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a Department of Physics, Indian Institute of Technology, Kanpur 208016, India
b Institute of Physics, University of Silesia, Uniwersytecka 4, 40-007 Katowice, Poland

a r t i c l e i n f o a b s t r a c t

Article history:
Received 11 May 2016
Accepted 31 May 2016
Editor: A. Ringwald

Keywords:
Unitarity
Vacuum stability
FCNC
RGEs
Left-Right symmetry

Left-Right symmetric models with general gL �= gR gauge couplings which include bidoublet and triplet 
scalar multiplets are studied. Possible scalar mass spectra are outlined by imposing Tree-Unitarity, and 
Vacuum Stability criteria and also using the bounds on neutral scalar masses MHFCNC which assure the 
absence of Flavour Changing Neutral Currents (FCNC). We are focusing on mass spectra relevant for the 
LHC analysis, i.e., the scalar masses are around TeV scale. As all non-standard heavy particle masses are 
related to the vacuum expectation value (VEV) of the right-handed triplet (v R ), the combined effects of 
relevant Higgs potential parameters and MHFCNC regulate the lower limits of heavy gauge boson masses. 
The complete set of Renormalization Group Evolutions for all couplings are provided at the 1-loop level, 
including the mixing effects in the Yukawa sector. Most of the scalar couplings suffer from the Landau 
poles at the intermediate scale Q ∼ 106.5 GeV, which in general coincides with violation of the Tree-
Unitarity bounds.

© 2016 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license 
(http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3.
1. Introduction

After the 2012 discovery of the spin-zero boson at the LHC [1,2]
we are even more convinced that the theoretical concept of the 
mass generation within the gauge theory is correct. The discovered 
particle fits well within the predictions of the Standard Model (SM) 
of electroweak interactions. In the SM the mass of the Higgs boson 
is a free parameter. This, along with (very) weak interaction of the 
Higgs boson were the main reasons why it took decades to fix its 
mass experimentally, happened to be at the 125 GeV level [1,2]. In 
the meantime many theoretical concepts connected with both the 
scalar sector of SM and perturbation techniques have been devel-
oped and understood. It has been noted that the SM Higgs boson’s 
mass can be bounded from both ends using quantum field theoret-
ical (QFT) techniques [3–7]. These concepts are basic and general, 
and can be useful also nowadays when, after the LHC discovery, we 
would like to know much more. For instance, what is the actual 
representation of the scalar multiplets and what is the shape of 
the scalar potential of the fundamental theory in particle physics? 
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SCOAP3.
A priori, the SM theory is not the end of the story, for many rea-
sons.

One of the main theoretical constraints on the SM Higgs bo-
son mass comes from the simple fact that its mass depends on 
the strength of the Higgs quartic coupling, so the mass should not 
exceed an upper limit above which the theory is strongly cou-
pled and in turn the perturbative QFT is invalid. In other words, 
to have a consistent weakly coupled theory involving the Higgs 
boson, its mass must be smaller than that upper limit. This con-
straint of weak interactions at high energies is called the unitarity 
limit. In the context of SM, the upper limit of the SM Higgs bo-
son mass must be within O(G−1/2

F ) as deduced long time ago 
[3–7]. This limit had been computed more precisely in [6,7] as √

8π
√

2/3G−1/2
F �O (TeV).

This is very important to understand the weakly coupled limit 
of all beyond Standard Model (BSM) theories which are con-
sidered, and which are tested in present or future accelerators, 
notably at the LHC. The problem has been already worked out 
within some popular and basic models involving two Higgs doublet 
models (THDM) [8–14] or models involving triplet scalar multi-
plets [15,16]. Unitarity constraints have been considered in [17] in 
the context of the Minimal Left-Right Symmetric model (MLRSM) 
which contains an enriched Higgs sector: a bidoublet and two 
 under the CC BY license (http://creativecommons.org/licenses/by/4.0/). Funded by 
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triplets scalar fields [18–20]. Some basic remarks on unitarity in 
the scalar sector of MLRSM can be also found in the seminal 
work [21]. In a recent paper [22] perturbativity and mass scales 
of Left-Right Higgs bosons are also discussed.

In the present study we derive Tree-Unitarity (TU) constraints 
in MLRSM which are written in form of individual and (or) lin-
ear combinations of the quartic couplings. Thus these bounds are 
easily translated in terms of the physical scalar masses. We have 
also combined the Vacuum Stability (VS) criteria (for recent work 
on this subject in a general context, see [23]) and TU constraints 
with Flavour Changing Neutral Currents (FCNC) bounds which give 
an additional limit on the mass of the right-handed charged gauge 
boson. In addition, in the present work we have come up with a 
complete set of renormalization group equations (RGEs) and per-
form the necessary RGEs of quartic couplings.

