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Abstract: An evolutionary algorithm has been developed for 

the design of a diesel engine combustion chamber in order to 
fulfill present day and future regulations about pollutant 
emissions and greenhouse gases. The competitive goals to be 
achieved in engine optimization are the reduction of emission 
levels (soot, NOx and HC) and the improvement of specific fuel 
consumption. They have been taken into account by using a 
multi-objective approach implemented in an optimization tool 
called HiPerGEO, which is characterized by a very small 
population and a mechanism of reinizialization, combined with 
an external memory to store non-dominated solutions.  

The method was applied to the design of the combustion 
chamber profile and numerical simulations were performed 
with a modified version of the KIVA3V code to evaluate the 
fitness values of the solutions. The chamber profile was defined 
according to five geometrical parameters used as inputs to the 
optimization method. The output of the simulations in terms of 
emissions and IMEP were used to define four different 
objective functions. The search for the optimum was performed 
by applying the Pareto optimality criterion so that it is not 
bounded to arbitrary weights assigned to each objective. At the 
end of the simulation, the user can choose from the final Pareto 
set the best compromise solution for different applications. 

The method allows the optimization with respect to different 
engine operating conditions, i.e. load and speed values. In the 
present investigation, four operating modes were considered 
and weights were assigned to them according to their 
importance in the reduction of emissions and fuel consumption. 
The use of a 3D simulation code to simulate the behavior of the 
engine with respect to four operating modes is a very time 
expensive approach. To reduce the required computational 
time, which is prohibitive on a sequential machine, grid 
technologies were implemented in a grid portal named 
DESGrid.  
 

Keywords: Grid technologies, industrial problem, micro genetic 
algorithm, multi-objective optimization, Diesel engines, clustering.  

I. Introduction 

The optimization of an internal combustion engine is a 

challenging task for the following reasons. 
• The potentially large number of options to be tested due 

to the many possible choices in both design and 
operating conditions 

• The necessity to deal with both continuous and discrete 
variables 

• The multiple and competitive goals to be achieved. A 
typical case is the contemporary reduction of soot and 
NOx emissions in a diesel engine. Most measures taken 
to reduce particulate will increase NOx, and vice versa  
This is due to the competitive mechanisms of formation 
of these pollutions which both depend on local 
temperature and air fuel mixing. This problem is called 
the “Diesel dilemma” 

• The nonlinearities and the complex interactions among 
design variables and optimization goals 

• The presence of constraints, restrictions and limits that 
the designer must meet due to regulations and 
performance requirements 

• The vague distinction between constraints and objective 
functions 

• The necessity of using a predictive simulation code to 
model the thermo and fluid dynamic processes that take 
place in an internal combustion engine 

• The high computational time due to the execution of a 
large number of simulations. 

 
Genetic algorithms (GAs) are suitable for engine 

optimization thanks to their high robustness and their 
capability to deal with multi-objective optimization. 
Moreover, they are simple to use and to combine with 
existing simulation code without significant modifications. 
The implicit parallel nature of GAs make it easy to exploit 
the growing parallel computing power. In fact, they work 
with a population of solutions, then multiple optimal 
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individuals can be captured in a single run. This is another 
reason for using GAs to solve a multi-objective problem. On 
the other hand, the convergence rate of a GA can be low if 
high accuracy is required. A possible way to achieve a faster 
convergence rate is the use of a micro-GA approach [3], 
which reduces the amount of comparisons required to 
generate the Pareto front. 

The combination of GAs and numerical simulations for 
engine optimization has been considered by Reitz and his 
research group who applied a computer code (KIVA-GA) to 
optimize the combustion chamber geometry together with 
several engine input parameters (e.g. EGR, injection profile, 
etc.) for a single operating mode [15]-[16]-[17]. De Risi et 
al. [7]-[4]-[5] found that the effectiveness of a particular 
combustion chamber in reducing emissions depends on 
engine load and operating conditions, which means that 
engines need to be optimized for different operating 
conditions. Senecal et al. [14] applied the KIVA-GA method 
to optimize the chamber design for two operating modes. 
The mesh generator used by Senecal permits a large variety 
of shapes, but the results presented in [14] are unsuitable for 
practical application. 

