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Abstract

Genome-wide association studies (GWASs) of major depressive disorder (MDD) have yet to 

identify variants that surpass the threshold for genome-wide significance. A recent study reported 

that runs of homozygosity (ROH) are associated with schizophrenia, reflecting a novel genetic risk 

factor resulting from increased parental relatedness and recessive genetic effects. Here we 

undertake an analysis of ROH for MDD using the 9,238 MDD cases and 9,521 controls reported 

in a recent mega-analysis of 9 GWAS. Since evidence for association with ROH could reflect a 

recessive mode of action at loci, we also conducted a genome-wide association analyses under a 

recessive model.

The genome-wide association analysis using a recessive model found no significant associations. 

Our analysis of ROH suggested that there was significant heterogeneity of effect across studies in 

effect (p=0.001), and it was associated with genotyping platform and country of origin. The results 

of the ROH analysis show that differences across studies can lead to conflicting systematic 

genome-wide differences between cases and controls that are unaccounted for by traditional 

covariates. They highlight the sensitivity of the ROH method to spurious associations, and the 
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need to carefully control for potential confounds in such analyses. We found no strong evidence 

for a recessive model underlying MDD.

Introduction

Major depressive disorder (MDD) is one of the leading burdens of disease in the world, with 

a lifetime prevalence of ~15% (Hasin and others 2005; Kessler and others 2003). It has been 

found to be moderately heritable, from 31 to 42% (Sullivan and others 2000), though with 

greater heritability in severe, recurrent forms of the disorder (Levinson 2006; McGuffin and 

others 1996). A recent mega-analysis of nine genome-wide association studies found no 

significant associations with individual genetic variants (Psychiatric Genomics Consortium 

MDD Working Group 2012), compared to ~5 genome-wide significant associations in 

similar sized studies of other psychiatric disorders (Ripke and others 2011; Sklar and others 

2011). These association studies are conducted under an additive model, but some risk 

variants may be recessive, for which individuals with two copies of an allele are at greater 

risk than would be predicted from twice a single allele’s effect. In a fully recessive model 

only those with 2 copies of the risk allele are at risk, though there is also the possibility of 

partial recessive effects. As selection acts to remove deleterious alleles with respect to 

overall fitness from the population, genetic risk variants that are recessive can escape 

selection longer. Inbreeding within families (e.g. consanguineous marriages) often exposes 

such recessive alleles due to an increased likelihood of alleles at each locus being identical 

by descent. Until recently studies of inbreeding were focused on families or communities in 

which inbreeding is expressed relative to the founder generation, which is assumed to be 

unrelated and where inbreeding information was determined from self-reports or knowledge 

of pedigrees (pedigree inbreeding). For example, Rudan et al. (2003) found a higher 

incidence of six complex genetic diseases/disorders including MDD among Croatian 

villages with higher levels of pedigree inbreeding (Rudan and others 2003). However, by 

using genome-wide genotype data it is possible to estimate an individual’s inbreeding from 

more distant common ancestors to provide evidence for whether a recessive genetic model is 

more appropriate for a disorder.

One method to analyse the effect of inbreeding from genome-wide genotype data is to 

identify segments of continuous homozygous SNPs, reflecting blocks of the genome that are 

identical by descent from a common ancestor. Runs of homozygosity (ROH) capture 

inbreeding effects that are due to common or rare causal variants better than a simple 

measure of excess number of homozygous SNPs across the genome, which tends to only 

capture the recessive effects of common variants (Keller and others 2011). An association 

between percentage of genome covered by ROH (FROH) and schizophrenia has been 

reported (Keller and others 2012). Due to the possibility of genetic overlap between MDD 

and schizophrenia (Schulze and others 2012), a similar association between FROH and MDD 

might be expected. However, MDD has a lower heritability (h2 ~ .37, Sullivan and others 

2000) than schizophrenia (h2 ~ .81, Sullivan and others 2003), which should attenuate 

genetic relationships. Moreover, some authors have suggested that MDD may not be under 

negative selection and the casual genetic variants may be beneficial in some circumstances 

(Belsky and Pluess 2009; Nesse 1999; Power and others 2012; Watson and Andrews 2002). 
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Here we look at the association between MDD and SNPs in 9,238 cases and 9,521 controls 

across 9 studies (Table 1) (Consortium 2012) under a recessive genetic model. We also use 

genome-wide estimates of inbreeding to look for a consistent difference between cases and 

controls across 9 studies of MDD, in order to support a recessive model of the disorder.

