

You have downloaded a document from RE-BUŚ repository of the University of Silesia in Katowice

Title: Immersions of two-manifold in the Euclidean four-space

Author: Marek Rochowski

Citation style: Rochowski Marek. (1972). Immersions of two-manifold in the Euclidean four-space. "Prace Naukowe Uniwersytetu Śląskiego w Katowicach. Prace Matematyczne" (Nr 2 (1972), s. 79-89)

Uznanie autorstwa - Użycie niekomercyjne - Bez utworów zależnych Polska - Licencja ta zezwala na rozpowszechnianie, przedstawianie i wykonywanie utworu jedynie w celach niekomercyjnych oraz pod warunkiem zachowania go w oryginalnej postaci (nie tworzenia utworów zależnych).

Biblioteka Uniwersytetu Śląskiego

Ministerstwo Nauki i Szkolnictwa Wyższego PRACE MATEMATYCZNE II, 1972

MAREK ROCHOWSKI

Immersions of two-manifolds in the Euclidean four-space

In this paper the author will investigate the immersions of closed orientable two-manifolds in the Euclidean four-space for which the Gauss curvature of the metric induced by the immersion is not everywhere negative. Hence such immersions cannot be isometries for orientable two--manifolds of genus ≥ 2 regarded as spaces locally isometric with the Lobachevskian plane. The method used is that developed in [1].

1. PRELIMINARIES. Let E^{n+N} denote the (n+N)-dimensional Euclidean space. By E(n+N, R) we denote the Euclidean group of transformations of E^{n+N} over the reals R, i.e. the group whose elements in a fixed co-ordinate system of E^{n+N} can be written in the matrix-form

$$Y = AX + a,$$

where $A = ||a_{AB}||_{1 \leq A, B \leq n+N}$ denotes an orthogonal matrix and X, Y, a are one-column matrices with (n+N) rows. Transformations (1.1) can be identified with the symbols (A, a) with the following law of composition

(1.2)
$$(C, c) = (B, b) \cdot (A, a) = (BA, Ba + b)$$

The Lie algebra g of E (n+N, R) is isomorphic with a subspace spanned over the symbols

$$\left(\frac{\partial}{\partial a_{AB}} \quad \frac{\partial}{\partial a_{A}}\right)$$

by linear combinations with real coefficients

(1.3)
$$\xi_{AB} \frac{\partial}{\partial a_{AB}} + \xi_A \frac{\partial}{\partial a_A}$$

such that

(1.4)
$$\xi_{BA} + \xi_{BA} = 0, \quad \xi_A = a_A,$$

the partial derivatives being evaluated at $a_{AB} = \delta_{AB}$, $a_A = 0$. In the sequel

employ the summation convention for repeated indices as in (1.3) and we use the following convention concerning indices

$$1 \leq i, j, k \leq n, n+1 \leq r, s, t \leq n+N, 1 \leq A, B, C \leq n+N.$$

By left multiplication the vector (1.3) can be propagated to a left-invariant vector field onto the whole of E(n+N, R). Namly, using (1.2) and taking into account the induced mapping of tangent spaces, we have

$$\xi_{AB}\frac{\partial}{\partial a_{AB}} + \xi_{A}\frac{\partial}{\partial a_{A}} \rightarrow \xi_{AB}\frac{\partial c_{DE}}{\partial a_{AB}}\frac{\partial}{\partial c_{DE}} + \xi_{A}\frac{\partial C_{D}}{\partial a_{A}}\frac{\partial}{\partial C_{D}} = b_{AB}\left(\xi_{BC}\frac{\partial}{\partial b_{AC}} + \xi_{B}\frac{\partial}{\partial b_{A}}\right).$$

This vector field constitutes the Lie algebra g^* , of E(n + N, R).

