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Abstract— Partial discharge (PD) pattern recognition has been 
applied for identifying the types of insulation defects in high 
voltage (HV) equipment. It can provide an effective means for 
condition assessment of the insulation system of HV equipment. 
This paper proposes a novel Bayesian neural network (BNN) 
and discrete wavelet transform (DWT) hybrid algorithm for PD 
pattern recognition. Laboratory experiments on a number of PD 
models have been conducted for evaluating the performance of 
the proposed algorithm.   

Index Terms-- Bayesian neural network (BNN), discrete wavelet 
transform (DWT), Partial Discharge (PD), and pattern 
recognition. 

I. INTRODUCTION 

Partial discharge (PD) measurement has been widely 
adopted for monitoring and diagnosis of high voltage (HV) 
equipment [1]-[2]. One of the major tasks of PD 
measurement is the PD pattern recognition for identifying the 
types of defects that cause discharges in HV equipment. Over 
the past two decades, a number of intelligent techniques have 
been developed for automatic PD pattern recognition. Some 
examples include statistical methods, various artificial neural 
networks (ANNs), genetic algorithms, expert systems, 
discrete wavelet transforms, and support vector machines 
(SVMs) [3]-[10].  

However, it is still a non-trivial task to apply the 
intelligent algorithms for automatically recognizing various 
types of defects in the insulation system of HV equipment. 
The two most challenging issues are: (1) extracting 
representative features from PD measurement data while 
maintaining lower dimensionality; and (2) choosing 
appropriate algorithms to attain desirable performance in 
classifying various PD patterns due to different defects.  

This paper proposes a novel algorithm of integrating 
Bayesian neural network (BNN) and discrete wavelet 
transform (DWT) for PD pattern recognition. BNN provides a 
probabilistic treatment of leaning in neural network. Instead of 
only considering a single set of optimal network parameters 

(i.e. weights), BNN exploits an entire probability distribution 
of these parameters and can naturally address the issue of 
regularization to avoid over-fitting [11], [12]. 

 The original PD measurement data is extremely high 
dimensional. To deal with this high dimensionality, the 
traditional approach computes a number of statistic operators 
on the discharge pulse height and number distributions [3], 
[4]. These statistic operators form a feature set to represent 
PD patterns. However, this paper adopts discrete wavelet 
transform (DWT) for feature extraction. The benefit of using 
DWT in that it can integrate PD signal de-nosing and feature 
extraction in a single step. It is expected that the BNN and 
DWT hybrid algorithm can attain desirable recognition 
accuracy compared to a number of other algorithms. This will 
be verified using a PD dataset obtained from laboratory 
experiments on a variety of artificial PD models. 

The remaining part of this paper is organized as follows. 
Section II describes PD experiments set-up and data 
acquisition procedure. Section III provides a brief review on 
DWT approach for feature extraction. A data visualization 
algorithm is also presented in this section.  Section IV details 
the formulation of BNN. Section V presents the recognition 
results of BNN and DWT hybrid algorithm as well as a 
number of other algorithms. Section VI concludes the paper. 

II. EXPERIMENT SET-UP AND DATA ACQUISITION 

In this paper, a number of artificial PD models are 
constructed to generate PD dataset for evaluating PD pattern 
recognition algorithms. These models include: corona, 
discharge in transformer oil, surface discharge, internal 
discharge, and discharge due to floating particles (Figure 1). 
Omicron’s MPD600 (complying with IEC60270) was 
adopted for PD data acquisition. Figure 2 shows the typical 
three dimensional (3D) phase resolved diagram for each of 
the above five PD models. The phase resolved diagram 
depicts the possible correlations among discharge pulse 
number, discharge pulse magnitude, and the phase angle of 
the applied AC voltage.  
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Figure 1. Artificial PD models 

 
Figure 2. Typical PD patterns of different PD models 

For each of the above five PD models, PD measurements 
were conducted under three different applied voltage levels 
and with three different noise gating thresholds. At one 
acquisition, PD pulses of 100 power cycles were recorded. 
For each of five PD models, 200 acquisitions were obtained. 
The resultant dataset consists of total 1000 data points. The 
discrete wavelet transform (DWT) will extract features based 
on this dataset and construct a new dataset for training and 
validating Bayesian neural network (BNN). 

III.  FEATURE EXTRACTION AND DATA VISULIZATION  

A. Discrete Wavelet Transform (DWT) Approach 

Discrete wavelet transform (DWT) has been widely 
adopted as a signal de-noising tool in PD measurement [4]. 
Recently it has also been applied for extracting representative 
features of different PD patterns corresponding to various 
insulation defects in HV equipment [9].  