Interestingly, the concept of Left-Right (LR) symmetry has been 
revived recently at the LHC in the context of dilepton [24–28], 
diboson [29,30] and diphoton [31–39] excesses, which might be 
connected with heavy particles of LR models. It is then useful to 
understand possible contributions to such signals coming from the 
scalar sector of the theory in future studies (some first results can 
be found in [40]) using bounds on the scalar sector of the theory. 
In the context of MLRSM we started such analysis in [41], taking 
into account interplay of the collider signals with low energy preci-
sion data. In that paper we treated Higgs boson masses practically 
as free parameters, not taking into account many possible theo-
retical constraints. Nonetheless, there we showed that correlations 
between the Higgs bosons and gauge bosons as well as the radia-
tive muon decay at 1-loop level impose strong constraints on high 
energy LHC signals. To understand the realistic scalar spectrum 
of the theory, dedicated analyses have been further performed in 
[42–45]. In these papers the constraints from FCNC, VS along with 
the LHC exclusions were considered. It has been found among oth-
ers that not all four charged Higgs bosons of the theory can be 
simultaneously light (below 1 TeV). Taking into account this limi-
tation, we have found several benchmark points [43,44] which are 
within reach of the LHC future runs. For other studies of the Higgs 
sector of the theory, see e.g. [46–65,45].

Here, we incorporate TU constraints and further extend the 
analysis. We also take care of the constraints and potentially prob-
lematic structures due to Landau poles which arise from the con-
cept of RGEs [66]. RGEs in MLRSM have been considered at the 
one-loop level, originally in [67]. Here, we have performed inde-
pendent RG analysis after correcting some misprints in the pub-
lished article, see Sec. 5 of the present work for details. In addition, 
we provide a complete set of 1-loop RGEs, including all couplings 
of the theory. It is important for two reasons: (i) to prepare a 
well-tested background for higher-loops analysis, and (ii) the ear-
lier results [67] have been used repeatedly in recent studies [68,69,
17] and it is better to avoid proliferation of misprints in the future.

In the SM, as the EWSB scale is determined from the observed 
gauge boson masses, the upper limit on the SM Higgs boson can 
be fixed. Similarly, if in a near future the right-handed gauge boson 
masses are fixed from observation then the absolute upper mass 
bounds of the scalars can be provided. Thus, as of now, the bounds 
depend on the SU (2)R breaking scale v R . In this paper upper lim-
its on the heaviest mass of these Higgs bosons compatible with 
the TU bounds are computed as functions of v R .

2. Model: Left-Right symmetry

The model is based on the SU (2)L ⊗ SU (2)R ⊗ U (1)B−L Left-
Right gauge symmetry (LR) [18–20]. The spontaneous symmetry 
breaking occurs in two steps: SU (2)R ⊗ U (1)B−L → U (1)Y , and 
SU (2)L ⊗ U (1)Y → U (1)em . To achieve this symmetry breaking we 
choose a traditional spectrum of Higgs sector multiplets with a 
bidoublet and two triplets [20,21]

φ =
(

φ0
1 φ+

1
φ−

2 φ0
2

)
≡ [2,2,0], (1)

�L(R) =
(

δ+
L(R)/

√
2 δ++

L(R)

δ0
L(R)

−δ+
L(R)

/
√

2

)
≡ [3(1),1(3),2], (2)

where the quantum numbers in square brackets are given for 
SU (2)L , SU (2)R and U (1)B−L groups, respectively.

The vacuum expectation values (VEVs) of the scalar fields can 
be recast in the following form:

〈φ〉 =
(

κ1/
√

2 0
0 κ2/

√
2

)
,

〈
�L,R

〉 = (
0 0
v L,R/

√
2 0

)
. (3)

VEVs of the right-handed triplet (�R ) and the bi-doublet (φ), 
propel the respective symmetry breaking: SU (2)R ⊗ U (1)B−L →
U (1)Y , and SU (2)L ⊗U (1)Y → U (1)em . As v L � κ1,2 � v R , we take 
safely v L = 0.