Let ω'_{A} , ω'_{AB} denote the left-invariant linear forms on g^{*} defined by

$$\omega_A' = a_{BA} \, da_B, \quad \omega'_{AB} = a_{CA} \, da_{CB},$$

and

$$da_{AB}\left(\frac{\partial}{\partial a_{CD}}\right) = \delta_{AC}\delta_{BD}, \ da_{AB}\left(\frac{\partial}{\partial a_{C}}\right) = 0, \ da_{A}\left(\frac{\partial}{\partial a_{C}}\right) = \delta_{AC}, \ da_{A}\left(\frac{\partial}{\partial a_{BC}}\right) = 0.$$

It follows from (1.4)

 $\omega'_{AB} + \omega'_{BA} = 0$

The forms ω'_{A} , ω'_{AB} satisfy the equations of structure of the Euclidean group

(1.5)
$$d \omega'_{A} = \omega'_{B} \wedge \omega'_{AB}$$
$$d \omega'_{AB} = \omega'_{CB} \wedge \omega'_{AC}.$$

2. THE MOVING FRAME. Let

$$x: M^n \rightarrow E^{n+N}$$

be an immersion of a closed orientable manifold M^n in E^{n+N} . We consider such elements of E (n + N, R) for which $a^T \in (M^n)$, where a^T denotes the matrix transposed to the matrix a which appears in (1.1) and $e_i = (a_{1i} a_{2i}, \ldots a_{n+N, i})$ are tangent to the surface x (M^n) at $a^T(p) = x$ (p), $p \in M^n$, and det $||a_{AB}|| = 1$, i.e. the frame $x(p)e_1e_2 \ldots e_{n+N}$ for $e_A = (a_{1A}, a_{2A} \ldots a_{n+N, A})$ is oriented coherent with E^{n+N} . Let x^* denote the mapping of differential forms induced by x. We set $\omega_A = x^* \omega'_A$, $\omega_{AB} = x^* \omega'_{AB}$. Then we have $\omega_r = 0$. This together with (1.5) implies $\omega_{ir} \wedge \omega_r = 0$. Hence

(2.1)
$$\omega_{ir} = A_{rij}\omega_j, \quad A_{rij} = A_{rji}$$

and

(2.2)
$$\Omega_{ij} = \omega_{ir} \wedge \omega_{rj} = A_{rik} A_{rjl} \omega_k \wedge \omega_l = A_{rik} A_{rjl} \omega_k \wedge \omega_l = A_{rik} A_{rjk} - A_{rik} A_{rjk} \omega_k \wedge \omega_l = A_{ijkl} \omega_k \wedge \omega_l,$$

where R_{ijkl} is the curvature tensor induced by the immersion.

If Π denotes the plane spanned by two unit orthogonal vectors tangent to the surface $x(M^n)$ at x(p):

$$a = a_i e_i, \quad b = b_i e_i,$$

then the sectional curvature of Π is given by the formula

 $K(p, \Pi) = R_{ijkl} a_i a_k b_j b_l.$

For two-manifolds we have

$$K(p, \Pi) = K(p) = R_{1212},$$

where K(p) denotes the Gauss curvature of $x(M^2)$. Hence we have by (2.2)

(2.3)
$$K(p) = A_{r11} A_{r22} - A_{r12} A_{r12} = \sum_{r} \det (A_{rij}).$$

3. THE LIPSCHITZ-KILLING CURVATURE. Let ν be an arbitrary unit vector in E^{n+N} . In the following we regard the unit vectors also as points of the unit sphere S^{n+N-1} . Now we define the normal bundle of M^n induced by the immersion x by

$$B_{\nu} = \{ (p, \nu) / \nu \cdot dx(p) = 0, p \in M^{n}, \nu \in S^{n+N-1} \}.$$

The fibres of $B_{\nu} \to M^n$ are (N-1)-dimensional unit spheres $S^{N-1}(p)$, and the structural group is the orthogonal group O (N-1). In B_{ν} we introduce the globally defined differential form

$$d\tau_{n+N-1} = dV_n \wedge d\sigma_{N-1},$$

where $dV_n = \omega_1 \wedge \omega_2 \wedge \ldots \wedge \omega_n$ is the volume element of M^n induced by the immersion x and $d\sigma_{N-1}$ denotes the volume element of the fibre $S^{N-1}(p)$ described by the vector $e_{n+N}(p)$ for a fixed $p \in M^n$. Hence

$$d\sigma_{N-1} = \omega_{n+1}, \, n+N \wedge \, \omega_{n+2}, \, n+N \wedge \ldots \wedge \omega_{n+N-1}, \, n+N.$$

