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PRAC E  N AU K O W E  U N IW E R SYTE TU  ŚLĄSK IEG O  W  K A TO W IC A C H  N R  12

PRACE M ATEM ATYCZN E  II, 1972

M AR E K  ROCHOW SKI

Immersions of tmo-manifolds in the Euclidean four-space

In this paper the author w ill investigate the immersions of closed orien­
table two-manifolds in the Euclidean four-space for which the Gauss 
curvature of the metric induced by the immersion is not everywhere 
negative. Hence such immersions cannot be isometries for orientable two- 
-manifolds of genus ^  2 regarded as spaces locally isometric with the 
Lobachevskian plane. The method used is that developed in [1],

1. PRELIM INARIES. Let En+N denote the (n+N)-dimensional Eucli­
dean space. By E  (n + N , R) we denote the Euclidean group of transfor­
mations of En+N over the reals R, i.e. the group whose elements in a fixed 
co-ordinate system of En+N can be written in the matrix-form

(1.1) y  =  A X + o ,

where A  =  || aAB || t ^ A B < n+N denotes an orthogonal matrix and 
X, Y, a are one-column matrices with (n + N ) rows. Transformations (1.1) 
can be identified with the symbols (A, a) with the following law of 
composition

(1.2) (C, c) =  (B, b) • (A, a) =  (BA, Ba +  b)

The Lie algebra g of E (n + N , R ) is isomorphic with a subspace spanned 
over the symbols

I—  - M\ daAB daA I 

by linear combinations with real coefficients

(1.3) Sab +  Sa  ~
oaAB oaA

such that

(1.4) Sba +  Sba =  0, Sa =  aA>

the partial derivatives being evaluated at aAB =  bAB, aA =  0. In the sequel



employ the summation convention for repeated indices as in (1.3) and 
we use the following convention concerning indices

1 ^  i, j, k ^  n, 7i + l  r, s, t n + N ,  1 ^  A, B, C ^  n + N .

By left multiplication the vector (1.3) can be propagated to a left-invariant 
vector field onto the whole of E (n + N , R). Namly, using (1.2) and taking 
into account the induced mapping of tangent spaces, we have

d ;. d  ̂ dcDE d  ̂ dCD d
~  Ç A B  ~     '  S A '

A B  $  O- A  d& A .B  C ^ D E  ^ ^ A

-  u I t d , d \
—  ° A B  ; SBC  “  ~  ■ * r

\ c + a c  o b A  !

This sector field constitutes the Lie algebra g*, of E (n +  N, R).

Let co'a, oj'as denote the left-invariant linear forms on g* defined by

to a — O-BA daB, o> AB =  aCA daCB,
and

d a . A B Ar \—  0 a c ^ b d > ^ c I a b / t — -\ =  0, d a A |—— \ =  Ô a c > d a A ( — 'j =  0*
OaCDj \dac I \dac I \daBCl

It follows from (1.4)

w 'ab +  w 'ba  =  0

The forms u>'A, co'AB satisfy the equations of structure of the Euclidean 
group

d co'a =  co's A  w 'ab  
(L5) _

d CO A B  —  CO CB A  CO AC-

2. THE M OVING FRAME. Let

x  : M n̂ -E n+N

be an immersion of a closed orientable manifold M n in En+N. We consider 
such elements of E (n +  N, R ) for which aT e  (M n), where aT denotes the 
matrix transposed to the matrix a which appears in (1 .1 ) and ei= (a li a2l, .. 
Q-n+N> i) are tangent to the surface x  (M n) at ar (p) =  x  (p), p e  M n, and 
det ildAslHL i-e. the frame z(p)e!e2 . . . en+N for eA=(diA, a2A ■ ■ ■ a n + N ,  a) 
is oriented coherent with En+N. Let x* denote the mapping of differential 
forms induced by x. W e set coA =  x* co'a, <*>ab =  x* co'AB- Then we have 
cor =  0. This together with (1.5) implies wiT A  cor =  0. Hence

(2.1) A rj\

and



(2 .2 )
( A r l fc - ^ r j i  ^ - r i t  A rj k )  CU/c A  U>i —  R ÿ k l  w k  A  CO[,

where Ryfcl is the curvature tensor induced by the immersion.
I f  77 denotes the plane spanned by two unit orthogonal vectors tangent 

to the surface x{M n) at x(p):

a - otej, b =  b ^ ,

ihen the sectional curvature of 77 is given by the formula

K (p, 77) =  Rijki at ak bj bt.

