

# You have downloaded a document from RE-BUŚ <br> repository of the University of Silesia in Katowice 

Title: Immersions of two-manifold in the Euclidean four-space

Author: Marek Rochowski

Citation style: Rochowski Marek. (1972). Immersions of two-manifold in the Euclidean four-space. "Prace Naukowe Uniwersytetu Śląskiego w Katowicach. Prace Matematyczne" (Nr 2 (1972), s. 79-89)


Uznanie autorstwa - Użycie niekomercyjne - Bez utworów zależnych Polska - Licencja ta zezwala na rozpowszechnianie, przedstawianie i wykonywanie utworu jedynie w celach niekomercyjnych oraz pod warunkiem zachowania go w oryginalnej postaci (nie tworzenia utworów zależnych).

## MAREK ROCHOWSKI

## Immersions of two-manifolds in the Euclidean four-space

In this paper the author will investigate the immersions of closed orientable two-manifolds in the Euclidean four-space for which the Gauss curvature of the metric induced by the immersion is not everywhere negative. Hence such immersions cannot be isometries for orientable two--manifolds of genus $\geqslant 2$ regarded as spaces locally isometric with the Lobachevskian plane. The method used is that developed in [1].

1. PRELIMINARIES. Let $E^{n+N}$ denote the ( $n+N$ )-dimensional Euclidean space. By $E(n+N, R)$ we denote the Euclidean group of transformations of $E^{n+N}$ over the reals $R$, i.e. The group whose elements in a fixed co-ordinate system of $E^{n+N}$ can be written in the matrix-form

$$
\begin{equation*}
\mathrm{Y}=A X+a \tag{1.1}
\end{equation*}
$$

where $A=\left\|a_{A B}\right\|_{1 \leqslant A, B \leqslant n+N}$ denotes an orthogonal matrix and $X, Y, a$ are one-column matrices with ( $\mathrm{n}+\mathrm{N}$ ) rows. Transformations (1.1) can be identified with the symbols ( $A, a$ ) with the following law of composition

$$
\begin{equation*}
(C, c)=(B, b) \cdot(A, a)=(B A, B a+b) \tag{1.2}
\end{equation*}
$$

The Lie algebra $g$ of $E(n+N, R)$ is isomorphic with a subspace spanned over the symbols

$$
\left(\frac{\partial}{\partial a_{A B}} \frac{\partial}{\partial a_{A}}\right)
$$

by linear combinations with real coefficients

$$
\begin{equation*}
\xi_{A B} \frac{\partial}{\partial a_{A B}}+\xi_{A} \frac{\partial}{\partial a_{A}} \tag{1.3}
\end{equation*}
$$

such that

$$
\begin{equation*}
\xi_{B A}+\xi_{B A}=0, \quad \xi_{A}=a_{A}, \tag{1.4}
\end{equation*}
$$

the partial derivatives being evaluated at $a_{A B}=\delta_{A B}, a_{A}=0$. In the sequel
employ the summation convention for repeated indices as in (1.3) and we use the following convention concerning indices

$$
1 \leqslant i, j, k \leqslant n, \quad n+1 \leqslant r, s, t \leqslant n+N, \quad 1 \leqslant A, B, C \leqslant n+N .
$$

By left multiplication the vector (1.3) can be propagated to a left-invariant vector field onto the whole of $E(n+N, R)$. Namly, using (1.2) and taking into account the induced mapping of tangent spaces, we have

$$
\begin{gathered}
\xi_{A B} \frac{\partial}{\partial a_{A B}}+\xi_{A} \frac{\partial}{\partial \alpha_{A}} \rightarrow \xi_{A B} \frac{\partial c_{D E}}{\partial a_{A B}} \frac{\partial}{\partial c_{D E}}+\xi_{A} \frac{\partial C_{D}}{\partial a_{A}} \frac{\partial}{\partial C_{D}}= \\
=b_{A B}\left(\xi_{B C} \frac{\partial}{\partial b_{A C}}+\xi_{B} \frac{\partial}{\partial b_{A}}\right) .
\end{gathered}
$$

This vector field constitutes the Lie algebra $g^{*}$, of $E(n+N, R)$.
Let $\omega^{\prime}{ }_{A}, \omega_{A B}^{\prime}$ denote the left-invariant linear forms on $\mathrm{g}^{*}$ defined by

$$
\omega_{A}^{\prime}=a_{B A} d a_{B}, \quad \omega_{A B}^{\prime}=a_{C A} d a_{C B},
$$

and
$d a_{A B}\left(\frac{\partial}{\partial a_{C D}}\right)=\delta_{A C} \delta_{B D}, d a_{A B}\left(\frac{\partial}{\partial a_{C}}\right)=0, d a_{A}\left(\frac{\partial}{\partial a_{C}}\right)=\delta_{A C}, d a_{A}\left(\frac{\partial}{\partial a_{B C}}\right)=0$.
It follows from (1.4)

$$
\omega_{A B}^{\prime}+\omega_{B A}^{\prime}=0
$$

The forms $\omega_{A}^{\prime}, \omega_{A B}^{\prime}$ satisfy the equations of structure of the Euclidean group

$$
\begin{align*}
d \omega_{A}^{\prime} & =\omega_{B}^{\prime} \wedge \omega_{A B}^{\prime} \\
d \omega_{A B}^{\prime} & =\omega_{C B}^{\prime} \wedge \omega_{A C}^{\prime} . \tag{1.5}
\end{align*}
$$