Let

 $(3.1) \qquad \qquad \nu: B_{\nu} \to S^{n+N-1}$

denote the mapping

$$(p, \nu) \rightarrow \nu, \quad (p, \nu) \in B_{\mathbb{Q}}.$$

The volume element induced by (3.1) in S^{n+N-1} described by e_{n+N} has the form

$$\nu^* d\sigma_{n+N-1} = \omega_1, \, n+N \wedge \, \omega_2, \, n+N \wedge \ldots \wedge \, \omega_{n+N-1}, \, n+N.$$

If we substitute (2.1) for r = n + N into the preceding formula, we have

Prace matematyczne II

(3.2)
$$\nu^* d\sigma_{n+N-1} = \det \left(A_{n+N+ij} \right) dV_n \wedge d\sigma_{N-1}.$$

We call the function $L(p, e_{n+N}) = \det(A_{n+N,ij})$ the Lipschitz-Killing curvature of B_{j} at $(p, e_{n+N}) \in B_{j}$ and the integral

(3.3)
$$\int |L(p, e_{n+N})| d\sigma_{N-1} S^{N-1}(p)$$

will be called the Lipschitz-Killing curvature of M^n at $p \in M^n$.

Let e_{n+N} be fixed. The point $p \in M^n$ is called a critical point of the scalar function $-e_{n+N} \cdot x(q)$, $q \in M^n$, if $(p, e_{n+N}) \in B_{v}$, and is called a critical non-degenerated point if the second quadratic form

$$(3.4) -e_{n+N}d^2x(p) = de_{n+N}dx(p) = A_{n+N,ij}\omega_i\omega_j$$

of the surface $x(M^n)$ is non-degenerated, i.e. if det $(A_{n+N,ij}) \neq 0$. The second differential on the left of (3.4) is taken in the usual (not exterior) sense.

A point $(p, e_{n+N}) \in B$, for which det $(A_{n+Nij}) = 0$ is called a critical point of the mapping (3.1). By SARD theorem [2] the set $\nu(Q)$, where

(3.5)
$$Q = \{(p, e_{n+N}) \in B_{y} | \det (A_{n+N,lj}) = 0\}$$

is of measure zero in S^{n+N-1} . The point (p, e_{n+N}) belongs to Q if and only if $p \in M^n$ is a critical degenerated point of $-e_{n+N} \cdot x(q)$, $q \in M^n$.

Let k denote the index of the function $-e_{n+N} \cdot x(q)$ at a critical nondegenerated point $p \in M^n$, i.e. the maximal dimension of subspaces of the tangent space to $x(M^n)$ for which the quadratic form (3.4) takes negative values. MORSE lemma asserts that in a suitable co-ordinate system introduced in a neighgourhood of p the function $f(q) = -e_{n+N} \cdot x(q)$ takes the form

(3.6)
$$f(q) = f(p) - t_1^2 - t_2^2 - \dots - t_k^2 + t_{k+1}^2 + \dots + t_n^2,$$

where q has the co-ordinates (t_1, t_2, \ldots, t_n) . It follows from (3.6) that each non-degenerated critical point is isolated. Hence the number $m_k(M^n, f)$ of critical points of index k of the function f on a closed manifold is finite. Since $\nu(Q)$ is of measure zero in S^{n+N-1} , i follows that in each neighbourhood of an arbitrary vector e_{n+N}° there exists such a vector e_{n+N} for which the function $-e'_{n+N} \cdot x(q)$ has only non-degenerated critical points. Moreover, since M^n and S^{n+N-1} are compact and Q is closed, it follows that $\nu(Q)$ is closed, and therefore for each vector e_{n+N} from a small neighbourhood of e_{n+N} the function $-e_{n+N} \cdot x(q)$ will have only nondegenerated critical points. If the function $-e_{n+N} \cdot x(q)$ has index 0 at $p \in M^n$, then $L(p, e_{n+N}) > 0$ and it follows from (3.2) that the induced linear mapping

$$\nu^*:T_{(p,\nu)}\to T_{\nu}$$

of the tangent space of B_{1} onto the tangent space of S^{n+N-1} is orientation-

