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Abstract. Alternative stable states have long been thought to exist in natural
communities, but direct evidence for their presence and for the environmental switches that
cause them has been scarce. Using a combination of greenhouse and field experiments, we
investigated the environmental drivers associated with two distinctive herbaceous communities
in coastal ecosystems in New Zealand.

In a mosaic unrelated to micro-topography, a community dominated largely by native turf
species (notably Leptinella dioica, Samolus repens, and Selliera radicans) alternates with
vegetation comprising exotic (i.e., nonnative) pasture species (notably Agrostis stolonifera,
Holcus lanatus, Lolium perenne, and Trifolium repens). The species of these two communities
differ in functional characters related to leaf longevity and growth rate, and occupy soils of
differing nitrogen levels.

Both spatial and environmental factors influenced the species composition locally.
Reciprocal transplants of soil, with and without associated vegetation, showed that a native
turf community developed when sward or soil from either community was bounded by turf,
and a pasture community developed when sward or soil from either community was
surrounded by pasture. In artificial mixed communities in the greenhouse, turf was able to
invade the pasture community where the vegetation was clipped to simulate grazing, and also
where Trifolium was removed and/or salt spray was applied. The pasture community invaded
the turf where Trifolium was present or nitrogen was added. These results were supported by
trends in experimentally manipulated field plots, where the amount of turf cover increased
when nitrogen was kept low and when salt spray was applied, whereas pasture cover increased
in the absence of salt spray.

Thus, persistence of the native turf community is dependent on grazing, both directly and
via its effect on keeping nitrogen levels low by excluding the exotic, nitrogen-fixing Trifolium,
and by exposing the vegetation to salt spray. If any of these factors change, there could be a
state change to pasture dominance that might be resistant to reversion to turf. Managing such
coastal herbaceous communities therefore requires an understanding of the environmental and
species characteristics that maintain alternative states.

Key words: alternative stable state; coastal turf ecosystems; Dunedin, South Island, New Zealand;
functional traits; grazing; invasion; nitrogen; positive feedback switch; salt spray; Trifolium repens;
vegetation mosaic.

INTRODUCTION

The paradigm of alternative stable states provides a

framework for explaining sharp spatial and temporal

shifts in ecological communities. These arise when small

initial differences in the environment lead to divergent

pathways of community composition. Central to this

theory is the concept of a controlling variable reaching

some threshold or tipping point (the ball-in-cup analogy

of Scheffer 1990). It has been suggested that for

alternative states to be stable, there must be an

associated positive-feedback switch, with the community

modifying its environment to facilitate persistence of the

new species assembly (Wilson and Agnew 1992).

Recently, ecosystem models built around alternative

stable states have been advanced as providing a

framework for ecological management and restoration

(Bestelmeyer 2006, Suding and Hobbs 2009). For these

models to inform management decisions, the drivers of

the alternative states must be known. However, direct

experimental evidence for alternative stable states, and

for the switches that cause them, remains sparse

(Schröder et al. 2005, Mason et al. 2007).

Evidence for alternative stable states and for their

ecological drivers has been sought in freshwater
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(Scheffer et al. 2001, Dent et al. 2002, Chase 2003)

marine (van de Koppel et al. 2001, Konar and Estes

2003, Petraitis et al. 2009), and terrestrial systems (Noy-

Meir 1975, May 1977, McCune and Allen 1985,

Rietkerk and van de Koppel 1997). Many potential

biotic and abiotic drivers of switches, and thus of

alternative stable states, have been proposed, such as

nutrient pulses (Dent et al. 2002), change in sedimenta-

tion (van de Koppel et al. 2001), or light levels

(Tsuyuzaki and Haraguchi 2009). However, controversy

has developed about how common alternative stable

state situations are, and the types of ecosystem in which

they are most likely to be found (Didham et al. 2005,

Mason et al. 2007).

The criteria for demonstrating the existence of

alternative stable states in a system have been much

debated (see reviews by Beisner et al. 2003, Knowlton

2004, Petraitis and Dudgeon 2004), but there is

agreement that testing at both temporal and spatial

scales is important (Connell and Sousa 1983, Peterson

1984, Petraitis and Latham 1999). Although the

existence of alternative stable states can be suspected

when we see a mosaic of different communities in an

apparently homogeneous environment, experimental

evidence is needed to show that two different self-

maintaining communities could potentially occupy the

same site (Peterson 1984). Such evidence is difficult to

obtain. A review by Schröder et al. (2005) of research

from a wide range of environments found that of the 21

studies that used an appropriate experimental approach,

only nine involved field experiments to test for

alternative stable states, and only two of them showed

positive evidence of alternative stable states.

In the present study, we examine two herbaceous

plant communities that are frequent across exposed

coastal headlands in the South Island of New Zealand.

These communities often occur in mosaics of two

apparently distinct stable states: a native turf commu-

nity and a pasture community dominated by exotic

species. The relatively small scale of the mosaic (1–300

m2 patches), fast species growth rates, and ease of

manipulation of the communities make this an ideal

system for examining alternative stable states and for

experimentally determining the possible drivers of a

state change.

The primary drivers of the transition between such

coastal turf and pasture communities are untested, but

those that have been suggested include: (1) disturbance,

particularly grazing defoliation by introduced mammals,

(2) exposure to salt spray, and (3) soil fertility (Rogers

and Wiser 2010). Grazing disturbance can create and

maintain vegetation mosaics, allowing new individuals

to become established (Sousa 1984), thus changing the

competitive balance between species (Al-Mufti et al.

