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PRACE NAUKOWE UNIWERSYTETU SLASKIEGO W KATOWICACH NR 12
PRACE MATEMATYCZNE II, 1972

MAREK ROCHOWSKI

Immersions of tmo-manifolds in the Euclidean four-space

In this paper the author will investigate the immersions of closed orien-
table two-manifolds in the Euclidean four-space for which the Gauss
curvature of the metric induced by the immersion is not everywhere
negative. Hence such immersions cannot be isometries for orientable two-
-manifolds of genus N 2 regarded as spaces locally isometric with the
Lobachevskian plane. The method used is that developed in [1],

1 PRELIMINARIES. Let EntN denote the (n+N)-dimensional Eucli-
dean space. By E (n+N, R) we denote the Euclidean group of transfor-
mations of En+N over the reals R, i.e. the group whose elements in a fixed
co-ordinate system of En+N can be written in the matrix-form

(1.2) y = AX+o,

where A = JJaAB|J] t~ A B<n+N denotes an orthogonal matrix and
X, Y, a are one-column matrices with (n+N) rows. Transformations (1.1)
can be identified with the symbols (A, a) with the following law of
composition

(1.2) (C, c)= (B, b)*(A, a) = (BA, Ba + b)

The Lie algebra g of E (n+N, R) is isomorphic with a subspace spanned
over the symbols

{aans ~d4al
by linear combinations with real coefficients

(1.3) Sab + Sa ~
oaAB oaA

such that

(1.49) Sba + Sba= 0, Sa = am

the partial derivatives being evaluated at aAB = bAB, aA = 0. In the sequel



employ the summation convention for repeated indices as in (1.3) and
we use the following convention concerning indices

1~ 0, k™ n, A+ r, st n+N, 1™ A,B,C~™ n+N.

By left multiplication the vector (1.3) can be propagated to a left-invariant
vector field onto the whole of E (n+N, R). Namly, using (1.2) and taking
into account the induced mapping of tangent spaces, we have

d - d n dcDE d ~ dCD d
- CAB ~ © SA!
AB $0A d&A.B C"DE ANNA
-u |t d , d \
— °AB ; SBC “ ~ m*r
\ c+ac obA!

This sector field constitutes the Lie algebra g* of E (n + N, R).
Let co'a, oj'as denote the left-invariant linear forms on g* defined by

toa — OBAdaB, o>AB = aCA daCB,
and

da.ABATr \— Oac”bd>"clab/t— -\= 0, daAk— \= Oac> daA&— f = O*
OaCDj \dac | dac | daBCl

It follows from (1.4)
w'ab + w'ba = 0

The forms WA, co'AB satisfy the equations of structure of the Euclidean
group

dcoa = co's A w'ab

(LS)

doaB — W CBA @AC-

2. THE MOVING FRAME. Let
X : MM -En+N

be an immersion of a closed orientable manifold Mn in En+N. We consider
such elements of E (n + N, R) for which aTe (Mn), where aT denotes the
matrix transposed to the matrix a which appears in (1.1) and ei=(ali a2,
QnH\> i) are tangent to the surface x (Mn) at ar(p) = X (p), pe Mn, and
det ildAslHL i-e. the frame z(p)e!e2...en+N for eA=(diA, a2Assman+n, Q)
is oriented coherent with En+N. Let x* denote the mapping of differential
forms induced by X. We set coA = X* co'a, <>eb= X* cO'AB- Then we have
cor = 0. This together with (1.5) implies wWiT A cor = 0. Hence

(2.1) A\

and



(2.2)
(A rlfc -~rji A-rit A rjk) QU A Usi — Ryklwk A cCO[

where Ryfcl is the curvature tensor induced by the immersion.
If 77 denotes the plane spanned by two unit orthogonal vectors tangent

to the surface x{Mn) at x(p):
a- otg, b= br,
ihen the sectional curvature of 77 is given by the formula
K(p, 77) = Rijki atak bj bt.
For two-manifolds we have
K(p, 77) = K(p) = R1212.
where K(p) denotes the Gauss curvature of x(M2. Hence we have by (2.2)

