

You have downloaded a document from RE-BUŚ
 repository of the University of Silesia in Katowice

Title: On some properties of solutions of a functional equation

Author: Janusz Matkowski

Citation style: Matkowski Janusz. (1969). On some properties of solutions of a functional equation. "Prace Naukowe Uniwersytetu Śląskiego w Katowicach. Prace Matematyczne" (Nr 1 (1969), s. 79-82)

Uznanie autorstwa - Użycie niekomercyjne - Bez utworów zależnych Polska - Licencja ta zezwala na rozpowszechnianie, przedstawianie i wykonywanie utworu jedynie w celach niekomercyjnych oraz pod warunkiem zachowania go w oryginalnej postaci (nie tworzenia utworów zaleznych).

Janusz Matkowski

On some properties of solutions of a functional equation

In the present paper we are concerned with the functional equation

$$
\begin{equation*}
\varphi(x)=h(x, \varphi[f(x)]) \tag{1}
\end{equation*}
$$

where $f(x)$ and $h(x, y)$ are known real-valued functions of real variables and $\varphi(x)$ is unknown.

We assume the following hypotheses:
(I) $f(x)$ is defined and continuous in an interval $\langle 0, a)$ and

$$
\begin{equation*}
0<f(x)<x \quad \text { for } \quad x \in(0, a) ; \tag{2}
\end{equation*}
$$

(II) $h(x, y)$ is defined in a domain Ω such that $(0,0) \in \Omega$; moreover, for every $x \in\langle 0, a)$, the set Ω_{x} def $\{y:(x, y) \in \Omega\}$ is a nonempty open interval and $\Lambda_{x} \subset \Omega_{x}$, where $\Lambda_{x}=\frac{\text { def }}{=} h\left(x, \Omega_{f(x)}\right)$;
(III) $h(x, 0)$ is continuous at $x=0, h(0,0)=0$ and

$$
\begin{equation*}
\left|h\left(x, y_{1}\right)-h\left(x, y_{2}\right)\right| \leqslant v\left|y_{1}-y_{2}\right|, \quad 0<v<1 \tag{3}
\end{equation*}
$$

holds in a neighbourhood of the point $(0,0)$.
We shall prove the following
Theorem. Let hypotheses (I)-(III) be fulfilled. Then equation (1) has exactly one solution φ defined in $\langle 0, a)$, continuous at $x=0$ and such that $\varphi(0)=0$.
1°. If, moreover, $f(x)$ is strictly increasing in $\langle 0, a)$ and $h(x, y)$ is increasing with respect to either variable in Ω, then φ is increasing in $\langle 0, a$) (if, for every fixed $y, h(x, y)$ is a strictly increasing function of x, then φ is strictly increasing in $\langle 0, a)$).
2°. If, besides (I)-(III) and hypotheses of 1°, we assume that $f(x)$ is convex in $\langle 0, a), \Omega$ is a convex domain and $h(x, y)$ is a convex function of two variables in Ω, then φ is convex in $\langle 0, a$).

Proof. We choose a $c>0$ and a $d>0$ such that (3) holds in the set

$$
D=\{(x, y): 0 \leqslant x \leqslant c,-d \leqslant y \leqslant d\} .
$$

By (III) we may assume that c has been chosen in such a manner that

$$
\begin{equation*}
|h(x, 0)| \leqslant(1-v) d \quad \text { for } \quad x \in\langle 0, c\rangle . \tag{4}
\end{equation*}
$$

Let F be the set of functions φ defined in $\langle 0, c\rangle$, continuous at $x=0$ and such that

$$
\begin{equation*}
\varphi(0)=0 ; \quad|\varphi(x)| \leqslant d \quad \text { for } \quad x \in\langle 0, c\rangle \tag{5}
\end{equation*}
$$

The set F with the metric

$$
\varrho\left(\varphi_{1}, \varphi_{2}\right)=\sup _{\langle 0, c\rangle}\left|\varphi_{1}(x)-\varphi_{2}(x)\right|
$$

is a complete metric space. We define the transform

$$
\begin{equation*}
\psi(x)=h(x, \varphi[f(x)]) \tag{6}
\end{equation*}
$$

for $\varphi \in F$. It follows from (2) that

$$
\begin{equation*}
|\varphi[f(x)]| \leqslant d \quad \text { for } \quad \varphi \in F \quad \text { and } \quad x \in\langle 0, c\rangle \tag{7}
\end{equation*}
$$

