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P R A C E  N A U K O W E  U N IW E R S Y T E T U  Ś L Ą S K IE G O  W  K A T O W IC A C H  N R  2

P R A C E  M A T E M A T Y C Z N E  I ,  1969

J a n u s z  M a t k o w s k i  

On som e properties o f solutions o f a functional equation

In the present paper we are concerned with the functional equation

(1) ę ( x )  = h ( x , ę  [ /(* ) ] ) ,

where f ( x )  and h(x ,  y ) are known real-valued functions of real variables and <p(x) is 
unknown.

We assume the following hypotheses:
(I) f ( x )  is defined and continuous in an interval <0, a) and

(2) 0 < / (x) < x  for x c (0, a) ;

(II) h(x ,  y ) is defined in a domain Q such that (0, 0) e £2; moreover, for every 
x  e <0, a), the set Qx=  { j:(x , y) e 12} is a nonempty open interval and AX<=£2X, where 
Axd= h (x , Qf M );

(III) h(x ,  0) is continuous at x = 0 , h ( 0 , 0 )= 0  and

(3) \h(x ,  y 1) - h ( x ,  y2) K » l y i - y 2l. 0 < o < l „

holds in a neighbourhood of the point (0 ,0).
We shall prove the following

T h e o r e m . Let hypotheses (I)—(III) be fulfilled. Then equation (1) has exactly one 
solution ę  defined in <0 , a), continuous at x = 0  and such that q>(0) = 0 .

1°. If, moreover, f ( x )  is strictly increasing in <0,a )  and h ( x , y )  is increasing 
with respect to either variable in Q, then ę  is increasing in <0, a) (if, fo r  every 

f ixed  y , h ( x ,  y ) is a strictly increasing function o f  x, then q> is strictly increasing 
in <0, a)).

2°. If, besides (I)—(III) and hypotheses o f  1°, we assume that f ( x )  is convex 
in <0, a), Q is a convex domain and h ( x , y )  is a convex function o f  two variables 
in Q, then (p is convex in <0, a).

P ro o f . We choose a c> 0 and a d > 0 such that (3) holds in the set 

D — {(x, y) : 0 < x < c ,  —

By (III) we may assume that c has been chosen in such a manner that

(4) \h(x ,  0 ) |3%(1 — u)d for x e < 0 ,c > .



Let F  be the set of functions <p defined in <0, c>, continuous at x = 0  and such that

(5) <jp(0) =  0 ;  |<p(x)|<d for x e < 0 ,c > .

The set F  with the metric

Q(<Pi. <Pï ) =  sup |<Pi(x)-ç>2(x)|
<o ,c>

is a complete metric space. We define the transform

(6) lK x) =  h ( x , © [ / (x)]) 

for <ja e F. It follows from (2) that

(7) \<p[ / ( x ) ] |< d  for <peF and x e < 0 ,c > .

Now, from (3) and (4) we get

(8) |iA (x)| =  I h ( x , ę  [/(x )]) | <  |/i ( x , <p [ /(x )])  -  h ( x , 0)|

+  |h (x , 0)| < n |<p [ /(x ) ] | +  \h ( x , 0) | .

Hence and from (2) we see that lim >p(x)—0. Since i^(0)= /i(0, ę(0))=h(Q,  0 )= 0 ,
*->o+

ip(x) is continuous at x = 0 . From  (8) and (7) we obtain

| i / f ( x ) K o r f + ( l  —  v ) d  =  d .

This proves that (6) transforms F  into itself. Further, we have in virtue of (3) for 

•Ai(x) =  h ( x ,  (PiUix)]),  ip2(x) = h ( x ,  <p2[ / (x ) ] ) ,  q>i, cp2e F , 

|i> i(x)-i>2(x)| =  \h(x,<plI f (x )])- h ( x ,  <p2[ /(x )]) |

<  u kp i C/(x)3— >̂2 [ /(x )]  I ,
whence

i.e., (6) is a contraction map. On account of B a n a c h ’s  theorem there exists exactly 
one solution ę  e F  of equation (1). This solution has a unique extension onto the 
whole interval <0, a) (cf. [1], p. 70, Theorem 3.2).

R e m a r k  1. In the book [1] Theorem 3.2 has been proved under the assumption 
of the continuity of h ( x , y ) in £3 but Theorem 3.2 will remain valid without this 
assumption (and the proof is the same), except that then the solution need not be 
continuous.