>2.3 K(p) Arjj N2 — w2 w2 det (Ary) .

r

3. THE LIPSCHITZ-KILLING CURVATURE. Let v be an arbitrary
unit vector in En+K. In the following we regard the unit vectors also
as points of the unit sphere Sn+N~h Now we define the normal bundle
of Mninduced by the immersion x by

Bv= { (p,Vv) /v edx(p) = 0,p C Mn,vC Sn+N-1}.

The fibres of Bv-h>-M" are (N —I)-diniensional unit spheres SN_1 (p), and
the structural group is the orthogonal group O (N—1). In Bv we introduce
the globally defined differential form

dT,+w-i = dVn A daN i,

where dVn= coja a2a ... o oonis the volume element of M" induced
by the immersion x and daN-t denotes the volume element of the fibre
SN~i (p) described by the vector en+N (p) for a fixed p C Mn. Hence

dapi-1 = (On+i, n+N A CO,+2, n+N A ... A Wn+w -li n+N-
Let
(3.1) v :Bv-> Sn+N~1
denote the mapping
(P, Vv)->v, (p,v)CBV.

The volume element induced by (3.1) in Sn+N_1 described byent+w has
the form

vrdoMN-1= wj n+N A CO2, n+N A ... A CON+N_1(n+N-

If we substitute (2.1) for r = n + N into the preceding formula,wehave

Prace matematyczne Il ni



(3.2) v¥don+N—  det dvn A derw.

We call the function L (p, en+tN)=det (An+N,w) the Lipschitz-Killing curva-
ture of Bvat (p, e,+V) C Bvand the integral

(3.3) [l L (p, en+tN) Idon—
SN-i(p)

will be called the Lipschitz-Killing curvature of Mnat p CM".

Let en+N be fixed. The point p is called a critical point of the
scalar function —en+N-x(q), g ¢"Mn, if (p, entN) £Bv, and is called a critical
non-degenerated point if the second quadratic form

(3.4) Gl+jvd”™x(p) den-t-~dx(p) An oo™ coj

of the surface x(Mn) is non-degenerated, i.e. if det (AM+N,y) # O.
The second differential on the left of (3.4) is taken in the usual (not
exterior) sense.

A point (p, entN) £ B, for which det (An+mj) = O is called a critical
point of the mapping (3.1). By SARD theorem [2] the set v(Q), where

(3.5) Q — {(p, en+jf) CBvidet (An+jv.y) = 0}

is of measure zero in Sn+N~1 The point (p, en+N) belongs to Q if and
only if p £ M" is a critical degenerated point of ~en+N mx (q), q C Mn.

Let k denote the index of the function —en+N < x (q) at a critical non-
degenerated point p CM”, i.e. the maximal dimension of subspaces of
the tangent space to x (Mn) for which the quadratic form (3.4) takes
negative values. MORSE lemma asserts that in a suitable co-ordinate sys-
tem introduced in a neighgourhood of p the funcion f (q) = —en+N < x (q)
takes the form

(3.6) f(q) = f(p)-tf-t>- ...~q +1 +1+ eee+t,;,

where g has the co-ordinates (t1, t2 ..., tn). It follows from (3.6) that
each non-degenerated critical point is isolated. Hence the number mk{Mn, f)
of critical points of index k of the function f on a closed manifold is finite.
Since v (Q) is of measure zero in Sri+N_1, i follows that in each neigh-
bourhood of an arbitrary vector c "% there exists such a vector e'n+N
for which the function —e'n+N -x (q) has only non-degenerated critical
points. Moreover, since M" and Sn+N~i are compact and Q is closed, it fol-
lows that v (Q) is closed, and therefore for each vector en+N from a small
neighbourhood of en+N the function —en+N «x (q) will have only non-
-degenerated critical points. If the function ~en+N . x (q) has index O
at p C Mn, then L (p, en+N) > 0 and it follows from (3.2) that the induced
linear mapping