The method used by Reitz is based on the definition of a 
merit function to take into account several objectives, i.e. 
NOx and soot emissions, specific consumption, etc. This 
approach allows the use of a single-objective micro genetic 
algorithm but the search for solutions is bounded to the fixed 
weight assigned to each objective during all the optimization 
process. 

On the other hand, a multi-objective approach has been 
considered by Hiroyasu et al. [11] to optimize the shape of 
the injection rate with a phenomenological model to reduce 
the computational time. However, the capability of 
phenomenological models to simulate engine behavior is 
limited. In fact, phenomenological models are calibrated 
according to specific conditions and cannot be expected to 
perform reasonably well in simulation of different kinds of 
engines and operating conditions. This reduces the degrees 
of freedom in the use of GAs. 

In the present investigation, an innovative optimization 
tool named HiPerGEO (High Performance Genetic 
algorithm for Engine Optimization) is illustrated. HiPerGEO 
differs from KIVA-GA because it uses a multi-objective 
approach and allows engines to be optimized with respect to 
several operating modes. Moreover, unlike the approach of 
Hiroyasu, the computational time has been reduced not by 
reducing the confidence in engine simulations, but with the 
use of a micro-GA and advanced computational technologies 
(grid technologies.) Engine simulations were performed with 
a modified version of the KIVA3V code with improved 
models for spray and combustion. The HiPerGEO uses a 
micro-GA model where the rank method is applied to 
compare the individuals and the Pareto front is uniformly 
defined with the use of clustering. Moreover, the choice of a 

limited number of final optimal solutions is also performed 
in a completely automatic fashion by using a clustering 
algorithm.  

The use of a simple web interface allows a trusted user to 
execute a HiPerGEO run by selecting the algorithm 
parameters. 

II. The Optimization Method 

The proposed design method consists of ten optimization 
steps: 

STEP 1. Identification of the geometrical parameters to 
be optimized, e.g. combustion chamber shape, compression 
ratio, injector position, inlet valve closing, etc. 

STEP 2. Choosing a model to predict the engine 
behavior once the geometrical parameters are changed: If 
multi-dimensional simulation codes are used, this step 
requires the definition of a parametric computational mesh 
to divide the geometrical domain into a sufficiently high 
number of cells. 

STEP 3. Choosing the strategic goals to reach: e.g. 
improvement of engine torque, reduction of pollutant 
emissions, control of combustion noise, etc. Note that only 
the most important output values have to be included in the 
fitness array, since the other ones can be used as penalty 
functions (see step 5.) 

STEP 4. Selection of the operating conditions (modes) 
for the optimization and choice of their weight in the 
definition of the fitness array: Since engine behavior is 
strongly influenced by load and speed,  as many modes as 
possible should be used and the weight should be assigned 
according to the importance of each mode for each 
objective, e.g. if the optimization process aims at reducing 
emissions, high-speed high-load modes are not important 
while low and medium values of load and speed could be 
weighted according to their occurrence in the driving tests. 

STEP 5. Definition of penalty functions to penalize 
geometrical solutions that do not respect user defined 
requirements: e.g. noise emissions, structural constrains on 
maximum pressure, maximum discharge temperature, etc. 

STEP 6. Setup of an interface between the genetic 
algorithm and the engine model. 

STEP 7. Identification of the reference configuration for 
the optimization: e.g. a commercial chamber that represents 
the baseline configuration to improve or a target solution 
that indicates the best expected results obtainable by 
changing engine geometry. This step requires the definition 
of the range of variation for all parameters chosen at step 1. 

STEP 8. Running the genetic algorithm with a selected 
number of individuals to be analyzed . The higher the 
number of individuals to be tested, the higher the required 
computational time and the higher the confidence in the 
optimization results. 

STEP 9. Representation of the Pareto set in the 
hyperspace defined by the fitness array components and 
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selection of few optimized chambers by means of a 
clustering algorithm. 

STEP 10. Choice of the optimal configuration to be built 
and tested according to the actual user requirements. 

Figure 1. Micro-GA flow chart. 
 

A. Micro-GA model 

In the HiPerGEO algorithm the micro-GA technique is 
applied to engine optimization by using Coello’s and 
Pulido’s [3] approach which performs the multi-objective 
optimization on two levels (see Fig. 1.) Externally, a fixed 
number of iterations is executed. At each iteration, the 
micro-GA cycle is performed until the nominal convergence 
is reached. Nominal convergence may be defined in terms of 
a fixed (generally low) number of cycles to be executed or in 
terms of similarity among the solutions belonging to the 
micro-population. 