We set the coefficients of the quartic couplings that are linear 
in �L,R to be zero [70]. We also assume that the right-handed 
symmetry breaking scale, v R , is much larger than the electroweak 
scale, κ+ ≡

√
κ2

1 + κ2
2 . Thus the terms proportional to κ+ will be 

neglected comparing to the terms proportional to v R . This assump-
tion is phenomenologically viable and supported also by the exclu-
sion limits given by the LHC. In addition κ1 
 κ2 � 0 [70]. These 
relations simplify correlations among the unphysical and physical 
Higgs fields which are related to each other by Eq. (74) in [71].

3. Unitarity bounds

The quartic part of the scalar potential can be written in terms 
of the physical fields as follows:

V (H0
0,1,2,3; A0

1,2; H±
1,2; H±±

1,2 ) =
∑

m=1,..,72

�m Hi H j Hk H L,

where Hi, H j, Hk, Hl ∈ (H0
0,1,2,3; A0

1,2; H±
1,2; H±±

1,2 ). To understand 
the unitarity constraints one needs to look at the following scat-
tering processes [8]:

Hi + H j → H p + Hq, (4)

where Hi, j,p,q are the physical Higgs fields. These scatterings can 
happen in two ways at the tree level through: (i) Contact terms, 
i.e., four point scalar couplings which are outcome of the scalar 
quartic potential, and (ii) Higgs–Higgs–Gauge boson couplings. We 
know that the Higgs–Higgs–Gauge boson couplings contain deriva-
tives owing to their Lorentz structure, thus when they are con-
nected with the gauge boson exchange diagrams the maximum 
divergences which can appear through these diagrams are logarith-
mic. Considering theories up to the Planck scale, we do not need 
to worry about the logarithmic unitarity violations [8].

One can estimate the strength of these scalar four-point contact 
interactions in two ways. First, consider the process in terms of the 
unphysical scalar fields and reconstruct all the elements in terms 
of the physical neutral and charged scalars. In this case a vertex 
factor will be a polynomial function of the couplings which can be 
thought of as a rotated quartic coupling basis. As the model under 
consideration contains many scalar field components, it would be 
difficult to pin down the unitarity bounds in terms of the couplings 
and translate them to the masses of the scalar fields. There is an 
alternative option which we have adopted in this paper. Instead 
of rotating the quartic couplings we have sorted out all possible 
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quartic contact terms in terms of the physical fields where the 
vertex factors of each coupling are linear functions of the quartic 
couplings. In this way we can immediately find out the unitarity 
bounds on the quartic couplings. This is also helpful to translate 
the bounds in terms of the masses of the physical scalar fields as 
the mass terms posses linear dependence on the quartic couplings. 
Thus the unitarity bounds on the scalar masses can be easily in-
corporated, which is our prime aim in this analysis.

Our further strategy is as follows: to invoke that the scalars are 
weakly coupled we must satisfy the inequality: |�m| < 8π [72] for 
the scalar quartic couplings. There are many of them, so these cou-
plings are gathered in [73]. Let us note that this is an improvement 
over [8] where the unitarity bound was given as |�m| < 16π . For 
the sake of analysis it is sufficient to identify the couplings with 
largest coefficients. For example, if coupling λi appears with coef-
ficient a1 and a2 such that a1 > a2, then for the unitarity constraint 
the a1λi term is considered, the second term will respect the uni-
tarity bound on λi automatically.

As all terms with quartic couplings in four-scalar scatterings 
must be smaller than 8π , the following constraints on the quar-
tic couplings follow:

λ1 < 4π/3, (λ1 + 4λ2 + 2λ3) < 4π, (5)

(λ1 − 4λ2 + 2λ3) < 4π, (6)

λ4 < 4π/3, (7)

α1 < 8π, α2 < 4π, (α1 + α3) < 8π, (8)

ρ1 < 4π/3, (ρ1 + ρ2) < 2π, ρ2 < 2
√

2π, (9)

ρ3 < 8π, ρ4 < 2
√

2π. (10)

The scalar spectrum is1:

M2
H0

0
= 2

(
λ1 − α2

1

4ρ1

)
κ2+, (11)

M2
H0

1
= 1

2
α3 v2

R < 4π v2
R , (12)

M2
H0

2
= 2ρ1 v2

R < (8π/3)v2
R , (13)

M2
H0

3
= 1

2
(ρ3 − 2ρ1)v2

R < (4π v2
R − M2

H0
2
/2), (14)

M2
A0

1
= 1

2
α3 v2

R − 2κ2+(2λ2 − λ3) < 4π v2
R , (15)

M2
A0

2
= 1

2
(ρ3 − 2ρ1)v2

R < (4π v2
R − M2

H0
2
/2), (16)

M2
H±

1
= 1

2
(ρ3 − 2ρ1)v2

R + 1

4
α3k2+

< (4π v2
R − M2

H0
2
/2), (17)

