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PRACE NAUKOWE UNIWERSYTETU SLASKIEGO W KATOWICACH NR 2
PRACE MATEMATYCZNE 1, 1969

Janusz M atkowski

On some properties of solutions of a functional equation

In the present paper we are concerned with the functional equation
1) e(x) =h(x,e [/(*)]).

wheref(x) and h(x, y) are known real-valued functions of real variables and <p(x) is
unknown.

We assume the following hypotheses:

() f(x) is defined and continuous in an interval <0, a) and

2) 0</(x)<x for xc(0,a);

(1) h(x,y) is defined in a domain Q such that (0, 0) e £2;, moreover, for every
x <0, a), the set Qx= {j:(x, y) e 12}is a nonempty open interval and AX<=£2X, where
AxEh(x, QfM);

(111) h(x, 0) is continuous at x=0, h(0,0)=0 and

3 \h(x, yD-h(x, y2)K»lyi-y2l. 0<o<l,

holds in a neighbourhood of the point (0,0).
We shall prove the following

Theorem. Let hypotheses (I)—(I11) be fulfilled. Then equation (1) has exactly one
solution ¢ defined in <0, a), continuous at x=0 and such that g~0)=0.

1°. If, moreover, f(x) is strictly increasing in <0,a) and h(x,y) is increasing
with respect to either variable in Q, then e is increasing in <0, a) (if, for every
fixed y,h(x, y) is a strictly increasing function of x, then ¢g>is strictly increasing
in <0, a)).

2°. If, besides (I)—(11l1) and hypotheses of 1°, we assume that f(x) is convex
in <0, a), Q is a convex domain and h(x,y) is a convex function of two variables
in Q, then (p is convex in <0, a).

Proof. We choose a ¢>0 and a d>0 such that (3) holds in the set
D—{(x,y):0<x<c, —
By (I11) we may assume that c has been chosen in such a manner that

()] \h(x, 0)|%(1—u)d for xe<O0,c>.



Let F be the set of functions spdefined in <0, ¢>, continuous at x=0 and such that
(5) <p0) = 0; [<p(x)|<d for xe<O0,c>.
The set F with the metric
Q(<Pi. R) = %{g|<Pi(x)-g>2(x)|
is a completemetric space. We define the transform
(6) IKx) = h(x,©[/(x)])
for @eF. It follows from (2) that
@) \p[/(x)]|<d for <peF and xe<0,c>.
Now, from(3) and (4) we get
BMAX) = Th(x,e [/()DI < Ifi(x, pl/(x)]) - h(x,0)
+|h (x, 0)[ < njp[/(x)]] +\h(x, 0)].
Hence and from (2) we see that*lim+>p(x)—0. Since i*(0)=/i(0, ¢(0))=h(Q, 0)=0,
ip(x) is continuous at x=0. From->(08) and (7) we obtain
li7t()Korf+(1 —v)d = d.
This proves that (6) transforms F into itself. Further, we have in virtue of (3) for
*Ai(x) = h(x, (PiUix)]), ip2(x) = h(x, €[/(x)]), o>, qeF,
[i>i(x)-i>2x)| = \h(x,<pll1f(x)])-h (x, 2[/(x)])]

< ukpiC/(x)3—=2[/(x)]I,
whence

i.e., (6) is a contraction map. On account of Banach’s theorem there exists exactly
one solution ¢ e F of equation (1). This solution has a unique extension onto the
whole interval <0, a) (cf. [1], p. 70, Theorem 3.2).

Remark 1. In the book [1] Theorem 3.2 has been proved under the assumption
of the continuity of h(x,y) in £3 but Theorem 3.2 will remain valid without this
assumption (and the proof is the same), except that then the solution need not be
continuous.

For the proof of 1° we define the space Ft

Fj = {<peF :cp is increasing in <0, c>}.
Let us take 0" x,<x2<r/. From the monotonicity of /(x) and from (2) we get

0</(x)</(x2)<d.



For q cFx we have
0<q[/(*)]<e U\xDj"a
Now from (6) and the monotonicity of h(x,y) we obtain
iA(xi) = h(xt, vU(.xiyD<:h(x2, <p[/(xD)])<h(x2, g>U(x2]) = *(x2),

i.e., fJ is increasing in <0, c>. Hence and from the first part of the proof it follows
that I>e Fx. Since Ft is a complete metric space, the unique solution q continuous
at x=0 and such that (0)=0 must belong to FI. Thus q is increasing in <0, c>.
Now we shall prove that q is increasing in <0, a). For this purpose we denote by x0 the
supremum of all b such that q is monotonic in <0, b) and suppose that x0<a. From (2)
we get/(x0)<x0. It follows from the continuity of/(x) that there exists a number
a>x0such that for a e <a-0, a) we have/(x)<x0. Hence for 0<xx<x2<a we obtain

a (Xj) = h(xl,q [/(X)]) <h(x2, p[/(x2]) = q (x2),

i.e., P is monotonic in <0, a), a>x0. This contradiction completes the proof of
the monotonicity of q in <0, a).

If, for every fixed y,h{x,y) is a strictly increasing function of the variable x, then
for 0<xx<x2<a we have

q(xD) = h(xl,q [/(x))]) <h(x2,q [/(X))])<h(x2, p[/(x2)]) = q(x2),

which proves that q is strictly increasing.

Remark 2. It is not sufficient to suppose that h{x,y) is strictly increasing in the
variable y. For instance, the unique solution continuous at x=0 of the equation

q(x)=\q [/(x)]

is q(x)=0, and h(x,y)=\y is strictly monotonic with respectto y.

For the proof of 2° we define the space F2:

F2= {geF1l:q is convex in <0, c>}.

From the convexity and monotonicity of/, /?, and q we get for 0" xt”c, 0< a®2s?c
and 1/ given by formula (6)

JNA Y =h X g N oxl+ x2) A <hAXE+x2 M~I(x-])+/(x2)-

L(xj+x2 g [/(x)]+q[/(X]*<h(xi, g [/(x]j]) +h(x2,q[/(x]) ~
A(xi) + A(x2)

Hence (/'(a) is convex in <0, ¢>. In view of the inclusion F2czF1and of the preceding
part of the proof, (6) transforms F2 into itself. Evidently, F2 is a complete metric
space, and thus the unique solution g continuous at x=0 and such that q(0)=0
must be convex. Similary as in preceding case we can prove that g is convex in <0, a).

Remark 3. The first part of the theorem is implicitly contained in the book [1]
(comp, the remark at the end of §4, Chapter Ill, p. 54).
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[1] M. Kuczma: Functional Equations in a Single Variable, Monografie Matematyczne 46 (PWN,
Warszawa 1968).

Janusz M atkowski

O PEWNYCH WEASNOSCIACH ROZWIAZAN ROWNANIA FUNKCYJNEGO
Streszczenie

W pracy dowodzi sie twierdzenia ktére orzeka, ze jezeli dane funkcje/ i h sa monofoniczne
(wzglednie monotoniczne i wypukie) to rozwigzanie réwnania (1) jest monofoniczne (wypukte).

Oddano do Redakcji 1 sierpnia 1969 r.