-preserving for $\nu = e_{n+N}$. If the index of $p \in M^n$ is k, then the orientation defined by ν^* differs by the factor $(-1)^k$ from the positive orientation of S^{n+N-1} defined by the frame $e_{n+N} e_1 e_2 \dots e_{n+N-1}$ (e_{n+N} denotes a point on S^{n+N-1} which is the origin of $e_1, e_2, \dots, e_{n+N-1}$). For almost every e_{n+N} the number of all critical points of the function $e_{n+N} \cdot x(q)$ is equal to $m_0+m_1+\dots+m_n, m_k = m_k (M^n, f), f(q) = -e_{n+N} \cdot x(q)$. Keeping in mind the orientation we have for a point $(p, e_{n+N}) \in B_{\nu} \setminus Q$

$$\det (A_{n+N, ij}) d\tau_{n+N-1} = (-1)^k \ \nu^* d\sigma_{n+N-1} = (-1)^k d\sigma_{n+N-1},$$

where k denotes the index of $p(M^n$ with respect to the function $-e_{n+N} \cdot x$ (q), and $d \sigma_{n+N-1}$ denotes the positively oriented volume element of the sphere S^{n+N-1} . For a connected neighbourhood $B \subset B \setminus Q$ of (p, e_{n+N}) we have therefore

(3.7)
$$\int \det (A_{n+N, ij}) d\tau_{n+N-1} = \int (-1)^k d\sigma_{n+N-1} \\ B \\ \nu(B)$$

This equality does not change if we replace B by $B \cup Q$ and ν (B) by $\nu(B) \cup \nu(Q)$. The set $B \setminus Q$ can be represented as a sum of open disjoint connected sets in each of which equality (3.7) holds for some k ($0 \leq k \leq n$). This decomposition leads us to the formula

(3.8)
$$\int_{B_{v}} \det (A_{n+N, ij}) d\tau_{n+N-1} = \int_{k=0}^{n} \sum_{k=0}^{n} (-1)^{k} m_{k} d\sigma_{n+N-1}.$$

If b_k denotes the k-th Betti number of M^n , then it follows from the MORSE equality [3]

$$\sum_{k=0}^{n} (-1)^{k} m_{k} (M^{n}, f) = \sum_{k=0}^{n} (-1)^{k} b_{k} (M^{n}) = \chi (M^{n}),$$

that we have

(3.9)
$$\int \det (A_{n+N, ij}) d\tau_{n+N-1} = v_{n+N-1} \chi (M^n),$$
$$B_{ij}$$

where v_{n+N-1} denotes the volume of S^{n+N-1}

If we disregard the orientation, then instead of (3.8) we have

(3.10)
$$\int_{B_{v}} |\det(A_{n+N,ij})| d\tau_{n+N-1} = \int_{k=0}^{n} \sum_{k=0}^{n} m_{k} d\sigma_{n+N-1}.$$

Now the MORSE inequalities [3]

$$(3.11) m_k (M^n, f) \ge b_k (M^n)$$

imply the following theorem:

THEOREM (S. S. CHERN and R. K. LASHOF [4]). If the manifold M^n is orientable and closed, then

(3.12)
$$\int_{B_{1}} |L(p, e_{n+N})| d\tau_{n+N-1} \geq v_{n+N-1} \sum_{k=0}^{n} b_{k}.$$

DEFINITION 1. The manifold is said to be immersed in E^{n+N} with minimal total curvature if

$$\int_{B_{v}} |L(p, e_{n+N})| d\tau_{n+N-1} = v_{n+N-1} \sum_{k=0}^{n} b_{k}.$$

Then it follows from (3.10), (3.11) and (3.12) that for almost every $e_{n+N} \in E^{n+N}$ we have

$$(3.13) m_k (M^n, -e_{n+N} \cdot x(q)) = b_k (M^n).$$

We introduce the following notations:

(3.14) $H(B_{y}) = \{(p, e_{n+N}) \in B_{y} | -e_{n+N} \cdot x(q) \text{ has index } 0 \text{ at } p\},\$

 $H(M^n)$ denotes the projection $(p, e_{n+N}) \rightarrow p$ of $H(B_{y})$ onto M^n .

The immersion $x: M^n \to E^{n+N}$ with minimal total curvature has the following property.

THEOREM 1. If $(p, e_{n+N}) \in H(B_{v})$, then the whole surface $x(M^{n})$ is contained in the halfspace $\{x \in E^{n+N} | e_{n+N} \cdot x \leq e_{n+N} x(p)\}$.

