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Abstract—Underwater mobile acoustic sensor networks are
promising tools for the exploration of the oceans. These networks
require new robust solutions for fundamental issues such as:
localization service for data tagging and networking protocols
for communication. All these tasks are closely related with
connectivity, coverage and deployment of the network. A realistic
mobility model that can capture the physical movement of the
sensor nodes with ocean currents gives better understanding
on the above problems. In this paper, we propose a novel
physically-inspired mobility model which is representative of
underwater environments. We study how the model affects a
range-based localization protocol, and its impact on the coverage
and connectivity of the network under different deployment
scenarios.

I. INTRODUCTION

Sensor networks represent a new remote monitoring and
control technology, and recently, have become a promising
technology for underwater environment monitoring.

The idea of applying sensor networks into underwater
environments, forming underwater sensor networks (UWSN)
started an exciting research area, attracting a growing interest
from the network community. These networks are envisioned
to enable new applications including: military underwater
surveillance, oceanographic data collection, ecology (e.g. pol-
lution, water quality and biological monitoring), public safety
(e.g. disaster prevention, seismic and tsunami monitoring),
industrial (offshore exploration).

Recent works have addressed some of the challenges pre-
sented by underwater sensors [1]–[3]. Since UWSN is an
emerging topic, up to now, most of the researches have mainly
focused on fundamental sensor networking problems such
as data gathering [4], synchronization [5], localization [6],
routing protocols [7], [8], energy minimization and MAC
[9], [10] issues. Various architectures have been proposed for
UWSN, they can be classified in the following groups: i) ocean
floor embedded sensor networks [1], ii) UWSNs with sensors
attached either to anchors on the ocean floor [1] or to surface
moorings [11], iii) hybrid architectures [12] iv) Autonomous
Underwater Vehicle (AUV) aided UWSNs where AUVs are
used for additional support in any of the above architectures
[13] v) networks with free-floating sensors (mobile underwater
sensor networks) [14].

Currently, only sensors without networking capability are
widely used in oceanographic research. These sensors are
used in two distinct and complementary ways to perform
measurements in the oceans; Eulerian and Lagrangian. In the
Eulerian approach data are taken at positions that do not
change in time (e.g. from a mooring or from a ship standing
still with respect to the bottom). In the Lagrangian approach,
data are taken from autonomous devices that passively fol-
low the ocean currents, for a review see [15]. Lagrangian
autonomous devices (usually named floats or drifters) give
unique insights into the structure and patterns of ocean flows,
at many different temporal and spatial scales. An operational
forerunner of future global arrays of lagrangian devices is the
Argo project: a set of thousands of free-drifting profiling floats
that measure temperature, salinity, and velocity of the ocean
water [16].

Although the devices in use today are not able to com-
municate with each other, there is a growing trend of using
lagrangian devices for monitoring regional and coastal areas
[17]. In those settings the small distance between the devices
makes it possible to acoustically interconnect them and deploy
them as underwater mobile acoustic sensor networks.

Terrestrial sensor networks generally assume fairly dense
deployment with continuously connected coverage of an area
using inexpensive, stationary nodes. In contrast with this, eco-
nomics push underwater networks toward sparse and mobile
deployments. A recent survey [2] on underwater networks
highlights the importance of sparse and mobile networks due
to the immense volume of the underwater domain.

In this paper, we study underwater mobile acoustic sensor
networks that consist of free-floating sensors with network-
ing capability. We present a mobility model for underwa-
ter environments, the Meandering Current Mobility model
(MCM hereafter). This model considers sensors moving by
the effect of meandering sub-surface currents and vortices.
The domain model is representative of a large coastal en-
vironment. Therefore, unlike previous works, we assume a
domain spanning several kilometers. In this case, deployment
of the network with sensors uniformly distributed over this
large domain would be unrealistic. Instead, we consider an
initial deployment of nodes in a small subarea where they are
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released and thereafter move according to the mobility model.
This scenario is more realistic for underwater mobile sensor
networks applications, especially in monitoring the dynamics
of the oceans.