Now, from (3) and (4) we get

$$
\begin{align*}
|\psi(x)|= & |h(x, \varphi[f(x)])| \leqslant|h(x, \varphi[f(x)])-h(x, 0)| \tag{8}\\
& +|h(x, 0)| \leqslant v|\varphi[f(x)]|+|h(x, 0)| .
\end{align*}
$$

Hence and from (2) we see that $\lim _{x \rightarrow 0+} \psi(x)=0$. Since $\psi(0)=h(0, \varphi(0))=h(0,0)=0$, $\psi(x)$ is continuous at $x=0$. From (8) and (7) we obtain

$$
|\psi(x)| \leqslant v d+(1-v) d=d .
$$

This proves that (6) transforms F into itself. Further, we have in virtue of (3) for

$$
\begin{gathered}
\psi_{1}(x)=h\left(x, \varphi_{1}[f(x)]\right), \quad \psi_{2}(x)=h\left(x, \varphi_{2}[f(x)]\right), \quad \varphi_{1}, \varphi_{2} \in F \\
\left|\psi_{1}(x)-\psi_{2}(x)\right|=\mid \\
\leqslant\left(x, \varphi_{1}[f(x)]\right)-h\left(x, \varphi_{2}[f(x)]\right) \mid \\
\leqslant v\left|\varphi_{1}[f(x)]-\varphi_{2}[f(x)]\right|
\end{gathered}
$$

whence

$$
\varrho\left(\psi_{1}, \psi_{2}\right) \leqslant v \varrho\left(\varphi_{1}, \varphi_{2}\right),
$$

i.e., (6) is a contraction map. On account of BANACH's theorem there exists exactly one solution $\varphi \in F$ of equation (1). This solution has a unique extension onto the whole interval 〈0,a) (cf. [1], p. 70, Theorem 3.2).

Remark 1. In the book [1] Theorem 3.2 has been proved under the assumption of the continuity of $h(x, y)$ in Ω but Theorem 3.2 will remain valid without this assumption (and the proof is the same), except that then the solution need not be continuous.

For the proof of 1° we define the space F_{1}

$$
F_{1}=\{\varphi \in F: \varphi \text { is increasing in }\langle 0, c\rangle\} .
$$

Let us take $0 \leqslant x_{1}<x_{2} \leqslant d$. From the monotonicity of $f(x)$ and from (2) we get

$$
0 \leqslant f\left(x_{1}\right)<f\left(x_{2}\right) \leqslant d
$$

For $\varphi \in F_{1}$ we have

$$
0 \leqslant \varphi\left[f\left(x_{1}\right)\right] \leqslant \varphi\left[f\left(x_{2}\right)\right] \leqslant a .
$$

Now from (6) and the monotonicity of $h(x, y)$ we obtain

$$
\psi\left(x_{1}\right)=h\left(x_{1}, \varphi\left[f\left(x_{1}\right)\right]\right) \leqslant h\left(x_{2}, \varphi\left[f\left(x_{1}\right)\right]\right) \leqslant h\left(x_{2}, \varphi\left[f\left(x_{2}\right)\right]\right)=\psi\left(x_{2}\right),
$$

i.e., ψ is increasing in $\langle 0, c\rangle$. Hence and from the first part of the proof it follows that $\psi \in F_{1}$. Since F_{1} is a complete metric space, the unique solution φ continuous at $x=0$ and such that $\varphi(0)=0$ must belong to F_{1}. Thus φ is increasing in $\langle 0, c\rangle$. Now we shall prove that φ is increasing in $\langle 0, a)$. For this purpose we denote by x_{0} the supremum of all b such that φ is monotonic in $\left\langle 0, b\right.$) and suppose that $x_{0}<a$. From (2) we get $f\left(x_{0}\right)<x_{0}$. It follows from the continuity of $f(x)$ that there exists a number $x>x_{0}$ such that for $x \epsilon\left\langle x_{0}, \alpha\right)$ we have $f(x)<x_{0}$. Hence for $0 \leqslant x_{1}<x_{2} \leqslant \alpha$ we obtain

$$
\varphi\left(x_{1}\right)=h\left(x_{1}, \varphi\left[f\left(x_{1}\right)\right]\right) \leqslant h\left(x_{2}, \varphi\left[f\left(x_{2}\right)\right]\right)=\varphi\left(x_{2}\right)
$$

i.e., φ is monotonic in $\langle 0, \alpha\rangle, \alpha\rangle x_{0}$. This contradiction completes the proof of the monotonicity of φ in $\langle 0, a)$.

