

You have downloaded a document from RE-BUŚ repository of the University of Silesia in Katowice

Title: On some properties of solutions of a functional equation

Author: Janusz Matkowski

Citation style: Matkowski Janusz. (1969). On some properties of solutions of a functional equation. "Prace Naukowe Uniwersytetu Śląskiego w Katowicach. Prace Matematyczne" (Nr 1 (1969), s. 79-82)

Uznanie autorstwa - Użycie niekomercyjne - Bez utworów zależnych Polska - Licencja ta zezwala na rozpowszechnianie, przedstawianie i wykonywanie utworu jedynie w celach niekomercyjnych oraz pod warunkiem zachowania go w oryginalnej postaci (nie tworzenia utworów zależnych).

Biblioteka Uniwersytetu Śląskiego

Ministerstwo Nauki i Szkolnictwa Wyższego PRACE MATEMATYCZNE I, 1969

JANUSZ MATKOWSKI

On some properties of solutions of a functional equation

In the present paper we are concerned with the functional equation

(1)
$$\varphi(\mathbf{x}) = h(\mathbf{x}, \varphi[f(\mathbf{x})]),$$

where f(x) and h(x, y) are known real-valued functions of real variables and $\varphi(x)$ is unknown.

We assume the following hypotheses:

(I) f(x) is defined and continuous in an interval (0, a) and

(2)
$$0 < f(x) < x$$
 for $x \in (0, a)$;

(II) h(x, y) is defined in a domain Ω such that $(0, 0) \in \Omega$; moreover, for every $x \in \langle 0, a \rangle$, the set $\Omega_x \stackrel{\text{def}}{=} \{y: (x, y) \in \Omega\}$ is a nonempty open interval and $\Lambda_x \subset \Omega_x$, where $\Lambda_x \stackrel{\text{def}}{=} h(x, \Omega_{f(x)})$;

(III) h(x, 0) is continuous at x=0, h(0, 0)=0 and

(3)
$$|h(x, y_1) - h(x, y_2)| \leq v |y_1 - y_2|, \quad 0 < v < 1$$

holds in a neighbourhood of the point (0, 0).

We shall prove the following

THEOREM. Let hypotheses (I)—(III) be fulfilled. Then equation (1) has exactly one solution φ defined in (0, a), continuous at x=0 and such that $\varphi(0)=0$.

1°. If, moreover, f(x) is strictly increasing in $\langle 0, a \rangle$ and h(x, y) is increasing with respect to either variable in Ω , then φ is increasing in $\langle 0, a \rangle$ (if, for every fixed y, h(x, y) is a strictly increasing function of x, then φ is strictly increasing in $\langle 0, a \rangle$).

2°. If, besides (I)—(III) and hypotheses of 1°, we assume that f(x) is convex in $\langle 0, a \rangle$, Ω is a convex domain and h(x, y) is a convex function of two variables in Ω , then φ is convex in $\langle 0, a \rangle$.

Proof. We choose a c>0 and a d>0 such that (3) holds in the set

$$D = \{(x, y) : 0 \leq x \leq c, -d \leq y \leq d\}.$$

By (III) we may assume that c has been chosen in such a manner that

(4)
$$|h(x, 0)| \leq (1-v)d$$
 for $x \in \langle 0, c \rangle$.

- 79 ---

Let F be the set of functions φ defined in $\langle 0, c \rangle$, continuous at x=0 and such that

(5)
$$\varphi(0) = 0; \quad |\varphi(x)| \leq d \quad \text{for} \quad x \in \langle 0, c \rangle.$$

The set F with the metric

$$\varrho(\varphi_1, \varphi_2) = \sup_{\langle 0, c \rangle} |\varphi_1(x) - \varphi_2(x)|$$

is a complete metric space. We define the transform

(6)
$$\psi(x) = h(x, \varphi[f(x)])$$

for $\varphi \in F$. It follows from (2) that

(7)
$$|\varphi[f(x)]| \leq d$$
 for $\varphi \in F$ and $x \in \langle 0, c \rangle$.

Now, from (3) and (4) we get

(8)
$$|\psi(x)| = |h(x, \varphi[f(x)])| \le |h(x, \varphi[f(x)]) - h(x, 0)| + |h(x, 0)| \le v |\varphi[f(x)]| + |h(x, 0)|.$$

Hence and from (2) we see that $\lim_{x\to 0^+} \psi(x) = 0$. Since $\psi(0) = h(0, \varphi(0)) = h(0, 0) = 0$, $\psi(x)$ is continuous at x = 0. From (8) and (7) we obtain

$$|\psi(x)| \leq vd + (1-v)d = d.$$

This proves that (6) transforms F into itself. Further, we have in virtue of (3) for

$$\begin{split} \psi_1(x) &= h(x, \varphi_1[f(x)]), \quad \psi_2(x) = h(x, \varphi_2[f(x)]), \quad \varphi_1, \varphi_2 \in F, \\ &|\psi_1(x) - \psi_2(x)| = |h(x, \varphi_1[f(x)]) - h(x, \varphi_2[f(x)])| \\ &\leq v |\varphi_1[f(x)] - \varphi_2[f(x)]|, \end{split}$$

whence

$$\varrho(\psi_1,\psi_2) \leq \upsilon \varrho(\varphi_1,\varphi_2),$$

i.e., (6) is a contraction map. On account of BANACH's theorem there exists exactly one solution $\varphi \in F$ of equation (1). This solution has a unique extension onto the whole interval $\langle 0, a \rangle$ (cf. [1], p. 70, Theorem 3.2).