For any sensor network, the lifetime of the network is
usually defined as a set of application specific requirements:
the connectivity among nodes, the coverage of the network, i.e.
the fraction of the area where sensors can effectively collect
information and on the performances of network protocols. In
a mobile network connectivity and coverage vary when the
nodes move. Hence studying these metrics with a realistic
mobility model is essential. The performance of any protocol
is directly related with these issues. We study the dynamic cov-
erage and connectivity as a function of time under the MCM
model. We also consider the effect of different deployment
strategies on network coverage and connectivity.

Underwater sensor networks, like other sensor networks,
require a localization service in order to geo-reference each
measurement. We present a localization service, tailored to the
specifics of underwater sensor network, and study the effect
of the mobility model on the level of service provided by the
localization protocol.

The paper is organized as follows: In Section II, we define
a mobility model from oceanography that provides a good
degree of accuracy in modeling coastal deep water ocean
currents. In Section III, we present the network model, the
deployment process, the connectivity and coverage metrics. In
Section IV, we present the localization scheme. In Section V
we present the simulation outcomes and discuss the impact
of the mobility model on the connectivity, coverage and
localization using different deployment schemes. Section VI
draws the main conclusions and possible future works.

II. MOBILITY MODEL

In order to study the networking properties of intercon-
nected sensors, it is crucial to use a mobility model that takes
into account the fluid nature of the medium in which they
move. Almost all models in the existing literature on mobile
sensor networks assume that each sensor moves independently
from the others [18]–[20]. Typically, the path of each sensor
is taken as an independent realization of a given stochastic
process, such as a random walk, or a random way point
process. In a fluid, instead, the same velocity field advects
all the sensors. Their paths are deterministic (albeit often
chaotic), and strong correlations between nearby sensors must
be expected. Then, in order to simulate the movement of
sensors, one needs to model the movement of the ocean in
which they are immersed. This may be achieved in several
ways, with varying levels of realism.

On one hand, the latest advances in computational tech-
niques allow for very realistic but complex “ocean forecasts”,
similar to weather forecasts [21]; this approach, in addition
to the sheer computational cost of the simulation, requires
additional detailed knowledge of atmospheric forcing, bottom
topography and boundary conditions, which comes from ex-
tensive field observations.

On the other hand, progress in the understanding of la-
grangian transport have been made with a purely kinematic
approach, where a (reasonable) velocity field is prescribed
beforehand. For our applications, we exploit the fact that the
oceans are a stratified, rotating fluid, hence vertical movements
are, almost everywhere, negligible with respect to the hori-
zontal ones [22]. Thus we will assume that our lagrangian
sensors move on horizontal surfaces, and neglect their vertical
displacements. Models of this sort are very well known in fluid
dynamics, because they allow to describe the kinematics of
quasi-two-dimensional flows in a simple way, while retaining
a good level of realism. The book [23] is a general introduction
for the interested reader, while the very recent monograph [24]
focuses on geophysical applications.

In oceanography, the absence of vertical movements is a
design feature of drifters, where the sensors hang at a fixed
(small) depth under a buoyant object floating at the surface
[25], [26]. In the case of floats, the operating depths are usually
much larger, and there is no direct contact with the surface.
The hull of the device is built in such a way to maintain its
density almost constant, so that the float can be calibrated
to follow a precisely defined isopycnal surface1; in this case,
vertical movements of the float are usually limited to damped
oscillations around the reference density surface triggered by
internal waves [27].

Of course, in the presence of strong wind–driven upwelling
or downwelling, or during events of deep water formation,
or at the passage of exceptionally intense internal waves, the
assumption of negligible vertical motions ceases to be valid. In
our preliminary investigation, we feel appropriate to skip these
exceptional events and propose a model that mimics conditions
of ordinary water circulation.