2. THE MOVING FRAME. Let

$$
x: M^{n} \rightarrow E^{n+N}
$$

be an immersion of a closed orientable manifold $M^{n}$ in $E^{n+N}$. We consider such elements of $E(n+N, R)$ for which $a^{\boldsymbol{T}} \in\left(M^{n}\right)$, where $a^{\boldsymbol{T}}$ denotes the matrix transposed to the matrix $a$ which appears in (1.1) and $e_{i}=\left(a_{1 i} a_{2 i}, \ldots\right.$ $\left.a_{n+N}, i\right)$ are tangent to the surface $x\left(M^{n}\right)$ at $a^{T}(p)=x(p), p \in M^{n}$, and det $\left\|a_{A B}\right\|=1$, i.e. the frame $x(p) e_{1} e_{2} \ldots e_{n+N}$ for $e_{A}=\left(a_{1 A}, a_{2 A} \ldots a_{n+N}, A\right)$ is oriented coherent with $E^{n+N}$. Let $x^{*}$ denote the mapping of differential forms induced by $x$. We set $\omega_{A}=x^{*} \omega_{A}^{\prime}, \omega_{A B}=x^{*} \omega^{\prime}{ }_{A B}$. Then we have $\omega_{r}=0$. This together with (1.5) implies $\omega_{i r} \wedge \omega_{r}=0$. Hence

$$
\begin{equation*}
\omega_{i r}=A_{r i j} \omega_{j}, \quad A_{r i j}=A_{r j 1} \tag{2.1}
\end{equation*}
$$

and

$$
\begin{gather*}
\Omega_{i j}=\omega_{i r} \wedge \omega_{r j}=A_{r i k} A_{r j l} \omega_{k} \wedge \omega_{l}= \\
\left(A_{r i k} A_{r j l}-A_{r i l} A_{r j k}\right) \omega_{k} \wedge \omega_{l}=R_{i j k l} \omega_{k} \wedge \omega_{l}, \tag{2.2}
\end{gather*}
$$

where $R_{i j k l}$ is the curvature tensor induced by the immersion.
If $\Pi$ denotes the plane spanned by two unit orthogonal vectors tangent to the surface $x\left(M^{n}\right)$ at $x(p)$ :

$$
a=a_{i} e_{i}, \quad b=b_{i} e_{i},
$$

ihen the sectional curvature of $\Pi$ is given by the formula

$$
K(p, \Pi)=R_{i j k l} a_{i} a_{k} b_{j} b_{l} .
$$

For two-manifolds we have

$$
K(p, \Pi)=K(p)=R_{1212},
$$

where $K(p)$ denotes the Gauss curvature of $x\left(M^{2}\right)$. Hence we have by (2.2)

$$
\begin{equation*}
K(p)=A_{r 11} A_{r 22}-A_{r 12} A_{r 12}=\sum_{r} \operatorname{det}\left(A_{r i j}\right) . \tag{2.3}
\end{equation*}
$$

3. THE LIPSCHITZ-KILLING CURVATURE. Let $\nu$ be an arbitrary unit vector in $E^{n+N}$. In the following we regard the unit vectors also as points of the unit sphere $S^{n+N-1}$. Now we define the normal bundle of $M^{n}$ induced by the immersion $x$ by

$$
B_{v}=\left\{(p, \nu) / \nu \cdot d x(p)=0, p \in M^{n}, \nu \in S^{n+N-1}\right\} .
$$

The fibres of $B_{v} \rightarrow M^{n}$ are ( $N-1$ )-dimensional unit spheres $S^{N-1}(p)$, and the structural group is the orthogonal group $O(N-1)$. In $B_{v}$ we introduce the globally defined differential form

$$
d \tau_{n+N-1}=d V_{n} \bar{\Lambda} d \sigma_{N-1} .
$$

where $d V_{n}=\omega_{1} \wedge \omega_{2} \wedge \ldots \wedge \omega_{n}$ is the volume element of $M^{n}$ induced by the immersion $x$ and $d \sigma_{N-1}$ denotes the volume element of the fibre $S^{N-1}(p)$ described by the vector $e_{n+N}(p)$ for a fixed $p \in M^{n}$. Hence

$$
d \sigma_{N-1}=\omega_{n+1, n+N} \wedge \omega_{n+2, n+N} \wedge \ldots \wedge \omega_{n+N-1, n+N} .
$$

Let

$$
\begin{equation*}
\nu: B_{v} \rightarrow S^{n+N-1} \tag{3.1}
\end{equation*}
$$

denote the mapping

$$
(p, \nu) \rightarrow \nu, \quad(p, \nu) \in B_{v} .
$$

The volume element induced by (3.1) in $S^{n+N-1}$ described by $e_{n+N}$ has the form

$$
\nu^{*} d \sigma_{n+N-1}=\omega_{1},{ }_{n+N} \wedge \omega_{2, n+N} \wedge \ldots \wedge \omega_{n+N-1, n+N} .
$$

If we substitute (2.1) for $r=n+N$ into the preceding formula, we have

$$
\begin{equation*}
\nu^{*} d \sigma_{n+N-1}=\operatorname{det}\left(A_{n+N, t j}\right) d V_{n} \wedge d \sigma_{N-1} \tag{3.2}
\end{equation*}
$$