v*:T vT
v

oo
of the tangent space of B. onto the tangent space of Sn+N-1 is orientation-



-preserving for v= entN- If the index of p CM" is k, then the orientation
defined by v* differs by the factor (—I)k from the positive orientation
of Sn+N_1 defined by the frame entNei e2... entN-j (e,,+N denotes a point

on Sn+N- 1 which is the origin of elte2 ..., en+u-i). For almost every en+N
the number of all critical points of the function e, +N *x (q) is equal to
mO+m j+ ... +m,, mk= mk (Mn(f), f{g) = —en+N < x (q). Keeping in mind

the orientation we have for a point (p, e,i+N) e Bv\Q

det {An-\m if) drn-\+ ( HhkvdontN— ( D™MAN+N-E?
where k denotes the index of p(“Mnwith respect to the function —e,,+N »
.X (q), and d ont+w- 1 denotes the positively oriented volume element of

the sphere Sn+N_1. For a connected neighbourhood BGEE B \Q of (p, en+N)
we have therefore

(3.7) /det (A-n+N, I)) dr n+N-I = /7 (— 1)* ~an+N-I|

B v(B)
This equality does not change if we replace B by BUQ and v {B) by
v (B) KIv(Q). The set B \ Q can be represented as a sum of open
disjoint connected sets in each of which equality (3.7) holds for some k
(0 <?c < n). This decomposition leads us to the formula

(3.8) J det {An+N,y) drp+N— = | Ik I-
J k—n
B sn+N-1
If bk denotes the k-th Betti number of Mn, then it follows from the
MORSE equality [3]

2 (-1)* mk(M",f) = 2 (-I)fc bk {Mn) = z {Mn),
k—o k—o

that we have

(3.9) fdet (-AyjHv, jj) dxn+[j— — %{Mn),
S

where un+N-i denotes the volume of Sn+N~1
If we disregard the orientation, then instead of (3.8) we have

(3.10) ~ ldet {~An+Nt a) | dzn+N—j IS 2n m k don+N—j.
BV Sn-tJN-kI=o

Now the MORSE inequalities [3]

(3.11) mk {Mn,f) > bk{M~

imply the following theorem:

THEOREM (S. S. CHERN and R. K. LASHOF [4]). If the manifold Mn
is orientable and closed, then



n

(3.12) 1~ Vvn+N—12 fric-
k=0

DEFINITION 1. The manifold is said to be immersed in En+N with
minimal total curvature if

Then it follows from (3.10), (3.11) and (3.12) that for almost every
Cn+w€ En+N we have

(3.13) mk (M«, ~en+N *x (q)) = bk (Mn),
We introduce the following notations:
(3.14) H (Bv) = {(p, en+N) CBJ —en+N x (q) has index O at p},
H (M n) denotes the projection (p, en+N) p of H (BY onto Mn.

The immersion x: Mn-> En+N with minimal total curvature has the

following property.

THEOREM 1 If (p, entN) CH (Bv), then the whole surface x(M n) is
contained in the halfspace {x CEn+Njen+N mx ~ en+N x (p) }.