For two-manifolds we have

K(p, 77) =  K (p ) =  R 1212.

where K (p ) denotes the Gauss curvature of x (M 2). Hence we have by (2.2)

>,2.3) K (p ) A rjj - r̂22 — ■̂ ■rl2 ■̂ ■rl2 det (A ry) .
r

3. THE L IP S C H IT Z -K ILL IN G CURVATURE. Let v be an arbitrary 
unit vector in En+K. In the following we regard the unit vectors also 
as points of the unit sphere Sn+N~ :h Now we define the normal bundle 
of M n induced by the immersion x  by

Bv =  {  (p, v) / v • dx(p) =  0, p Ç M n, v Ç Sn+N-1}.

The fibres of Bv -h>-M" are (N — l)-diniensional unit spheres SN_1 (p), and 
the structural group is the orthogonal group O (N — 1). In Bv we introduce 
the globally defined differential form

dT„+w- i  =  dVn A  daN_i,

where dVn =  coj A  co2 A  . . .  A  con is the volume element of M " induced 
by the immersion x  and daN- t denotes the volume element of the fibre 
SN~ i (p) described by the vector en+N (p) for a fixed p Ç Mn. Hence

d a  p i- 1  =  (Dn + i ,  n + N  A  C O „+ 2, n + N  A  . . .  A  W n + w - l i  n + N -

Let

(3.1) v : B v -> Sn+N~1

denote the mapping

(p, v) ->  v, (p, v) Ç B v.

The volume element induced by (3.1) in Sn+N_1 described by en+w has
the form

V * d o n+N- 1 =  W j ,  n + N  A  CO2, n + N  A  . . .  A  COn + N _ 1( n + N •

I f  we substitute (2.1) for r =  n +  N  into the preceding formula, we have

Prace matematyczne I I  n i



(3.2) v*don+N—i det dVn A  derw—j.

W e call the function L  (p, en+N)= d e t  (A n+N,w) the Lipschitz-Killing curva­
ture of B v at (p, e „+iV) Ç Bv and the integral

(3.3) [I L  (p, en+N) I don—!
SN-i(p)

w ill be called the Lipschitz-Killing curvature of M n at p ÇM".
Let en+N be fixed. The point p is called a critical point of the 

scalar function — en+N-x (q ), q Ç^Mn, if  (p, en+N) £Bv , and is called a critical 
non-degenerated point i f  the second quadratic form

(3.4) Gj!+jvd^x(p) den-t-^dx(p) A n cô  coj

of the surface x (M n) is non-degenerated, i.e. if  det (A M+N,y) #  0.
The second differential on the left o f (3.4) is taken in the usual (not 
exterior) sense.

A  point (p, en+N) £ B, for which det (A n+mj) =  0 is called a critical 
point of the mapping (3.1). By SARD theorem [2] the set v(Q), where

(3.5) Q — {(p , en+.jf) ÇBv I det (A n+jv.y) =  0 }

is of measure zero in Sn+N~1. The point (p, en+N) belongs to Q if  and 
only if  p £ M " is a critical degenerated point of ~ e n+N ■ x  (q), q Ç M n.

Let k denote the index of the function — en+N • x  (q) at a critical non- 
degenerated point p ÇM”, i.e. the maximal dimension of subspaces of 
the tangent space to x  (M n) for which the quadratic form (3.4) takes 
negative values. MORSE lemma asserts that in a suitable co-ordinate sys­
tem introduced in a neighgourhood of p the funcion f  (q) =  — en+N • x  (q) 
takes the form

(3.6) f  (q ) =  f  (p ) - t f - t > -  . . . ~ q  + t ’ +1+  • • • +t,;,

where q has the co-ordinates ( t 1, t2, . . . ,  t n). It follows from (3.6) that 
each non-degenerated critical point is isolated. Hence the number m k{Mn, f) 
o f critical points of index k of the function f  on a closed manifold is finite. 
Since v (Q ) is of measure zero in Sri+N_1, i follows that in each neigh­
bourhood of an arb itra ry  vec to r c "^7v, there exists such a vec to r e'n+N 
for which the function — e'n+N - x  (q) has only non-degenerated critical 
points. Moreover, since M " and Sn+N~i are compact and Q is closed, it fo l­
lows that v (Q) is closed, and therefore for each vector en+N from a small 
neighbourhood of en+N the function — en+N • x  (q) w ill have only non- 
-degenerated critical points. I f  the function ~ e n+N . x  (q) has index 0 
at p Ç M n, then L  (p, en+N) >  0 and it follows from (3.2) that the induced 
linear mapping