1977, Veblen and Young 2010). Since European

settlement 150 years ago, the investigated site has been

grazed by stock, which may constrain pasture and favor

the spread of turf. In coastal ecosystems, salt spray is an

important factor in determining the distribution and

growth form of plants (Sykes and Wilson 1988, Yura

and Ogura 2006), and differences in height and physical

structure of the communities may play a role in

minimizing or magnifying its effects. Soil fertility can

be modified through anthropogenic inputs (Weiss 1999,

Prober et al. 2005) and contributions by animals

(Steinauer and Collins 2001). Plant feedbacks can affect

soil nutrient status by influencing soil microbial pro-

cesses via litter input (Buckeridge and Jefferies 2007,

Orwin et al. 2010), and by nitrogen fixation associated

with, e.g., legumes (Gylfadottir et al. 2007). These

changes in nutrient input have the potential to mediate a

positive feedback switch (Wilson and Agnew 1992,

HilleRisLambers et al. 2010), as discovered in juniper–

sagebrush communities in the western United States

(Roberts and Jones 2000). Such drivers may function

independently or synergistically to control what seem to

be alternative stable states.

Here we combine vegetation analysis and manipula-

tive experiments to: (1) test for alternative stable states

in our coastal headland ecosystem, and (2) quantify the

relative importance of proposed drivers in controlling

different states (Fig. 1). With a combination of field

survey, laboratory analysis, field experiments, and a

greenhouse experiment, we test three main hypotheses

about the composition, stability and drivers of the

communities (Fig. 1). Our hypotheses are:

1) The two vegetation states (phases) exist on the site

with distinct (a) plant species, (b) morphological

plant traits, (c) plant nutrient status, and (d) soil

nutrient status. Field sampling and nutrient analyses

were used to measure these four components across

the systems.

2) The two states are alternative stable states (with the

alternative hypotheses that they are dependent on

soil differences or on spatial mass flow of propa-

gules). We tested this with a field reciprocal

transplant experiment and controlled experiments

under different abiotic conditions.

3) Shifts between the alternative states are driven by

different community-level responses to abiotic and

biotic factors. We examined the role of grazing, salt

spray, and nitrogen. Further hypotheses about these

drivers are as follows.

The grazing hypothesis is that ungulate grazing favors

the native turf community in the face of invasion by

exotic pasture species by reducing the dominance and

regeneration of pasture. We test this experimentally by

removing biomass (with mowing or clipping as surro-

gates for grazing) from the system in the greenhouse and

field manipulation experiments.

The next hypothesis is that salt spray weakens exotic

pasture species, thereby favoring the native turf com-

munity. We test this experimentally by adding salt spray

to the system in both the greenhouse and field

experiments.
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The nitrogen hypothesis is that an increase in plant-

available nitrogen caused by Trifolium repens mediates

the switch, and a change in nitrogen status can drive a

change between the states. We test this experimentally

by altering nitrogen availability and, in the greenhouse

experiments, by removing T. repens.

MATERIALS AND METHODS

Study site

The field site was located on an exposed headland

above Smaills Beach (45854029.3100 S, 170833056.6100 E,

elevation 50 m above mean sea level) near Dunedin,

South Island, New Zealand (see Plate 1). Mean annual

rainfall is 80 cm, with 5–8 cm of rain in all months.

During the warmest month (January), mean daily

maximum temperature is 198C and mean daily minimum

temperature is 118C; during the coldest month (July), the

mean daily maximum temperature is 108C and mean

daily minimum temperature is 38C, based on a 30-year

record from the National Institute of Water and

Atmospheric Research (NIWA) Musselburgh weather

station, 4 km east of the study site. The experiments

were carried out between October 2006 and January

2010. The vegetation across the headland was a two-

phase mosaic of native low-growing halophytes vs.

exotic grassland (Appendix: Fig. A2). Along the

headland, patches of each community ranged in size

from 1 to 300 m2, with a total of 40 vascular species

recorded from both communities. Nomenclature follows

the Landcare Research Key to Flowering Plant Genera

of New Zealand (Glenny et al. 2012).

Defining the communities

To formally define species composition and distinct-

ness of the communities, we sampled 10 randomly

selected 203 20 cm plots from each apparent vegetation

phase. In each plot, the subquadrat shoot frequency

(Wilson 2011) of each species was calculated in a 20320

cm grid of 400 1 3 1 cm contiguous subquadrats.

Soil characters

Five soil samples (at 1–10 cm depth) were collected at

random positions from the central area of the largest

patches (.10 m2) of each community, and were

analyzed for pH, soluble salts, carbon, nitrogen, and

phosphate content by ECLab at Landcare Research,

Palmerston North, New Zealand. We determined pH

using a 1:5 suspension of soil in water shaken for 30

minutes, allowed to settle, and then measured with a pH

electrode. Conductivity was measured on the same

suspension using a temperature-compensated probe

FIG. 1. Conceptual framework for examining alternative stable states employed here to study two herbaceous communities
(native turf and exotic pasture) in coastal ecosystems in New Zealand. The questions are numbered 1–3, with the associated
hypotheses and tests in this study in boxes.

February 2014 413TESTS FOR ALTERNATIVE STABLE STATES



(Blakemore et al. 1997). Total carbon and total nitrogen

were determined by heating in a stream of high-purity

oxygen in a LECO CNS2000 furnace (LECO, St.

