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Abstract— Partial discharge (PD) pattern recognition has ben
applied for identifying the types of insulation deécts in high
voltage (HV) equipment. It can provide an effectivemeans for
condition assessment of the insulation system of H&fuipment.
This paper proposes a novel Bayesian neural networlBNN)
and discrete wavelet transform (DWT) hybrid algorithm for PD
pattern recognition. Laboratory experiments on a nunber of PD
models have been conducted for evaluating the perfoance of
the proposed algorithm.

Index Terms- Bayesian neural network (BNN), discrete wavelet
transform (DWT), Partial Discharge (PD), and pattem
recognition.

l. INTRODUCTION

Partial discharge (PD) measurement has been wid

adopted for monitoring and diagnosis of high vatgélV)
equipment [1]-[2]. One of the major tasks of
measurement is the PD pattern recognition for ifiéng the
types of defects that cause discharges in HV eqeipn©ver
the past two decades, a number of intelligent tiegctas have
been developed for automatic PD pattern recognitBome
examples include statistical methods, variousieidif neural
networks (ANNSs), genetic algorithms,
discrete wavelet transforms, and support vector hinaes
(SVMs) [3]-[10].

However, it is still a non-trivial task to apply ¢h

intelligent algorithms for automatically recognigirvarious
types of defects in the insulation system of HVipment.
The two most challenging issues are:

(1) extracti

(i.e. weights), BNN exploits an entire probabildtistribution
of these parameters and can naturally addressstue iof
regularization to avoid over-fitting [11], [12].

The original PD measurement data is extremely high

dimensional. To deal with this high dimensionalitye

traditional approach computes a number of statterators
on the discharge pulse height and number distohati[3],

[4]. These statistic operators form a feature setepresent
PD patterns. However, this paper adopts discreteelet
transform (DWT) for feature extraction. The benefitusing
DWT in that it can integrate PD signal de-nosing éeature
extraction in a single step. It is expected tha BNN and
DWT hybrid algorithm can attain desirable recogmiti
ggeuracy compared to a number of other algoritfirhis will

Be verified using a PD dataset obtained from laooya

I:,I:?xperiments on a variety of artificial PD models.

The remaining part of this paper is organized dsv.
Section |l
acquisition procedure. Section Il provides a briefiew on
DWT approach for feature extraction. A data viszetion
algorithm is also presented in this section. $eck/ details

expert systemthe formulation of BNN. Section V presents the gttion

results of BNN and DWT hybrid algorithm as well as
number of other algorithms. Section VI concludesphper.

II.  EXPERIMENT SET-UP AND DATA ACQUISITION

In this paper, a number of artificial PD models are

nstructed to generate PD dataset for evaluatihngd&tern

representative features from PD measurement datite wiecognition —algorithms. These models include: caron
maintaining lower dimensionality; and (2) choosinglischarge in transformer oil, surface dischargeterimal
appropriate algorithms to attain desirable perforceain discharge, and discharge due to floating partiffégure 1).

classifying various PD patterns due to differerfedss.

This paper proposes a novel algorithm of integgatint
network (BNN) and discrete wavel

Bayesian neural
transform (DWT) for PD pattern recognition. BNN pides a
probabilistic treatment of leaning in neural netwdnstead of
only considering a single set of optimal networkapaeters

This work was supported by the Australia ResearobnCil (ARC) ot
Linkage Grant.

Omicron’s MPD600 (complying with IEC60270) was
adopted for PD data acquisition. Figure 2 showstypécal
hree dimensional (3D) phase resolved diagram &mwh eof
e above five PD models. The phase resolved diagra
depicts the possible correlations among dischargksep
number, discharge pulse magnitude, and the phagle ah
the applied AC voltage.

describes PD experiments set-up and data
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To combat the high dimensionality, this paper corapu

| Pressgomd the first four moment statistics including me&nstandard
deviationo, skewness, and kurtosis for each of the nine
distributions composed by the detail coefficients:
®
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Figure 1. Artificial PD models 1 -
‘ § =430 lx(n) - xI* @)

wherex(n) is the wavelet coefficient at locatianandN is
the total number of wavelet coefficients at eacleleFinally,
total 36 features are extracted from the origiraldataset.
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Surface discharge
ransformer ol To provide data visualization for high dimensionialka,
the NeuroScale is adopted in this paper. NeuroSualects
the data points in the original space into a twmeatisional
space, in which the data points that are closéénariginal
i space are kept close while the data points that are