v * : T , , - v T  
(p . » )  v

of the tangent space o f B . onto the tangent space of Sn+N-1 is orientation-



-preserving for v =  en+N- I f  the index of p ÇM " is k, then the orientation 
defined by v* differs by the factor (— l ) k from the positive orientation 
of Sn+N_1 defined by the frame en+N ei e2. . .  en+N- j  (e„+N denotes a point 
on Sn+N- 1 which is the origin of elt e2. . . . ,  en+u-i). For almost every en+N 
the number of all critical points of the function e„+N • x  (q) is equal to 
m 0+ m j +  . . .  +m „, mk =  mk (M n,f), f{q ) =  —en+N • x  (q). Keeping in mind 
the orientation we have for a point (p, e,i+N) e  Bv \ Q

det {An-\-m, if) drn~\-̂ —i ( l ) k v do n+N—1 ( l)^^^n+N—1?

where k denotes the index of p(^Mn with respect to the function — e„+N •
. x  (q), and d on+w- 1 denotes the positively oriented volume element of 
the sphere Sn+N_1. For a connected neighbourhood B Œ B  \ Q  of (p, en+N) 
we have therefore

(3.7) /det (A-n+N, I)) dr n+N-l = / (— 1)* ^an+N-l
B v(B)

This equality does not change if  we replace B by B U Q  and v {B ) by 
v  (B) KJ v (Q). The set B \  Q can be represented as a sum of open 
disjoint connected sets in each of which equality (3.7) holds for some k 
(0 <?c <  n). This decomposition leads us to the formula

n+N—l =  I l ) k l-
J k~n

B s n+N-1

If bk denotes the k-th Betti number of M n, then it follows from the 
MORSE equality [3]

2  ( - 1 ) *  mk (M ",f) =  2  ( - l ) f c  bk {Mn) =  z {Mn),
k— o k—o

that we have

(3.9) fdet (-Ayj+jv, jj) dxn+ [j—i —j % {M n),
Ś

where un+N- i  denotes the volume of Sn+N~1
I f  we disregard the orientation, then instead of (3.8) we have

(3.10) ^  I det {-An+Nt a) I dzn+N—j

B Sn-tN-l
V

Now the MORSE inequalities [3]

(3.11) mk {Mn,f) >  bk {M ^

imply the following theorem:

THEOREM (S. S. CHERN and R. K. LASHOF [4]). I f  the manifold Mn 
is orientable and closed, then

s' n
I 2  m k don+N—j.

J  k= °

(3.8) J det {An+N, y) dr



(3.12) 1 ^  V n +N —1 2  frfc-
k = o

n

D EFIN ITIO N 1. The manifold is said to be immersed in En+N with 
minimal total curvature if

Then it follows from (3.10), (3.11) and (3.12) that for almost every 
Cn+w€ En+N we have

W e introduce the following notations:

(3.14) H  (Bv) =  {(p , en+N) ÇBJ — en+N • x  (q) has index 0 at p },

H (M n) denotes the projection (p, en+N) p of H  (Bv) onto M n.

The immersion x: M n ->  En+N with minimal total curvature has the 
following property.

THEOREM 1. I f  (p, en+N) ÇH (Bv), then the whole surface x (M n) is 
contained in the half space {x  ÇEn+N j en+N ■ x  ^  en+N x  (p) }.