M2
H±

2
= 1

2
α3 v2

R + 1

4
α3k2+ < 4π v2

R , (18)

M2
H±±

1
= 1

2
(ρ3 − 2ρ1)v2

R + 1

2
α3k2+

< (4π v2
R − M2

H0
2
/2), (19)

M2
H±±

2
= 2ρ2 v2

R + 1

2
α3k2+ < 4

√
2π v2

R . (20)

1 In Eq. (3) VEVs are normalized by 
√

2, so κ+ = 246 GeV, as in [21,70,71]. In [22,
45] there is no such VEVs normalization, so κ+ = 174 GeV, and the mass relation 
for the SM equivalent Higgs boson H0

0 in Eq. (11) differs accordingly.
Fig. 1. Upper limits on masses of scalars in MLRSM as a function of v R . In this 
plot we define: MHFCNC ∈ [MH0

1
, M A0

1
]; MH0

0
is the SM Higgs. These limits are out-

come of unitarity and vacuum stability constraints discussed in the text. The shaded 
region of v R is due to the exclusion limits on W ±

2 experimental searches, which 
give typically 3.0 TeV [74] for the restricted MLRSM scenario. Three benchmark 
points discussed in [43], corresponding to v R = 8 TeV: MHFCNC = 10 (box), 15 (cir-
cle), 20 (triangle) TeV are shown. They are compatible with low energy constraints, 
and also TU and VS constraints for that particular choice of v R .

In [71] the second term in Eq. (11) has been missed and we 
sketch its derivation in the Appendix. After the Higgs boson dis-
covery, this mass relation is fixed and can be helpful for RGEs 
discussion, see Section 5.

4. Vacuum stability criteria

Apart from the TU constraints discussed in the previous section, 
the quartic couplings have to satisfy necessary conditions for the 
vacuum stability [69,68]:

λ1 ≥ 0, ρ1 ≥ 0, ρ1 + ρ2 ≥ 0, ρ1 + 2ρ2 ≥ 0. (21)

In passing we would like to emphasize few comments on com-
putation of vacuum stability criteria. We have used the vacuum 
stability criteria computed in [68] using the copositivity condi-
tions, which is an improved version of the positivity idea used in 
[69]. The copositivity criteria lead to the vacuum stability condi-
tions which encapsulate broader parameter space than that comes 
from the positivity criteria [69]. Thus, it is indeed possible that 
for some values of quartic couplings the vacuum looks to be un-
bounded from below, if we use former criteria. In reality that may 
not be true, if they satisfy copositivity criteria. Thus, the copositiv-
ity criteria as computed in [68] are certainly an improvement over 
results given in [69]. Here, we would like to mention that one must 
be careful while computing the copositivity criteria as it has some 
basis dependency, and for some choices of basis it is possible to 
encounter some unrealistic stringent criteria.

From Eqs. (5)–(20) it is easy to note that it is not possible to 
compute the upper limits on the masses of all the scalars individu-
ally. This is because for some of the quartic couplings the unitarity 
constraints are quite entangled and cannot be decoupled. Thus, 
the upper limits of a few scalar masses are functions of masses 
of other scalars, e.g., maximum values of MH0

3
, M A0

2
, MH±

1
, MH±±

1

depend on MH0
2
. So, the unitarity constraints on their masses do 

not lead to upper limits. Among all the scalars, H±±
2 can be the 

heaviest for all choices of v R , see Fig. 1. For MH0
1

and M A0
1

the 
vacuum stability criteria allows to set the mass upper limits, which 
would not be possible if we used only unitarity bounds. In Fig. 1
the upper limits on M 0 , M 0 respect the vacuum stability as 
H1 A1



364 J. Chakrabortty et al. / Physics Letters B 759 (2016) 361–368
Fig. 2. Masses of heavy gauge bosons in �MLRSM scenarios. The mass splittings 
among W ±

2 and Z2 are shown for gR/gL = 1.0, 0.8, 0.6. The shaded region of 
v R is as in Fig. 1. For comparison, the upper limit on H±±

2 from Fig. 1 is included 
here.

well as unitarity constraints. In Fig. 1 some benchmark points (BP) 
discussed in [43] are included for readers convenience, the exact 
spectrum and scalar potential parameters for v R = 12 TeV are re-
peated in the Appendix. These BPs lead to the degenerate doubly 
charged Higgs bosons within reach of the LHC and also satisfy VS 
and FCNC criteria, see Eqs. (9)–(13) in [43]. As we can see, all of 
them are at the allowed region, though BPs for MHFCNC = 20 TeV
marginally (larger masses are disfavoured).