““1&‘?‘“;“;:“ o significantly separated in the original space aeemained
intamal dischargs floating particles well-separated [14]. This is achieved by minimizitige
Figure 2. Typical PD patterns of different PD madel foIIowing functionE
. 2
For each of the above five PD models, PD measursmen E=Y%V ij>1(d{j — dl-j) (5)

were conducted under three different applied veltbyels . ) ) L
and with three different noise gating thresholds. oe Whered;; is the Euclidean distance between data paamidj
acquisition, PD pulses of 100 power cycles wereonded. in the original space, and;; is the Euclidean distance
For each of five PD models, 200 acquisitions wermined. between corresponding data points in the projectfmace N
The resultant dataset consists of total 1000 daiatg The is the total number of data points in the data&etapproach
discrete wavelet transform (DWT) will extract feas based proposed by Lowe and Tipping can be used for sgltire
on this dataset and construct a new dataset fiminigpand above minimization problem [14].

validating Bayesian neural network (BNN). V. THEORY OFBAYESIAN NEURAL NETWORK

Ill.  FEATURE EXTRACTION AND DATA VISULIZATION In this paper, the Bayesian neural network (BNN) is

A. Discrete Wavelet Transform (DWT) Approach constructed by applying Bayesian approach on the
Discrete wavelet transform (DWT) has been Wide|9onventlonal multi-layer perceptron (MLP). Unlikéassical

adopted as a signal de-noising tool in PD measureidé neural network, in which a single set of networkamaeters

Recently it has also been applied for extractiqyesentative (Weights) are sought using maximum likelihood melhine

features of different PD patterns correspondingvasious BNN approach considers a probability distributiemdtion
insulation defects in HV equipment [9]. over the distribution of these network parametér,[[12].

BNN can effectively solve the over-fitting probletirough
the control of model complexity and naturally handhe
uncertainties through probabilistic modelling.

In DWT, the original PD signals are decomposed mto
number of approximation and detail coefficientsotilgh a
series of low pass and high pass filters [13]. Bmbfficients
are then down-sampled and the approximation coefiis Starting with a brief review of MLP, this sectionillw
will be further decomposed until reaching a preuedi present the Bayesian approach on finding the optima
decomposition level. In this paper, the original §ignals are network parameters of MLP. It is assumed the P& éagn
decomposed into nine levels by using the abiorla§elet. Ny ¢ datasetX = [x,, ..., X;, ..., Xy ], whereN is the number

Thus, each discharge pulse is represented by nig€yaia points and is the size of features of each data point,
coefficients. Given a considerable large numbdPDfpulses . 1 d )
e. x; = [x}, ..., x{]. Moreover, each data poiXtbelongs to

obtained in each PD signal acquisition (about sever” . :
thousand discharge pulses in one acquisiion in tR8€ Of theT independent classes, i€.€ {1,..,t;, ..., T},
experiments), the above DWT decomposition proceils wvhere each class corresponds to one type of PD Imode

introduce considerable high dimensionality. depicted in Figure 1.



A.  Multi-layer Perceptron (MLP)

Figure 3 depicts the structure of three layers MIRe
first layer is the input layer, which is a set aatiminative
features describing the characteristics of differd?D
patterns. The third layer is the output layer, vahiocludes
five different types of PD models. The middle layerthe
hidden layer, and the nodes in this layer are cctedeto all
nodes in the input layer and output layer. Eachneation
carries a weight.
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Figure 3. Structure of multi-layer perceptron (MLP)

In the input layer,M linear combinations of inputs are

formed to obtain a set of variables associated Witlden
nodes as follows:

m _ \vd mj_j
al —ijlwl. x;

+b™ i=1,..,Nym=1,...M (6)
Wherexij is thej-th element of thé-th data poink;, wimj is
the weight element regarding theth hidden node to thieth
element of data point;, b/* is the bias term, anM is the
total number of hidden nodes. The outputs of thevab
hidden nodes are determined by a tanh activatioctifon:

z[" = tanh(a™) m=1,...M @)
The variablesz/™ are transformed by the second sets
weights regarding thieth output to then-th hidden node as

ab =yM_ wkmz™ +bF i=1,.,N;k=1,...,T (8)

Finally these values go through an output activafiction

values for network weights. It is necessary to eatd the
derivative of an error function, which is the surmsguare
error between network outpyf, and the true class labg]
with respect to the network weights [11].