Any incompressible, two-dimensional flow is described by
a streamfunction ψ from which the two components of the
divergenceless velocity field u ≡ (u, v) may be computed as:

u = −∂ψ
∂y

; v =
∂ψ

∂x
. (1)

By a long-standing convention, u is the zonal (eastward)
component of the velocity field and v is the meridional
(northward) one. Then, the trajectory of a lagrangian device
that moves with the current is the solution of the following
system of Hamiltonian ordinary differential equations.

ẋ = −∂yψ(x, y, t), ẏ = ∂xψ(x, y, t). (2)

A widely studied streamfunction, which is designed to catch
the two main features of a typical ocean flow (currents and
vortices) was first proposed by Bower [28], who used the
model to explain the properties of the observed paths of
isopycnal floats released in the Gulf Stream. Her model was
generalized in [29]. The resulting dynamics proved to be so
rich and interesting that these early works sparked a very large
number of other studies (too large to be summarized here, see
[24] for a review).

1A surface of constant density. Isopycnal surfaces in the ocean are usually
very close to be horizontal.
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Fig. 1. A plot of the streamfunction (3) at t = 0, as seen in a reference frame
moving with the phase speed c of the meanders. From eqn. (1) it follows that
the velocity vectors are everywhere tangent to the streamfunction isolines, and
their modulus is proportional to the modulus of the streamfunction gradient.
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Fig. 2. Time evolution of the position of one hundred sensors randomly
released in a square of 4 km of side centered on the axis of the jet-like
current.

The non-dimensional form of the meandering jet model is

ψ(x, y, t) = − tanh

[
y −B(t) sin(k(x− ct))√

1 + k2B2(t) cos2(k(x− ct))

]
(3)

where B(t) = A + ε cos(ωt). This streamfunction represents
a jet-like current, meandering between recirculating vortices
(see Figure 1). The flow induces a net mass transport along
the current, and, in a wide range of parameters, a vigorous
chaotic mixing across the current.

In the expression (3) the parameter k sets the number
of meanders in the unit length, c is the phase speed with
which they shift downstream. The time–dependent function
B modulates the width of the meanders: A determines the
average meander width, ε is the amplitude of the modulation,
and ω is its frequency. As a significant example, in the
following we will use A = 1.2, c = 0.12, k = 2π/7.5,
ω = 0.4, ε = 0.3. By taking one non-dimensional unit of space
to be a kilometer, and one non-dimensional unit of time to be
0.03 days, we have that the size of the meanders is 7.5 km, the
peak speed inside the jet is about 0.3 m/s, and the modulation
period is about half a day (a value in agreement with the main
tidal period). With these scalings we take the streamfunction in
(3) as representative of a typical coastal current. The motion
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Fig. 3. Three representatives sensor trajectories as seen in a reference frame
moving with speed c.

of lagrangian devices simulated by numerically integrating the
equations (2) is shown in Figure 2.

For a thorough discussion on the choice of the parameters
see [30] and references therein. Here we just observe that
setting ε = 0, and choosing a reference frame translating
with speed c along the x axis, the streamfunction (3) becomes
time–independent. For time–independent streamfunctions, a
straightforward consequence of (2) is the fact that the motion
of each sensor happens along the streamline2 singled out by the
initial condition. Because vortices are, by definition, regions
of closed streamlines, it follows that sensors initially seeded
inside the vortices will not be able to escape into the jet, and
vice-versa. For ε �= 0 the streamfunction (3) is genuinely time–
dependent: in no reference frame the sensor paths will coincide
exactly with the streamlines. In this case there is some mass
exchange between the vortices and the jet. Quantifying this
exchange is not an easy matter: most of the literature cited
above is devoted to just this problem. However, as a very
rough rule of thumb, one should expect an increasing degree
of permeability of the vortices as the parameter ε is increased.

Typical sensor paths (see Figure 3) show an alternation
of fast downstream motion (when the sensor is in the jet)
and looping motion (when the sensor is in a vortex). As
a result, the trajectories of sensors trapped inside the same
vortex remain strongly correlated, usually for several vortex
turnovers. However, correlations are quickly lost when a sensor
eventually leaves the vortex.