At the beginning of the process, the algorithm randomly 
generates the chromosomes belonging to the population 
memory. Solutions are located into the two portions 
(replaceable and non-replaceable) of the population 
memory. This is performed only once because the former 
portion contains solutions that may be replaced during the 

optimization process while the latter never changes, and then 
represents a source of diversity for the algorithm. 

The percentages of each memory portion can be regulated 
by the user, which allows the execution of different 
experiments to evaluate what is the best choice for a specific 
test case.   

From both memory portions an initial small size 
population is selected for each micro-GA cycle.  

The best individual belonging to the micro-population is 
passed unaltered to the next micro-generation (first form of 
elitism.) 

The other solutions of the new micro-population are 
generated during the micro-GA cycle by applying standard 
genetic operators such as selection, crossover, and mutation. 

At the end of the micro-GA cycle, the algorithm verifies if 
the nominal convergence has been achieved. In this case, 
any of the new population solutions can be considered 
representative and the algorithm randomly selects one of 
them. This individual is copied into a separate memory 
called “external memory”, where all the non-dominated 
solutions are collected forming the Pareto front. 

Coello’s and Pulido’s model suggests two other types of 
elitism:  

1. The representative solution of the micro-GA cycle 
replaces a randomly selected individual of the 
replaceable portion if it wins the tournament. 

2. At a fixed number of iterations some of the non-
dominated solutions are used to update the 
replaceable portion. 

 

B. HiPerGEO Algorithm 

In this paragraph the specific features of HiPerGEO in the 
application of the micro-GA model to engine optimization 
are described in detail. 

1) Population Memory generation 

A fixed number of random solutions are located into the two 
portions  belonging to the population memory according to a 
percentage defined by the user.  The chromosomes are 
represented by geometric and control parameters of the 
engine. Parameters values are selected into ranges of 
allowable values fixed by the user (see paragraph III.A.) 

2) Fitness evaluation 

The fitness values of each chromosome, representing a 
possible engine configuration, are calculated via CFD 
simulations for each operating mode. Both memory portions 
contain a reference engine configuration (see  paragraph 
III.E.) 

3) Micro-GA cycle 

At the micro-GA cycle level, the N individuals of initial 
micro-population are obtained by selecting the chromosomes 
from either the replaceable portion or the non-replaceable 
one with a probability specified by the user. 

The three elitism methods suggested by Coello and Pulido 

 



172  Teresa Donateo et al 

[3] were all implemented in HiPerGEO.  To account for the 
multi-objective character of engine optimization, the 
approach developed by Fonseca [8] was followed to select 
the best individuals to apply elitism. 

In HiPerGEO the individuals are ranked according to the 
Pareto criterion of dominance. If F(x) is the fitness vector 
associated to solution x, F(y) is the fitness vector of 
individual y, and the goal is the maximization of all the 
fitness component of F,  than F(y) is said to dominate F(x) if 
the condition (1) is verified:   
 

∀ i (Fi(x)≤ Fi(y)) ∧ ∃ i (F(x i )<F(y i ))      (1) 

 
If a vector isn’t dominated by any other, it is called non-

dominated or not inferior. The goal of a multiobjective 
optimization is to find all the Pareto points, i.e the set of 
individuals whose fitness vectors are non dominated. 

Thus, the overall fitness of an individual j is assigned 
according to its rank r(j) , which is defined from the number 
of fitness vectors by which F(j) is dominated, increased by 1. 
Thus, the Pareto individuals have rank equal to one and the 
maximum value of the rank is equal to the population size. 

Rank method pseudo-code is the following: 
 
For  i=1 to N 

Rank(i)=1 
For m=1 to N 

If  ((F1(i) - F1(m)<=0) and (F2 (i) - F 2 (m)<=0) and 

(F3 (i) - F3 (m)<=0) and (F 4 (i) - F 4 (m)<=0)) 

If  ((F1(i) - F1(m)<0) or (F2 (i) - F 2 (m)<0) or 

(F3 (i) - F3 (m)<0) or (F4 (i) - F 4 (m)<0)) 

Individual is dominated 
Rank(i) = Rank(i) + 1 

next m 
next i 
 

After computing the rank of each solution, a portion of the 
roulette in inverse proportion to its rank is assigned to the 
individual. In this way, selection is inclined to prefer non-
dominated chromosomes (belonging to the Pareto front.) 