Joseph, Michigan, USA), with infrared detection of

the CO2 for carbon, and reduction to N2 and

measurement by thermal conductivity for nitrogen

(LECO). Mineral nitrogen was extracted from the soil

using 2 mol/L KCl (1:10 soil : extractant, 1 hour

shaking), and nitrate and ammonium determined

colorimetrically using a flow-injection analyzer (Lachat

Instruments Division, Zellweger Analytics, Milwaukee,

Wisconsin, USA). To estimate Olsen plant-available

phosphate, soil samples were shaken for 30 minutes in a

1:20 ratio suspension with 0.5 mol/L sodium hydrogen

carbonate adjusted to pH 8.5, filtered, and then

phosphate was determined colorimetrically using a

flow-injection analyzer (Lachat Instruments). Soil nu-

trient data are included in the Supplement.

Leaf traits

We measured leaf functional traits underlying re-

source use and stress tolerance strategies that could

reflect plant response to different biotic and abiotic

drivers. Leaf size (area, length), thickness, dry matter

content (LDMC), specific leaf area (SLA), and nutrient

concentrations are variously linked to growth rate, leaf

life span, environmental stress and disturbance, and

nutrient limitation (Cornelisson et al. 2003). These traits

were measured for 13 species on 10 leaf samples

collected at random positions across each community

in which the species occurred (Agrostis stolonifera,

Apium prostratum, Cerastium fontanum, Crassula mos-

chata, Holcus lanatus, Hypochaeris radicata, Leptinella

dioica, Lolium perenne, Plantago lanceolata, Poa astonii,

Samolus repens, Selliera radicans, and Trifolium repens).

Leaves were stored in sealed plastic bags for a maximum

of one hour for fresh leaf measurements. Following the

methods of Cornelisson et al. (2003), leaf area and

length were measured using WinFOLIA Pro 2005b

(Regent Instruments, Quebec, Canada), and leaf thick-

ness was measured using digital calipers on fresh leaves.

Fresh mass and dry mass of leaves were measured and

used to calculate SLA and LDMC.

To establish species-level means for leaf nutrient

content (nitrogen, phosphorus, potassium, calcium,

and magnesium), three replicate samples of each of 10

species (Agrostis stolonifera, Apium prostratum, Ceras-

tium fontanum, Holcus lanatus, Leptinella dioica, Lolium

perenne, Plantago lanceolata, Samolus repens, Selliera

radicans, and Trifolium repens) were collected at random

positions from the community in which the species was

most abundant. Each sample comprised 3–40 leaves

(depending on the size of the leaf ) from one plant.

Samples were dried at 608C (giving ;20 lg dried

material) and were analyzed by ECLab at Landcare

Research, Palmerston North, New Zealand. Samples

were block-digested using a Kjeldahl wet oxidation

process (Blakemore et al. 1987). Nitrogen and phos-

phorus were determined colorimetrically on a flow-

injection analyzer (Lachat Instruments), and potassium,

calcium, and magnesium by atomic absorption spec-

trometry on a Varian SpectrAA FS-220 (Varian,

Mulgrave, Victoria, Australia).

Abundance-weighted trait means for each community

were calculated following Ackerly and Cornwell (2007),

using the species subquadrat shoot frequency obtained

as previously described in Defining the communities with

20 plots from each community.

Leaf trait data are included in the Supplement.

Reciprocal transplant experiment

To test whether the mosaic pattern across the

headland was driven by: (1) soil differences, e.g., in

nutrients and/or seed bank, and/or (2) strong inertia in

the soil/vegetation system, and/or (3) the influence of the

surrounding vegetation, e.g., propagule input or mod-

ification of salt spray, we established 10 blocks, each 33

1.5 m, straddling the turf/pasture community ecotone,

each replicate being 2 m apart (Fig. 2). Alternate blocks

were fenced to exclude grazers (rabbits and sheep).

Within each block, two 603 60 cm (i.e., 3600 cm2) plots

were marked out, one in turf and the other in pasture.

Each plot was divided into four subplots (each 30 3 30

cm, i.e., 900 cm2), with the following randomly assigned

treatments: turf sward, pasture sward, turf soil, or

pasture soil. For turf and pasture sward treatments, a 30

3 30 3 20 cm deep sward of vegetation plus soil was

removed so as not to disturb the vegetation, and was

transplanted into a randomly assigned subplot within

the block, either of the community from which the

sward had been removed (these are considered to be the

methodological controls, allowing for transplantation

disturbance), or of the other community. For the turf

soil and pasture soil treatments, a similar-sized area was

dug up, the soil was sieved (2 mm) to remove large roots

and rhizomes, and was then replaced in a randomly

assigned subplot within the block, either in the

community from which it came or in the other

community.

In order to assess vegetation change, species shoot

frequency in the subquadrats was calculated from

species presence/absence in a 20 3 20 cm grid of 400 1

3 1 cm contiguous subquadrats centered within each

900-cm2 subplot. Sampling was performed immediately

after the transplants and soil insertion were performed,

and again 3, 6, and 12 months later.

Reciprocal transplant data are included in the

Supplement.

Test of switch drivers: greenhouse

A greenhouse community-manipulation experiment

under controlled conditions was conducted to examine

the influences on the invasion rate of the pasture and

turf communities of (1) defoliation (as a surrogate for

grazing), (2) salt spray, and (3) manipulation of the soil

nitrogen status (addition of N, and Trifolium repens
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removal). The experiment was carried out in a green-

house of the Department of Botany, University of

Otago, Dunedin, during the summer of 2007/2008

between mid-October and mid-January. Natural light

and day length were used, with temperature maintained

at ;188C.

Ten 50 3 50 cm randomly chosen swards from each

community were split into 17 3 8.5 3 8.5 cm deep

sections, randomly paired, and placed side-by-side in

plastic containers (17 3 17 3 19 cm deep) so that

vegetation from each community, turf and pasture,

occupied one-half of the container. The swards were

placed in each container over 7 cm depth of 50:50

mixture of unfertilized commercial potting mix and

quartz sand layered over 3 cm of washed drainage

gravel.