III. NETWORK MODEL AND DEFINITIONS

A mobile network is a time varying graph G = (V (t), E(t))
consisting of a large set V (t) of sensor nodes moving in a
rectangular domain at time t. The set E(t) represents the
communication link between sensors, i.e. (u, v) ∈ E(t) if node
u can send a packet to node v at time t. Set E(t) is clearly
time-dependent due to the variable channel conditions of the
underwater environment and the effects of the mobility model.
Successful reception of a transmission depends on the received
signal strength, the interference caused by simultaneously
transmitting nodes, and the ambient noise level. Moreover,
shadowing, reflection, scattering and diffraction particularly
affect acoustic underwater communications. We study homo-
geneous sensor networks, i.e. we assume that sensors transmit
using the same power. We consider a transmitting power that
result in a maximum communication range Rc = 1000m.

Usually, in the study of sensor networks, nodes are deployed
in a small bounded geographic domain. Considering the spatial
scale (kilometers) used by MCM we study nodes in a domain

2A streamline is a level curve of the streamfunction ψ.
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D = [0, 80] × [−4, 4] km. However, a physically acceptable
model cannot confine the sensors inside an arbitrarily chosen
domain. Our definition of the streamfunction implies that ẏ
approaches zero for large |y|: thus nodes follow the current
oriented along the x-axis and eventually leave the domain
through its right side (see Fig. 2). The set of nodes in the
domain is therefore a function of the time.

Usually, works on sensor networks consider a single de-
ployment of nodes, all at the same time instant, with uniform
distribution (or using a Poisson process of a given intensity
λ) over a small domain. We model the deployment of the
network as a finite discrete random process: (Ni,Di, Ti) with
0 ≤ i < k, where k is the number of deployment rounds, Ti

is the time of the i-th deployment, Ni is the number of nodes
deployed and Di is the node distribution used to deploy the
nodes. We consider it more realistic (and cost-effective) to
deploy the nodes over a relatively small area of the domain:
like a square S = [0, 4] × [−2, 2] km. In the following we
assume that the distribution is uniform on S, i.e. ∀ i, Di = US

where US is equal to the uniform random distribution over S
and zero outside S.

Consider a fixed number of sensors N . We study two simple
versions of the above process: 1) the process (N,US , 0) with
k = 1 which models a single initial deployment of all nodes;
and 2) the process (N0, US , i∆T ) which models a k-phase
deployments, where in each phase N0 nodes are deployed at
regular times. The constant quantity ∆T specifies the (waiting)
time between two consecutive deployment rounds, the number
of rounds k is equal to N/N0

3. The choice of the value of ∆T
is of particular interest, its relation with the mobility model
and its impact on the connectivity and coverage of the sensor
networks is studied in Section V.

A. Measures for the analysis of the mobility model

To study sensors’ advection, we introduce a measure from
[31], called absolute dispersion. The absolute dispersion along
the x-axis is defined as:

A2(t, t0) =
〈|xi(t) − xi(t0)|2

〉
=

1
N

N∑
i=1

|xi(t) − xi(t0)|2

where N = |V | is the number of sensors in the network,
〈. . .〉 indicates average over the sensor nodes, xi(t) is the
x-coordinate of the i−th sensor at time t, t0 is the time
of deployment. We study the average of A2 on different
realizations of the same deployment process. The average of
A2 provides a network-wide measure for the dispersion of
sensors as a function of time. The way the absolute dispersion
scales with time characterizes the physical nature of the
transport process: if A2 ∝ t we are in the presence of a
diffusive process; if A2 ∝ t2 we have a ballistic transport
process; if A2 scales with a not integer power of time the
underlying process is anomalously diffuse [31].

Note that, in a mobile underwater network, the combined
effect of a limited transmit power, mobility over a large area,

3We chose N0 a divisor of N in order to have k integer.

and limited communication ranges, implies that communica-
tions require multiple hops. Moreover, with high probability
the communication graph G is partitioned in several connected
components. To overcome this effect, routing techniques from
disruption and delay tolerant networking (DTN) can be used
[32]. For this reason the analysis of the dispersion of nodes
belonging to the largest connected component (LCC) is of
particular interest.