Let us discuss the limit on mass of the gauge boson W2 related 
to TU and VS of the scalar potential. We consider the minimal ver-
sion (MLRSM) of the left-right model where the gauge couplings 
are equal gL = gR , and its non-minimal version (�MLRSM) where 
gL �= gR . The latter scenario seems to be more suitable if strict 
gauge coupling unification is assumed [75]. This choice was also 
discussed in the context of the LHC diboson excesses in [24,27,29,
28]. In �MLRSM scenario the gauge boson masses are given in an 
analytical form as [76] (ga = gR/gL ):

M2
W2

= g2
L

8

[
(1 + g2

a )κ2+ + 2g2
a v2

R

+
√

16g2
aκ

2
1 κ2

2 + ((g2
a − 1)κ2+ + 2g2

a v2
R)2

]
, (22)

M2
Z2

= 1

8

{
4g′2 v2

R

+ g2
L v2

R

⎡⎣(
4g2

a + 4g′2

g2
L

+
(
1 + g2

a

)
κ2+

v2
R

)2

− 16
(

g′2 + g2
a

(
g2

L + g′2))κ2+
g2

L v2
R

]1/2

+ g2
L

(
κ2+ + g2

a

(
κ2+ + 4v2

R

))}
. (23)

g′ is the gauge coupling corresponding to U (1)B−L gauge symme-
try. In Fig. 2 masses of heavy gauge bosons are given. They depend 
on gauge couplings and the mass splitting between charged and 
neutral gauge bosons increases with decreasing gR/gL ratio.

This is quite clear if we look at the correlations among the 
gauge couplings. As gR decreases one needs larger value of g′ to 
ensure proper value of U (1)Y gauge coupling, gY . That in turn in-
creases M Z2 , and thus the splitting is enlarged. Let us note that 
naturally M Z2 > MW2 , for more exotic scenarios, see [77].
As κ+ � v R , mass of W2 in MLRSM (gL = gR = g2) is given by 
MW2 = g2 v R/

√
2. Hence, a limit on MW2 is strictly related to the 

limit on v R . The latter, in turn, has to be bigger than

v R �
√

2MHFCNC√
α3

, (24)

in order to ensure that masses of H0
1 and A0

1 are greater than 
MHFCNC ≈ 10 TeV. This is the lowest limit on FCNC Higgs bosons 
[60], one of the strongest limits has been obtained in [78]
(MHFCNC ≥ 50 TeV). Taking MHFCNC ≈ 10 (20, 50) TeV and α3 ≤ 8π , 
see Eq. (8), we get

MW2 ≥ g2MHFCNC√
8π

≈ 1.3 (2.6,6.5) TeV. (25)

This is the lowest limit on the charged gauge boson mass with 
a minimal theoretical assumption which takes into account scalar 
sector of the model.

Similar bounds as in Eq. (25) can be obtained for M Z2 , M Z2 �
1.66 × MW2 in MLRSM.

5. Renormalization group evolution

In the SM, after Higgs boson discovery2 there are arguments 
that at 1-loop and beyond there are no Landau poles up to the 
Planck mass scale [79]. It is interesting to note that the Higgs self-
coupling λ as well as the top-quark Yukawa coupling yt at one 
loop are asymptotically free for parameter range fixed by recent 
data. This is not changed by higher corrections up to three loops. 
However, if the Higgs self coupling would be bigger, there would 
be a Landau pole at very high scales, see for instance [80]. For SM 
the existence of a Landau pole depends mainly on the value of 
the top-quark Yukawa coupling yt . Here, the situation is not very 
transparent. In some analysis, e.g. [81], the Higgs β-function van-
ishes around 109 GeV, whereas according to [79], its zero occurs at 
about 1017 GeV with lower yt . In this better scenario the Landau 
pole is appearing but far beyond the Planck scale.

We can see how fragile are the results and conclusions based 
on renormalization group (RG) analysis in the SM. So, what can 
we expect within the beyond SM scenario? Here, the higher order 
corrections are even more complicated. But they can be crucial in 
some corner of the parameter space: imagine that either λ or yt

are adjusted such that Higgs beta function is positive. Then a Lan-
dau pole at some high scale may emerge, and it is quite possible 
that higher loop corrections can cause the change in sign of beta-
functions. In this way the stability analysis can be performed with 
better accuracy.