One of 16 treatments (four factors in a full factorial

design: clipping, salt spray, nitrogen enrichment, and

Trifolium removal) was randomly assigned to each

container, with five replicates of each treatment.

Nitrogen enrichment was achieved by the addition of

0.3 g urea per container every 20 days, urea being used

to match sheep micturition. In the Trifolium removal

treatment, all Trifolium was removed by hand at the

start, and subsequently as needed (after three weeks, no

further Trifolium appeared). The salt spray treatments

consisted of spraying from all sides with 75 mL of either

filtered seawater (containing ;2.6 g of sea salt) or

freshwater (control) every 14 days; the salt treatment

was chosen to represent the more extreme events in the

coastal environment (Barbour 1978), with similar salt

concentrations as a longer-term study in the same region

(Sykes and Wilson 1988). Clipped treatments had all

biomass above 3 cm removed every seven days.

After three months, aboveground biomass of each

community (as defined by the original 50:50 split of the

container) was clipped at soil level. Invasion was

classified as the shoot biomass of species that had

rooted in a community from which they did not

originate. All plant material was oven-dried for three

days at 608C and weighed. Percentage invasion was

calculated as the amount of invader biomass divided by

the total biomass of the pot.

Data files for testing switch drivers in the greenhouse

experiment are included in the Supplement.

Test of switch drivers: field

The field experiment aimed to test the findings from

the greenhouse experiment. In transition zones, where

both communities were present as small patches, five 15

3 5 m blocks were laid out. Within in each block, 11

combinations of three treatments were assigned at

random to 1 3 1 m plots as (1) mowing (as a surrogate

for grazing), with plots mown monthly during the

growing season (i.e., from October to May) to 3 cm high

(i.e., above turf canopy height), vs. un-mown plots; (2)

salt spray, with 1 L/m2 of filtered saltwater vs.

freshwater sprayed over the plot (the amount applied

was the same per area as the greenhouse experiment);

and (3) nitrogen: high nitrogen with 10 g/m2 of N in the

form of urea added monthly, vs. reduced nitrogen with

the addition of 42.1 g/m2 carbon in the form of sucrose

added monthly (following Baer and Blair 2008), vs.

control with no addition of urea or sucrose.

FIG. 2. Illustration of the experimental layout for the reciprocal transplant experiment. Each block (10 blocks in total,
numbered from 1 to 10, each replicate block 2 m apart) straddles the ecotone (dotted line) to include both turf- and pasture-
dominated areas. Alternate blocks were fenced to exclude grazing (due to the ecotone being nearly perpendicular to the ocean). One
block is detailed in the inset; the locations of each treatment were randomized within each plot. Each block is 331.5 m; within each
block are two 60 3 60 cm plots, each divided into four subplots (30 3 30 cm).
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To assess change, species cover was calculated using

100 point quadrats, i.e., all live plant shoot material hit

by a 2.3 mm diameter laser point. The 100 point

quadrats were evenly spaced over the center 50 3 50 cm

of each 1-m2 plot to minimize edge effects. Sampling was

performed at the start (i.e., immediately after the

treatments were applied), and then six and 14 months

later.

Data files for testing switch drivers in the field study

are included in the Supplement.

Statistical analyses

Unless otherwise stated, all statistical procedures were

performed using the R statistical software platform

v. 2.12 (R Development Core Team 2011) and

associated packages. To define the communities, hierar-

chical cluster analysis (using the core stats package

hclust function, with average agglomeration) on a Bray-

Curtis dissimilarity matrix of species (using vegan

package 2.0 vegdist function; Oksanen et al. 2011) was

performed on the 10 plots sampled from each vegetation

phase. Indicator value analysis (Dufrene and Legendre

1997) was used to define indicator species for each

community.

Differences between pasture and turf in soil nutrients

and in species abundance-weighted leaf traits were

examined with a one-way ANOVA. Data were log

transformed where violations of the assumptions of

these parametric tests were found (i.e., for leaf thickness,

leaf area, leaf dry matter content, leaf phosphorus, and

leaf magnesium); the geometric means are presented in

these cases. In one case (leaf potassium) log-transformed

data did not satisfy the assumptions of a parametric

ANOVA, and a Kruskal-Wallis rank-sum test was used.

To take into account the correlational structure between

traits, PERMANOVA (vegan package 2.0 adonis

function) was used to test for differences between

communities with all leaf traits combined and all soil

traits combined.
To formally test the hypothesis that location and

grazing affected community composition, split-split-
plot permutational multivariate analysis of variance

analyses (PERMANOVAþ version 1.0.5 in Primer 6
version 6.1.15; Primer-E, Lutton, Ivybridge, UK) were

applied separately for each of the four transplant types:
turf swards, turf soil, pasture swards, and pasture soil.
To examine the relationship between the treatment

plots and the methodological controls through time,
the CAP routine in Primer was used to perform

discriminant analysis (Anderson and Willis 2003),
using PERMANOVAþ version 1.0.5 in Primer 6

version 6.1.15. The data were split into two sets: the
methodological controls and the treatment plots. For

the methodological control data set, the a priori turf
and pasture groups were assessed using canonical

analysis of principal coordinates (CAP). Treatment
plots were then classified into either the ‘‘turf ’’ or

‘‘pasture’’ group using this CAP model. We used the
default selection for number of meaningful axes (i.e.,

m, in this case, 1) and tested the significance of the trace
statistic and the squared canonical correlation by

permutation (n ¼ 999). In addition, we performed
leave-one-out allocation of observations for cross-
validation. For both the PERMANOVA and CAP

analyses, zero-adjusted Bray-Curtis similarities were
used because initial soil plots were bare (Clarke et al.