B. Bayesian Approach for Multi-layer Perceptron (MLP)
(1) Bayesian learning of network weights

Unlike conventional approach, the Bayesian approach

exploits the probability distribution function ofetwork
weighs to represent the relative degrees of beledlifferent
values for these weights. By using Bayes' theor¢he
posterior probability distribution function of wdits with
respect to the class is

p(Clw)p(w)
[p(Clw)p(w)

wherep(w) is the prior probability distributionp(C|w) is
the likelihood function, and [p(Clw)p(w) is the

normalization factor. Upon receiving training datthe
posterior probability distributiop(w|C) can be evaluated.

p(w|C) = (11)

The prior probability distribution for weights cabe
chosen as a Gaussian prior with zero means [11]:

W) = —sexp (=5 Iwl?) =
wherea is the inverse variance of the distributidp,(a) is a
normalization constant, and the ternz;-ﬁllwll2 %Zwiz is
equivalent to the weight decay regulation term he t
conventional MLP« is also called the hyperparameter as it is
a parameter for the distribution of other paransetérhe
calculation ofa will be discussed later in this section.

1
Zy(a)

exp(—ak,) (12)

For the easier demonstration of key ideas behiadBtiN
algorithm, two-class classification problernt), & 0 or 1) is
adopted as an example for deriving the likelihoadction
p(C|lw) and the posterior probability distribution(w|C).
The likelihood functiorp(C|w) is then in the form of

of  LCIw) = My y(x (1 - y(x0)' ™™ = exp(=6)  (13)

where
G = —Toftelny(x) + (1 — t)In(1 - y(x,))}  (14)

By combing Equation (11)-(14), the posterior disttion of

to give output valug, . For the two-class pattern recognitiorweights can be expressed as follows:

problem, the activation function normally adopte thgistic
sigmoid function

e =g(a) = %)

For the multi-class pattern recognition problemtsas the
PD pattern recognition (five PD models in this papéhe
activation function normally adopts the softmaxdtion:

1+exp(-al)

exp(ar)
%, exp(at )
Traditionally, the above MLP network is trained dagh
the back-propagation technique to find an optimet of

Y =g(a) = (10)

1

= Z—sexp(—G —aEy) = le exp(—S(w)) (15)

p(w|C)

S(w) = G + aEy, is the overall error function. The above
posterior distribution(w|C) can be further approximated by
a Gaussian centered on the maximum posterior weiggttor

WMP'

P(WIC) = 7- exp[=S(wp) — 5 (W — wyp) TA(W — wigp)| (16)

Z

where Z; is the normalization constant appropriating to the
Gaussian approximation.



(2) Probability distribution of network output A; are the eigenvalues of the data Hessian matffies; te
As discussed in the above section, the “trained’PML  Equation 20.
network can be represented by the posterior prétyabi (3) Once the hyperparametar has been updated, the

distribution of network weights. Upon receiving ewninput network is trained again from where it halted uratil
x", the trained network needs to classify it into arfeT specified lower training error value is attainedneT
classes. The probability distribution of networkmut for the above training process continues until convergence.

inputx* can be written as

p(tlx", 0) = [ p(tlx’, w)p(w|C) dw 17

wherep(t|x*,w) = y(x*; w) is the output function (Equation
9 for two-class recognition problem). Singgx*;w) is
nonlinear, it is inappropriate to use(x*;wyp) tO
approximatey(x*; w) as in Equation 16.

V. RESULTS ANDANALYSIS

This section presents the results of using theityBNN
and DWT algorithm for PD pattern recognition. Fdret
purpose of comparisons, the results of using tbogemonly
adopted pattern recognition algorithms naméhearest
neighbor KNN), radial basis function (RBF) network, and
To evaluatey(x*; w), Mackay introduced a locally linear multi-layer perceptron (MLP) are also included ihist

function of the weights as [12]: section. And one more feature extraction approéble,
. Tros statistic operator is also included in this sectibhe statistic

a(x’;w) = app(x) + 8" (X)) (W — Wyp) (18) operator approach forms a feature set of 24 statist
And its probability distribution can be derived as parameters to quantify discharge pulse maximum itz
) distribution, discharge pulse average magnitud#ibligion,
p(alx*, C) = (ZH;)UZ exp (—(“ ;S‘VZIP) ) (19) and discharge pulse number distribution with respeche

phase angle of the applied AC voltage [3].

By integrating BNN,KNN, RBF, and MLP with DWT
s2(x) =gTA g (20) and statistic operator, total eight algorithms ianplemented
in this section. These eight algorithms are: BNN-DW

where the variance? is given by

where A = VVS|wyp is the Hessian matrix of the overall
error functionS(w), g = Vy|wyp is the gradient. The value KNN-DWT, MLP-DWT, RBF-DWT, BNN-StatKNN-Stat,

of ayp is obtained by forwarding propagatiah through the MLP-Stat, and RBF-Stat (Stat refer to statisticrajpar).

