)
. (4)

To render a single polynomiograph we can use Algorithm 1. In the algorithm
we use the so-called iteration colouring, i.e., colour is determined according to
the number of iteration in which we have left the while loop. Other colouring
methods exist in the literature, e.g., basins of attraction, mixed colouring [6].

Algorithm 1: Polynomiograph rendering

Input: p ∈ C[Z], deg p ≥ 2 – polynomial, A ⊂ C – area, k – number of
iterations, ε – accuracy, m ≥ 2 – number for Bm,α, α ∈ C – parameter
for Bm,α, colours[0..k] – colourmap.

Output: Polynomiograph for the area A.

1 for z0 ∈ A do
2 i = 0
3 while i ≤ k do
4 zi+1 = Bm,α(zi)
5 if |zi+1 − zi| < ε then
6 break

7 i = i+ 1

8 Print z0 with colours[i] colour

3 Algorithms of Mandelbrot- and Julia-Like Rendering
of Polynomiographs

When we generate Julia and Mendelbrot sets, similar to the polynomiography,
for each point in the area A ⊂ C we make some iterative process. For the
Mandelbrot set this iterative process is following:

zi+1 = z2i + c, (5)

where constant c is equal to the considered point, and z0 = 0. If zi+1 fulfils the
escape criteria, i.e., |zi+1| > 2, then the point do not belongs to the Mandelbrot
set and we draw it with colour corresponding to the number of iteration.

We can transfer the concept with the constant c from the Mandelbrot algo-
rithm to the polynomiography. In the original polynomiography algorithm we
replace the standard iteration of Bm,α with:

zi+1 = Bm,α(zi)− c. (6)

The constant c, unlike in the Mandelbrot algorithm, is taken as a value of a
mapping f : C → C in the considered point. Moreover, at the end of each
iteration constant c is transformed with an additional mapping g : C → C.
Algorithm 2 presents the complete pseudocode of the proposed algorithm.

The iterative process for the Julia sets is the same as for the Mandelbrot
set, but this time c is constant for all the points in A, and the starting point is
equal to the considered point. Moreover, in the escape criteria we have different
threshold value: max{2, |c|}.

In the Julia-like version of the rendering algorithm for polynomiography we
change the standard iteration process with:

zi+1 = Bm,α(zi) + c, (7)

Algorithm 2: Mandelbrot-like Polynomiograph rendering

Input: p ∈ C[Z], deg p ≥ 2 – polynomial, A ⊂ C – area, k – number of
iterations, ε – accuracy, m ≥ 2 – number for Bm,α, α ∈ C – parameter
for Bm,α, f, g : C→ C – mappings, colours[0..k] – colourmap.

Output: Polynomiograph for the area A.

1 for z0 ∈ A do
2 c = f(z0)
3 i = 0
4 while i ≤ k do
5 zi+1 = Bm,α(zi)− c
6 if |zi+1 − zi| < ε then
7 break

8 c = g(c)
9 i = i+ 1

10 Print z0 with colours[i] colour

and at the end of each iteration we use mapping f : C → C to transform
the constant c. Algorithm 3 presents the complete pseudocode of the proposed
algorithm.

Algorithm 3: Julia-like Polynomiograph rendering

Input: c ∈ C – parameter, p ∈ C[Z], deg p ≥ 2 – polynomial, A ⊂ C – area, k –
number of iterations, ε – accuracy, m ≥ 2 – number for Bm,α, α ∈ C –
parameter for Bm,α, f : C→ C – mapping, colours[0..k] – colourmap.

Output: Polynomiograph for the area A.

1 for z0 ∈ A do
2 i = 0
3 while i ≤ k do
4 zi+1 = Bm,α(zi) + c
5 if |zi+1 − zi| < ε then
6 break

7 c = f(c)
8 i = i+ 1

9 Print z0 with colours[i] colour

In both the proposed algorithms we use a standard test for the convergence
of the iteration process, i.e., |zi+1 − zi| < ε, but we can use different conver-
gence tests as was proposed in [2] for the standard polynomiography rendering
algorithm.

4 Examples

In this section, we present some examples of polynomiographs obtained using
algorithms proposed in Sect. 3.

We start with examples of polynomiographs obtained using the Mandelbrot-
like rendering algorithm. The polynomiographs are presented in Fig. 1, and the
parameters used were following:

(a) p(z) = z3 − 1, A = [−2, 2]2, k = 40, ε = 0.001, m = 2, α = 0.75, f(z) =
0.1 sin z + 0.33 cos z, g(z) = cos z,

(b) p(z) = z3 − 1, A = [−2, 2]2, k = 40, ε = 0.001, m = 3, α = 0.75, f(z) =
0.1 sin z + 0.33 cos z, g(z) = cos z,

(c) p(z) = z3 − 1, A = [−2, 2]2, k = 40, ε = 0.001, m = 2, α = 0.75, f(z) = z,
g(z) = log(cos z),

(d) p(z) = z4 + 4, A = [−2, 2]2, k = 40, ε = 0.001, m = 3, α = 0.75 − 0.8i,
f(z) = 2z, g(z) = z.