We call the function $L\left(p, e_{n+N}\right)=\operatorname{det}\left(A_{n+N,{ }_{i j}}\right)$ the Lipschitz-Killing curvature of $B_{v}$ at $\left(p, e_{n+N}\right) \in B_{v}$ and the integral

$$
\begin{equation*}
\int_{S^{N-1}(p)}\left|L\left(p, e_{n+N}\right)\right| d \sigma_{N-1} \tag{3.3}
\end{equation*}
$$

will be called the Lipschitz-Killing curvature of $M^{n}$ at $p \in M^{n}$.
Let $e_{n+N}$ be fixed. The point $p \in M^{n}$ is called a critical point of the scalar function $-e_{n+N} \cdot x(q), q \in M^{n}$, if $\left(p, e_{n+N}\right) \in B_{v}$, and is called a critical non-degenerated point if the second quadratic form

$$
\begin{equation*}
-e_{n+N} d^{2} x(p)=d e_{n+N} d x(p)=A_{n+N} i_{j} \omega_{k} \omega_{j} \tag{3.4}
\end{equation*}
$$

of the surface $x\left(M^{n}\right)$ is non-degenerated, i.e. if $\operatorname{det}\left(A_{u+N, i j}\right) \neq 0$.
The second differential on the left of (3.4) is taken in the usual (not exterior) sense.

A point $\left(p, e_{n+N}\right) \in B_{v}$ for which $\operatorname{det}\left(A_{n+N i j}\right)=0$ is called a critical point oi the mapping (3.1). By SARD theorem [2] the set $\nu(Q)$, where

$$
\begin{equation*}
Q=\left\{\left(p, e_{n+N}\right) \in B_{v} \mid \operatorname{det}\left(A_{n+N . l j}\right)=0\right\} \tag{3.5}
\end{equation*}
$$

is of measure zero in $S^{n+N-1}$. The point ( $p, e_{n+N}$ ) belongs to $Q$ if and only if $p \in M^{n}$ is a critical degenerated point of $-e_{n+N} \cdot x(q), q \in M^{n}$.

Let $k$ denote the index of the function $-e_{n+N} \cdot x(q)$ at a critical nondegenerated point $p \in M^{n}$, i.e. the maximal dimension of subspaces of the tangent space to $x\left(M^{n}\right)$ for which the quadratic form (3.4) takes negative values. MORSE lemma asserts that in a suitable co-ordinate system introduced in a neighgourhood of $p$ the funcion $f(q)=-e_{n+N} \cdot x(q)$ takes the form

$$
\begin{equation*}
f(q)=f(p)-t_{1}^{2}-t_{2}^{2}-\ldots-t_{k}^{2}+t_{k}^{2}+{ }_{1}+\ldots+t_{n}^{\prime}, \tag{.6}
\end{equation*}
$$

where $q$ has the co-ordinates ( $t_{1}, t_{2}, \ldots, t_{n}$ ). It follows from (3.6) that each non-degenerated critical point is isolated. Hence the number $m_{k}\left(M^{n}, f\right)$ of critical points of index $k$ of the function $f$ on a closed manifold is finite. Since $\boldsymbol{\nu}(Q)$ is of measure zero in $S^{n+N-1}$, i follows that in each neighbourhood of an arbitrary vector $\varepsilon_{n+i n}^{n}$ there exists such a vector $e^{\prime}{ }_{n+N}$ for which the function $-e_{n+N}^{\prime} \cdot x(q)$ has only non-degenerated critical points. Moreover, since $M^{n}$ and $S^{n+N-1}$ are compact and $Q$ is closed, it follows that $\nu(Q)$ is closed, and therefore for each vector $e_{n+N}$ from a small neighbourhood of $e_{n+N}$ the function $-e_{n+N} \cdot x(q)$ will have only non--degenerated critical points. If the function $-e_{n+N} \cdot x(q)$ has index 0 at $p \in M^{n}$, then $L\left(p, e_{n+N}\right)>0$ and it follows from (3.2) that the induced linear mapping

$$
\nu^{*}: T_{(p, \nu)} \rightarrow T_{\nu}
$$

of the tangent space of $B$, onto the tangent space of $S^{n+N-1}$ is orientation-
-preserving for $\nu=e_{n+N}$. If the indez of $p \in M^{n}$ is $k$, then the orientation defined by $\nu^{*}$ differs by the factor $(-1)^{k}$ from the positive orientation of $S^{n+N-1}$ defined by the frame $e_{n+N} e_{1} e_{2} \ldots e_{n+N-1}\left(e_{n+N}\right.$ denotes a point on $S^{n+N-1}$ which is the origin of $\left.e_{1}, e_{2} \ldots, e_{n+N-1}\right)$. For almost every $e_{n+N}$ the number of all critical points of the function $e_{n \div_{N}} \cdot x(q)$ is equal to $m_{\circ}+m_{1}+\ldots+m_{n}, m_{k}=m_{k}\left(M^{n}, f\right), f(q)=-e_{n+N} \cdot x(q)$. Keeping in mind the orientation we have for a point $\left(p, e_{n+N}\right) \in B_{v} \backslash Q$

$$
\operatorname{det}\left(A_{n+N, i}\right) d \tau_{n+N-1}=(-1)^{k} \nu^{*} d \sigma_{n+N-1}=(-1)^{k} d \sigma_{n+N-1} \text {. }
$$

where $k$ denotes the index of $p \in M^{n}$ with respect to the function $-e_{n+N}$. . $x(q)$, and $d \sigma_{n+N-1}$ denotes the positively oriented volume element of the sphere $\mathrm{S}^{n+N-1}$. For a connected neighbourhood $B \subset B \backslash Q$ of ( $p, e_{n+N}$ ) we have therefore

$$
\begin{equation*}
\int_{B} \operatorname{det}\left(A_{n+N}, i_{j}\right) d \tau_{n+N-1} \underset{v(B)}{\int}(-1)^{k} d \sigma_{n+N-1} \tag{3.7}
\end{equation*}
$$