Let us discuss RG evolution of the scalar potential parameters. 
To that end we shall use 1-loop RG equations. As computation of 
β function coefficients is error prone especially in a model with 
many couplings in the scalar potential, we have used the PyR@TE

(v1.2.2 beta) package [82,83] to automatically generate 1-loop RGEs 
for MLRSM.

The explicit form of RGEs has already been given e.g. in [67]. 
Those formulas were latter used, e.g., in [68,69,17]. In this article 
we have made following progress and improvements in this con-
text:

• We have computed the full set of RGEs. For example the renor-
malization group evolution of one of the quartic couplings is 
computed as:

2 The Higgs boson mass is not a free parameter any more and RGEs need one less 
free parameter.
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Fig. 3. RG running of λ1,3 from scale Q = v R up to Q ≈ 106.5 GeV where Lan-
dau pole appears. Red dot-dashed line corresponds to λ1(Q ) while green dashed 
line represents λ3(Q ). λ2,4(Q ) ≈ 0 are not shown on the plot. Shaded region cor-
responds the exclusion limits provided by the unitarity bounds (5) and (6) which 
need to be respected by λ1 and λ3. Black dots with labels λTU

1,3 show where λ1,3

enter region forbidden by the Tree-Unitarity. (For interpretation of the references to 
color in this figure legend, the reader is referred to the web version of this article.)

(4π)2 dλ3

d ln Q
= +64

3
λ2λ3 − 9g2

Rλ3 + 64

3
λ2

2 − 9g2
Lλ3

+ 32λ2
3 + 24λ1λ3 +O(λy2) +O(y4).

Let us note that there is no term ∝ g2 unlike given in [67]. 
Also a term like (+ 64

3 λ2λ3) was absent in [67].
• We have also provided the evolutions of scalar mass parame-

ters.
• Our RGEs contain right and left handed gauge couplings sep-

arately thus can be used for non-minimal models where 
gL �= gR .

• The Yukawa couplings are appearing as matrices so the sce-
nario with non-diagonal Yukawa couplings and their mixing 
effects can be adjudged. As RGEs of the couplings are coupled, 
these new and correct set of equations will be very important 
for future analyses.

Rather than displaying all coupled complicated and clumsy 
equations, we have included them in related Mathematica file 
which was automatically generated using PyR@TE. That file
LR-RGEs-1-loop.m together with numerical routines for solv-
ing 1-loop RGEs can be downloaded from [73]. In the Appendix we 
have encoded only one example of the RGEs to show their struc-
tures and complexities.

We will not discuss the evolution of mass parameters μ2
i , see 

(28), as they are not relevant for our analysis. Let us only note that 
their values at the scale v R are given by extremization conditions 
of the scalar potential, see [21,70]. Hence μ2

i (v R) can be expressed 
with the help of initial values for remaining free parameters of the 
model i.e. αi(v R), λ j(v R), ρk(v R) and mass scales κ+ , v R .

For the simplicity, we assume that v R ∼ 14 TeV which is safe as 
we have noted in our earlier section, and all the masses (12)–(20)
are O(v R). The only mass which is fixed is the mass of the lightest 
Higgs boson H0

0. It gives relation between values of λ1, α1 and ρ1, 
see (11).

The parameters of the scalar potential which do not explicitly 
enter formulas (11)–(20) are set to zero at the scale Q 0 = v R/

√
2:

α2(Q 0) = λ2,3,4(Q 0) = ρ4(Q 0) = 0. (26)

It turns out that such values of α2, λ2,4 and ρ4 are stable under 
RG evolution. To present typical behaviour of the model under RG 
flow let us set the values of the remaining parameters at Q 0 as 
follows:
Fig. 4. RG running of α1,3 from scale Q = v R up to Q ≈ 106.5 GeV where Landau 
pole appears. Red dot-dashed line corresponds to α1(Q ) while green dashed line 
represents α3(Q ). α2(Q ) ≈ 0 is not shown on the plot. Shaded region corresponds 
the exclusion limits provided by the unitarity bounds (8) which must be respected 
by α1 and α3. Black dots with labels αTU

1,3 show where α1,3 enter region forbid-

den by the Tree-Unitarity. Blue dotted line displays RG running of the ratio α2
1/4ρ1

which appears in (11). (For interpretation of the references to color in this figure 
legend, the reader is referred to the web version of this article.)