If, for every fixed $y, h(x, y)$ is a strictly increasing function of the variable x, then for $0 \leqslant x_{1}<x_{2}<a$ we have

$$
\varphi\left(x_{1}\right)=h\left(x_{1}, \varphi\left[f\left(x_{1}\right)\right]\right)<h\left(x_{2}, \varphi\left[f\left(x_{1}\right)\right]\right) \leqslant h\left(x_{2}, \varphi\left[f\left(x_{2}\right)\right]\right)=\varphi\left(x_{2}\right),
$$

which proves that φ is strictly increasing.
Remark 2. It is not sufficient to suppose that $h(x, y)$ is strictly increasing in the variable y. For instance, the unique solution continuous at $x=0$ of the equation

$$
\varphi(x)=\frac{1}{2} \varphi[f(x)]
$$

is $\varphi(x) \equiv 0$, and $h(x, y)=\frac{1}{2} y$ is strictly monotonic with respect to y.
For the proof of 2° we define the space F_{2} :

$$
F_{2}=\left\{\varphi \in F_{1}: \varphi \text { is convex in }\langle 0, c\rangle\right\}
$$

From the convexity and monotonicity of f, h, and φ we get for $0 \leqslant x_{1} \leqslant c, 0 \leqslant x_{2} \leqslant c$ and ψ given by formula (6)

$$
\begin{array}{r}
\psi\left(\frac{x_{1}+x_{2}}{2}\right)=h\left(\frac{x_{1}+x_{2}}{2}, \varphi\left[f\left(\frac{x_{1}+x_{2}}{2}\right)\right]\right) \leqslant h\left(\frac{x_{1}+x_{2}}{2}, \varphi\left[\frac{f\left(x_{1}\right)+f\left(x_{2}\right)}{2}\right]\right) \\
\leqslant h\left(\frac{x_{1}+x_{2}}{2}, \frac{\varphi\left[f\left(x_{1}\right)\right]+\varphi\left[f\left(x_{2}\right)\right]}{2}\right) \leqslant \frac{h\left(x_{1}, \varphi\left[f\left(x_{1}\right)\right]\right)+h\left(x_{2}, \varphi\left[f\left(x_{2}\right)\right]\right)}{2}= \\
=\frac{\psi\left(x_{1}\right)+\psi\left(x_{2}\right)}{2} .
\end{array}
$$

Hence $\psi(\lambda)$ is convex in $\langle 0, c\rangle$. In view of the inclusion $F_{2} \subset F_{1}$ and of the preceding part of the proof, (6) transforms F_{2} into itself. Evidently, F_{2} is a complete metric space, and thus the unique solution φ continuous at $x=0$ and such that $\varphi(0)=0$ must be convex. Similary as in preceding case we can prove that φ is convex in $\langle 0, a)$.

Remark 3. The first part of the theorem is implicitly contained in the book [1] (comp. the remark at the end of $\S 4$, Chapter III, p. 54).

REFERENCE

[1] M. Kuczma: Functional Equations in a Single Variable, Monografie Matematyczne 46 (PWN, Warszawa 1968).

Janusz Matkowski

O PEWNYCH WŁASNOŚCIACH ROZWIAZAŃ RÓWNANIA FUNKCYJNEGO

Streszczenie

W pracy dowodzi się twierdzenia które orzeka, że jeżeli dane funkcje \boldsymbol{f} i h są monotoniczne (względnie monotoniczne i wypukłe) to rozwiązanie równania (1) jest monotoniczne (wypukłe).

Oddano do Redakcji 1 sierpnia 1969 r.