P r o o f .  Assume on the contrary that for some q ÇM” the inequality 
en+N • x  (q) >  en+N • x  (p) holds. Since M n is closed, there exists a point 
Pi ÇM” such that the hyperplane en+N • x  =  en+N ■ x  (pj) is tangent to 
x  (M n) and for each q £M n the inequality en+N • x  (q) en+JV • x  (p^ holds. 
From the definition of px it follows that en+N ■ x  (p) ^  en+N • x  (pj) and 
that Pi is a critical point of the function — en+N • x (q). I f  the quadratic 
form ~ en+N • d2x  is non-degenerated, then the function ~ en+N ■ x  (q) has 
index 0 at pt. I f  px is a degenrated critical point, then by SARD theorem 
in an arbitrary neighbourhood of (pj. en+N) Ç B v there exist points (p\, 
c ' u + n )  Ç B v such that —e'n+N'X  (q) has index 0 at pV  Since v (Q ) is closed, 
there exists a neighbourhood B (Z  B of (p, en+N) such that for each 
(p', e'n <rN) Ç B the function —e n+N ■ x  (q ) has index 0 at p . Let d =  e n+N 
(x (pt) —x (p)). By the above remarks we can choose a point (p' e'n+N) Ç B . 
such that the following occurs: —e'n+N x  (q) has index 0 at p\ and for each 
q Ç M n the inequality e'n+N ■ x  (q) ^  e n+N • x  holds. Moreover, there 
exists a point p Ç M n such that (p', e'n+N) Ç B and e n+ N  ■ (x  (p) (p ') )^
I en+N • (x (pj )—x (p 'i)) I ^  V3 d. Thus the function e'n+N ■ x  (q) would 
have index 0 at two distinet point p', p\, ard therefore there would 
exist a neighbourhood (in S «+n -i) of e'n+N such that for each en+N 
belonging to it the function — en+N • x (q) would have at least two distinct 
points of index 0. But this contradicts the fact that x  is an immersion 
with minimal total curvature and therefore satisfies (3.13).

(3.13) mk (M«, ~ en+N • x  (q)) =  bk (M n),



I f  x  is an immersion with minimal total curvature then, since M n 
is closed and connected, for almost every en+N we have m0 (M n,~ e n+N • 
. x  (q)) =  1. Hence for almost every en+N there exists exactly one point 
p Ç_Mn for which (p, en+N) (Bv ) and therefore L  (p, e.n+N) >  0. It follows

v n+N—i /  B  (P j 6n+jv) d V n A  d o jv - i =
H (Bv>)

_  J dV„ J" L  (p, en+N) =  J L  (p) | h (p) | dVn,
H {Mn) h (p) H (M «)

where h (p) =  H  (B ) f i S * - 1 (p), | h (p) | denotes the (N  — 1) -dimensional 

measure of h (p), L  (p) denotes the mean value of L  (p, en+w) with respect 
to

4. CLOSED SURFACES IN  THE EUCLIDEAN FOUR-SPACE. Let

x  : M2 E*

be an immersion of a closed orientable two-manifold. To avoid additional 
discussion we assume about x  that the following construction is unique: 
in each fibre S1 (p), pÇM2, we choose such a vector é4 that the function 
L  (p, g4) takes its maximal value for e4 =  ë4. Then es is also uniquely 
determined.

Hence the cross-sections p —> ê3 (p), p —> e4 (p) are defined and B v is 
therefore equivalent tc a Cartesian product M 2X S X. The vector fields ê3 (p), 
e4 (p) w ill be called the Frenet frame of M 2 induced by x. From (2.3) and 
from the definition of the Lipschitz-Killing curvature we have

(4.1) K  (p) =  L  (p, e3) +  L  (p, e4).

It follows from

es — ê3 cos yj — e4 sin yj Q ^
e4 == e3 sin xp +  e4 sin

(4.2) dr3 =  ą A c i)2A w34 — Wj A cu2 A (co34 +  dy-) =  w4 Aca2 Ady. 

that co34 =  de4 • e3 =  w34+dt/;. Therefore we have

Using (3.15) we get

(4.3) J L  (p, e4) dV2 A  dy =  2.t:2,
H (B, )

I (L  (p, e3) +  L (p, e4)) dV2 A w34 =  f  K  (p) dV2 A dip =
H  (BvJ H (Bv)

(4.4) f  dV2 f K  (p)dip =  f  K (p ) j h  (p) | dV,
H  (M2) h(p)  H (M 2)

if  x  is an immersion with minimal total curvature. The function | h (p) | is 
positive for pÇH (M2). This follows from the fact that H (Bv ) is open and 
therefore for each (p, e4) (  H (B j there exists a neighbourhood B d H  (Bv, 
of this point and the set B flS 1 (p) is open in S1 (p) and is not empty.