1

2
α3(Q 0) = 2ρ1,2(Q 0) = 1

2
[ρ3(Q 0) − 2ρ1(Q 0)]

=
(

g2√
2

MHFCNC

MW2

)2

≈ 0.48 (27)

Such choice results in nearly equal masses of H0
1,2,3, A0

1,2, H±
1,2 and 

H±±
1,2 and moreover ensures that MH0

1
≈ 10 TeV. The initial value of 

λ1 was set to 0.48. It yields a typical behaviour of that parameter 
under RG evolution, see Fig. 3. It is interesting to note that varying 
λ1 in the range [0.1 −1.5] results in a shift of a position of the Lan-
dau pole from 107 GeV to 105 GeV. Finally, let us recall that due 
to (11), the value of α1(Q 0) is also fixed. Hence all the initial con-
ditions are specified. Contrary to [67], where the RGE running of 
only specific terms of scalar potential couplings were considered, 
in this work we choose such initial values of scalar potential pa-
rameters, see (27), that result in a well-defined mass spectrum. It 
means that all the scalar masses are positive, all the experimental 
bounds on scalar particles masses are satisfied, and stability and 
Tree-Unitarity conditions are fulfilled, see Eqs. (21) and (5)–(10), 
respectively.

The obtained RG flow of the parameters from the renormaliza-
tion scale Q 0 ≈ 104 GeV up to higher scales is shown in Figs. 3, 4
and 5. Let us shortly discuss these results. First, the Landau-pole-
type behaviour of λ1,3, α1,3 and ρ1,2,3 is clearly visible. The reason 
for this phenomenon are self-couplings of these parameters which 
dominate positive contributions to their β functions. As a conse-
quence e.g. λ1,3, and similarly other couplings, start to increase 
rapidly when the renormalization scale Q approaches 106.5 GeV
leading to Landau pole at that scale. Moreover at Q ≈ 106.5 GeV
the perturbative description of MLRSM breaks down due to the vi-
olation of the Tree-Unitarity bounds (7)–(10) by all the couplings. 
As one can see in Figs. 3–5, close to Q ≈ 106.5 GeV the running 
couplings start to enter the regions of values which are forbidden 
by the Tree-Unitarity, see points in Figs. 3–5 marked by black dots.

If we choose higher values of initial parameters in Eq. (27), e.g. 
increasing MHFCNC , Landau poles shift in the direction of lower Q
values. It means that a region of stability decreases further, below 
Q ∼ 106 GeV.
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Fig. 5. RG running of ρ1,2,3 from scale Q = v R up to Q ≈ 106.5 GeV where Landau 
pole appears. Red dot-dashed line corresponds to ρ1(Q ), blue solid line repre-
sents ρ2(Q ), while green dashed line shows ρ3(Q ). ρ4(Q ) ≈ 0 is not displayed 
on the plot. Shaded region corresponds the exclusion limits provided by the unitar-
ity bounds (9) and (10) which need to be respected by ρ1, ρ2 and ρ3. Black dots 
with labels ρTU

1,2,3 show where ρ1,2,3 enter region forbidden by the Tree-Unitarity. 
(For interpretation of the references to color in this figure legend, the reader is re-
ferred to the web version of this article.)

6. Conclusions and outlook

The constraints from Tree-Unitarity give a good handle to un-
derstand the spectrum of the heavy scalar fields within the Left-
Right symmetric models. We expressed TU in terms of the physical 
scalar fields, thus we have been able to translate those constraints 
into the maximal mass limits of some beyond Standard Model 
heavy particles. Along with that we impose the vacuum stability 
criteria to further constrain the parameter space. We have dis-
cussed the status of the benchmark points which we suggested in 
our earlier paper compatible with lack of FCNC effects, and which 
are interesting in the context of the LHC phenomenological as-
pects. All these constraints together leave a well defined room in 
the parameter space, as a function of v R . In the process we have 
come up with general and complete set of 1-loop renormalization 
group equations for all couplings of the considered model. We have 
performed evolutions of quartic couplings using these complete set 
of RGEs and shown how large the right-handed scale can be. It 
appears that restrictions coming from TU and RGEs meet approxi-
mately at the same Q scale which is also controlled by the choice 
of MHFCNC .