Proof. Assume on the contrary that for some $q \in M^n$ the inequality $e_{n+N} \cdot x(q) > e_{n+N} \cdot x(p)$ holds. Since M^n is closed, there exists a point $p_1 \in M^n$ such that the hyperplane $e_{n+N} \cdot x = e_{n+N} \cdot x (p_1)$ is tangent to x (M^n) and for each $q \in M^n$ the inequality $e_{n+N} \cdot x(q) \leq e_{n+N} \cdot x(p_1)$ holds. From the definition of p_1 it follows that $e_{n+N} \cdot x(p) \leq e_{n+N} \cdot x(p_1)$ and that p_1 is a critical point of the function $-e_{n+N} \cdot x(q)$. If the quadratic form $-e_{n+N} \cdot d^2x$ is non-degenerated, then the function $-e_{n+N} \cdot x(q)$ has index 0 at p_1 . If p_1 is a degenrated critical point, then by SARD theorem in an arbitrary neighbourhood of $(p_1, e_{n+N}) \in B$, there exist points $(p'_1, e_{n+N}) \in B$. $e'_{n+N} \in B_{\nu}$ such that $-e'_{n+N} \cdot x(q)$ has index 0 at p'_{1} . Since $\nu(Q)$ is closed, there exists a neighbourhood $B \subseteq B$ of (p, e_{n+N}) such that for each $(p', e'_{n+N}) \in B$ the function $-e'_{n+N} \cdot x(q)$ has index 0 at p'. Let $d = e_{n+N}$ $(x (p_1) - x (p))$. By the above remarks we can choose a point $(p' e'_{n+N}) \in B$. such that the following occurs: $-e'_{n+N} x(q)$ has index 0 at p'_1 and for each $q \in M^n$ the inequality $e'_{n+N} \cdot x(q) \leq e'_{n+N} \cdot x$ holds. Moreover, there exists a point $p' \in M^n$ such that $(p', e'_{n+N}) \in B$ and $e_{n+N} \cdot (x(p) - x(p')) \leq C$ $|e_{n+N} \cdot (x(p_1)-x(p'_1))| \leq \frac{1}{3} d$. Thus the function $e'_{n+N} \cdot x(q)$ would have index 0 at two distinct point p', p'_1 , and therefore there would exist a neighbourhood (in S^{n+N-1}) of e'_{n+N} such that for each e_{n+N} belonging to it the function $-e_{n+N} \cdot r(q)$ would have at least two distinct points of index 0. But this contradicts the fact that x is an immersion with minimal total curvature and therefore satisfies (3.13).

If x is an immersion with minimal total curvature then, since M^n is closed and connected, for almost every e_{n+N} we have $m_0(M^n, -e_{n+N} \cdot x(q)) = 1$. Hence for almost every e_{n+N} there exists exactly one point $p \in M^n$ for which $(p, e_{n+N}) \in H(B_1)$ and therefore $L(p, e_{n+N}) > 0$. It follows

$$v_{n+N-1} = \int L(p, e_{n+N}) dV_n \wedge d\sigma_{N-1} = H(B_{v})$$

(3.15)

$$= \int dV_n \int L(p, e_{n+N}) d\sigma_{N-1} = \int \overline{L}(p) | h(p) | dV_n,$$

$$H(M^n) h(p) \qquad H(M^n)$$

where $h(p) = H(B) \cap S^{N-1}(p)$, |h(p)| denotes the (N-1)-dimensional measure of h(p), $\overline{L}(p)$ denotes the mean value of $L(p, e_{n+N})$ with respect to e_{n+N} .

4. CLOSED SURFACES IN THE EUCLIDEAN FOUR-SPACE. Let $x: M^2 \rightarrow E^4$

be an immersion of a closed orientable two-manifold. To avoid additional discussion we assume about x that the following construction is unique: in each fibre $S^1(p)$, $p \in M^2$, we choose such a vector \bar{e}_4 that the function $L(p, e_4)$ takes its maximal value for $e_4 = \bar{e}_4$. Then \bar{e}_3 is also uniquely determined.