In the following x  is an immersion with minimal total curvature and g 
denotes the genus of M 2. Let e4 be an arbitrary unit vector, then for 
almost every e4 the function e4 • x  (p) has exactly (2 +  2 g) critical non- 
-degenerated points

(4.5) Pi , p 2 , . • •, p 2 + 2 a ,

where M 2 has genus g. It follows from the definition of a critical point 
that e4 is orthogonal to x  (M2) at x  (p ) ( l < a ^ 2  +  2p) Besides e4 there 
exists for every a a unit vector e3 (pa) which is orthogonal to x  (M 2) at 
x  ( p j  and to e4 and such that the frame x  (pc) e&eÿ (pa ) e4 determines an 
orientation coherent with that of E4. Hence pa is also a critical point for 
the function e3 (p ) • x  (q). Since pa is a critical non-degenerated point 
o f e4 • x (q), there exists a connected neighbourhood Br d  B , of (e4, p 'J 
such that if (e'4> p ', , )^ B r/ then p 'a is a non-degenerated critical point 
o f e'4 • x  (q). Moreover we can assume that B r f l  B 3 = 0  for a +  /? (1 
^  a,/3 ^  2+2  g). Since the mapping v (see (3.1)) is locally a diffeo- 
morphism, we can suppose that S a =  v (B a ) is open in S3. One can easily 
verify  that e4 Ç S =  St f l S2 f l . . . f l  S2+2g and the function e'4 • x  (q) has 
only non-degenerated critical points for every e '^ S .  We define Ba = v _1 (S). 
Since e'3 {pa ) is uniquely determined by e4, p a and the orientation of E4, 
we define the neighbourhood B 'a of (pa, e3 (pa)) to be the set of all pairs 
(p 'a, e'3 p 'J  such that (p 'a, e'4) Ç and e'3 (p a) is the complementary 
vector of e'4. Since the mapping (p, e4) —>• (p, e3), (p, e3), {p, e4) Ç B , is an 
automorphism, the set B'a is open and connected. I f  pa is a non-degene­
rated critical point of e3 (pa) . x  (q), then let B "a d  B\ denote a neigh­
bourhood of ((p , es ( p j )  such that for every (p"„, e "3) p "J ) Ç B "b the 
point p "a is a non-degenerated critical point of e"3 (p i) • x  (q). Now, if  p 
is a degenerated critical point of e3 (p ) • x  (q), then in virtue of Sard 
theorem there exists a vector e '4 Ç <S such that for each a ( l ^ a ^ 2  +  2(/) 
we have (p 'a, e'4) Ç B a and for y ( l ^ y ^ 2  +  2 g) such that B "t is 
defined, i. e. p 'a is a non-degenerated critical point of e'3 (p 'a ) .  x  (q), 
we have (p 'r , e'3 (p 'J )  Ç B " , and p '? is a non-degenerated critical point of 
e 3 (p \ )  ’ x  (q)- Thus we get after a finite number of steps: I f  x  is an 
immersion with minimal total curvature of M 2 in E4 and e4 Ç S3, then in 
every neighbourhood S d  S3 of e4 there exists a vector e'4 Ç S such that 
for each a (1 ^ a ^ 2 + 2 f i ' )pa is a critical non-degenerated point of 
e'i ‘ x  (<ï) as well as of e'3 (p a ) • x  (q). Moreover, since there are a finite 
number of points p a wheach are critical points of e4 • x  (q), and e3 (p a ) ■
• x  (q) we obtain the following.

LEMMA. The set of points e4 Ç S3 for which not all p a are critical 
non-degenerated points of e4 • x  (q), e3 (pa ) • x  (q) is of measure zero in S3.

By the above lemma we can suppose that each p „ of (4.5) is a critical 
non-degenerated point of both e4 • x  (q) and e3 (p J  • x  (q). The points (4.5)



can be split into three classes: /u0, Mi> M2  in the following manner: p a £ Mu 
(k =  0, 1, 2) if  p a is of index k of s3 (p a ) • x  (q). By m 'k we denote the 
cardinal number of y-k, i-e. Hk =  'm'k- W e define

X (M 2, e4) =  m '0—m'i+m 'a-

D EFINITIO N 2. The immersion x  : M2 ->  E4 with minimal total curva­
ture is called rigid, if  for almost every e4 £  S3 we have

(4.6) rn 0 =  m0 =  1.

If x  is rigid, then for almost every e4 we have % (M2, e4) =  % (M2). 
Indeed, it follows from (4.6) that m '2 =  1 and therefore m ' 1 =  2gf,

THEOREM 2. I f  x  : M 2 ->  E l is rigid, then there exists such a point 
p £ M 2 for which the Gauss curvature K  (p) of the m etric induced by the 
immersion is non-negative

P r o o f .  By (4.4) it suffices to prove the inequality

(4.7) K  (p) dV2/\dy> ^  0.
H  (Bv)

It follows from (4.1)

K  (p j  =  L  (p*> e 3 (p J ) +  Ł  (p, e4).