Denoting with LCC(t) the set of sensors in the largest
connected component at time t, we define the bounding
box functions xlcc

min(t) = mini∈LCC(t) xi(t) and xlcc
max(t) =

maxi∈LCC(t) xi(t). We compare the bounding box of LCC(t)
with the bounding box of the whole network, i.e. xG

min(t) =
mini∈V (t) xi(t) and xG

max(t) = maxi∈V (t) xi(t).

B. Coverage and Connectivity

The sensing area is the area where a node can sense the
environment or detect events, and it is modeled by a disk of
radius Rs centered at the sensor position. We assume that each
sensor node has the same sensing capability. A point of the
domain is covered by a sensor if it is located in the sensing
area of some sensor. For each static distribution of nodes, the
domain can be partitioned in two areas: the covered region,
which is the set of points covered by at least one sensor, and
the uncovered region defined as the complement of the covered
region. We use two measures, from [33], for static and mobile
coverage:

Definition 3.1 (Area Coverage): The area coverage of a
sensor network at time t, fa(t) is the fraction of the geo-
graphical area covered by one or more sensors at time t.

Definition 3.2 (Area Coverage over a time-interval): The
area coverage of a mobile sensor network during the time
interval [0, t), fm(t) is the fraction of the geographical area
covered by at least one sensor at some point of time within
[0, t).

The area coverage is important for applications that require
simultaneous coverage of the geographic domain. The cov-
erage fm(t) is more appropriate for applications that do not
require simultaneous coverage of all points at specific time
instants, but prefer to cover the network within some time
interval.

IV. LOCALIZATION

Most of the underwater sensor network applications require
location information. This information is used in data tagging.
Besides, once the location information is retrieved, it can be
used in position-based routing algorithms.

Outdoor terrestrial sensor nodes can benefit from Global
Positioning Service (GPS) whereas underwater sensor nodes
need alternative solutions. GPS cannot be used underwater
because the high frequency GPS signal does not propagate
well through water. Localization without GPS is a challenging
task. Though GPS-free localization have been studied for
terrestrial sensor networks these results cannot be directly
applied to UWSNs due to large amount of communication
overhead or the required infrastructure.
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There are several works on localization for UWSNs [34]–
[36]. In this work, we consider a set of initial beacons such as
“sound sources” or “Dive and Rise” [36] beacons that acquire
and announce their coordinates. Sound sources are special
devices placed in the ocean emitting signals which can travel
thousands of kilometers. DNR nodes have the ability to move
vertically, reach above the water to receive GPS coordinates
and distribute the updated coordinates while they sink.

In both cases, a supplementary localization protocol, where
the coordinates of the first set of beacons are exchanged among
nodes, would be helpful in reducing the number of extra
devices. In our scheme, a beacon distributes its coordinates to
its neighbors. If a node hears from three beacons (assuming
the z coordinate to be fixed or to be calculated by a pressure
sensor) it measures the distances in between and then applies
lateration to estimate its coordinates. The distance can be
estimated by Time of Arrival (ToA) assuming that the nodes
are synchronized. Once the node is localized, it starts to
distribute its coordinates to its neighbors (i.e. it acts as a new
beacon).

Unfortunatly the inevitable errors in the distance measure-
ments propagate and amplify through this distributed localiza-
tion protocol. Measurement errors are due to several causes:
i) the approximate speed of sound used in calculations, ii) the
localization error in the first set of beacons, iii) estimation of
the ToA has errors due to environmental noise (reflections,
multipath, etc.) [37].

We study the qualitative behavior of the overall error as
a function of the distance between a localized node and the
set of initial beacons. We define the localization error of each
node as follows:

• Let B be the set of initial beacons, we neglet the error of
the beacons that are capable of autonomous localization.
Thus, we have e(b) = 0, ∀b ∈ B.