Hence the cross-sections $p \to \bar{e}_3(p)$, $p \to \bar{e}_4(p)$ are defined and B_{\downarrow} is therefore equivalent to a Cartesian product M^2XS^1 . The vector fields $\bar{e}_3(p)$, $\bar{e}_4(p)$ will be called the Frenet frame of M^2 induced by x. From (2.3) and from the definition of the Lipschitz-Killing curvature we have

(4.1)
$$K(p) = L(p, e_3) + L(p, e_4).$$

It follows from

$$\begin{array}{ll} e_3 = \bar{e}_3 \cos \psi & - \bar{e}_4 \sin \psi \\ e_4 = \bar{e}_3 \sin \psi & + \bar{e}_4 \sin \psi, \end{array} \quad 0 \leqslant \psi \leqslant 2\pi \end{array}$$

(4.2) $d\tau_3 = \omega_1 \wedge \omega_2 \wedge \omega_{34} = \omega_1 \wedge \omega_2 \wedge (\omega_{34} + d\psi) = \omega_1 \wedge \omega_2 \wedge d\psi.$

that $\omega_{34} = de_4 \cdot e_3 = \overline{\omega}_{34} + d\psi$. Therefore we have

Using (3.15) we get

(4.3)

$$\int L(p, e_4) dV_2 \wedge d\psi = 2\pi^2,$$

$$H(B_{\nu})$$

$$\int (L(p, e_3) + L(p, e_4)) dV_2 \wedge \omega_{34} = \int K(p) dV_2 \wedge d\psi =$$

$$H(B_{\nu})$$
(4.4)

$$\int dV_2 \int K(p) d\psi = \int K(p) | h(p) | dV_2$$

$$H(M^2) = h(p) = H(M^2)$$

if x is an immersion with minimal total curvature. The function |h(p)| is positive for $p \in H(M^2)$. This follows from the fact that $H(B_v)$ is open and therefore for each $(p, e_4) \in H(B_v)$ there exists a neighbourhood $B \subset H(B_v)$ of this point and the set $B \cap S^1(p)$ is open in $S^1(p)$ and is not empty. In the following x is an immersion with minimal total curvature and g denotes the genus of M^2 . Let e_4 be an arbitrary unit vector, then for almost every e_4 the function $e_4 \cdot x(p)$ has exactly (2+2g) critical non-degenerated points

 $(4.5) p_1, p_2, \ldots, p_{2+2g},$

where M^2 has genus g. It follows from the definition of a critical point that e_4 is orthogonal to $x(M^2)$ at x(p) ($1 \le a \le 2+2g$) Besides e_4 there exists for every α a unit vector $e_3(p_{\alpha})$ which is orthogonal to $x(M^2)$ at $x(p_{a})$ and to e_{4} and such that the frame $x(p_{a})e_{1}e_{2}e_{3}(p_{a})e_{4}$ determines an orientation coherent with that of E^4 . Hence p_{μ} is also a critical point for the function $e_3(p) \cdot x(q)$. Since p_a is a critical non-degenerated point of $e_4 \cdot x$ (q), there exists a connected neighbourhood $B_{e} \subset B_{\downarrow}$ of (e_4, p'_{a}) such that if $(e'_4, p'_a) \in B_a$ then p'_a is a non-degenerated critical point of $e'_4 \cdot x$ (q). Moreover we can assume that $B_{\alpha} \cap B_{\beta} = \emptyset$ for $\alpha \neq \beta$ (1 \leq $\leq \alpha, \beta \leq 2+2 g$). Since the mapping ν (see (3.1)) is locally a diffeomorphism, we can suppose that $S_{\alpha} = \nu (B_{\alpha})$ is open in S³. One can easily verify that $e_4 \in S = S_1 \cap S_2 \cap \ldots \cap S_{2+2g}$ and the function $e'_4 \cdot x(q)$ has only non-degenerated critical points for every $e'_4 \in S$. We define $B_2 = v^{-1}(S)$. Since $e'_{3}(p_{a})$ is uniquely determined by e_{4} , p_{a} and the orientation of E^{4} , we define the neighbourhood B'_{a} of $(p_{a}, e_{3}, (p_{a}))$ to be the set of all pairs (p'_{a}, e'_{3}, p'_{4}) such that $(p'_{a}, e'_{4}) \in B_{a}$ and $e'_{3}, (p'_{a})$ is the complementary vector of e'_4 . Since the mapping $(p, e_4) \rightarrow (p, e_3)$, (p, e_3) , $(p, e_4) \in B$, is an automorphism, the set B'_{a} is open and connected. If p_{a} is a non-degenerated critical point of $e_3(p_a) \cdot x(q)$, then let $B''_a \subset B'_a$ denote a neighbourhood of $((p_a, e_b, (p_a)))$ such that for every $(p''_a, e''_a) p''_a)) \in B''_a$ the point p''_{n} is a non-degenerated critical point of $e''_{3}(p_{n}) \cdot x(q)$. Now, if p is a degenerated critical point of $e_3(p_{\perp}) \cdot x(q)$, then in virtue of Sard theorem there exists a vector $e'_4 \in S$ such that for each a $(1 \le a \le 2 + 2g)$ we have $(p'_a, e'_4) \in B_a$ and for γ $(1 \leq \gamma \leq 2+2 g)$ such that B''_{γ} is defined, i. e. p'_{a} is a non-degenerated critical point of e'_{3} (p'_{a}) . $\dot{x}(q)$, we have $(p'_{\alpha}, e'_{3}, (p'_{\alpha})) \in B''_{\alpha}$, and p'_{β} is a non-degenerated critical point of $e'_{3}(p'_{6}) \cdot x(q)$. Thus we get after a finite number of steps: If x is an immersion with minimal total curvature of M^2 in E^4 and $e_4 \in S^3$, then in every neighbourhood $S \subseteq S^3$ of e_4 there exists a vector $e'_4 \in S$ such that for each a $(1 \le a \le 2+2g) p_a$ is a critical non-degenerated point of $e'_4 \cdot x(q)$ as well as of $e'_3(p_q) \cdot x(q)$. Moreover, since there are a finite number of points p_{a} wheach are critical points of $e_4 \cdot x(q)$, and $e_3(p_{a})$. • x(q) we obtain the following.