After selection, the crossover technique is applied over 
the selected geometries. The uniform crossover has been 
chosen since experience [12] showed its stability compared 
with other crossover methods and its efficiency if applied on 
simple individuals (vectors with few parameters.) 

The next step is the application of the uniform mutation 
with a low probability. This kind of mutation allows new 
values of the engine parameters to be considered with 
respect to the micro-population. The application of the 
mutation operator is driven by the necessity to explore the 
search space obtaining new building blocks. On the other 
hand, a high mutation probability could slow down the 
convergence rate. 

4) Nominal convergence 

In the present work, the micro-GA cycle stops when nominal 
convergence is reached in terms of similarities among the 
chromosomes.  

For each geometric parameter, a range of similarity is 
fixed; the nominal convergence is reached when the 
difference in terms of chromosomes is within the range of 
similarity for all of the parameters values. Once the 
similarity criterion is satisfied, a representative individual is 
selected as a nominal solution. However, if convergence is 
not reached within a fixed number of cycles, the micro-GA 
execution stops and the individuals are ranked to select the 
nominal solution. 

5) External Memory 

The external memory contains the Pareto front and its size 
can be specified by the user. The nominal solution of the 
micro-GA cycle is copied in the external memory. However, 
this happens only when the nominal solution is non-
dominated with respect to the individuals already belonging 
to the external memory.  

Sometimes, the Pareto front contains a high number of 
solutions. The selection of the final good individuals, 
according to the user experience, can represent a problem 
when an extremely large Pareto front has to be considered. 
For this reason, the HiPerGEO algorithm allows the user to 
limit the Pareto front dimension specifying the external 
memory size. After each iteration, the algorithm verifies if 
the number of solutions stored into external memory exceeds 
the maximum size defined by the user during the submission 
of the optimization process. When this happens, it is 
necessary to exclude some of the individuals, preserving a 
uniform distribution of solutions. In order to do this, a 
clustering algorithm is generally applied [18]. Cluster 
analysis partitions a collection of solutions into groups of 
relatively homogeneous elements, then selects just a 
representative individual for each cluster. The average 
linkage method [13] suggests, for example, to select the 
centroid (the point with minimal average distance to all other 
points in the cluster) as representative solution. In the 
present work, a new method to reduce the external memory 
size has been defined. The HiPerGEO procedure to perform 
the uniformity of the Pareto front is describing in the 
following steps: 

1. Definition of a matrix D of size m x m, where the 

generic element d ij  is the distance between i
th

 and 

j
th

 individuals. 
2. Search of the couple of points which have the 

minimum distance. 
3. Deleting of the point in the couple selected in 

previous step which have minimum distance from a 
third point. 

4. If the number of excluded points is lower than m – 
n, go to step 2. 
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The selection of the centroid as representative solution, 
without knowing a priori the features of the Pareto front, 
does not guarantee a final spatial uniform distribution. 
Sometimes a cluster can be very near to another, then the 
selection of the opposed extreme instead of the centroid 
could be the better choice. Fig. 2 shows the comparison of 
the two methods if a front of ten solutions must be reduced 
to five individuals. The centroid of C2 is not a good choice 
due to the minor distance of C2 from C3 compared with C2  

Figure 2.  (a) Definition of clusters. (b) Pareto front 
provided by selection of the centroid. (c) Pareto 
front provided by HiPerGEO clustering. 

 
from C1. The application of HiPerGEO clustering method 
allows balancing every case the solutions belonging to the 
front. 

6)   Replaceable portion 

The nominal solution of the micro-GA cycle is also 
compared with a randomly selected individual of the 
replaceable memory according to the non dominance 
criterion. 

The winner of the match will remain in the memory 
portion, while the loser will be excluded (second form of 
elitism.) 

Finally, after a fixed number of iterations, some solutions 
from the external memory (Pareto front) are used to match 

the same number of solutions belonging to the replaceable 
portion. Also in this case, the winners of the match will fill 
the memory portion, driving the evolution of the algorithm, 
while old chromosomes will be excluded (third form of 
elitism.) 