• Let u be a node, and Nu be the set of localized neighbours
of u that sent a message to u. If |Nu| < 3 node u cannot
be localized, in the other case, consider the three nodes
n1, n2, n3 ∈ Nu having minimum error. The error of u
is defined as e(u) = 1

3 (e(n1) + e(n2) + e(n3)) + 1.

This measure of error is the sum of the length of the minimum
hop paths between a node and three nodes in B. We study
how the number of localized nodes and the localization error
is affected by varying the density of the initial set of beacons.

V. SIMULATIONS

A. Simulation Settings

The simulations use an underwater propagation model,
implemented in Qualnet 3.9.5. The physical layer uses acoustic
signals [38], [39]. At MAC layer we use CSMA. The speed of
sound in water varies with water depth, salinity and tempera-
ture. In simulations, we use a speed of sound of 1513.74m/s.
The transmission power was set to allow a communication
range of 1000m. In addition, we had a constant shadowing
effect with mean 2.0 dB. For each simulation experiment, we
performed 10 runs with different initial deployment of nodes
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in the same area. The results presented are the averages over
these 10 runs of simulation.

B. Mobility Model and Network Connectivity

In this section we study the evolution of connectivity over
time. Figure 4 represents the graphs of xG

min(t), xG
max(t), i.e.

the bounding box of the whole network, and xlcc
min(t), xlcc

max(t),
the bounding box of the largest connected component. The
analysis of these functions show the movement of the whole
network and of nodes belonging to the LCC with respect to
time. The same plot contains the graph of the square root of
absolute dispersion A(t, t0), and the trajectory x = vmt, where
vm = 0.3m/s is the peak velocity in the jet (see Section II).
The plot shows the movement of nodes along the x-axis in a
period of 5 days.

Rigth after deployment, the network is connected, and
clearly xG

min(t) = xlcc
min(t) and xG

max(t) = xlcc
max(t). Function

xG
max(t) follows the same trajectory of function x = vmt,

meaning that some sensors are in the middle of the meandering
current and move with velocity vm. After some time, depend-
ing on the density of the network and the range of communi-
cation, the network becomes disconnected (which explains the
drop in xlcc

max(t)). A fraction of sensors continue to move with
velocity vm, determining the value of the maximum for the
bonding box of the whole network (xG

max(t) ∼ vmt), while a
fraction of them remains trapped in the vortices determining
the minimum of the bounding box of the whole network
(xG

min(t)). Nodes belonging to set LCC move with an average
velocity smaller than vm; this slow-down depends on the fact
that the many sensors spend a significant part of their time
circulating around in a vortex. Figure 5 represents the same
information of Figure 4 in log-log scale. This figure shows
more clearly the change in the velocity, before and after the
network becomes disconnected.

The width of the bounding box of the whole network, i.e.
the difference xG

max(t) − xG
min(t) increases with time since

nodes spread along all the domain. The bounding box of LCC
remains smaller than the overall bounding box because the
difference between the velocities of sensors in LCC cannot be
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too high, i.e. if a sensor in LCC moves with a velocity much
lower or much higher than the remaining sensors, with high
probability it will lose the connectivity with nodes in LCC,
due to the limited communication range.

From Figure 4 we can state that the curve of the absolute
dispersion follows the curve of xlcc

max(t). Thus the absolute
dispersion: 1) is a good measure of the average velocity of
nodes belonging to LCC; 2) is insensitive to the effect of nodes
that move, respectivelly, too fast (in the center of the current)
or too slow (in vortices) with respect to the majority of other
nodes.

We observe that the number of deployed sensors is insuf-
ficient to guaranteed the connectivity if they were uniformly
ditributed over the domain. Thus, as the transport due to the
water currents spreads them apart we expect the network to
be partitioned in several disconnected components.