Material and Methods

Sample

In this report, we analyzed individual data from the nine discovery samples (Ising and others 

2009; Lewis and others 2010; Muglia and others 2010; Rietschel and others 2010; Shi and 

others 2011; Shyn and others 2011; Sullivan and others 2009; Wray and others 2012) of the 

PGC-MDD that together comprise 9,238 cases and 9,521 controls. Full sample details are 

given in the supplementary materials of the original analysis (Psychiatric Genomics 

Consortium MDD Working Group 2012), and are outlined in Table 1. All subjects were of 

European ancestry (as determined from genome-wide genotypes). Cases were required to 

have diagnoses of DSM-IV lifetime MDD established using structured diagnostic 

instruments from direct interviews by trained interviewers (two studies required recurrent 

MDD and one recurrent, early-onset MDD) or clinician-administered DSM-IV checklists. 

Studies ascertained cases mostly from clinical sources, and controls were largely randomly 

selected from the population and screened for lifetime history of MDD.

Method of ROH calling and analysis

Genotyping was described in the supplementary materials in the original analysis 

(Psychiatric Genomics Consortium MDD Working Group 2012). All samples were 

genotyped with single nucleotide polymorphism (SNP) arrays of greater than 200K genome-

wide SNPs, with analysis restricted to polymorphic SNP probes. In the original analysis, 

imputation to the CEU HapMap3 reference sample (Altshuler and others 2010), 1,235,109 

autosomal SNPs, was performed using Beagle 3.0.4 (Browning and Browning 2009). In 

order to perform an association analysis under a recessive model or call runs of 

homozygosity (ROH), imputed SNP dosage data was converted to discrete genotype calls, 

keeping those SNPs with a probability of at least 0.95. The use of imputed SNPs helped to 

increase similarity of genomic coverage across studies. SNPs with a missingness of >2% or 

minor allele frequency (MAF) <5% were removed, as were then individuals with 

missingness over 2%. Prior to analysis SNPs were pruned for LD within PLINK, removing 

any SNPs with an R2 0.90 with any other SNP in a 50 SNP window. The use of imputed 

data in ROH has previously been shown to give similar results to those restricting to only 

genotyped SNPs (Keller and others 2012). The calling of ROH and percentage of genome 

covered by ROH per individual (FROH) were derived within PLINK (Purcell and others 

2007) following the same method found to optimally detect effects of autozygosity, as 

described in Howrigan et al (2011). In particular, we used a series of sliding windows across 

the genome to call ROH within each individual separately. The size of the windows was set 

to 65 consecutive SNPs, so any single SNP would be found in 65 different windows. If at 

least 4 (>5%) of these windows contained entirely homozygous SNPs, then the SNP in 

question could be included within a ROH. Within windows, one missing SNP was allowed. 

To avoid false positives, only ROH with a minimum of 65 consecutive SNPs covering 
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2.3Mb were used when calculating FROH. In addition, the required minimum density in a 

ROH was set at 200 kb per SNP and the maximum gap between two consecutive 

homozygous SNPs was set at 500 kb. The estimate of the total genome captured was 2.77 × 

109 bp. The analysis was performed by study, using FROH as a predictor of case-control 

status in a logistic regression. Percentage of SNPs missing, a SNP-by-SNP measure of 

homozygosity determined by PLINK’s --het command, and the first 5 ancestry-informative 

principal components were used as covariates. The SNP-by-SNP measure of homozygosity 

was included to correct for differences in genomic-homozygosity levels unrelated to 

inbreeding, such as DNA quality or population ancestry. A mixed model was also examined 

combining all samples, using study as a random effect. This analysis was performed in 

STATA (StataCorp. 2011).

Genome-wide recessive model

The genome-wide recessive model analysis used the autosomal dosage data converted to 

genotype calls as described above in the analysis of ROH. Analyses was performed in 

PLINK (Purcell and others 2007), using the --recessive command. The first 5 ancestry-

informative principal components were included as covariates. Analysis was restricted to 

autosomes. Each study was analysed separately and then a meta-analysis was performed for 

each SNP across studies (using fixed effect p value in PLINK). As the risk allele is set as the 

minor allele by default, and this may differ by study for alleles at frequencies near 0.5, we 

used the minor allele in the analysis of imputed data from the whole sample as a reference. 

A p-value <5×10−8 was considered as genome-wide significant. For this significance cut-

off, we had 90% power to detect a relative risk of 1.47 for the rare recessive genotype for 

SNPs with a MAF from 0.3–0.5. However power decreased rapidly for those alleles with 

lower MAF, with 90% power to detect those with a relative risk of 1.81 and MAF of 0.2, or 

with a relative risk of 2.21 and MAF of 0.15. For those SNPs with lower MAF, power 

reduced rapidly for a recessive model. Calculations were performed using CaTS Power 

Calculator (Skol and others 2006).