III. Design problem:  the combustion chamber 
of a Diesel Engine 

A. Identification of the input parameters 

In direct injection engines, the combustion chamber is 
represented by the space defined, at each time, by the 
cylinder head and walls and the piston crown. A symmetrical 
cavity, called the bowl, is usually present in the piston to 
allow fuel to be injected, mixed with air and burned. Since 
the combustion and emissions mechanisms of formation are 
strongly affected by the flow field produced by the chamber 
shape, the optimization of the bowl profile is a strategic way 
to fulfill present day and future regulations about pollutant 
emissions and greenhouse gases, which depend on fuel 
consumption. 

To optimize the bowl profile, a simple parametric 
schematization has been considered by selecting the five 
geometrical features of Fig. 3, where a half cross section of 
the piston is shown. Instead of binary coding, a 
representation with real numbers was used in HiPerGEO 
since the variables were in continuous domain. 

 

 
Figure 3.  Parameterization of the bowl mesh 

 
The application required the development of the 

“Meshmaker” tool which automatically generates a 
structured computational mesh with the following maximum 

cell size: x∆ = 2.2 mm, z∆ = 1.4 mm and ϑ∆ = 2°.  
The generation process is automated: the Meshmaker 

spends few seconds to produce the computational mesh   
selecting the values of geometric parameters of Fig. 3  
within the ranges of allowable values fixed by developers 
(see paragraph III.E.) The Meshmaker outputs the input text 

(a) 

(b) 

(c) 
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file for the K3PREP mesh pre-processor and a second file 
containing the parameters vector which are used during the 
crossover and mutation phases.  

 

B. Choice of the optimization goals 

A modified version of the KIVA3V code has been used in 
the present investigation to evaluate the behavior of the 
combustion chambers selected by the genetic algorithm [4]. 
Thanks to improved models for spray and combustion, the 
new version of the KIVA3V code is able to accurately 
predict the behavior of modern direct injection diesel 
engines when changing geometrical and control parameters 
like injection strategy and Exhaust Gas Recirculation (EGR.)   

The optimization has been aimed at minimizing pollutant 
emissions (soot, NOx and Unburned Hydrocarbons (HC)) at 
low speed and load and maximizing engine performance at 
high load. The effect of the combustion chamber on engine 
performance was evaluated by considering the Indicated 
Mean Effective Pressure. IMEP is a internal torque indicator 
that measure the capability of a combustion chamber to 
convert chemical energy in mechanical work at a specific 
operating condition and is independent of engine size, speed 
and mechanical losses. Since HiPerGEO was developed for 
maximization problems, the fitness functions were defined 
as follows: 
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Mode 1 2 3 4 
Engine speed  [rpm] 1500 2000 3000 5300 
Indicated Mean Pressure 
(IMEP) 

4.3 8.0 25.0 20.5 

Weights for emissions, 
w1=w2=w3 

0.5 0.5 0 0 

Weights for IMEP, w4 0 0 0.5 0.5 
 

Table 1. Operating conditions for the optimization  
The behavior of each configuration was evaluated by 

comparing its predicted emission levels and IMEP value 
with those produced by a baseline chamber for the same 
operating mode, marked with subscript 0.  

For the optimization process described in the present 
investigation, the four modes of Table 1 have been used. 

In the calculation of the fitness functions, the four modes 
were taken into account by defining a weight on the basis of 
their influence on the definition of engine emissions and 
performance. These weights were named wj(i), j=1,4 , where 
1=NOx, 2=soot, 3=HC and 4=IMEP. Note that the same 
weight was assigned to mode 1 and 2 in the calculation of 
the fitness components F1, F2 and F3. In the same way, a 
weight equal to 0.5 was assigned to mode 3 and 4 for IMEP 
maximization. 

In equations (2)-(5), Nmodes is the total number of modes 
considered in the application and Fjp(i), j=1,2,3 is the value 
of the penalty function for the fitness component j calculated 
on mode i. 

Figure 4. Penalty functions used in the optimization. 
  