(a) (b)

(c) (d)

Fig. 1. Examples of Mandelbrot-like rendering of polynomiographs.

Fig. 2 presents some examples of polynomiographs obtained with the Julia-
like rendering algorithm. The parameters used to obtain the images were follow-
ing:

(a) c = 0.285, p(z) = z3− 1, A = [−3.2, 0.7]× [−2, 2], k = 25, ε = 0.001, m = 2,
α = 1.0, f(z) = sin(cos(z)),

(b) c = 0.285, p(z) = z3− 1, A = [−3.2, 0.7]× [−2, 2], k = 25, ε = 0.001, m = 3,
α = 1.0, f(z) = sin(cos(z)),

(c) c = −0.8, p(z) = z4 + 4, A = [−2, 2]2, k = 30, ε = 0.001, m = 2, α = 0.85,
f(z) = 0.2 cos z,

(d) c = −5.8, p(z) = z4 + 4, A = [−2, 2]2, k = 30, ε = 0.001, m = 2, α = 0.85,
f(z) = 0.2 cos z.

(a) (b)

(c) (d)

Fig. 2. Examples of Julia-like rendering of polynomiographs.

In the last example (Fig. 3) we show examples of using different convergence
tests in the Mandelbrot- and Julia-like rendering algorithms. To see the differ-
ence between standard and non-standard convergence tests we used the same

parameters as in Figs. 1(d), 1(a), 2(d), 2(b) (respectively), and the tests were
following:

(a) ||zi+1|2 − |zi|2| < ε,
(b) |0.01(zi+1 − zi)|+ |0.0285|zi+1|2 − 0.029|zi|2| < ε,
(c) |0.01(zi+1 − zi)|+ |0.029|zi+1|2 − 0.03|zi|2| < ε,
(d) |0.08<(zi+1 − zi)| < ε ∨ |0.08=(zi+1 − zi)| < ε,

where <(z), =(z) denote the real and imaginary part of z (respectively).

(a) (b)

(c) (d)

Fig. 3. Examples of Mandelbrot- and Julia-like rendering of polynomiographs with
different convergence tests.

5 Conclusions

In this paper, we presented two algorithms for the rendering of polynomiographs
that are based on the ideas used in the rendering of the well known Mandelbrot
and Julia sets. The presented examples show that using the proposed algorithms

we are able to obtain very interesting and diverse patterns, and that these pat-
terns are different from those obtained with the standard rendering method of
the polynomiographs.

Polynomiography is based on the complex polynomials. In the literature we
can find methods of obtaining interesting patterns using instead of the com-
plex numbers the q-systems numbers [8] and bicomplex numbers [10]. Moreover,
in the standard polynomiography we can use different iteration processes, e.g.
Mann, Ishikawa [7]. The use of q-system and bicomplex numbers in the poly-
nomiography together with the different iteration schemes can probably further
enrich the obtained patterns, what would be examined in our future work.

References

1. Ardelean, G.: Comparison Between Iterative Methods by Using the Basins of
Attraction. Applied Mathematics and Computation 218(1), 88–95 (2011)

2. Gdawiec, K.: Polynomiography and Various Convergence Tests. In: WSCG 2013
Communication Proceedings, pp. 15–20 (2013)

3. Herrmann, D.: Algorithmen für Chaos und Fraktale. Addison-Wesley, Bonn (1994)
4. Kalantari, B.: Polynomiography and Applications in Art, Education and Science.

Computers & Graphics 28(3), 417–430 (2004)
5. Kalantari, B.: Two and Three-dimensional Art Inspired by Polynomiography. In:

Proceedings of Bridges, Banff, Canada, pp. 321–328 (2005)
6. Kalantari, B.: Polynomial Root-Finding and Polynomiography. World Scientific,

Singapore (2009)
7. Kotarski, W., Gdawiec, K., Lisowska, A.: Polynomiography via Ishikawa and Mann

Iterations. In: Bebis, G., et al. (eds.) ISVC 2012, Part I. LNCS, vol. 7431, pp. 305–
313. Springer, Heidelberg (2012)

8. Levin, M.: Discontinuous and Alternate Q-System Fractals. Computer & Graphics
18(6), 873–884 (1994)

9. Varona, J.L.: Graphics and Numerical Comparison Between Iterative Methods.
The Mathematical Intelligencer 24(1), 37–46 (2002)

10. Wang, X.-Y., Song, W.-J.: The Generalized M-J Sets for Bicomplex Numbers.
Nonlinear Dynamics 72(1-2), 17–26 (2013)

11. Wannarumon, S., Unnanon, K., Bohez, E.L.J.: Intelligent Computer System for
Jewelry Design Support. Computer-Aided Design & Applications 1(1-4), 551–558
(2004)

	Gdawiec14
	Gdawiec14