This equality does not change if we replace $B$ by $B \cup Q$ and $\nu(B)$ by $\nu(B) \cup \nu(Q)$. The set $B \backslash Q$ can be represented as a sum of open disjoint connected sets in each of which equality (3.7) holds for some $k$ $(0 \leqslant k \leqslant n)$. This decomposition leads us to the formula

$$
\begin{equation*}
\int_{B_{v}} \operatorname{det}\left(A_{n+N}, i_{j}\right) d \tau_{n+N-1}=\int_{S^{n+N-1}}^{n} \sum_{k=1}^{n}(-1)^{k} m_{k} d \sigma_{n+N-1} . \tag{3.8}
\end{equation*}
$$

If $b_{k}$ denotes the $k$-th Betti number of $M^{n}$, then it follows from the MORSE equality [3]

$$
\sum_{k=o}^{n}(-1)^{k} m_{k}\left(M^{n}, f\right)=\sum_{k=0}^{n}(-1)^{k} b_{k}\left(M^{n}\right)=\chi\left(M^{n}\right)
$$

that we have

$$
\begin{equation*}
\int_{B_{v}} \operatorname{det}\left(A_{n+N},{ }_{i j}\right) d \tau_{n+\Gamma J-1}=v_{n+N-1} \chi\left(M^{n}\right), \tag{3.9}
\end{equation*}
$$

where $v_{n+N-1}$ denotes the volume of $S^{n+N-1}$
If we disregard the orientation, then instead of (3.8) we have

$$
\begin{equation*}
\int_{B_{v}}\left|\operatorname{det}\left(A_{n+N}, i_{i j}\right)\right| d \tau_{n+N-1}=\int_{S^{n \star t}} \sum_{k=o}^{n} m_{k} d \sigma_{n+N-1} . \tag{3.10}
\end{equation*}
$$

Now the MORSE inequalities [3]

$$
\begin{equation*}
m_{k}\left(M^{n}, f\right) \geqslant b_{k}\left(M^{n}\right) \tag{3.11}
\end{equation*}
$$

imply the following theorem:
THEOREM (S.S. CHERN and R. K. LASHOF [4]). If the manifold $M^{n}$ is orientable and closed, then

$$
\begin{equation*}
\int_{B_{v}}\left|L\left(p, e_{n+N}\right)\right| d \tau_{n+N-1} \geqslant v_{n+N-1} \sum_{k=o}^{n} b_{k} . \tag{3.12}
\end{equation*}
$$

DEFINITION 1. The manifold is said to be immersed in $E^{n+N}$ with minimal total curvature if

$$
\int_{B_{v}}\left|L\left(p, e_{n+N}\right)\right| d \tau_{n+N-1}=v_{n+N-1} \sum_{k=0}^{n} b_{k}
$$

Then it follows from (3.10), (3.11) and (3.12) that for almost every $e_{n+N} \in E^{n+N}$ we have

$$
\begin{equation*}
m_{k}\left(M^{n},-e_{n+N} \cdot x(q)\right)=b_{k}\left(M^{n}\right) \tag{3.13}
\end{equation*}
$$

We introduce the following notations:

$$
\begin{equation*}
H\left(B_{v}\right)=\left\{\left(p, e_{n+N}\right) \in B_{v} \mid-e_{n+N} \cdot x(q) \text { has index } 0 \text { at } p\right\} \tag{3.14}
\end{equation*}
$$

$H\left(M^{n}\right)$ denotes the projection $\left(p, e_{n+N}\right) \rightarrow p$ of $H\left(B_{v}\right)$ onto $M^{n}$.
The immersion $x: M^{n} \rightarrow E^{n+N}$ with minimal total curvature has the following property.

THEOREM 1. If $\left(p, e_{n+N}\right) \in H\left(B_{v}\right)$, then the whoie surface $x\left(M^{n}\right)$ is contained in the halfspace $\left\{x \in E^{n+N} \mid e_{n+N} \cdot x \leqslant e_{n+N} x(p)\right\}$.