C. Choice of the penalty functions 

Two penalty functions were considered to take into account 
IMEP at low speed and smoke at full load. IMEP is 
considered the main objective at full load but it has to be 
taken into account at low load and speed too. In fact, IMEP 
values can be very low, fuel injected being the same, if the 
completeness of the combustion processes is somehow 
prevented. In spite of their low performance, these chambers  
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could be considered good solutions because they produce 
very low levels of NOx. For this reason, the penalty function 
plotted in Fig. 4.a was used to penalize the chamber 
configurations with low IMEP values at low speed and load. 
If the current chamber gives an IMEP value higher than the 
baseline configuration, the penalty function is set equal to 1 
and no penalization is given to the chamber. Otherwise, the 
chamber is slightly penalized if the reduction of IMEP is 
inferior to 8% while penalization is much higher when the 
reduction is greater than 8% with respect to the baseline 
case. The same criterion was applied at full load to penalize 
chamber configurations with soot emissions higher than a 
prefixed threshold value. In the present investigation, the 
value Sootths=0.78 g/kgf was considered (baseline value at 
operating mode 4.) 

The multi-objective nature of the problem could make 
some solutions located at the extremity of the front to be 
unallowable due to the poor value of a specific fitness 
function.  However, the definition of two penalty functions 
provides all the solutions of the Pareto front to be allowable. 
  

D. Reduction of the computational time  

For each individual evaluated in the HiPerGEO process, the 
same number of KIVA3V runs as the number of modes has 
to be performed. To reduce the required computational time, 
which is prohibitive on a sequential machine, grid 
technologies [10] were implemented in a grid portal named 
DESGrid (Fig. 5.) The grid portal architecture, showed in 
Fig. 6, consists of three essential modules: a web interface to 
access the system transparently; a second module for the 
management and the execution of the HiPerGEO, and a grid 
resource manager to optimize the use of the available 
computational resources. 

The HiPerGEO manager is a demon, the task of which is 
the iterative control of the job requests made by the user: 
each request corresponds to the generation of a HiPerGEO 
optimization process with its own evolution. User requests 
are queued and will be asynchronously processed by the 
manager, which has the responsibility to coordinate and 
execute the optimization. However, each HiPerGEO process 
requires a large number of KIVA3V simulations. 

Each request for a simulation is submitted to a scheduler, 
the DES Manager, responsible for the scheduling of all the 
simulation requests on the available grid resources. The 
scheduler selects the machine for the execution using 
information provided by an information system. The GRB 
[1] and GRB-GSIFTP libraries [2] have been used to 
provide secure file transfer and batch and interactive jobs 
submission. 

The typology of the present scientific problem calls for 
the implementation of a simple Web interface that allows 
users to start a distributed simulation and monitor the status 
of the execution through the following implemented 
services. 

1. HiPerGEO parameters definition: the user can 
modify HiPerGEO parameters before starting the 
optimization process. The application stores these 
new values that will be read at run time. 

2. Optimization process submission: the user submits 
the job by clicking on the submit button. Since the 
system is totally transparent, the user doesn’t know 
what the system will do from that moment to the 
end of the process. 

3. Monitoring of the process status: when a user asks 
for the process status to the system, a web page 
containing the fitness values of the current best 
solutions (chamber geometries) is provided; the 
page also display a 3D model of the half piston 
with the current bowl and a text file with the bowl 
profile.   

 
Figure 5. DESGrid portal 
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However, only a trusted user can access these 
functionalities. The Grid Security Infrastructure (GSI) 
protocol, as provided by the Globus Toolkit [9], provides 
single sign-on authentication, communication protection, 
and support for delegation of credentials. GSI uses X.509 
certificates as the basis for the user authentication. 

  

E. Choice of the reference conditions   

The test case described in the present investigation refers to 
a single-cylinder research engine whose specifications are 
reported in Table 2. A commercial chamber, representing 
the starting point of the optimization, has been considered as 
the baseline case.  
 

Figure 6. DESGrid architecture  
 
The ranges of variation of parameters Xe, r and Em, 

reported in Table 3 were chosen on the basis of 
technological and geometrical restrictions. The injection 
strategies adopted for mode 1 and 2 in order to obtain a 
partially homogeneous charge diesel engine are reported in 
Table 4. 