2006). To visualize the relationships between treat-
ments and their controls, we plotted the mean distance

of each treatment to the corresponding methodological
control (i.e., turf replanted in turf and pasture

replanted in pasture) at each time point using the
distances to group centroid given by the CAP routine.

To examine the drivers of state changes between
communities in the greenhouse and field experiments, we

applied analysis of variance (ANOVA) to linear models
using type II SS (car package 2.0 Anova function; Fox

and Weisberg 2011)

RESULTS

Defining the communities

Using the 20 plots sampled across the site, the cluster
analysis identified two clear vegetation communities on

the headland, with 90% average dissimilarity at the main
split (Appendix: Fig. A1). These matched the two

communities identified in the field and are named here
‘‘turf ’’ and ‘‘pasture.’’ Indicator species for the turf

community were the native forbs Leptinella dioica,
Samolus repens, and Selliera radicans. Indicator species

for the pasture community were all exotic, namely the
grasses Agrostis stolonifera and Lolium perenne, and the

nitrogen-fixer Trifolium repens (Table 1; see Appendix:
Table A1 for a complete species list for the entire

headland).
The plants growing in the turf community were

largely natives, characterized by significantly smaller,

TABLE 1. Mean local frequency of each species in the two
study communities (native turf and exotic pasture) in coastal
ecosystems in New Zealand, as defined by the cluster
analysis.

Species Native or exotic? Turf Pasture

Agrostis stolonifera E ,5% 67.5%
Bromus hordeaceus E ,5%
Cirsium arvense E ,5%
Colobanthus muelleri N ,5%
Coronopus didymus E ,5%
Leptinella dioica N 90%
Lolium perenne E ,5% 50%
Plantago lanceolata E ,5% ,5%
Poa pratensis E ,5%
Sagina procumbens E ,5%
Samolus repens N 25%
Selliera radicans N 74%
Spergularia marina E ,5%
Trifolium repens E ,5% 60%

Notes: Blank cells indicate that the species was not present in
that community. Indicator species determined by Dufrene-
Legendre Indicator Species Analysis are shown in boldface.
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thicker leaves than those in the pasture community, and

correspondingly lower SLA (Table 2; Appendix: Table

A2). In foliar chemistry, turf community species

contained less nitrogen and potassium than species

growing in the pasture, but greater concentrations of the

other nutrients (P, Ca, Mg). When the leaf traits were

analyzed together by PERMANOVA, the turf and

pasture communities were significantly different (Pperm¼
0.001; Appendix: Table A4).

Soil in the turf community had lower concentrations

of total nitrogen and nitrate than that in the pasture

community (Table 3; Appendix: Table A3), paralleling

the difference in nitrogen content in the plants, but had

higher total carbon. Phosphorus (total and available),

pH, soluble salts, and ammonium were not significantly

different between the two soil types. When the soil

nutrients were analyzed together by PERMANOVA, the

turf and pasture communities were not significantly

different (Pperm ¼ 0.8; Appendix: Table A4).

Reciprocal transplant experiment

The CAP analysis placed the turf and pasture

methodological controls into two distinct groups, with

97% of the variation explained by the first axis. The

leave-one-out cross-validation allocated observations to

groups correctly 100% of the time. Over the 12-month

field experiment, entire transplanted swards of turf and

pasture gradually become more similar to the surround-

ing community, i.e., distance decreased (Fig. 3). The

similarity in species composition between turf swards

planted into the pasture community and pasture swards

replanted into pasture (the latter being the pasture

methodological control) increased, so that at 12 months,

turf swards planted into the pasture community were

classified as pasture (Fig. 3; location 3 date, pseudo-

F3,79 ¼ 21.67, Pperm � 0.001; Appendix: Tables A5 and

A6). The similarity in species composition between

pasture swards planted into the turf community and turf

swards replanted into turf (the latter being the turf

methodological control) showed similar trends, al-

though with a slower convergence to the controls, and

at 12 months the pasture swards planted into the turf

community were still classified as pasture (Fig. 3;

location, pseudo-F1,79¼ 1.801, Pperm¼ 0.138; Appendix:

Tables A5 and A6). These trends were similar both with

and without grazing.

There was little effect of soil type on colonization of

the turf or pasture bare soils. Initially, regardless of

location or soil source, plant recolonization was

predominantly by the fast-growing exotic annual species

Coronopus didymus and Anagallis arvensis, both of

which had very low abundance in either of the original

communities. However, by 12 months, the surrounding

community (location: turf or pasture) had started to

colonize the soil patches (for turf soil, location 3 date

pseudo-F3,79 ¼ 5.509, Pperm � 0.001; for pasture soil,

location3date pseudo-F3,79¼ 3.144, Pperm � 0.001; Fig.

3; Appendix: Figs. A5 and A6). The rate of colonization

was not dependent on the source of the soil, e.g., turf soil

transplanted among pasture became like the pasture

community no more slowly than pasture soil transplant-

ed among pasture (Fig. 3). Likewise, pasture soil

transplanted among turf became like the turf commu-

nity hardly more slowly than turf soil transplanted

among turf (Fig. 3).

Test of switch drivers: greenhouse experiment

In the greenhouse experiment, conditions that favored

turf invasion tended to inhibit pasture invasion, and vice

versa, as was expected (although when the data were

examined for nonindependence, the negative correlation

TABLE 2. Abundance-weighted leaf trait means for each
community, calculated using the species’ subquadrat shoot
frequency in 20 plots from each community.