Proof. Assume on the contrary that for some $q \in M^{n}$ the inequality $e_{n+N} \cdot x(q)>e_{n+N} \cdot x(p)$ holds. Since $\bar{M}^{n}$ is closed, there exists a point $p_{1} \in M^{n}$ such that the hyperplane $e_{n+N} \cdot x=e_{n+N} \cdot x\left(p_{1}\right)$ is tangent to $\boldsymbol{x}\left(M^{n}\right)$ and for each $q \in M^{n}$ the inequality $e_{n+N} \cdot x(q) \leqslant e_{n+N} \cdot x\left(p_{1}\right)$ holds. From the definition of $p_{1}$ it follows that $e_{n+N} \cdot x(p) \leqslant e_{n+N} \cdot x\left(p_{1}\right)$ and that $p_{1}$ is a critical point of the function $-e_{n+N} \cdot x(q)$. If the quadratic form $-e_{n+N} \cdot d^{2} x$ is non-degenerated, then the function $-e_{n+N} \cdot x(q)$ has index 0 at $p_{1}$. If $p_{1}$ is a degenrated critical point, then by SARD theorem in an arbitrary neighbourhood of $\left(p_{1}, e_{n+N}\right) \in B_{v}$ there exist points ( $p_{1}^{\prime}$, $\left.e^{\prime}{ }_{n+N}\right) \in B_{v}$ such that $-e_{n+N}^{\prime} \cdot x(q)$ has index 0 at $p_{1}^{\prime}$. Since $\nu(Q)$ is closed, there exists a neighbourhood $B \subset B$ of ( $p, e_{n+N}$ ) such that for each $\left(p^{\prime}, e^{\prime}{ }_{n+N}\right) \in B$ the function $-e_{n+N}^{\prime} \cdot x(q)$ has index 0 at $p^{\prime}$. Let $d=e_{n+N}$ $\left(x\left(p_{1}\right)-x(p)\right)$. By the above remarks we can choose a point $\left(p^{\prime} e_{n+N}^{\prime}\right) \in B$. such that the following occurs: $-e^{\prime}{ }_{n+N} x(q)$ has index 0 at $p_{1}^{\prime}$ and for each $q \in M^{n}$ the inequality $e_{n+N}^{\prime} \cdot x(q) \leqslant e_{n+N}^{\prime} \cdot x$ holds. Moreover, there exists a point $p^{\prime} \in M^{n}$ such that $\left(p^{\prime}, e_{n+N}^{\prime}\right) \in B$ and $e_{n+N} \cdot\left(x(p)-x\left(p^{\prime}\right)\right) \leqslant$ $\left|e_{n+N} \cdot\left(x\left(p_{1}\right)-x\left(p_{1}^{\prime}\right)\right)\right| \leqslant 1 / 3 d$. Thus the function $e_{n+N}^{\prime} \cdot x(q)$ would have index 0 at two distinet point $p^{\prime}, p_{1}^{\prime}$, ard therefore there would exist a neighbourhood (in $S^{n+N-1}$ ) of $e^{\prime}{ }_{n+N}$ such that for each $e_{n+N}$ belonging to it the function $-e_{n+N} \cdot x(q)$ would have at least two distinct points of index 0 . But this contradicts the fact that $x$ is an immersion with minimal total curvature and therefore satisfies (3.13).

If $x$ is an immersion with minimal total curvature then, since $M^{n}$ is closed and connected, for almost every $e_{n+N}$ we have $m_{0}\left(M^{n},-e_{n+N} \cdot\right.$ . $x(q))=1$. Hence for almost every $e_{n+N}$ there exists exactly one point $p \in M^{n}$ for which $\left(p, e_{n+N}\right) \in H\left(B_{\imath}\right)$ and therefore $L\left(p, e_{n+N}\right)>0$. It follows

$$
v_{n+N-1}=\int_{H\left(B_{v}^{\prime}\right)} L\left(p, e_{n+N}\right) d V_{n} \wedge d \sigma_{N-1}=
$$

$$
\begin{equation*}
\underset{H\left(M^{n}\right)}{=\int} d V_{n} \int_{(p)} L\left(p, e_{n+N}\right) d \sigma_{N-1}=\int_{H\left(M^{n}\right)} \bar{L}(p)|h(p)| d V_{n}, \tag{3.15}
\end{equation*}
$$

where $h(p)=H(B) \cap S^{N-1}(p),|h(p)|$ denotes the $(N-1)$-dimensional measure of $h(p), \bar{L}(p)$ denotes the mean value of $L\left(p, e_{n+N}\right)$ with respect to $e_{n+N}$.
4. CLOSED SURFACES IN THE EUCLIDEAN FOUR-SPACE. Let

$$
x: M^{2} \rightarrow E^{4}
$$

be an immersion of a closed orientable two-manifold. To avoid additional discussion we assume about $x$ that the following construction is unique: in each fibre $S^{1}(p), p \in M^{2}$, we choose such a vector $\bar{e}_{4}$ that the function $L\left(p, e_{4}\right)$ takes its maximal value for $e_{4}=\bar{e}_{4}$. Then $\bar{e}_{3}$ is also uniquely determined.

Hence the cross-sections $p \rightarrow \bar{e}_{3}(p), p \rightarrow \bar{e}_{4}(p)$ are defined and $B_{v}$ is therefore equivalent to a Cartesian product $M^{2} X S^{1}$. The vector fields $\bar{e}_{3}(p)$, $\bar{e}_{4}(p)$ will be called the Frenet frame of $M^{2}$ induced by $x$. From (2.3) and from the definition of the Lipschitz-Killing curvature we have

$$
\begin{equation*}
K(p)=L\left(p, e_{3}\right)+L\left(p, e_{4}\right) . \tag{4.1}
\end{equation*}
$$

It follows from

$$
\begin{align*}
e_{3} & =\bar{e}_{3} \cos \psi-\bar{e}_{4} \sin \psi \\
e_{4} & =\bar{e}_{3} \sin \psi+\bar{e}_{4} \sin \psi, \quad 0 \leqslant \psi<2 \pi  \tag{4.2}\\
d \tau_{3} & =\omega_{1} \wedge \omega_{2} \wedge \omega_{34}=\omega_{1} \wedge \omega_{2} \wedge\left(\omega_{34}+d \psi\right)=\omega_{1} \wedge \omega_{2} \wedge d \psi .
\end{align*}
$$

that $\omega_{34}=d e_{4} \cdot \epsilon_{3}=\bar{\omega}_{34}+d \psi$. Therefore we have
Using (3.15) we get