In Figure 6 we plot the size of the LCC for a network of
N = 800 and N = 400 sensors. In both cases the network
stays connected for about 15 hours. After the disconnection
the size of the LCC drops abruptly. In the high density case
(N = 800) we observe sporadic jumps of the size of LCC from
over 80%N to about 40%N and back to 80%N . They are the
result of the interaction of LCC with vortices. Occasionally a
consistent fraction of LCC is captured in a vortex, and it slows-
down while the remaining part follows the jet downstream
and disconnects from those in the vortex. Eventually most of
the trapped nodes leave the vortex and enter the jet again. If
the number of nodes is sufficiently high, they will be able
to reconnect with LCC. As a consequence the average size of
LCC is about 80%N for the entire simulation. If the network is
sparse (N = 400) the size of LCC decreases significantly with
time. The decrease is not monotonous because some partial
reconnections are still present.

The vortex permeability to sensors is affected by the choice
of the parameters of the mobility model as we discussed
in Section II. A detailed study of the impact of vortex
permeability to network connectivity is left as a future work.

In Section III we relate the waiting time between differ-
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ent deployment rounds (∆T ) with the time (Tev hereafter)
required by sensors deployed in the first round to move out
from the deployment area. To be sure that the nodes of the
second deployment round are connected with those of the first
one, we would like to choose Tev in such a way that some
nodes are still in the deployment region at the time of the
second deployment.

We use the absolute dispersion as a measure of the average
displacement of the LCC. Figure 5 shows that A2(t, t0) is
a power law, i.e. A2(t, t0) ∼ tα. By least square fitting we
obtain α ∼ 1.7. Note that this does not depend on N or Rc or
other network parameters but is a characteristic of the mobility
model. Since the deployment area has width equal to 4km, we
have:

√
T 1.7

ev = 4000 which gives Tev = 4.8.
The first drop in xlcc

max(t) corresponds to the first time of
network disconnection. This time is a function of the number
of nodes (density of the network), the communication range,
and the meandering jet velocity. We study, in particular the first
time when the number of sensors in LCC becomes less than
90%N (T 90

conn), i.e. we measure the lifetime of the network
with this value. In Figure 7 we plot T 90

conn for different values
of N . For a fixed value of N we consider 1-round and 2-
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round deployment, in the case of 2-round, we deploy N/2
nodes at T = 0 and the remaining N/2 at time T = ∆T with
varying ∆T .

With a single deployment, the value of T 90
conn is in the range

[9 − 13]h and it is clearly an increasing function of N . With
two deployment rounds, if ∆T = 3h or 4h, the value of T 90

conn

increases, and in some case, like for large network (N = 800),
it is 20% larger than the corresponding value using a single
deployment.

If the value of ∆T is too high (∆T = 9h) the value of
T 90

conn is always smaller than the corresponding value for a
single deployment, since nodes in the second round are not
able to catch the nodes of the first round.

In Figure 8, we study the impact of different values of ∆T
in the case of 2 or 4 rounds of deployment, as before N is
the total number of nodes, we consider N = 200, 400. In each
round of deployment, if k is the number of rounds, N/k nodes
are deployed uniformly in the region [0, 4] × [−2, 2]km.

In the case of N = 200 and ∆T > 3h increasing the number
of deployment rounds does not improve T 90

conn. Because, with
3 deployments, the number of nodes in each round is only
50. This low value yields a disconnected network with high
probability just after deployment. In the case of N = 400
and 2 deployments, T 90

conn increases with increasing value of
∆T up to ∆T = 6h. Note that increasing the number of
deployment rounds decrease the optimal value of ∆T since
in each round we deploy less nodes.

C. Mobility model and Network Coverage

In this Section we report the simulation outcomes for the
measures of coverage defined in Section III-B. Nodes are
uniformly distributed in the deployment area and they disperse
on the larger domain after deployment following the ocean
current. In the simulation we use a disk model for the sensing
area, with a sensing range equal to Rs = 0.5km for each node.