 

Displacement [cm3] 420 
Compression ratio 17.2 

Intake valve closing [crank angle, CA] 134 BTDC 

Injection system Common Rail 

Holes diameter [mm] 0.145 

Number of holes 7 

  
Table 2. Engine specifications 

 
 
 
 
 
 
 
 

Parameter Range of variation 
Xe                      [mm] 15.0-34.0 
α  -90° – 90° 

β  45° – 90° 

r                        [mm] 2.0-14.0 

Em                     [mm] 1.0-5.0 

  
Table 3. Input parameters  

  
Mode 1 2 3 4 

Engine speed [rpm] 1500 2000 3000 5300 

Injection pressure 
[MPa] 

70 90 160 180 

Advance of Pilot 
Injection [CA BTDC] 

-60 -60 - - 

Advance of Main 
Injection [CA BTDC] 

-5 -1 -11 -25 

Total injected mass 
[mg] 

11 19 59 49 

 

Table 4. Injection specifications  

F. Run of the genetic algorithm 

The HiPerGEO was run with the parameters of Table 5 and 
several fully optimized combustion chambers with respect to 
the four fitness functions were obtained. 
 

Maximum Number of Iterations 100 

Population Memory Size 50 
Replaceable Portion (%) 70 
Initial Population Size 5 
Mutation Probability 0.04 
External Memory Size (%) 100 

Table 5. HiPerGEO parameters 
  

Due to the complexity of the optimization, the analysis of 
the fitness functions could not be sufficient to underline the 
effect of the different operating modes and the comparison 
with the baseline chamber. For this reason, the plots of Fig. 
7  
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Figure 7. Population of the end of the HiPerGEO run 

 
Fig. 7c where the points representing the baseline 
configuration are very close to the origin of the plot. shows 
the population at the last generation in terms of emissions 
and performance instead of showing the corresponding 
fitness values. 

This choice allowed the following analysis of the 
optimization results. 
• The baseline chamber appears to be optimized for soot 

and HC reduction for all modes. In fact, very small 
improvements on soot and HC were obtained with the 
HiPerGEO.  This can be easily assessed by considering  

• On the contrary, a strong reduction of NOx can be 
obtained with almost all the optimized chambers. The 
improvement in IMEP is up to 15% for all modes and 
corresponds to a reduction of fuel consumption by the 
same amount. 

  

G. Clustering of the solutions 

The clustering algorithm was used not only during the 
HiPerGEO run to uniformly define the Pareto front, but also 
at the end of the optimization process to reduce the number 
of chambers to be analyzed.  

The non dominated chambers found by the HiPerGEO 
were grouped in clusters according to their shape in order to 
obtain five chambers which differ significantly. In this way, 
chambers very similar were excluded by the analysis of the 
optimized configurations. The outcome of the clustering 
process is shown in Fig. 8. 

 

 
Figure 8. Optimized combustion chambers 
selected by means of the clustering algorithm 

 
 

H. Choice of the “best” chambers 

Even if the five chambers of Fig. 8, selected in a completely 
automatic fashion, are all good compromises in the 
achievement of the optimization goals, the final choice is left 
to the designer according to his experience, prior knowledge 
and other constraints.  
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For example, chamber C1 could be preferred to reduce 
emissions in urban driving cycle  (mode 1 and 2) while C5 
can be considered the best compromise at high speed and 
load. On the other hand chambers C3 and C4 could be 
chosen to reduce NOx, in spite of their high emissions of 
soot, according to the user’s needs.  

If this preference would change in the future for the use of 
gas after treatment devices or because of new tendencies in 
diesel engine development, the optimization process would 
not need to be repeated since the best configurations for the 
new goal would be already known. 

 

IV. Computational time 

The required computational time Tm to execute a HiPerGEO 
run is given by: 

 

m i ga evalT =T +T +T              (6) 

 
where Ti is the time required for the initialization step, Tga is 
the overall sequential time for the genetic algorithm 
operators (negligible) and Teval is the time required to 
evaluate solutions during the micro-GA cycle. 

Ti is the sum of Tgen (the time required by Meshmaker to 
generate the population memory) and the time to evaluate 
the population memory as reported in eq. (7.) 