Results

Across all samples the average percentage of the genome covered by ROH (FROH) was 

0.11% (95% CI 0.102–0.112; Table 1), similar albeit slightly lower than average FROH 

(0.15%) reported in an earlier report using the same parameters (Keller and others 2012). In 

our mixed model analysis across all samples with study as a random effect, we found no 

significant effect of FROH on MDD status. However, there was substantial heterogeneity in 

direction of effect across studies (p=0.001, Figure 1). Overall, 4 studies showed increased 

FROH in cases (one significantly, p=0.007), while 5 studies showed increased FROH in 

controls (one where p=0.005). Including further principal components (up to 20) and 

increasing ROH size (up to 170 SNPs) made no difference to the results.

To explore this apparent heterogeneity we examined two features of the included studies that 

might provide insight into the results. The first issue was potential poor matching of cases 

and controls which we tested within the combined RADIANT German and Bonn-Mannheim 

sample. Here cases were recruited from both of these two studies, whereas the controls were 
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collected and genotyped only as part of the Bonn-Mannheim study. However, excluding the 

RADIANT cases and restricting to only the matched Bonn-Mannheim study’s cases and 

controls still resulted in a significant association with ROH (p=0.03), as both sets of cases 

were found to have similar mean FROH. This tentatively suggested that the heterogeneity 

apparent across studies was not replicated within studies. Secondly, we were interested in 

the effects of genomic coverage on ROH. Cases and controls from the Queensland Institute 

of Medical Research (QIMR) were recruited as one sample but included as two independent 

cohorts, based on their genotyping platform (Illumina 317k and 610k chips). When we 

restricted the analysis to only those SNPs directly genotyped on both platforms (202,062 

SNPs), we found that the mean FROH for the QIMR-610k sample reduced from .086% to .

077%, compared to .078% for the QIMR-317k sample. This implies, as expected, that 

genotyping platform and genome coverage were influencing estimates of mean FROH.

To better understand potential sources of heterogeneity in our findings, we used a linear 

meta-regression with a study’s effect size as the outcome and features of the studies 

individually analysed as predictors. We tested percentage of cases with recurrent MDD, 

mean FROH and genome-wide homozygosity, country of recruitment, presence of copy 

number variant probes on the platform, and genotyping platform as potential predictors of 

direction of effect (see Supplementary Table 1). Genotyping platform was nominally 

associated with effect size (p=0.05), and the direction of effect of FROH differed when 

studies on non-Illumina platforms were analysed separately. Within the 3 non-Illumina 

genotyped studies, increased inbreeding was protective against MDD (p=0.007) while 

within the 6 Illumina genotyped studies inbreeding was a significant risk factor for MDD 

(p=0.02). We noted that when more than one study was recruited from a country, the 

direction of effect for ROH was consistent across all studies recruited from the same country 

(see Figure 1). However, this was only a significant predictor in the meta-regression when 

distinguishing between German and non-German studies (p=0.02). This level of 

confounding from genotyping and country likely reduced our power to detect a true effect of 

ROH and MDD.

In the meta-analysis of a recessive model of association, 929,138 SNPs were analysed, 

though not all appeared in all 9 studies due to differences in genotyping coverage. The most 

significant recessive association was for rs13261582 on chromosome 8 in an intergenic 

region between SNTB1 and HAS2 (odds ratio of 2.0 for the minor A allele, MAF 0.22, 

p=2.58×10−6). However this SNP was only present in two studies (GenRED and STAR*D), 

and so is only supported by a subset of the sample. It did not appear among the reported top 

SNPs from the primary analysis of this dataset under an additive genetic model in the full 

sample (p=0.12). The results of the meta-analysis also showed a lower median p-value than 

expected by chance (λGC 0.97, see Supplementary Figures 1 and 2 for Manhattan and QQ 

plots). The λGC was 1.03 for SNPs with MAF > 0.2 and 0.90 for SNPs with MAF < 0.2, 

implying smaller differences of genotype frequencies between cases and controls than 

expected by chance for SNPS with low MAF. This is possibly the result of the less accurate 

imputation of rare alleles.
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Discussion

Our analyses show systematic differences in FROH between cases and controls that differ in 

direction across studies. There are several explanations for these results, mostly highlighting 

limitations of this analysis. Firstly, we found systematic differences in mean FROH between 

studies. This is not unexpected and likely reflects the density of the genomic coverage and 

the accuracy of imputation, since SNPs were restricted to those with high quality imputation. 