In DWT, the original PD signals are decomposed into a 
number of approximation and detail coefficients through a 
series of low pass and high pass filters [13]. Both coefficients 
are then down-sampled and the approximation coefficients 
will be further decomposed until reaching a predefined 
decomposition level. In this paper, the original PD signals are 
decomposed into nine levels by using the abior1.5 wavelet. 
Thus, each discharge pulse is represented by nine 
coefficients. Given a considerable large number of PD pulses 
obtained in each PD signal acquisition (about several 
thousand discharge pulses in one acquisition in the 
experiments), the above DWT decomposition process will 
introduce considerable high dimensionality.  

To combat the high dimensionality, this paper computes 
the first four moment statistics including mean x�, standard 
deviation σ, skewness s, and kurtosis δ for each of the nine 
distributions composed by the detail coefficients:  
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where 
�� is the wavelet coefficient at location � and � is 
the total number of wavelet coefficients at each level. Finally, 
total 36 features are extracted from the original PD dataset. 

B. PD Data Visualization 

To provide data visualization for high dimensional data, 
the NeuroScale is adopted in this paper. NeuroScale projects 
the data points in the original space into a two dimensional 
space, in which the data points that are close in the original 
space are kept close while the data points that are 
significantly separated in the original space are remained 
well-separated [14]. This is achieved by minimizing the 
following function E   
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where � !
"  is the Euclidean distance between data point i and j 

in the original space, and � ! is the Euclidean distance 
between corresponding data points in the projection space. � 
is the total number of data points in the dataset. An approach 
proposed by Lowe and Tipping can be used for solving the 
above minimization problem [14].  

IV. THEORY OF BAYESIAN NEURAL NETWORK 

In this paper, the Bayesian neural network (BNN) is 
constructed by applying Bayesian approach on the 
conventional multi-layer perceptron (MLP). Unlike classical 
neural network, in which a single set of network parameters 
(weights) are sought using maximum likelihood method, the 
BNN approach considers a probability distribution function 
over the distribution of these network parameters [11], [12]. 
BNN can effectively solve the over-fitting problem through 
the control of model complexity and naturally handle the 
uncertainties through probabilistic modelling.  

Starting with a brief review of MLP, this section will 
present the Bayesian approach on finding the optimal 
network parameters of MLP. It is assumed the PD data is an 
N x d dataset, & � �	'�, … , 	' , … , '�	�, where N is the number 
of data points and d is the size of features of each data point, 
i.e. 	' � *
+

,, … , 
+
-.. Moreover, each data point X belongs to 

one of the / independent classes, i.e. 0 ∈ 21,… , 45, … , /	6, 
where each class corresponds to one type of PD models 
depicted in Figure 1.  
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A. Multi-layer Perceptron (MLP) 

Figure 3 depicts the structure of three layers MLP. The 
first layer is the input layer, which is a set of discriminative 
features describing the characteristics of different PD 
patterns. The third layer is the output layer, which includes 
five different types of PD models. The middle layer is the 
hidden layer, and the nodes in this layer are connected to all 
nodes in the input layer and output layer. Each connection 
carries a weight.  

 
Figure 3. Structure of multi-layer perceptron (MLP) 

In the input layer, M linear combinations of inputs are 
formed to obtain a set of variables associated with hidden 
nodes as follows: 
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where 
 
! is the j-th element of the i-th data point ' ,  9 

8!  is 
the weight element regarding the m-th hidden node to the j-th 
element of data point ' , < 

8 is the bias term, and M is the 
total number of hidden nodes. The outputs of the above 
hidden nodes are determined by a tanh activation function: 
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The variables A 
8 are transformed by the second sets of 

weights regarding the k-th output to the m-th hidden node as 
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Finally these values go through an output activation function 
to give output value F5 . For the two-class pattern recognition 
problem, the activation function normally adopts the logistic 
sigmoid function  

F5 = G�B = �
�HIJK�LB=

E#                          (9) 

For the multi-class pattern recognition problem such as the 
PD pattern recognition (five PD models in this paper), the 
activation function normally adopts the softmax function: 

F5 = G�B = IJK�B=
E#
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                       (10) 

Traditionally, the above MLP network is trained through 
the back-propagation technique to find an optimal set of 

values for network weights. It is necessary to evaluate the 
derivative of an error function, which is the sum of square 
error between network output F5 	and the true class label 45 
with respect to the network weights [11].    

B. Bayesian Approach for Multi-layer Perceptron (MLP) 

(1)  Bayesian learning of network weights 

Unlike conventional approach, the Bayesian approach 
exploits the probability distribution function of network 
weighs to represent the relative degrees of belief on different 
values for these weights. By using Bayes’ theorem, the 
posterior probability distribution function of weights with 
respect to the class is  

P�Q|0 = S�T|QS�Q
U S�T|QS�Q                             (11) 

where P�Q is the prior probability distribution, P�0|Q is 
the likelihood function, and UP�0|QP�Q is the 
normalization factor. Upon receiving training data, the 
posterior probability distribution P�Q|0 can be evaluated.  