 

run m s
i gen

p

T   N   P
T =T +

N

× ×
          (7) 

where: 
Trun is the sequential time for each simulation of the engine 
cycle, depending on the server features; 
Nm is the number of modes (load and speed values);  
Ps is the population size; 
Np is the number of available processors; 

The time required to evaluate solutions during the micro-
GA cycle is given by: 

 

it c run sim
eval

pc

N ×N ×T ×N
T =

N
         (8) 

where: 
Nit is the number of iterations; 
Nc is the average number of cycles required to achieve 
nominal convergence in each iteration; 
Npc is the number of processors actually used per cycle, 
depending on the micro-population size and the number of 
modes, Npc=min(Np, Nsim); 

Nsim is the number of simulations per cycle, given by: 
 

sim m sN =N  x (MP -1)            (9) 

where MPs is the Micro-population size. 
Note that the best individual for each cycle is copied in 

the new micro-population. Since it has been already 
evaluated, the individuals to evaluate are (MPs -1.) 

A comparison among computational time needed on 
different architectures is reported in Table 6. 

The first column in Table 6 shows the computational time 
required by the optimization process if it is executed on a 
single processor of an AlphaServer where the computational 
time of a KIVA3V simulation is equal to 35 minutes. In the 
second column the execution of the optimization process 
using the 16 processors of the same AlphaServer cluster 
provides a reduction of the computational time equal to 
94%. The porting of the KIVA3V code on the Itanium 
clusters of the SPACI (Southern Partnership for Advanced 
Computational Infrastructure) sites allows reducing the 
computational time of each run (Trun) from 35 to 9.5 
minutes. Note that the number of modes can be adjusted so 
that the number of simulations per cycle be equal to Np. For 
this reason, two columns are reported in Table 6 for the 
Itanium server. The first one illustrates the reduction of Tm 
due to the lower time required for each KIVA3V run (Trun), 
while the second shows that it is possible to increase the 
number of modes fully exploiting the available processors 
with the use of grid technologies. Due to the independence 
of needed simulations, the computational time linearly 
decreases where the number of processors increases. 

 

  Sequential 
(Alpha 
Server) 

Alpha Server Itanium  
Server 

Itanium  
Server 

Tgen 6.25 (min) 6.25 (min) 6.25 (min) 6.25 (min) 

Trun 35 (min) 35 (min) 9.5 (min) 9.5 (min) 

Nm 4 4 4 32 

Ps 50 50 50 50 

Np 1 16 128 128 

Ti 7006.25 
(min) 

443.75 
(min) 

21.09  
(min) 

125  
(min) 

Tga 0.5 (min) 0.5 (min) 0.5 (min) 0.5 (min) 

Nit 100 100 100 100 

Nc 7 7 7 7 

MPs 5 5 5 5 

Nsim 16 16 16 128 

Npc 1 16 16 128 

Teval 392.000 (min) 24.500 (min) 6650(min) 6650 (min) 

Tm 277 (days) 17.32 (days) 4.63(days) 4.70 (days) 

 
Table 6. Required computational time  

V. Conclusions 

This investigation illustrates the application of an 
evolutionary algorithm to the design of diesel engine in 
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order to reduce emissions and improve fuel consumption. In 
particular, the shape of a direct injection combustion 
chamber was optimized by means of a micro-GA 
(HiPerGEO) combined with a modified version of the 
KIVA3V code.  

The main specification of HiPerGEO with respect to the 
particular application are: 
• the representation with real numbers of the five input  

parameters; 
• the consideration of four different fitness and two 

penalty functions; 
• the use of weights to take into account different 

operating conditions; 
• the rank method to deal with the multi-objective 

problem; 
• the clustering method to uniformly define the Pareto 

front; 
• the micro-GA approach performed on two optimization 

levels; 
• the use of three forms of elitism. 

 
The results of the optimization showed that: 

• several configurations capable of improving engine 
behavior with respect to four optimization goals can be 
identified with the method; 

• the choice between the selected chambers depends on  
user’s need; if this preference or because of new 
tendencies in diesel engine development, the 
optimization process should not be repeated since the 
best configurations for the new goal would be already 
known; 

• the design of a new optimized combustion chamber for a 
small bore direct injection diesel can be carried out in a 
completely automated fashion, with respect to 4 modes 
in about 18 days on AlphaServers; 

• the use of advanced technologies not only reduces the 
required computational time but also allows the 
complexity of the system to be increased, e.g by 
increasing the number of modes 

• since engine behavior is strongly influenced by load and 
speed, the possibility to include a large number of modes 
would improve the confidence in the results of the 
optimization. However, the validity of the method has 
been already validated by means of experimental tests 
[6]. 
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