Proof. Assume on the contrary that for some q CM” the inequality
en+N ¢ x (q) > en+N ex (p) holds. Since Mn is closed, there exists a point
Pi CM” such that the hyperplane en+N «x = en+N mx (pj) is tangent to
X (Mn) and for each g £Mn the inequality en+N < x (q) entVex (p” holds.
From the definition of px it follows that en+N mx (p) ~ en+N < x (pj) and
that Pi is a critical point of the function —en+N «x (q). If the quadratic
form ~en+N e d2 is non-degenerated, then the function ~en+N mx (q) has
index O at pt. If pxis a degenrated critical point, then by SARD theorem
in an arbitrary neighbourhood of (pj. en+N) C B v there exist points (p\,
c'u+n) C Bvsuch that —e'n+tN'X (gq) has index 0 at pV Since v (Q) is closed,
there exists a neighbourhood B (Z B of (p, en+N) such that for each
(p', e'’naN) C B the function —e n+N mx (q) has index O at p. Let d = entN
(X (pt)—x (p)). By the above remarks we can choose a point (p' e'n+N) C B .
such that the following occurs: —e'n+N x (q) has index 0 at p\ and for each
g C Mn the inequality e'ntN mx (q) ~ en+N ex holds. Moreover, there
exists a point p C Mn such that (p', en+N) C B and en+N ®(X (p) (p NN
I entN ¢ (X (pj)—x (p'i)) I V3d. Thus the function e'n+N mx (q) would
have index 0 at two distinet point p', p\, ard therefore there would
exist a neighbourhood (in S«+n-i) of e'ntN such that for each en+N
belonging to it the function —en+N < x (q) would have at least two distinct
points of index 0. But this contradicts the fact that x is an immersion
with minimal total curvature and therefore satisfies (3.13).



If x is an immersion with minimal total curvature then, since Mn
is closed and connected, for almost every entN we have mO(Mn,~en+N «
.X (g)) = 1 Hence for almost every en+N there exists exactly one point
p C_Mnfor which (p, en+N) (Bv) and therefore L (p, en+N)> 0. It follows

vn+N—i / B (Pj 6n+jv)dVn A dojv-i =
H (BW
_JdVv,JL (p, en+tN) =J L (p)Ih(p) |dVn,
H {Mn) h (p) H (M «)

where h(p) = H(B )fi S*-1(p), |h (p) | denotes the (N — 1) -dimensional
measure of h (p), L (p) denotes the mean value of L (p, entw) with respect

to
4. CLOSED SURFACES IN THE EUCLIDEAN FOUR-SPACE. Let

X : M2 E*

be an immersion of a closed orientable two-manifold. To avoid additional
discussion we assume about x that the following construction is unique:
in each fibre S1(p), pCM2 we choose such a vector é4 that the function
L (p, g4 takes its maximal value for e4= &4 Then es is also uniquely
determined.

Hence the cross-sections p —é3(p), p —e4(p) are defined and Bv is
therefore equivalent tc a Cartesian product M2XSX The vector fields é3(p),
e4(p) will be called the Frenet frame of M2 induced by x. From (2.3) and
from the definition of the Lipschitz-Killing curvature we have

(4.1) K(p)=L (p.e3d + L (p, ed.
It follows from

es— é3cosy] — edsinyj Q n
ed=e3sinxp + e4sin
(4.2) dr3= gAci)2A w3 —Wj A aA (coA+ dy-) = wdAca2Ady.

that oo = dedee3 = w34+dt/;. Therefore we have
Using (3.15) we get

(4.3) JL (p,ed dV2A dy = 2t2
H (B,)
I(L (p,ed + L (p,ed) dVv2A wHh=TfK (p)dV2A dip =
H BvJ H (BY
(4.4) f dv2 f K (p)dip = f K(p)jh (p) |dV,
H (M2  h(p) H (M2

if x is an immersion with minimal total curvature. The function |h (p) |is
positive for pCH (M2. This follows from the fact that H (Bv) is open and
therefore for each (p, e4d ( H (Bj there exists a neighbourhood BdH (Byv,
of this point and the set BfIS1(p) is open in S1(p) and is not empty.