Leaf trait Units Turf community Pasture community

Area cm2 0.65 6 0.268 3.11 6 0.74
Length cm 16.56 6 3.12 90.75 6 3.16
Thickness mm 0.84 6 0.079 0.23 6 0.05
LDMC mg/g 15.6 6 1.94 27.20 6 4.59
SLA cm2/g 141.1 6 15.62 242.65 6 18.26
Nitrogen % 2.32 6 0.05 3.74 6 0.08
Phosphorus % 0.45 6 0.01 0.30 6 0.01
Potassium % 2.03 6 0.05 2.20 6 0.02
Calcium % 0.75 6 0.01 0.28 6 0.02
Magnesium % 0.98 6 0.05 0.39 6 0.01

Notes: Values are mean 6 SE; here all traits differ
significantly (P , 0.05) between communities. LDMC is leaf
dry matter content, and SLA is specific leaf area.

TABLE 3. Soil factors for the turf and pasture communities.

Soil factor Units Turf community Pasture community

pH 6.22 6 0.07 6.20 6 0.09
Conductivity mS/cm 0.54 6 0.09 0.43 6 0.06
Total carbon* % 4.33 6 0.31 5.56 6 0.28
Total nitrogen* % 0.32 6 0.02 0.45 6 0.02
Nitrate* ppm 0.62 6 0.3 13.73 6 2.2
Ammonium ppm 5.82 6 2.87 7.89 6 1.82
Available phosphorus ppm 16.18 6 1.54 13.51 6 1.25
Organic phosphorus ppm 1091.35 6 61.49 1106.5 6 24.87

Notes: Values are mean 6 SE (n ¼ five samples from each community); an asterisk indicates a
significant difference (P , 0.05) between communities for the nutrient.
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was not strong; r ¼�0.277). Thus, clipping, salt spray,
no additional nitrogen, and the removal of Trifolium

repens all resulted in increased invasion by turf species

into the adjacent pasture community (Fig. 4a). The

greatest amount of pasture invasion (10%) occurred with

no clipping, no salt added, and Trifolium repens present

(Fig. 4b). Clipping alone, i.e., with no salt spray, no

added N, and no Trifolium repens removal, compared to

unclipped, resulted in a sixfold increase in turf invasion

(Fig. 4a; F1,64 ¼ 150.42, P , 0.001; Appendix: Table

A7). Salt spray alone, i.e., with no added N, no clipping,

and no Trifolium repens removal, compared to freshwa-

ter, resulted in a sixfold increase in turf invasion (Fig.

4a), and caused a fivefold reduction in pasture invasion

(Fig. 4b; F1,64¼ 29.10, P , 0.001; Appendix: Table A7).

The combination of salt spray and clipping (compared

to freshwater and unclipped) resulted in a 15-fold

increase in turf invasion (salt effect, F1,64 ¼ 31.89, P ,

0.001; clipping 3 salt interaction F1,64 ¼ 30.65, P ,

0.001; Appendix: Table A7). The pasture species showed

the largest amount of invasion into the turf community

when Trifolium repens was present, a fivefold increase

compared to Trifolium repens removal. Elimination of

Trifolium repens together with clipping resulted in a 10-

fold increase in turf invasion (main effect F1,64¼ 6.14, P

¼ 0.016; Trifolium repens 3 clipping F1,64 ¼ 9.26, P ¼
0.003; Appendix: Table A7). The greatest amount of turf

invasion (22%) occurred with clipping, salt spray,

Trifolium repens removal, and no nitrogen addition

(Fig. 4a).

Test of switch drivers: field experiment

Reduced nitrogen resulted in a slight increase (5%) in

turf cover in the mixed communities in the field, whereas

the high-nitrogen treatment resulted in the greatest loss

(nearly 100%) of turf cover (Fig. 5a; F2,44 ¼ 26.59, P ,

0.001; Appendix: Table A8). The addition of salt spray

also increased the percentage of turf cover in the field

FIG. 3. Reciprocal transplant experiment: distance (mean 6 SE) of treatment plots (transplanted swards and soils) to the group
centroid (methodological controls or replanted swards) vs. time since transfer or replanting of swards or soil. (a, c) The left-hand
panels show the methodological control of pasture replanted into pasture. (b, d) The right-hand panels show the methodological
control of turf replanted into turf. In the upper panels, grazers are excluded by fences; the lower panels include effects of grazing.
Distance to the centroid was determined by canonical analysis of principal coordinates (CAP). Over the 12-month field experiment,
entire transplanted swards of turf and pasture gradually become more similar to the surrounding community, i.e., distance
decreased.
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(F1,44¼ 13.30, P , 0.001; Fig. 5a; Appendix: Table A8).

Pasture cover remained constant over the 14 months in

the salt spray treatment (a reduction of just 1%),

whereas the freshwater control treatment resulted in an

increase of 33% (Fig. 5b; F2,44 ¼ 32.02, P , 0.001;

Appendix: Table A8). The combination of reduced

nitrogen, mowing, and salt spray resulted in the largest

reduction in percent cover of pasture species (23%),

whereas the largest increase was in the high-nitrogen,

freshwater, mown treatment (36%; Fig. 5b).

DISCUSSION

Alternative stable states provide an intuitive frame-

work for explaining sudden spatial and temporal shifts in

ecological community composition. However experimen-

tal evidence for alternative stable states and their drivers

is scarce (Schröder et al. 2005, Mason et al. 2007). In

coastal herbaceous communities, we examined the

hypotheses that (1) two distinct vegetation states exist

at the site, (2) these two states represent alternative stable

states, and (3) shifts between states are driven by

community-level response to biomass removal, salt, and

nitrogen. To examine hypotheses (1) and (2), we utilized

a combination of field surveys and experimental manip-

ulations and showed that our system is defined by two

distinct alternative (although not stable) states with

contrasting functional traits: one dominated by native

turf species, the other by exotic pasture species. Through

a combination of field- and greenhouse-based experi-

ments, we examined hypothesis (3) to show that biomass

removal, salt spray, and soil nitrogen content are key

drivers of this state change and that the application of

multiple drivers can alter the magnitude of their effect.