$$
\begin{align*}
& \int_{H\left(B_{v}\right)} L\left(p, e_{4}\right) d V_{2} \wedge d \psi=2 \pi^{2},  \tag{4.3}\\
& \left\lceil\left(L\left(p, e_{3}\right)+L\left(p, e_{4}\right)\right) d V_{2} \wedge \omega_{34}=\int K(p) d V_{2} \wedge d \psi=\right. \\
& H\left(B_{v}\right) \quad H\left(B_{v}\right)
\end{align*}
$$

if $x$ is an immersion with minimal total curvature. The function $|\kappa(p)|$ is positive for $p \in H\left(M^{2}\right)$. This follows from the fact that $H\left(B_{v}\right)$ is open and therefore for each $\left(p, e_{4}\right) \in H\left(B_{v}\right)$ there exists a neighbourhood $B \subset H\left(B_{v}\right.$ of this point and the set $B \cap S^{1}(p)$ is open in $S^{1}(p)$ and is not empty.

In the following $x$ is an immersion with minimal total curvature and $g$ denotes the genus of $M^{2}$. Let $e_{4}$ be an arbitrary unit vector, then for almost every $e_{4}$ the function $e_{4} \cdot x$ ( $p$ ) has exactly ( $2+2 g$ ) critical non--degenerated points

$$
\begin{equation*}
p_{1}, p_{2}, \ldots, p_{2+2 g} \tag{4.5}
\end{equation*}
$$

where $M^{2}$ has genus $g$. It follows from the definition of a critical point that $e_{4}$ is orthogonal to $x\left(M^{2}\right)$ at $\boldsymbol{x}(\boldsymbol{p})(1 \leqslant \alpha \leqslant 2+2 g)$ Besides $e_{4}$ there exists for every $\alpha$ a unit vector $e_{3}\left(p_{\alpha}\right)$ which is orthogonal to $x\left(M^{2}\right)$ at $x\left(p_{a}\right)$ and to $e_{4}$ and such that the frame $x\left(p_{c}\right) e_{1} e_{2} e_{3}\left(p_{a}\right) e_{4}$ determines an orientation coherent with that of $E^{4}$. Hence $p_{\mathrm{a}}$ is also a critical point for the function $e_{3}(p) \cdot x(q)$. Since $p_{\alpha}$ is a critical non-degenerated point of $e_{4} \cdot x(q)$, there exists a connected neighbourhood $B_{\sim} \subset B$, of ( $e_{4}, p_{a}^{\prime}$ ) such that if $\left(e_{4}^{\prime}, p^{\prime}\right) \in B_{"}$ then $p_{a}^{\prime}$ is a non-degenerated critical point of $e_{4}^{\prime} \cdot x(q)$. Moreover we can assume that $B_{\varepsilon} \cap B_{\beta}=\varnothing$ for $\alpha \neq \beta(1 \leqslant$ $\leqslant \alpha, \beta \leqslant 2+2 g$ ). Since the mapping $\nu$ (see (3.1)) is locally a diffeomorphism, we can suppose that $S_{n}=\mu\left(B_{\alpha}\right)$ is open in $S^{3}$. One can easily verify that $e_{4} \in S=S_{1} \cap S_{2} \cap \ldots \cap S_{2+2 g}$ and the function $e^{\prime} \cdot x(\alpha)$ has only non-degenerated critical points for every $e^{\prime} \in S$. We define $B_{\alpha}=v^{-1}(S)$. Since $e^{\prime}{ }_{3}\left(p_{a}\right)$ is uniquely determined by $e_{4}, p_{a}$ and the orientation of $E^{4}$, we define the neighbourhood $B^{\prime}$ of ( $\left.p_{a}, e_{3}\left(p_{a}\right)\right)$ to be the set of all pairs ( $p_{\alpha}^{\prime}, e^{\prime}{ }_{3} \boldsymbol{p}^{\prime}$ ) such that ( $\left.\boldsymbol{p}^{\prime}{ }_{\text {u }}, e^{\prime}{ }_{4}\right) \in B_{\alpha}$ and $e^{\prime}{ }_{3}\left(p^{\prime}{ }_{\alpha}\right)$ is the complementary vector of $e_{4}^{\prime}$. Since the mapping $\left(p, e_{4}\right) \rightarrow\left(p, e_{3}\right),\left(p, e_{3}\right),\left(p, e_{4}\right) \in B$, is an automorphism, the set $B_{\alpha}^{\prime}$ is open and connected. If $p_{\alpha}$ is a non-degenerated critical point of $e_{3}{ }^{\alpha}\left(p_{\alpha}\right) \cdot x(q)$, then let $B^{\prime \prime} \subset B_{\sigma_{c}^{\prime}}^{\prime}$ denote a neighbourhood of $\left(\left(p_{,}, e_{3}\left(p_{\alpha}\right)\right)\right.$ such that for every $\left.\left.{ }^{\circ}\left(p^{\prime \prime}{ }_{a}, e^{\prime \prime \prime}{ }_{3}\right) p^{\prime \prime}{ }_{\alpha}\right)\right) \in B^{\prime \prime}{ }_{\alpha}$ the point $p^{\prime \prime}{ }_{\alpha}$ is a non-degenerated critical point of $e^{\prime \prime}{ }_{3}\left(p_{4}\right) \cdot x(q)$. Now, if $p$ is a degenerated critical point of $e_{3}\left(p_{u}\right) \cdot x(q)$, then in virtue of Sard theorem there exists a vector $e^{\prime}{ }_{4} \in S$ such that for each $a(1 \leqslant a \leqslant 2+2 g)$ we have $\left(p_{a}^{\prime}, e_{4}^{\prime}\right) \in B_{\alpha}$ and for $\gamma(1 \leqslant \gamma \leqslant 2+2 g)$ such that $B_{\gamma}^{\prime \prime}$ is defined, i. e. $p^{\prime}{ }_{a}$ is a non-degenerated critical point of $e^{\prime}{ }_{3}\left(p^{\prime}{ }_{a}\right) . x^{\gamma}(q)$, we have ( $\left.\boldsymbol{p}_{\varepsilon}^{\prime}, e^{\prime}{ }_{3}\left(p_{\alpha}^{\prime}\right)\right) \in B_{\gamma}^{\prime \prime}$, and $p_{\beta}^{\prime}$ is a non-degenerated critical point of $e^{\prime}{ }_{3}\left(\boldsymbol{p}_{\beta}^{\prime}\right) \cdot x(q)$. Thus we get after a finite number of steps: If $x$ is an immersion with minimal total curvature of $M^{2}$ in $E^{4}$ and $e_{4} \in S^{3}$, then in every neighbourhood $S \subset S^{3}$ of $e_{4}$ there exists a vector $e_{4}^{\prime} \in S$ such that for each $\alpha(1 \leqslant \alpha \leqslant 2+2 g) p_{\alpha}$ is a critical non-degenerated point of $e_{4}^{\prime} \cdot x(q)$ as well as of $e_{3}^{\prime}\left(p_{\alpha}\right) \cdot x(q)$. Moreover, since there are a finite number of points $p_{a}$ wheach are critical points of $e_{4} \cdot x(q)$, and $e_{3}\left(p_{a}\right)$. - $x$ (q) we obtain the following.