One of the possible future directions is to perform the full 
2-loop analysis of RG flow of scalar potential parameters taking 
into account the impact of the threshold corrections and proper 
matching conditions. They are crucial when one allows large mass 
splitting among the heavy scalars. And this feature is important 
for further phenomenological studies. To ensure proper breaking of 
the electroweak symmetry, a bottom-up approach would be more 
appropriate for such analysis. Another important fact in this kind 
of analysis is a possible emergence of Landau poles at relatively 
low Q scale which signals that the perturbativity can be in trou-
ble. Thus one should perform this computation for higher orders as 
well with the hope that incorporation of 2-loop corrections may 
alleviate this problem. In this context the impact of heavy right-
handed neutrino Yukawa coupling at the two-loop level cannot be 
ignored, and their roles have been already noticed at the 1-loop 
level low-energy muon decay analysis in [41]. Similar to the other 
fermion loops, the higher order corrections involving heavy neutri-
nos also contribute negatively to the beta functions of the quartic 
couplings and thus can delay the disaster of hitting the Landau 
pole. It is also known that 2-loop contributions to RGEs can signif-
icantly change running especially in the regime where parameters 
are bigger than 1.
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Appendix A

The full scalar potential includes left and right-handed triplets 
[21,70,71]:

V (φ,�L,�R) =
+ λ1

{(
Tr

[
φ†φ

])2
}

+ λ2

{(
Tr

[
φ̃φ†])2 +

(
Tr

[
φ̃†φ

])2
}

+ λ3

{
Tr

[
φ̃φ†]Tr

[
φ̃†φ

]}
+ λ4

{
Tr
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φ†φ

](
Tr
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φ̃φ†] + Tr
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φ̃†φ
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+ ρ1
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�L�
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L

])2 +
(
�R�
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Tr
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]}
+ α1

{
Tr
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φ†φ

](
Tr

[
�L�

†
L

] + Tr
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�R�

†
R

])}
+ α2

{
Tr

[
φφ̃†]Tr
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�R�

†
R

] + Tr
[
φ†φ̃

]
Tr

[
�L�

†
L

]}
+ α∗

2

{
Tr

[
φ†φ̃

]
Tr

[
�R�

†
R

] + Tr
[
φ̃†φ

]
Tr

[
�L�

†
L

]}
+ α3

{
Tr

[
φφ†�L�

†
L

] + Tr
[
φ†φ�R�

†
R

]}
− μ2

1Tr[φ†φ] − μ2
2(Tr[φ̃φ†] + Tr[φ̃†φ])

− μ2
3(Tr[�L�

†
L] + Tr[�R�

†
R ]). (28)

After spontaneous symmetry breaking of the above potential, 
the mass matrix which includes MH0

0
can be written in the follow-

ing form (for details, see [21])

M =
⎛⎝ 2ε2λ1 2ε2λ4 α1ε

2ε2λ4
1
2

[
4(2λ2 + λ3)ε

2 + α3
]

2α2ε
α1ε 2α2ε 2ρ1

⎞⎠ . (29)

Expanding eigenvalues of this matrix in a small ε = κ+/v R pa-
rameter Eq. (11) emerges.

The benchmark point considered in the paper resulting in a 
mass spectrum obtained with the following set of parameters 
(v R = 12 TeV):
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λ1 = 0.13, λ2 = 0, λ3 = 0, λ4 = 0, (30)

α1 = 0, α2 = 0, α3 = 1.39, (31)

ρ1 = 1.0, ρ2 = 7.5 × 10−4, ρ3 = 2.003. (32)

All masses are given in GeV:

MH0
0
= 125, (33)

MH0
1
= 10000, MH0

2
= 16971, MH0

3
= 465, (34)

M A0
1
= 10000, M A0

2
= 465, (35)

MH±
1

= 487, MH±
2

= 10001, (36)

MH±±
1

= 508, MH±±
2

= 508. (37)

Here, we present an example of 1-loop RGE generated with the 
help of PyR@TE (v1.2.2 beta) package:

(4π)2 dλ1

d ln Q
=

6α2
1 + 6α1α3 + 5

2
α2

3 + 9

8
g4

L + 3

4
g2

L g2
R + 9

8
g4

R

− 9g2
Lλ1 − 9g2

Rλ1 + 32λ2
1 + 64λ2

2

+ 16λ1λ3 + 16λ2
3 + 48λ2

4 + 2λ1Tr
(̃

h†
l h̃l

)
+ 2λ1Tr

(
h†

l hl

)
+ 6λ1Tr

(̃
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)
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qhq
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(̃
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l

)
+ 6λ1Tr

(̃
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qh̃T
q

)
+ 6λ1Tr
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qhT
q

)
− Tr
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†
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− 3Tr
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q
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− Tr
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)
− Tr
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− 3Tr
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q h̃∗
qh̃T

q h̃∗
q
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− 3Tr

(
hT

q h∗
qhT

q h∗
q

)
, (38)

where hl , h̃l , hq and h̃q are Yukawa couplings, λi and α j are the 
scalar quartic couplings, gk are the gauge couplings as defined in 
Eq. (14) in [71].
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