Figure 9 shows the impact of nodes movement on the
coverage area, for networks with an increasing number of
nodes. The dispersion of nodes from the deployment area
towards the overall domain increases the area covered by the
network.
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The maximum area coverage is in any case only a fraction
of the overall domain area. In Figure 10 we observe coverage
area over time, i.e. for a given time t, the plot represents the
fraction of the area of the domain, that has been covered
at least one time in the interval [0, t). We see from the
plot, that mobility increases this “dynamic” coverage. It also
increases with increasing network density as expected. In the
case of multiple deployments, the choice of different number
of rounds or different value of ∆T has a small effect on the
1-coverage. In both cases the area covered by nodes deployed
starting from the second round is only a small fraction of the
area covered by the initially deployed nodes.

D. Simulation results for Localization

In this section, we study the percentage of localized nodes
and the localization error under varying percentage of beacons.
The results show the average computed over four different
simulation runs each with randomly selected initial set of
beacons.

In Figure 11 we evaluate the progress of localization error
for five days, for 800 nodes. On the first day (the left-hand side
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of the vertical line), localization error is almost 1 which is the
minimum error defined in Section IV. After the first day nodes
start to get dispersed and the localization error increases. For
the worst case with 15% beacons, there are at most 2 hops
between the nodes and the beacons.

In Figure 12 we give the percentage of localized nodes
versus simulation time for varying beacon percentages. On the
first day, the network is connected and all the nodes are able to
do localization. As the time evolves some nodes stay within the
jet and some drift away inside the vortices. Majority of nodes
stay in the jet, forming the LCC, and they get localization
information always (all the nodes in LCC are localized).
Other nodes that are captured by the vortices get disconnected
from LCC and they have less chance to hear from three
beacons. This figure resembles Fig. 6, i.e. there are oscillations
of the number of localized nodes of high amplitude. This
phenomenon has been already discussed when we studied
the evolution of the size of LCC. In fact, both are related,
since when sensors move out from the LCC the number of
unlocalized nodes suddenly increase, while if they join the
LCC it suddenly decreases. If the network is sufficiently dense,
as the case in the figure, sensors exiting from the vortices join
again the LCC and get once again localized. In the case of
localization, the oscillations are smaller since even when a
group of nodes move out of LCC there is a probability that
this group includes three beacons, a sufficient condition to get
localized, but the probability that this event occurs is not high.

Figure 13 shows the number of localized nodes for the entire
network. We give results for 200, 400, 800 nodes. The results
are averaged over time between days 2-5. We discard the first
day of deployment. This figure shows only the analysis of
the entire network, because as explained, localization for LCC
has 100% success since there are enough number of beacons.
The figure shows that the percentage of localized node in a
sufficiently dense network is above 80% and it increases with
an increasing number of initial beacons.

In Figure 14 we give the average localization error for
varying beacon percentages for 200, 400 and 800 nodes. Here,
by increasing the percentage of beacons the error converges
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to the minimum value, 1, i.e. most of the nodes hear directly
from beacons, and the localization error remains bounded. The
error decreases with increasing number of beacons since the
number of nodes directly hearing fron the beacons increases.
Since the number of hops is the direct measure for the error
in our scheme, we state that the error decreases in a densely
deployed network.

VI. CONCLUSION

In this paper, we introduced the Meandering Current Mo-
bility model (MCM), for underwater mobile acoustic sensor
networks. To the best of our knowledge this is the first
physically-inspired mobility model used in the analysis of
mobile underwater sensor networks. We started an analysis of
the impact that the MCM model has on the network connec-
tivity, coverage and on the error of a range-based localization
scheme. We show that a multiple deployment process improves
the connectivity lifetime of the sensor networks by studying
how the waiting time between two rounds is related to the
absolute dispersion of nodes. Our mobility model is dominated
by a rather complicated, vortex-driven, process of disconnec-
tion and reconnection of portions of the network. This process
is common to ocean flows. The present preliminary study
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intends to bring the attention of the network community on it,
because it impacts on every aspect of networking, it is absent
in conventional stochastic models and it could be exploited in
the design of (delay-tolerant) routing algorithms. These topics
will be the subject of future works.
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