LEMMA. The set of points $e_4 \in S^3$ for which not all p_a are critical non-degenerated points of $e_4 \cdot x(q)$, $e_3(p_a) \cdot x(q)$ is of measure zero in S^3 .

By the above lemma we can suppose that each p_{α} of (4.5) is a critical non-degenerated point of both $e_4 \cdot x(q)$ and $e_3(p_{\alpha}) \cdot x(q)$. The points (4.5)

can be split into three classes: μ_0 , μ_1 , μ_2 in the following manner: $p_a \in \mu_k$ (k = 0, 1, 2) if p_a is of index k of $e_3(p_a) \cdot x(q)$. By m'_k we denote the cardinal number of μ_k , i.e. $\mu_k = m'_k$. We define

$$\chi'(M^2, e_4) = m'_0 - m'_1 + m'_2.$$

DEFINITION 2. The immersion $x: M^2 \to E^4$ with minimal total curvature is called rigid, if for almost every $e_4 \in S^3$ we have

$$(4.6) m'_0 = m_0 = 1$$

If x is rigid, then for almost every e_4 we have $\chi'(M^2, e_4) = \chi(M^2)$. Indeed, it follows from (4.6) that $m'_2 = 1$ and therefore $m'^1 = 2g$.

THEOREM 2. If $x: M^2 \to E^4$ is rigid, then there exists such a point $p \in M^2$ for which the Gauss curvature $K(\mathbf{p})$ of the metric induced by the immersion is non-negative.

Proof. By (4.4) it suffices to prove the inequality

(4.7)
$$K(p) dV_2 \wedge d\psi \ge 0$$
$$H(B_{\nu})$$

It follows from (4.1)

$$K(p_{a}) = L(p_{a}, e_{3}(p_{a})) + L(p, e_{4}).$$

Let Y (S³) denote the space of all (2 + 2g)-point sequences of S³. The distance between two sequences is defined as the Hausdorff dinstance between their corresponding point sets.

For almost every $e_4 \in S^3$ we define the function

$$(4.8) F(e_4) = (e_3(p_1), e_3(p_2), \ldots, e_3(p_{2+2g})),$$

where p_{α} is a critical non-degenerated point of $e_4 \cdot x$ (q) and e_3 (p_{α}) $\cdot x$ (q). We are going to show that $F(S^3)$ can be identified with a (2 + 2g)-covering of S^3 , i.e. every point of S^3 is covered exactly (2+2g) times by the values of F, except for a set of measure zero in S^3 .