We will address each of these key findings in turn,

examining first the evidence for alternative stable states,

before discussing how the drivers of these alternative

states interact with the functional traits of the constituent

species to establish these distinct communities.

FIG. 4. Test of drivers: greenhouse experiment, showing (a) percentage (mean 6 SE) turf invasion into pasture community and
(b) percentage (mean 6 SE) pasture invasion into turf community. Invasion is measured as invader biomass as a percentage of the
total biomass of the community in the half pot. Treatments include: additional nitrogen (0.3 g urea); salt spray (75 mL filtered sea
water spray); freshwater (75 mL freshwater spray); clipped (biomass above 3 cm removed); no Trifolium (all Trifolium repens plants
removed). Further details of the treatments can be found in the Material and methods: Test of switch drivers: greenhouse section.
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Distinct, co-occurring and self-maintaining states

Demonstration of alternative stable states requires

that both states can be initiated from the same point in

space and time (Peterson 1984). In our system, both of

the communities reestablished on bare soil, indicating

that the communities do not represent different succes-

sional states. Further evidence that preexisting condi-

tions are not determining the establishment of the

communities is that soil origin had no effect on which

community recolonized a patch (Fig. 3). Importantly,

we show that the system can undergo a bi-directional

shift and is capable of moving from turf to pasture and

from pasture to turf under the right conditions. In the

field experiments, the system moved to a greater degree

toward pasture community, whereas in the greenhouse

experiment, the system moved more toward turf. In

other experimental systems, e.g., testing the state change

between Ascophyllum stands and mussel beds, the scale

of the perturbation influenced the outcome (Petraitis

and Latham 1999, Petraitis et al. 2009). In our system,

this difference could be because the treatments were

more severe in the greenhouse than those in the field, or

because the current climate in the field favored the

pasture species more than did conditions in the

greenhouse. It seems that both communities can initiate

from the same point in time and space, and that, under

the appropriate conditions, they can move between

states.

The second criterion of alternative stable states is that

two (or more) functionally distinct systems occur under

the same environmental conditions (Peterson 1984). In

our system, the two communities differed markedly in

species abundance, leaf functional traits, and soil

nutrient characteristics (Tables 1–3), showing that there

are discrete phases with discontinuous variation in

community structure (Smith 2012). The native turf

community is dominated by small-leaved species

growing in nitrogen-poor soils (Tables 2 and 3), and is

consistent with previous descriptions of this community

type as short (,50 mm tall), branched halophytic forbs,

sedges, and grasses, forming dense ground cover in

areas with poorly drained soils and high salt deposition

FIG. 5. Test of drivers: field experiment, showing change in percentage (mean 6 SE) of (a) turf cover and (b) pasture cover after
14 months for each treatment. Treatments include: additional nitrogen (10 g N/m2); reduced nitrogen (42.8 C g/m2); salt spray (1 L/
m2 filtered sea water spray); freshwater (1 L/m2 freshwater spray); mowing (biomass above 3 cm removed). Further details of the
treatments can be found in the Material and methods: Test of switch drivers: field section.
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(Partridge and Wilson 1988a, Rogers and Wiser 2010).

In contrast, the pasture community comprises tall (100–

350 mm) species with larger leaves and higher SLA, and

typically higher soil nitrogen requirements than the turf

community (Tables 2 and 3; Grime et al. 1988,

Buckland et al. 2001). This distinct contrast in

functional traits is characteristic of systems where

alternative stable states have been shown or are

purported to exist, e.g., the alternative savannah/

woodland states of Dublin et al. (1990) and the

needle-leaved/broad-leaved forest states of Tsuyuzaki

and Haraguchi (2009). In both of these examples, the

dominant species in the two states differ markedly in life

history, functional form, and physiology, and these

differences help to modify the environment in favor of

the state, creating a positive feedback facilitating the

persistence of the alternative stable states (Wilson and

Agnew 1992). In our system, the differences in form and

function are related to salt tolerance and nutrient

requirements of the turf and pasture; and suggest the

mechanism for how the state change occurs.

Although our system has most of the hallmarks of

alternative stable states (distinct, self-replicating states

that can exist in the exact same location), the states do

not appear to be stable under the exact same conditions.

The shift between states seen in the reciprocal transplant

experiment showed that the system lacks an internal

stabilizing mechanism needed to maintain patch dom-

inance. It may be that the range of environmental

conditions under which both states are stable is so

narrow that we missed it with our relatively coarse

manipulations, but we think not. Rather, the evidence

suggests that there is a very fine cutoff between

environmental conditions that favor one state or the

other, i.e., the mosaic of the two communities seen is the

result of small changes in environmental conditions

across the headland (Appendix: Fig. A2). We suggest

that this is good evidence that alternative stable states

require a positive feedback switch to be stable (cf.

Wilson and Agnew 1992). However, this hypothesis is

not universally accepted (e.g., Petraitis and Hoffman

2010).