REMARK 1. In the book [1] Theorem 3.2 has been proved under the assumption of the continuity of h(x, y) in Ω but Theorem 3.2 will remain valid without this assumption (and the proof is the same), except that then the solution need not be continuous.

For the proof of 1° we define the space F_1

 $F_1 = \{\varphi \,\epsilon \, F : \varphi \text{ is increasing in } \langle 0, c \rangle \}.$

Let us take $0 \le x_1 < x_2 \le d$. From the monotonicity of f(x) and from (2) we get

$$0 \leqslant f(x_1) < f(x_2) \leqslant d$$

For $\varphi \in F_1$ we have

$$0 \leq \varphi \left[f(x_1) \right] \leq \varphi \left[f(x_2) \right] \leq a$$

Now from (6) and the monotonicity of h(x, y) we obtain

$$\psi(x_1) = h(x_1, \varphi[f(x_1)]) \leq h(x_2, \varphi[f(x_1)]) \leq h(x_2, \varphi[f(x_2)]) = \psi(x_2),$$

i.e., ψ is increasing in $\langle 0, c \rangle$. Hence and from the first part of the proof it follows that $\psi \in F_1$. Since F_1 is a complete metric space, the unique solution φ continuous at x=0 and such that $\varphi(0)=0$ must belong to F_1 . Thus φ is increasing in $\langle 0, c \rangle$. Now we shall prove that φ is increasing in $\langle 0, a \rangle$. For this purpose we denote by x_0 the supremum of all b such that φ is monotonic in $\langle 0, b \rangle$ and suppose that $x_0 < a$. From (2) we get $f(x_0) < x_0$. It follows from the continuity of f(x) that there exists a number $\alpha > x_0$ such that for $x \in \langle x_0, \alpha \rangle$ we have $f(x) < x_0$. Hence for $0 \leq x_1 < x_2 \leq \alpha$ we obtain

$$\varphi(x_1) = h(x_1, \varphi[f(x_1)]) \leq h(x_2, \varphi[f(x_2)]) = \varphi(x_2),$$

i.e., φ is monotonic in $\langle 0, \alpha \rangle$, $\alpha > x_0$. This contradiction completes the proof of the monotonicity of φ in $\langle 0, a \rangle$.

If, for every fixed y, h(x, y) is a strictly increasing function of the variable x, then for $0 \le x_1 \le x_2 \le a$ we have

$$\varphi(x_1) = h\left(x_1, \varphi[f(x_1)]\right) < h\left(x_2, \varphi[f(x_1)]\right) \le h\left(x_2, \varphi[f(x_2)]\right) = \varphi(x_2)$$

which proves that φ is strictly increasing.

REMARK 2. It is not sufficient to suppose that h(x, y) is strictly increasing in the variable y. For instance, the unique solution continuous at x=0 of the equation

$$\varphi(\mathbf{x}) = \frac{1}{2}\varphi[f(\mathbf{x})]$$

is $\varphi(x) \equiv 0$, and $h(x, y) = \frac{1}{2}y$ is strictly monotonic with respect to y.

For the proof of 2° we define the space F_2 :

 $F_2 = \{\varphi \, \epsilon \, F_1 : \varphi \text{ is convex in } \langle 0, c \rangle \}.$

From the convexity and monotonicity of f, h, and φ we get for $0 \le x_1 \le c$, $0 \le x_2 \le c$ and ψ given by formula (6)

$$\begin{split} \psi\left(\frac{x_1+x_2}{2}\right) &= h\left(\frac{x_1+x_2}{2}, \varphi\left[f\left(\frac{x_1+x_2}{2}\right)\right]\right) \leqslant h\left(\frac{x_1+x_2}{2}, \varphi\left[\frac{f(x_1)+f(x_2)}{2}\right]\right) \\ &\leqslant h\left(\frac{x_1+x_2}{2}, \frac{\varphi\left[f(x_1)\right]+\varphi\left[f(x_2)\right]}{2}\right) \leqslant \frac{h(x_1, \varphi\left[f(x_1)\right])+h(x_2, \varphi\left[f(x_2)\right])}{2} = \\ &= \frac{\psi(x_1)+\psi(x_2)}{2}. \end{split}$$

Hence $\psi(x)$ is convex in $\langle 0, c \rangle$. In view of the inclusion $F_2 \subset F_1$ and of the preceding part of the proof, (6) transforms F_2 into itself. Evidently, F_2 is a complete metric space, and thus the unique solution φ continuous at x=0 and such that $\varphi(0)=0$ must be convex. Similarly as in preceding case we can prove that φ is convex in $\langle 0, a \rangle$.

REMARK 3. The first part of the theorem is implicitly contained in the book [1] (comp. the remark at the end of § 4, Chapter III, p. 54).

REFERENCE

[1] M. KUCZMA: Functional Equations in a Single Variable, Monografie Matematyczne 46 (PWN, Warszawa 1968).

JANUSZ MATKOWSKI

O PEWNYCH WŁASNOŚCIACH ROZWIĄZAŃ RÓWNANIA FUNKCYJNEGO

Streszczenie

W pracy dowodzi się twierdzenia które orzeka, że jeżeli dane funkcje f i h są monotoniczne (względnie monotoniczne i wypukłe) to rozwiązanie równania (1) jest monotoniczne (wypukłe).

Oddano do Redakcji 1 sierpnia 1969 r.