The prior probability distribution for weights can be 
chosen as a Gaussian prior with zero means [11]: 

 P�Q = �
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where 7 is the inverse variance of the distribution, ]\�7 is a 

normalization constant, and the term  
X
� ‖Q‖� = X
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equivalent to the weight decay regulation term in the 
conventional MLP. 7 is also called the hyperparameter as it is 
a parameter for the distribution of other parameters. The 
calculation of 7 will be discussed later in this section. 

For the easier demonstration of key ideas behind the BNN 
algorithm, two-class classification problem (45 = 0	or	1		is 
adopted as an example for deriving the likelihood function 
P�0|Q	and the posterior probability distribution P�Q|0.  
The likelihood function P�0|Q is then in the form of 

P�0|Q = ∏ F�'5cN� �1 − F�'5#�LcN = d
P�−e    (13) 

where  
         e = −∑ f45lnF�'5 + �1 − 45ln�1 − F�'5#i�        (14) 

By combing Equation (11)-(14), the posterior distribution of 
weights can be expressed as follows: 

P�Q|0 = �
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	exp�−l�Q#					(15) 

l�Q = e + 7�k is the overall error function. The above 
posterior distribution P�Q|0 can be further approximated by 
a Gaussian centered on the maximum posterior weight vector 
Qmn: 

P�Q|0 = �
Vo

∗ 	exp q−l�Qmn − �
� �Q − Qmnrs�Q − Qmnt	 (16) 

where ]u
∗ is the normalization constant appropriating to the 

Gaussian approximation.  
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(2)  Probability distribution of network output 

As discussed in the above section, the “trained” MLP 
network can be represented by the posterior probability 
distribution of network weights. Upon receiving a new input 
'∗, the trained network needs to classify it into one of T 
classes. The probability distribution of network output for the 
input '∗ can be written as 

P�4|'∗, 0 = UP�4|'∗, QP�Q|0 �Q           (17) 

where P�4|'∗, Q = F�'∗; Q is the output function (Equation 
9 for two-class recognition problem). Since F�'∗; Q is 
nonlinear, it is inappropriate to use F�'∗; Qmn to 
approximate  F�'∗; Q as in Equation 16.  

To evaluate F�'∗; Q, Mackay introduced a locally linear 
function of the weights as [12]: 

B�'∗; Q = Bmn�x + vr�'∗�Q − wmn	        (18) 

And its probability distribution can be derived as  

P�B|'∗, 0 = �
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where the variance �� is given by 

���'∗ = vrsL,v                                (20) 

where s = ∇∇l|wmn is the Hessian matrix of the overall 
error function l�Q, v = ∇F|wmn is the gradient. The value 
of Bmn is obtained by forwarding propagation '∗ through the 
network with weights wmn and variance ��. Then the 
probability distribution of output becomes 

P�4|'∗, 0 = UP�4|BP�B|'∗, 0 �B																	   (21) 

where P�4|B = G�B is the output function (Equation 9), and 
P�B|'∗, 0 is given by Equation 19. The following 
approximation can be used to the above integral in Equation 
21 [12]: 

P�4|'∗, 0 ≈ G����Bmn                     (22) 
where  
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(3)  Iterative process for calculating hyperparameter	7 

The hyperparameter 7 can be computed together with the 
network weights through the following iterations [11],[12]: 
(1) Initially, the hyperparameter 7 is set to a small arbitrary 

value. Then the network is trained to find the maximum 
weight vector Qmn by minimizing the cost function 
l�Q. Training is stopped when the training error falls 
below a pre-specified value.  

(2) The hyperparameter 7 is updated to 

7��\ = �
���

                                 (24) 

where � is calculated using the value of 7 at the previous 
iteration, and it is in the form of 

� = ∑ ��
��HX

k
 ��                                 (25) 

�  are the eigenvalues of the data Hessian matrix, refer to 
Equation 20.  

(3) Once the hyperparameter 7 has been updated, the 
network is trained again from where it halted until a 
specified lower training error value is attained. The 
above training process continues until convergence.  

V. RESULTS AND ANALYSIS 

This section presents the results of using the hybrid BNN 
and DWT algorithm for PD pattern recognition. For the 
purpose of comparisons, the results of using three commonly 
adopted pattern recognition algorithms namely k-nearest 
neighbor (KNN), radial basis function (RBF) network, and 
multi-layer perceptron (MLP) are also included in this 
section. And one more feature extraction approach, the 
statistic operator is also included in this section. The statistic 
operator approach forms a feature set of 24 statistic 
parameters to quantify discharge pulse maximum magnitude 
distribution, discharge pulse average magnitude distribution, 
and discharge pulse number distribution with respect to the 
phase angle of the applied AC voltage [3].  