LEMMA. The set of points $e_{4} \in S^{3}$ for which not all $p_{\alpha}$ are critical non-degenerated points of $e_{4} \cdot x(q), e_{3}\left(p_{a}\right) \cdot x(q)$ is of measure zero in $S^{3}$.

By the above lemma we can suppose that each $p_{\alpha}$ of (4.5) is a critical non-degenerated point of both $e_{4} \cdot x(q)$ and $e_{3}\left(p_{\alpha}\right) \cdot x(q)$. The points (4.5)
can be split into three classes: $\mu_{0}, \mu_{1}, \mu_{2}$ in the following manner: $p_{a} \in \mu_{h}$ ( $k=0,1,2$ ) if $p_{\alpha}$ is of index $k$ of $e_{3}\left(p_{\alpha}\right) \cdot x(q)$. By $m_{k}^{\prime}$ we denote the cardinal number of $\mu_{k}$, i.e. $\mu_{k}=m_{k}^{\prime}$. We define

$$
\chi^{\prime}\left(M^{2}, e_{4}\right)=m_{0}^{\prime}-m_{1}^{\prime}+m_{2}^{\prime} .
$$

DEFINITION 2. The immersion $x: M^{2} \rightarrow E^{4}$ with minimal total curvature is called rigid, if for almost every $e_{4} \in S^{3}$ we have

$$
\begin{equation*}
m_{0}^{\prime}=m_{0}=1 \tag{4.6}
\end{equation*}
$$

If $x$ is rigid, then for almost every $e_{4}$ we have $\chi^{\prime}\left(M^{2}, e_{4}\right)=\chi\left(M^{2}\right)$. Indeed, it follows from (4.6) that $m_{2}^{\prime}=1$ and therefore $m^{\prime 1}=2 g$.

THEOREM 2. If $x: M^{2} \rightarrow E^{4}$ is rigid, then there exists such a point $p \in M^{2}$ for which the Gauss curvature $K(p)$ of the metric induced by the immersion is non-negative.

Proof. By (4.4) it suffices to prove the inequality

$$
\begin{equation*}
\underset{H\left(B_{v}\right)}{K(p) d V_{2} \wedge d \psi \geqslant 0 .} \tag{4.7}
\end{equation*}
$$

It follows from (4.1)

$$
K\left(p_{a}\right)=L\left(p_{\alpha}, e_{3}\left(p_{\alpha}\right)\right)+L\left(p, e_{4}\right) .
$$

Let $Y\left(S^{3}\right)$ denote the space of all $(2+2 g)$-point sequences of $S^{3}$. The distance between two sequences is defined as the Hausdorff dinstance between their coresponding point sets.

For almost every $e_{4} \in S^{3}$ we define the function

$$
\begin{equation*}
F\left(e_{4}\right)=\left(e_{3}\left(p_{1}\right), e_{3}\left(p_{2}\right), \ldots, e_{3}\left(p_{2+2 g}\right)\right), \tag{4.8}
\end{equation*}
$$

where $p_{a}$ is a critical non-degenerated point of $e_{4} \cdot x(q)$ and $e_{3}\left(p_{a}\right) \cdot x(q)$. We are going to show that $F\left(S^{3}\right)$ can be identified with a $(2+2 g)$-covering of $S^{3}$, i.e. every point of $S^{3}$ is covered exactly $(2+2 g)$ times by the values of $F$, except for a set of measure zero in $S^{3}$.