network with weightswye and variances®. Then the As mention in Section Il, 200 acquisitions (eachgists
probability distribution of output becomes of PD pulses in 100 power cycles) are obtainedefizh of
p(tlx", €) = [ p(tla)p(alx’, C) da (21) the five PD models deplctgd in F|gurg 1. Thqs,dhgaset is

) . . made up of 1000 data points belonging to five diffé PD

wherep(t|a) = g(a) is the output function (Equation 9), an¢|asses. This original dataset will be fed intheitDWT or
p(alx’,C) is given by Equation 19. The followingstatistic operator for constructing the dimensiceduced
approximation can be used to the above integréquation  yataset. The dimension reduced dataset constrogt@WT

21 [12]; has the dimension of 1000 x 36 while that cons&uidby
p(t|x*, €) =~ g(9(s)amp) (22) statistic operator has the dimension of 1000 x 24.
where —1/2 Each of the above two dimension-reduced datasets is
9(s) = (1+£) (23) randomly divided into two parts: a training dataseat
8

comprises 70% samples and a testing dataset thgrises
30% samples. For each pattern recognition algosththe
optimal values of some parameters need to be folihese
§nclude: the number of neighborsKiNN, and the number of
hidden nodes in RBF, MLP, and BNN. To decide thénag
values of these parameters, ten-fold cross vatidatis
performed on each algorithm using the above trgidiataset.
ane the best parameters are found, the algoritlilinbes

(3) lterative process for calculating hyperparameter a

The hyperparameter can be computed together with th
network weights through the following iterationd[112]:

(1) Initially, the hyperparameter is set to a small arbitrary
value. Then the network is trained to find the maxin
weight vectorwyp by minimizing the cost function
S(w). Training is stopped when the training error fall

below a pre-specified value. trained with its optimal parameters. Finally, eacained
(2) The hyperparameter is updated to algorithm is presented with the testing dataset taskled to
make recognition of the types of PD sources (PDeat®)dor

Anew = ﬁ (24) the samples (data points) in the testing dataset.
wherey is calculated using the value fat the previous ~ The class splitting, tenfold cross validation, aedting
iteration, and it is in the form of are repeated 20 times for each algorithm. Figusbalvs the

L NeuroScale visualization with the 2D projection asfginal
Y= Z'{Zlm (25) training and testing datasets of the five PD modelssses).



Table 1 presents the results of eight algorithnduiting
overall recognition rate (in percentage) and thepgeition

rate (in percentage) with respect to each typdofifddels.

15| + class1

+ class 2

+ class3

+ classd4
class §

05F | o test class1

0 test class 2

o O testclass 3

test class 4

test class 5

5+

Note: Class 1- corona; Class 2 — discharge inGldss 3 — surface discharge; Class 4

Figure 4. NeuroScale visualization

internal discharge; Class 5 — discharge due tdifiggarticle.

Table 1 Recognition rates (in percentage) of var@lgorithms
(averaged over 20 trials)

Algorithm Overal Class Class Class Class Class
Rate 1 Rate | 2Rate | 3Rate | 4 Rate | 5 Rate
KNN-Sta 90.¢ 99.4 83.¢ 86.7 99.t 85.2
RBF-Stat 92.t 98.t 87.£ 90.1 97.¢ 89.2
MLP-Stat 92.0 98.1 84.8 91.6 99.1 86.6
BNN-Stat 93.8 98.3 88.8 91.4 99.0 92.3
KNN-DWT 94.2 99.2 914 96.0 98.3 85.4
RBF-DWT 97.3 98.8 97.5 97.2 98.3 94.3
MLP-DWT 98.5 97.9 99.6 99.4 98.2 97.2
BNN -DWT 99.1 994 98.8 98.5 99.8 98.8

From Figure 4, it can be seen that the data pahisne

class mixed up with those of other classes in lihning

dataset and testing dataset. Especially, the dafatsp [9
belonging to class 2 (in blue color, PD model afctiarge in
oil) and class 5 (in green color, PD model of d&sdge due to

floating particles) scatter in the data space alehdbinto

each other. This may cause difficulties for songmathms to
make explicit recognition and correctly classifyl dlata
points in the testing dataset into their corresjrgndypes of

the proposed hybrid of BNN and DWT achieves thehbgg
recognition rate amongst the all eight algorithms.

VI. CONCLUSIONS

This paper proposed a novel Bayesian neural network
(BNN) and discrete wavelet transform (DWT) hybrid
algorithm for PD pattern recognition. Laboratorypeskments
on different PD models were conducted for evalgatime
proposed algorithm. Results show that the propdsdutid
algorithm can consistently attain higher recogniticate.
Future research will extend the hybrid BNN and DWT
algorithm for multiple sources PD pattern recogmitiby
conducting laboratory experiments and field measergs.
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