By integrating BNN, KNN, RBF, and MLP with DWT 
and statistic operator, total eight algorithms are implemented 
in this section. These eight algorithms are: BNN-DWT, 
KNN-DWT, MLP-DWT, RBF-DWT, BNN-Stat, KNN-Stat, 
MLP-Stat, and RBF-Stat (Stat refer to statistic operator). 

As mention in Section II, 200 acquisitions (each consists 
of PD pulses in 100 power cycles) are obtained for each of 
the five PD models depicted in Figure 1. Thus, the dataset is 
made up of 1000 data points belonging to five different PD 
classes. This original dataset will be fed into either DWT or 
statistic operator for constructing the dimension reduced 
dataset. The dimension reduced dataset constructed by DWT 
has the dimension of 1000 x 36 while that constructed by 
statistic operator has the dimension of 1000 x 24.  

Each of the above two dimension-reduced datasets is 
randomly divided into two parts: a training dataset that 
comprises 70% samples and a testing dataset that comprises 
30% samples.  For each pattern recognition algorithms, the 
optimal values of some parameters need to be found. These 
include: the number of neighbors in KNN, and the number of 
hidden nodes in RBF, MLP, and BNN. To decide the optimal 
values of these parameters, ten-fold cross validation is 
performed on each algorithm using the above training dataset. 
Once the best parameters are found, the algorithm will be 
trained with its optimal parameters. Finally, each trained 
algorithm is presented with the testing dataset and tasked to 
make recognition of the types of PD sources (PD models) for 
the samples (data points) in the testing dataset.  

The class splitting, tenfold cross validation, and testing 
are repeated 20 times for each algorithm. Figure 4 shows the 
NeuroScale visualization with the 2D projection of original 
training and testing datasets of the five PD models (classes). 



Table 1 presents the results of eight algorithms including 
overall recognition rate (in percentage) and the recognition 
rate (in percentage) with respect to each type of PD models. 

 

 
Figure 4. NeuroScale visualization 

Note: Class 1- corona; Class 2 – discharge in oil; Class 3 – surface discharge; Class 4-
internal discharge; Class 5 – discharge due to floating particle.  

Table 1 Recognition rates (in percentage) of various algorithms 
(averaged over 20 trials) 

Algorithm 
Overall 

Rate 
Class 
1 Rate 

Class 
2 Rate 

Class 
3 Rate 

Class 
4 Rate 

Class 
5 Rate 

KNN-Stat 90.8 99.4 83.8 86.7 99.5 85.2 
RBF-Stat 92.5 98.5 87.4 90.1 97.8 89.2 
MLP-Stat 92.0 98.1 84.8 91.6 99.1 86.6 
BNN-Stat 93.8 98.3 88.8 91.4 99.0 92.3 

KNN-DWT 94.2 99.2 91.4 96.0 98.3 85.4 
RBF-DWT 97.3 98.8 97.5 97.2 98.3 94.3 
MLP-DWT 98.5 97.9 99.6 99.4 98.2 97.2 
BNN -DWT 99.1 99.4 98.8 98.5 99.8 98.8 

 
From Figure 4, it can be seen that the data points of one 

class mixed up with those of other classes in both training 
dataset and testing dataset. Especially, the data points 
belonging to class 2 (in blue color, PD model of discharge in 
oil) and class 5 (in green color, PD model of discharge due to 
floating particles) scatter in the data space and blend into 
each other. This may cause difficulties for some algorithms to 
make explicit recognition and correctly classify all data 
points in the testing dataset into their corresponding types of 
PD models (classes). This can also explains why the 
recognition rates of KNN-Stat, KNN-DWT, MLP-Stat, RBF-
Stat on Class 2 or Class 5 are relatively low as shown in 
Table 1.  

Table 1 reveals that BNN outperforms KNN, MLP, and 
RBF in both cases of integration with DWT and integration 
with statistic operator. It can also be seen from Table 1 that 
the algorithms integrated with DWT attained higher 
recognition rate than the pattern recognition algorithms 
integrated with statistic operator. It can also be observed that 

the proposed hybrid of BNN and DWT achieves the highest 
recognition rate amongst the all eight algorithms.  

VI.  CONCLUSIONS 

This paper proposed a novel Bayesian neural network 
(BNN) and discrete wavelet transform (DWT) hybrid 
algorithm for PD pattern recognition. Laboratory experiments 
on different PD models were conducted for evaluating the 
proposed algorithm. Results show that the proposed hybrid 
algorithm can consistently attain higher recognition rate. 
Future research will extend the hybrid BNN and DWT 
algorithm for multiple sources PD pattern recognition by 
conducting laboratory experiments and field measurements.     
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