Indeed, let $e_{3}$ be such that $e_{3} \cdot x(q)$ has only non-degenerated critical points $p_{\alpha}(1 \leqslant \alpha \leqslant 2+2 g)$ and $p_{\alpha}$ is a critical non-degenrated point of $e_{4}\left(p_{\alpha}\right) \cdot x(q)$, where $e_{4}\left(p_{\alpha}\right)$ is orthogonal to the surface $x\left(M^{2}\right)$ at $x\left(p_{\alpha}\right)$ and to $e_{3}$ and the frame $x\left(p_{a}\right) e_{1} e_{2} e_{3} e_{4}\left(p_{a}\right)$ determines the positive orientation of $E^{4}$. By the lemma we can assume that $F$ is defined for $e_{4}\left(p_{\alpha}\right)$ up to a small change of $e_{3}$. From the construction of $e_{4}\left(p_{\alpha}\right)$ it follows that in the image-sequence $F\left(e_{4}\left(p_{\alpha}\right)\right.$ ), which is of form (4.8), the vector $e_{3}$ appears. Hence the point $e_{3} \in S^{3}$ is covered exactly $(2+2 g)$ times (except for a set of measure zero) when $\mathrm{e}_{4}$ describes $S^{3}$. Since $x$ is an immersion with minimal total curvature, $S^{3}$ is covered twice (up to a set of measure zero) by points ( $\left.p, e_{4}\right) \in B_{v}$ for which the function $-e_{4} \cdot x(q)$ has index 0 or 2 . The mapping $\nu$ reduced to $H\left(B_{v}\right)$, i. e. to the set of points of index 2, is orientation preserving, since at such points the Lipschitz--Kiling curvature is positive (see section 3 ). $S^{3}$ is covered $2 g$ times by
points for which the function mentioned has index 1. Hence the Lipschitz--Killing curvature has negative values at such points and then $v$ is orientation reversing. Let $e_{3}\left(p_{1}\right)$ denote this vector of the image-sequence (4.8) for which $-e_{4} \cdot x(q)$ has index 0 at $p_{1}$. From (3.14) we have ( $p_{1}, e_{4}$ ) $\in H(B$,$) We define$

$$
F\left(e_{4}\right)=e_{3}\left(p_{1}\right)
$$

for almost every $e_{4} \in S^{3}$.
Now we prove that no part of positive measure of $S^{3}$ is covered twice by $e_{3}\left(p_{1}\right)$ when $e_{4}$ ranges over the possible values of $S^{3}$. Assume the contrary and suppose that a fixed $e_{3}\left(p_{1}\right)$ belongs to such a part. Since the part considered is of positive measure, we can choose $e_{3}\left(p_{1}\right)$ in such a manner that $F\left(\epsilon_{3}\left(p_{1}\right)\right)$ is defined. Suppose

$$
\begin{equation*}
F\left(e_{3}\left(p_{1}\right)\right)=\left(e_{4}\left(q_{1}\right), e_{4}\left(q_{2}\right), \ldots, e_{4}\left(q_{2+2 g}\right)\right) \tag{4.9}
\end{equation*}
$$

Since $e_{3}\left(p_{1}\right)$ is covered at least twice and $F\left(e_{4}\left(q_{\alpha}\right)\right)$ are the only image--sequences in which $e_{3}\left(p_{1}\right)$ appears, we have for at least two distinct indices $\alpha, \beta(1 \leqslant \alpha, \beta \leqslant 2+2 g)$

$$
\left.F\left(e_{4}!q_{a}\right)\right)=F\left(e_{4}\left(q_{3}\right)\right)=e_{3}\left(p_{1}\right) .
$$

From the definition of the function $F$ it follows that $q_{a}, q_{\beta}$ are distinct non-degenerated critical points of index 0 of the functions $-e_{4}\left(q_{\alpha}\right) \cdot$ $\cdot x(q),-e_{4}\left(q_{\beta}\right) \cdot x(q)$, respectively. Hence for the image-sequence (4.9) we would have $m_{0}^{\prime} \geqslant 2$. But this contradicts the fact that $x$ is a rigid immersion. Thus we have proved that

$$
\underset{H(B .)}{\int L\left(p_{1}, e_{3}\left(p_{1}\right)\right) d V_{2} \wedge d \psi \geqslant-2 \pi^{2} .}
$$

From (4.3), from the above inequality and from the definition of the Gauss curvature we obtain (4.7).

## REFERENCES

[1] S. S. Chern and R.K. Lasof: On the total curvature of immersed manifolds. Amer. Journ. of Math. 79 (1957), 306-318.
[2] A. Sard: The measure of the critical points of differentiable maps. Bull. Amer. Math. Soc. 48 (1942), 883-890.
[3] H. Seifert und W. Threlfall: Variationsrechnung im grossen, New York (1948).
[4] S. S. Chern and R.K. Lashof: On the total curvature of immersed manifolds II, Michigan Math. Journ. 5 (1958), 5-12.

## MAREK ROCHOWSKI

## ZANURZENIA ROZMAITOSCI DWUWYMIAROWYCH W PRZESTRZEŃ EUKLIDESOWA CZTEROWYMIAROWA

## Streszczenie

W pracy podane sa warunki dostateczne na to, żeby zanurzenie rozmaitości dwuwymiarowej, zamkniętej i orientowalnej w przestrzeń euklidesową czterowymiarową indukowało na niej metrykę o krzywiźnie Gaussa nie wszędzie ujemnej. Wynika stąd, że zanurzenia takie nie mogą byé izometriami dla rozmaitości rodzaju $\geqslant 2$ rozważanych jako przestrzenie lokalnie izometryczne z plaszczyzną nieeuklidesowa.

Oddano do Redakcji 20. 4. 70