In the following x is an immersion with minimal total curvature and g
denotes the genus of M2 Let e4 be an arbitrary unit vector, then for
almost every e4 the function e4e<x (p) has exactly (2+ 2 g) critical non-
-degenerated points

(45) Pl p2, .®® p2+2a,

where M2 has genus g. It follows from the definition of a critical point
that e4is orthogonal to x (M2 atx (p )(l<a”™ 2 + 2p) Besides e4 there
exists for every a a unit vector e3(pa) which is orthogonal to x (M2 at
X (pj and to e4 and such that the frame x (pc) e&ey (pa) e4 determines an
orientation coherent with that of E4 Hence pa is also a critical point for
the function e3(p )ex (q). Since pais a critical non-degenerated point
of e4 «x (q), there exists a connected neighbourhood Brd B , of (e4, p'J
such that if (e'4p',,)"B¥ then p'ais a non-degenerated critical point
of e'4+x (q). Moreover we can assume that BrflB3 =0 for a+ /2 (1

N a/f3” 2+2 g). Since the mapping v (see (3.1)) is locally a diffeo-
morphism, we can suppose that Sa= v (Ba) is open in S3 One can easily
verify that e4C S = Stfl S2fl...fl S2+2y and the function e'4<x (q) has
only non-degenerated critical points for every e'rS. We define Ba=v_1 (S).
Since e'3{pa) is uniquely determined by e4, p aand the orientation of E4
we define the neighbourhood B'aof (pa, e3 (pa)) to be the set of all pairs
(p'a, €'3p'J such that (p'a ¢4 C and e'3 (p a) is the complementary
vector of e'4. Since the mapping (p, ed —=(p, €3, (p, €3, {p.ed CB , is an
automorphism, the set B'a is open and connected. If pa is a non-degene-
rated critical point of e3 (pa) . x (q), then let B"ad B\ denote a neigh-
bourhood of ((p , es (pj) such that for every (p",, €"3 p"J) C B"b the
point p"a is a non-degenerated critical point of e"3(p i) *x (q). Now, if p
is a degenerated critical point of e3 (p ) *x (q), then in virtue of Sard
theorem there exists a vector e'4C Ssuch that for eacha (I1*a ™2 + 2(/)
we have (p'a, e4 CBa and for y (I"y~2 + 2 g) such that B"t is
defined, i. e. p'a is a non-degenerated critical point of e'3 (p'a ). x (q),
we have (p'r,e'3(p'J) CB", and p'?is a non-degenerated critical point of
es (p\) "x (q)- Thus we get after a finite number of steps: If x is an
immersion with minimal total curvature of M2in E4and e4C S3 then in
every neighbourhood Sd S3of e4 there exists a vector e'4C S such that
for each a (1 ~ a ™~ 2+ 2fi')pa is a critical non-degenerated point of
e'i ‘x (<i) as well as of e'3(pa) *x (g). Moreover, since there are a finite
number of points pa wheach are critical points of e4 +x (q), and e3(pa) =
X (q) we obtain the following.

LEMMA. The set of points e4C S3 for which not all pa are critical
non-degenerated points of e4 «x (q), e3(pa) *x (q) is of measure zero in S3

By the above lemma we can suppose that each p, of (4.5) is a critical
non-degenerated point of both e4+x (q) and e3(pJ <x (q). The points (4.5)



can be split into three classes: AD, M> M in the following manner: paf£ Mu
(k = 0, 1, 2) if pa is of index k of s3(pa) *x (q). By m'k we denote the
cardinal number of yk, i-e. Hk = 'm'k- We define

X (M2ed = m'O—m'i+m'a-

DEFINITION 2. The immersion x : M2-> E4with minimal total curva-
ture is called rigid, if for almost every e4£ S3we have

(4.6) rnmo0= mO= 1
If x is rigid, then for almost every e4 we have % (M2 e4 = %(M2.
Indeed, it follows from (4.6) that m'2= 1 and therefore m'l = 2,
THEOREM 2. If x :M2-> EI is rigid, then there exists such a point
p £ M2for which the Gauss curvature K (p) of the metric induced by the

immersion is non-negative
Proof. By (4.4) it suffices to prove the inequality

4.7) K (p) dv2/N\dy> " 0.
H (BY)
It follows from (4.1)