Indeed, let e_3 be such that $e_3 \cdot x(q)$ has only non-degenerated critical points p_{α} $(1 \leq \alpha \leq 2+2g)$ and p_{α} is a critical non-degenrated point of $e_4(p_{\alpha}) \cdot x(q)$, where $e_4(p_{\alpha})$ is orthogonal to the surface $x(M^2)$ at $x(p_{\alpha})$ and to e_3 and the frame $x(p_{\alpha})e_1e_2e_3e_4(p_{\alpha})$ determines the positive orientation of E^4 . By the lemma we can assume that F is defined for $e_4(p_{\alpha})$ up to a small change of e_3 . From the construction of $e_4(p_{\alpha})$ it follows that in the image-sequence $F(e_4(p_{\alpha}))$, which is of form (4.8), the vector e_3 appears. Hence the point $e_3 \in S^3$ is covered exactly (2+2g) times (except for a set of measure zero) when e_4 describes S^3 . Since x is an immersion with minimal total curvature, S^3 is covered twice (up to a set of measure zero) by points $(p, e_4) \in B_y$ for which the function $-e_4 \cdot x(q)$ has index 0 or 2. The mapping ν reduced to $H(B_y)$, i. e. to the set of points of index 2, is orientation preserving, since at such points the Lipschitz--Kiling curvature is positive (see section 3). S^3 is covered 2g times by points for which the function mentioned has index 1. Hence the Lipschitz--Killing curvature has negative values at such points and then v is orientation reversing. Let e_3 (p_1) denote this vector of the image-sequence (4.8) for which $-e_4 \cdot x$ (q) has index 0 at p_1 . From (3.14) we have $(p_1, e_4) \in H(B_1)$. We define

$$F\left(e_{4}\right)=e_{3}\left(p_{1}\right)$$

for almost every $e_4 \in S^3$.

Now we prove that no part of positive measure of S^3 is covered twice by $e_3(p_1)$ when e_4 ranges over the possible values of S^3 . Assume the contrary and suppose that a fixed $e_3(p_1)$ belongs to such a part. Since the part considered is of positive measure, we can choose $e_3(p_1)$ in such a manner that $F(e_3(p_1))$ is defined. Suppose

$$(4.9) F(e_3(p_1)) = (e_4(q_1), e_4(q_2), \ldots, e_4(q_{2+2g})).$$

Since $e_3(p_1)$ is covered at least twice and $F(e_4(q_\alpha))$ are the only image--sequences in which $e_3(p_1)$ appears, we have for at least two distinct indices α , β $(1 \leq \alpha, \beta \leq 2+2g)$

$$F(e_4(q_a)) = F(e_4(q_3)) = e_3(p_1).$$

From the definition of the function F it follows that q_{α} , q_{β} are distinct non-degenerated critical points of index 0 of the functions $-e_4(q_{\alpha}) \cdot x(q)$, $-e_4(q_{\beta}) \cdot x(q)$, respectively. Hence for the image-sequence (4.9) we would have $m'_0 \ge 2$. But this contradicts the fact that x is a rigid immersion. Thus we have proved that

$$\int L(\mathbf{p}_1, \mathbf{e}_3(\mathbf{p}_1)) d\mathbf{V}_2 \wedge d\psi \ge -2\pi^2.$$

H(B.)

From (4.3), from the above inequality and from the definition of the Gauss curvature we obtain (4.7).

REFERENCES

- [1] S. S. Chern and R. K. Lasof: On the total curvature of immersed manifolds. Amer. Journ. of Math. 79 (1957), 306-318.
- [2] A. Sard: The measure of the critical points of differentiable maps. Bull. Amer. Math. Soc. 48 (1942), 883-890.
- [3] H. Seifert und W. Threlfall: Variationsrechnung im grossen, New York (1948).
- [4] S. S. Chern and R. K. Lashof: On the total curvature of immersed manifolds II, Michigan Math. Journ. 5 (1958), 5-12.

MAREK ROCHOWSKI

ZANURZENIA ROZMAITOŚCI DWUWYMIAROWYCH W PRZESTRZEŃ EUKLIDESOWĄ CZTEROWYMIAROWĄ

Streszczenie

W pracy podane są warunki dostateczne na to, żeby zanurzenie rozmaitości dwuwymiarowej, zamkniętej i orientowalnej w przestrzeń euklidesową czterowymiarową indukowało na niej metrykę o krzywiźnie Gaussa nie wszędzie ujemnej. Wynika stąd, że zanurzenia takie nie mogą być izometriami dla rozmaitości rodzaju ≥ 2 rozważanych jako przestrzenie lokalnie izometryczne z płaszczyzną nieeuklidesową.

Oddano do Redakcji 20. 4. 70