A similar level of variation in FROH was observed in the Psychiatric GWAS Consortium’s 

analysis of FROH across 17 studies of schizophrenia (Keller and others 2012), though they 

did not report any heterogeneity of effect as a function of genotyping platform or country of 

recruitment. It seems unlikely that the heterogeneity of effect in the present study could be 

the result of differing SNP inclusion on the platforms, because such an explanation would 

imply systematic differences between cases and controls in the probability of homozygosity 

across SNPs as a function of platform. More likely in our opinion is the possibility that 

factors related to ascertainment of cases and controls differed across studies and influenced 

overall homozygosity. Such factors could include changes in homozygosity levels due to 

length and quality of DNA storage, or differences in ascertainment of cases and controls 

across populations. It is noteworthy that the two out of nine studies that genotyped controls 

independently of cases (GenRED and STAR*D) both showed higher FROH in controls than 

cases. Further, studies appear to cluster by country of origin and direction of the effect of 

FROH. All three German studies had increased FROH in cases for example, while the two 

Australian and two US studies all showed increased FROH in controls. This may reflect 

confounding demographic factors specific to each country. These unknown confounders, 

such as urban/rural status or religion, that influence both distant inbreeding (FROH) and 

MDD could explain the differences in effects between studies. A recent analysis of ROH 

and MDD in a partially overlapping sample of the GAIN study analysis here found exactly 

that, with religion confounding of the association because of reduced levels of depression 

but increased inbreeding in within the religious population of the Netherlands (Abdellaoui 

and others 2013). Certainly the initial hypothesis of this study, that an association with 

inbreeding would reflect negative selection on MDD and an excess of recessive causal 

mutations, seems an implausible explanation for the observed heterogeneity as the 

evolutionary cost of MDD status seems unlikely to have differed greatly among the 

ancestors of those included in the present study. Any of these explanations for the results of 

the FROH analysis may give some insight into why the mega-analysis of the 9 studies did not 

lead to any replicable genome-wide significant findings.

Our results from the genome-wide association analysis of MDD under a recessive model 

also produced no evidence for a recessive model, failing to produce any genome-wide 

significant associations. It is possible that our underlying model of recessive effect is 

unsuitable for an outbred population. Here we looked at a recessive effect for the minor 

allele, but two alternate models may also have been viable: compound heterozygote and 

overdominance. Compound heterozygosity is an additional risk in individuals carrying two 

recessive but non-identical alleles within a genetic locus, while overdominance is the 

increased risk of homozygosity of any allele compared to being heterozygous. However, our 

analysis of both would have been restricted by low power and the use of biallelic markers, 
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and were, therefore, not performed. Both the GWAS and ROH analyses suggest though that 

there is no underlying recessive model of MDD, at least not of large effect. Such an 

association was previously reported for schizophrenia in a similarly sized sample (Keller 

and others 2012), showing an increase of risk for schizophrenia by 17% for every additional 

percentage of the genome covered by ROH and was taken as evidence for historical 

selection against schizophrenia risk variants. The lack of a similar association here adds 

molecular evidence to that from epidemiological studies suggesting MDD has little impact 

on reproductive fitness compared to other psychiatric disorders, and so is under substantially 

less negative selection (e.g. Power and others 2012).

These results also highlight that analysis of FROH appears to be sensitive to systematic 

differences between studies that are ostensibly unrelated to MDD status, potentially give rise 

to either false positive or false negative results. This suggests there are genome-wide 

differences in homozygosity and/or inbreeding between populations that are not corrected 

for by methods such as ancestry-informative principal components. We recommend the use 

of large combined samples in the analysis of FROH as a predictor of traits and disorders, due 

to the high risk of spurious associations within one study. Preferably such analyses should 

be done in datasets with access to data on potential social and demographic confounders. 

One possible further improvement might be the development of novel methods for analysing 

ROH, particularly in imputed genotype data where probability for homozygosity across a 

region is available. As similar heterogeneity across studies was not seen in other analyses of 

ROH within consortia (Keller and others 2012; McQuillan and others 2012), the significant 

heterogeneity in our results suggest that MDD is particularly sensitive to differing 

demographics in the ascertainment of cases and controls and this may present a problem to 

genome-wide polygenic approaches such as ROH. Certainly no strong evidence for a 

recessive model was apparent, supporting the view of MDD being under weaker negative 

selection than other psychiatric disorders.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Beta coefficient from logistic regression of FROH predicting MDD per study (with 95% CI, 

accounting for covariates). Positive effects suggest that ROHs are a risk factor for MDD. 

Note that though no combined effect in the mixed model of the full sample, in Illumina 

studies increased FROH was a risk factor (p=0.02) and in non-Illumina studies it was 

protective (p=0.007). Note also the consistency in studies from the same country: 

*Australian studies; ~American studies; # German studies.
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