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PRACE NAU K O W E  U N IW ERSYTETU  ŚLĄSKIEG O  W  K A TO W IC A C H  N R  30

PRACE M ATEM ATYCZN E  III, 1973

M AR E K  K U C ZM A

A  REM ARK CONCERNING MEASURE AND  CATEGORY

In [1] the authors prove that if a metric space X  is densei in itself 
and contains a dense subset the potency of which has measure zero, and 
if /j. is a o-finite Borel measure on X,  then X  admits a decomposition 
X  = H U K ,  where /.i (H) =  0 and K  is of the first category ([1], propo
sition (vi) modified according to the subsequent remarks). They also show 
by a suitable example that the condition that /< is o-finite is essential.

Further (p. 17) they derive hence the following theorem.

Let v be a o-finite measure defined on a o-additive field F of subsets 
of a set X 0, and let f  be a mapping of X Q into a metric space X  dense in 
itself and containing a dense subset the potency of which is of measure 
zerp. I f  f  is measurable (i.e. if  f ~1( X ) e  F  for every Borel set X C Z X j t 
then there is a set X 0 6 F such that v (X Q) =  0 and f ( X 0\ X 0) is of the first 
category.

In order to prove this theorem the authors write

and assert that ,u is a o-finite Borel measure in X t Now, this observation 
is invalid. To see this, take X  =  Xa =  Q +, the set of positiv rational 
numbers (with the ordinary metric) and let F he the set of all subsets1 
of Q+. Let { r n}  n=0,i,2, . . .  be an ordering of Q + into a sequnce and define 
v (Z ) for every Z  C lX 0 =  Q + as the number of the elements of Z. Finally.

f ( x )  =  rn fora: Ç Q + f l  [n, n + 1 ), n =  0, 1 , 2, . . .

Then f  is certainly measurable, X  is dense in itself and has the potency 
aleph zero of measure zero, and v is o-finite. But the measure ju defined 
on X  by formula (1) is not o-finite. In fact, we have

(1) PL (X ) =  * (f~* (X ))

let



On the other hand, the theorem itself is true, and may be proved by 
a slight modification of the argument given in [1], Let

(2) Xo = 0  An
7 1 = 1

with A n e F, v (A n) <  oo, A t fl Aj =  0  for i =£ j, and put

(3 )  M n {X)  =  V (A n n  / - I  ( X ) ;

for Borel sets X  CI X. By (2) jun are finite Borel measures on X  and conse
quently there exist decompositions

X =  Hn II K„, n =  1, 2 , . . .

such that Hn (Hn) =  0 and K n are of the first category. We may assume 
also that Hn f l  K „ =  0  for n =  1, 2, . . . Write

OO oo

(4) H  =  fl Hn, K  =  U Kn.
n= 1 n=l

Then K  is of the first category and K  =  X  \  H. Moreover, we have bv
(2) for X 0 =  /“ i (H)

X 0 =  /-i (H) =  /-i (H) m o =  U  ( A n d  f - *  (H)),
7 1 = 1

whence by (4) and (3)
oo oo oo

V (X 0) =  £  V (An f l / - 1 m  =  (H) <  (Hn) =  0.
n=l n=l n- l

Further,

/ ( X 0 \  X 0) =  / (,X0 \  /-i (H)) =  / (X0) CI K  C  K, 

and thus / (X 0\ X 0) is of the first category.
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M A R E K  K U C ZM A 

U W A G A  D O TYC ZĄ C A  M IA R Y  I K A TE G O R II 

S t r e s z c z e n i e

Autor wskazuje na pewną niedokładność w  dowodzie jednego z twierdzeń w  [1] 
i pokazuje, jak można lukę tę uzupełnić.

Oddano do Redakcji 6. 4. 71.