Drivers of alternative states

Here the manipulations of environmental drivers

(defoliation, salt spray, and nitrogen addition) had

opposing effects on the two communities. Defoliation,

added salt, and low nitrogen favored development and

invasion of the native turf community, whereas the

exotic pasture community was favored in the opposite

conditions (i.e., no defoliation, no added salt, and high

nitrogen). Further, we showed a greater change in

species abundances when multiple drivers were present,

and a smaller change when drivers favoring opposing

communities were applied (e.g., high nitrogen combined

with high salt). Here we address each of these drivers,

PLATE 1. The headland above Smaills Beach, South Island, New Zealand. The turf community is lighter than the pasture
community, both in the foreground. A color version of the photo can be seen in the Appendix. Photo credit: G. Brownstein.
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with a specific focus on how the functional traits of the

species in these communities might play a role in

establishing (and perhaps maintaining) the alternative

states.

Drivers of alternative states: defoliation

Experimental defoliation (in the form of grazing,

clipping, or mowing) resulted in a greater cover of turf

species and reduced cover of pasture species (Figs. 3 and

4). Repeated removal of the upper canopy helps to

eliminate the asymmetry in light interception and the

associated positive feedback loop of taller species

intercepting more light and thus growing taller (Mitch-

ley and Grubb 1986, Mitchley 1988, Zobel et al. 1996).

Biomass removal also potentially reduces the amount of

litter added to the system, reducing its shading of the

lower strata (Al-Mufti et al. 1977). It may also expose

the lower strata to direct salt spray, and thus promote

(or perhaps reinforce) the turf state. The effects here

parallel conclusions made for sites elsewhere, that

biomass removal promotes short-stature natives (Huen-

neke et al. 1990, Weiss 1999), and grazing creates and

maintains vegetation mosaics (Steinauer and Collins

2001, Veblen and Young 2010). The experiments on our

system indicate that defoliation plays an important role

in maintaining native turf communities, especially when

combined with salt spray and in areas with low plant-

available soil nitrogen.

Drivers of alternative states: salt

Salt spray also played a role in controlling the state

changes between pasture and turf communities, which

can be related to community differences in functional

traits. The turf species have traits that are associated

with salt tolerance: thicker, smaller leaves. These species

are characteristic of salt marshes, and are salt tolerant

(Partridge and Wilson 1987, 1988b, Sykes and Wilson

1988). In contrast, the pasture species have traits

indicative of faster growth rates: higher SLA and larger

leaves (Table 2). The resulting mosaic of these two

communities across the headland can be seen as

illustrating the trade-off between stress tolerance and

competitive ability (Grime 1974). The turf species were

present in higher abundance in treatments with low

nitrogen and high salt spray, whereas pasture species

performed best in treatments with no salt spray and high

nitrogen. In other systems (e.g., Haraguchi et al. 2003,

Kleinebecker et al. 2008), the taller plants and litter

provide enough protection from salt deposition for the

less salt tolerant species to establish. Here the short

stature of most turf species provides little protection and

may enable them to maintain their hold in areas of

periodic salt spray.

Drivers of alternative states: nitrogen

The most rapid and obvious environmental driver of a

state change from turf to pasture community was

nitrogen (added in the form of urea); in plots where

soil nitrogen was added, the abundance of pasture

species also increased. This result supports the suggested

importance of nitrogen as a key factor in increased

invasion by exotics and in changes from native- to
exotic-dominated communities elsewhere (Huenneke et

al. 1990, Weiss 1999, Prober et al. 2005). The finding

that the presence of Trifolium repens, an exotic N-fixing

species found in the pasture community, can facilitate
this change provides additional evidence that plant-

available nitrogen is an important driver of these

alternative states.

Soil sampling showed that, across the headland, soil

nitrogen was higher under the pasture community than
under turf (Table 2). Because the transplant experiment

showed no effect of soil type on recolonization, the

difference seems to be transient, probably due to the

presence of the nitrogen-fixer Trifolium repens in the

pasture. Trifolium repens has been shown to supply a
significant portion of the nitrogen used by plants in

many grasslands (Gylfadottir et al. 2007); at our site, it

may be facilitating the growth of exotic grasses with high

nutrient requirements. The greenhouse invasion exper-
iment, which showed that removal of Trifolium repens

reduced the pasture invasion by two-thirds (Fig. 4),

provides direct experimental evidence of this. In order to

effect a state change back to turf, a reduction in nitrogen

levels was required (Fig. 5a).

CONCLUSIONS

Using information from a combination of species

characters and environmental factors, we demonstrate
that it is possible to effect a state change between a

native turf community and an exotic pasture community

by experimentally modifying three important drivers of

community assembly. We hypothesize that pasture

establishes when there is an input of nitrogen (e.g.,
from animal input), and the presence of Trifolium repens

within the pasture maintains the higher nitrogen level.

Turf, on the other hand, establishes when there is an

input of salt spray (e.g., from storms) sufficiently large
to kill the less tolerant pasture species. It appears that

once the nonnative pasture species are established under

the current natural conditions, a change back to a turf

community requires a combination of factors, including

salt spray and grazing. Although these two distinct
communities are present at the same time in essentially

the same place and can replace each other, they are not

stable under exactly the same set of conditions. Our

experimental manipulation of these two communities
illustrates the importance of investigating multiple

aspects of ecological stability when experimentally

testing alternative stable states, and it highlights the

difficulty in finding natural ecological systems that
conform to theory.
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Appendix

Image of study area (color version of Plate 1) and detailed results from the cluster analysis, PERMANOVA, CAP analysis, and
ANOVAs (Ecological Archives E095-036-A1).

Supplement

Data files for abundance-weighted leaf traits, soil nutrient data, data for defining community composition, and reciprocal
transplant experiment data, along with data from the test of switch drivers for the greenhouse experiment and the field experiment
(Ecological Archives E095-036-S1).
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