Let Y  (S3) denote the space of all (2 +  2q)-point sequences of S3. The 
distance between two sequences is defined as the Hausdorff dinstance 
between their coresponding point sets.

For almost every e4 Ç S3 we define the function

(4.8) F  (e4) =  (e3 (p^, e3 (p2) , . . ., e3 (p2+2g)),

where p o is a critical non-degenerated point of e4 • x  (q) and e3 (pa ) • x  (q). 
W e are going to show that F  (S3) can be identified with a (2 +  2p)-covering 
of S3, i.e. every point of S3 is covered exactly (2 +  2q) times by the values 
o f F, except for a set of measure zero in S3.

Indeed, let e3 be such that e3 • x  (q) has only non-degenerated critical 
points p a (1 ^  a < 1 2 + 2 g) and p a is a critical non-degenrated point of 

4̂ (Pn ) • x  (Q)> where e4 (pa ) is orthogonal to the surface x  (M2) at x  (po ) 
and to e3 and the frame x  (p a ) et e2 e3 e4 (p a ) determines the positive 
orientation of E4. By the lemma we can assume that F  is defined for 
ei ( P a) UP to a small change of e3. From the construction of e4 (pa) it 
follows that in the image-sequence F  (e4 (pa )), which is of form (4.8), the 
vector e3 appears. Hence the point e3 Ç S3 is covered exactly (2 +  2p) times 
(except for a set of measure zero) when e4 describes S3. Since x  is an 
immersion with minimal total curvature, S3 is covered twice (up to a set of 
measure zero) by points (p, e4) £ Bv for which the function — e4 • x  (q) has 
index 0 or 2. The mapping v reduced to H  (Bv}, i. e. to the set of points 
of index 2, is orientation preserving, since at such points the Lipschitz- 
-K iling curvature is positive (see section 3). S3 is covered 2g times by



points for which the function mentioned has index 1. Hence the Lipschitz- 
-K illing curvature has negative values at such points and then v is 
orientation reversing. Let e3 (pi) denote this vector of the image-sequence
(4.8) for which — e4 . x  (q) has index 0 at pv From (3.14) we have (pj, e4) 
(^H  (B J . We define

F  (e4) =  e3 (p4)

for almost every e4 Ç S3.
Now we prove that no part of positive measure of S3 is covered twice 

by «3 (Pi) when e4 ranges over the possible values of S3. Assume the 
contrary and suppose that a fixed e3 (p4) belongs to such a part. Since 
the part considered is of positive measure, we can choose e3 (pt) in such 
a manner that F  (e3 (p4)) is defined. Suppose

(4.9) F (e3 (pj)) =  (e4 (qj), e4 (q2)  e4 (q2+2g)).

Since e3 (p4) is covered at least twice and F (e4 (qa)) are the only image- 
-sequences in which e3 (p^ appears, we have for at least two distinct 
indices a, (1 (1 <  a, <  2 +  2g)

F («4 ( q j )  =  F  (e4 (qp)) =  e3 (pj).

From the definition of the function F  it follows that qa , qp are distinct 
non-degenerated critical points of index 0 of the functions —e4( q a) • 
• x  (q), — e4 (q c ) • x  (q), respectively. Hence for the image-sequence (4.9) 
we would have m '0 ^  2. But this contradicts the fact that i  is a rigid 
immersion. Thus we have proved that

(L  (p lt e3 (p4)) dV2 A  dip >  — 2n2.
H (B .)

From (4.3), from the above inequality and from the definition of the Gauss 
curvature we obtain (4.7).
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ZAN U R ZE N IA  RO ZM AITO ŚC I D W U W YM IA R O W YC H  W  PRZESTRZEŃ 
E U K LID ESO W Ą C ZTE R O W YM IAR O W Ą

S t r e s z c z e n i e

W  pracy podane są warunki dostateczne na to, żeby zanurzenie rozmaitości 
dwuwym iarowej, zamkniętej i orientowalnej w  przestrzeń euklidesową czterowy- 
m iarową indukowało na niej m etrykę o krzyw iźnie Gaussa nie wszędzie ujemnej. 
W ynika stąd, że zanurzenia takie nie mogą być izometriam i dla rozmaitości rodza­
ju ^  2 rozważanych jako przestrzenie lokalnie izometryczne z płaszczyzną nieeuk­
lidesową.
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