K(pj=L@E>.(pJ)+ t(pes
Let Y (S3 denote the space of all (2 + 2q)-point sequences of S3 The
distance between two sequences is defined as the Hausdorff dinstance
between their coresponding point sets.
For almost every e4C S3we define the function

(4.8) F (ed = (e3(p™, e3(p2,..., e3(p2+2)),

where po is a critical non-degenerated point of e4+x (q) and e3(pa) *x (q).
We are going to show that F (S3 can be identified with a (2 + 2p)-covering
of S3 i.e. every point of S3is covered exactly (2+ 2q) times by the values
of F, except for a set of measure zero in S3

Indeed, let e3 be such that e3 < x (q) has only non-degenerated critical
points pa (1~ a<12+2g) and pa is a critical non-degenrated point of
™M (Pn) «x (Q> where e4(pa) is orthogonal to the surface x (M2 at x (po)
and to e3 and the frame x (pa)et e2 e3 e4(pa) determines the positive
orientation of E4 By the lemma we can assume that F is defined for
ei(Pa UP to a small change of e3 From the construction of e4(pa) it
follows that in the image-sequence F (e4 (pa)), which is of form (4.8), the
vector e3 appears. Hence the point e3 C S3is covered exactly (2+ 2p) times
(except for a set of measure zero) when e4 describes S3 Since x is an
immersion with minimal total curvature, S3is covered twice (up to a set of
measure zero) by points (p, e4 £ Bv for which the function —e4 «x (q) has
index O or 2. The mapping v reduced to H (Bv}, i. e. to the set of points
of index 2, is orientation preserving, since at such points the Lipschitz-
-Kiling curvature is positive (see section 3). S3 is covered 2g times by



points for which the function mentioned has index 1 Hence the Lipschitz-
-Killing curvature has negative values at such points and then v is
orientation reversing. Let e3(pi) denote this vector of the image-sequence
(4.8) for which — e4 . x (q) has index 0 at pv From (3.14) we have (pj, ed
("H (B J. We define

F (e4 = e3(p9

for almost every e4C S3

Now we prove that no part of positive measure of S3is covered twice
by «3(Pi) when e4 ranges over the possible values of S3 Assume the
contrary and suppose that a fixed e3(p4 belongs to such a part. Since
the part considered is of positive measure, we can choose e3(pt) in such
a manner that F (e3(p4) is defined. Suppose

(4.9) F (e3(pj)) = (e4(qj), e4(a?d e4(q2+2g)).

Since e3(p4 is covered at least twice and F (e4(ga)) are the only image-
-sequences in which e3(p” appears, we have for at least two distinct
indices a, 1 (1 < a < 2+ 29)

F(4(qj) = F (e4(gp) = e3(pj).

From the definition of the function F it follows that qa, qpare distinct
non-degenerated critical points of index O of the functions —e4(gqa)
*Xx (q), —e4(qc) =x (q), respectively. Hence for the image-sequence (4.9)
we would have m'O” 2. But this contradicts the fact that i is a rigid
immersion. Thus we have proved that

(L (plt e3(p4) dV2A dip> — 2n2
H(B.)

From (4.3), from the above inequality and from the definition of the Gauss
curvature we obtain (4.7).
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ZANURZENIA ROZMAITOSCI DWUWYMIAROWYCH W PRZESTRZEN
EUKLIDESOWA CZTEROWYMIAROWA

Streszczenie

W pracy podane sga warunki dostateczne na to, zeby zanurzenie rozmaitosci
dwuwymiarowej, zamknietej i orientowalnej w przestrzen euklidesowg czterowy-
miarowg indukowato na niej metryke o krzywiznie Gaussa nie wszedzie ujemnej.
Wynika stad, ze zanurzenia takie nie mogg by¢ izometriami dla rozmaitosci rodza-
ju ™ 2 rozwazanych jako przestrzenie lokalnie izometryczne z ptaszczyzng nieeuk-

lidesowg.

Oddano do Redakcji 20. 4. 70