For the proof of 1° we define the space Ft

F  j =  {<peF :cp is increasing in <0, c>} .

Let us take 0 ^ x , < x 2<r/. From the monotonicity of /(x )  and from (2) we get

0 < / ( x 1) < / ( x 2) < d .



For q  c F x we have
0 <  q  [ / (* i) ]  <  ę  U \ x 2)j ^  a

Now from (6) and the monotonicity of h ( x , y )  we obtain

iA(xi) =  h ( x t , v U ( . x iy])<:h ( x 2 , <p[/(x1) ] )< h (x 2 , q>U(x2y]) = ^ ( x 2) ,

i.e., t]/ is increasing in <0, c>. Hence and from the first part of the proof it follows 
that 11> e F x. Since Ft is a complete metric space, the unique solution q  continuous 
at x = 0  and such that (0 )= 0  must belong to F l . Thus q  is increasing in <0, c>. 
Now we shall prove that q  is increasing in <0, a). For this purpose we denote by x0 the 
supremum of all b such that q  is monotonic in <0, b) and suppose that x 0<a. From (2) 
we get / ( x 0) < x 0. It follows from the continuity of /(x )  that there exists a number 
a > x 0 such that for a  e <a-0, a) we have / ( x ) < x 0. Hence for 0 < x x< x 2< a  we obtain

q  (Xj) = h ( x l , q  [/(X j)]) <  h (x2 , <p [ / ( x 2)]) =  q  (x2) ,

i.e., <p is monotonic in <0, a), a > x 0. This contradiction completes the proof of 
the monotonicity of q  in <0 , a).

If, for every fixed y , h { x , y )  is a strictly increasing function of the variable x, then 
for 0 < x x< x 2< a  we have

q ( x 1) = h ( x l , q  [ / (x j) ] )  < h ( x 2 , q  [ /(X j)]) <  h (x2 , (p [ / ( x 2)]) =  q  (x2) ,

which proves that q  is strictly increasing.

R e m a r k  2. It is not sufficient to suppose that h{ x ,y )  is strictly increasing in the 
variable y. For instance, the unique solution continuous at x = 0  of the equation

q  (x) =  \ q  [ /(x )]

is q ( x ) = 0 , and h ( x , y ) = \ y  is strictly monotonic with respect to y.
For the proof of 2° we define the space F2:

F 2 = { q e F 1 : q  is convex in <0 , c>} .

From the convexity and monotonicity of / ,  /?, and q  we get for 0 ^ x t ^ c ,  0 <  a*2 s? c 
and 11/ given by formula (6)

J Xl ^ )  =  h X̂ , q ^ x-1 +  x2J  ̂  < h ̂ Xt +  x2 ^|~/(x - |)+ /(x 2)- 

/; (  X j + x 2 q  [ / ( x t)] +  q  [ /(X 2)]^ < h ( x i , g  [ / ( x j ] )  +  h (x2 , q  [ / ( x 2)]) ^

iA(x i) +  iA(x2)

Hence (/'(a) is convex in <0, c>. In view of the inclusion F2czF1 and of the preceding 
part of the proof, (6) transforms F2 into itself. Evidently, F2 is a complete metric 
space, and thus the unique solution q  continuous at x = 0  and such that q (0 )= 0  
must be convex. Similary as in preceding case we can prove that q  is convex in <0, a).

R e m a r k  3. The first part of the theorem is implicitly contained in the book [1] 
(comp, the remark at the end of § 4, Chapter III, p. 54).

6 — P ra c e  m a te m a ty c z n e  t, 1869 —  81 —



[1] M. K u c z m a : Functional Equations in a  Single Variable, M onografie Matematyczne 46 (PW N, 
Warszawa 1968).

J a n u s z  M a t k o w s k i

O PEW NYCH  W ŁASNOŚCIACH RO ZW IĄZAŃ R Ó W N A N IA  FU N K C Y JN E G O

S tr e s z c z e n ie

W pracy dowodzi się twierdzenia które orzeka, że jeżeli dane funkcje /  i h są monofoniczne 
(względnie m onotoniczne i wypukłe) to rozwiązanie równania ( 1) jest m onofoniczne (wypukłe).

Oddano do Redakcji 1 sierpnia 1969 r.


