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Abstract: Here, we report the results of next-generation sequencing on the GS Junior 

system to identify a large number of microsatellites from the epiphytic moss Orthotrichum 

speciosum. Using a combination of a total (non-enrichment) genomic library and small-scale 

454 pyrosequencing, we determined 5382 contigs whose length ranged from 103 to 5445 bp. 

In this dataset we identified 92 SSR (simple sequence repeats) motifs in 89 contigs.  

Forty-six of these had flanking regions suitable for primer design. We tested PCR 

amplification, reproducibility, and the level of polymorphism of 46 primer pairs for 

Orthotrichum speciosum using 40 individuals from two populations. As a result, the 

designed primers revealed 35 polymorphic loci with more than two alleles detected. This 

method is cost- and time-effective in comparison with traditional approaches involving 

cloning and sequencing.  
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1. Introduction 

Due to their high polymorphism and reproducibility, co-dominant SSR (simple sequence repeats) 

markers are widely used in population genetics and phylogeographic studies [1]. SSR markers are also 

applied to determine the taxonomic status of species at the early stages of divergence [2]. 

Despite their numerous advantages, SSR markers can still be problematic to use. The drawback of 

highly-specific SSR markers is their laborious development. The traditional method of developing SSR 

markers is both labor-consuming and expensive, and it often generates a small number of polymorphic 

loci [3]. Methods in which non-specific markers such as AFLP [4,5], ISSR [6] and RAPD [7] are used 

for enrichment are also commonly employed, which does not exclude the cloning process and  

clone screening.  

Next-generation sequencing has been used recently to isolate SSR markers [8,9]. High-throughput 

next-generation sequencers support the isolation of several hundred polymorphic loci in a single run [10]. 

This approach is usually followed in animal studies, but attempts have also been made to apply the 

above method for the isolation of SSR markers from plants. However, population studies seldom 

require such a large number of loci, and the cost of a single run on the Roche 454 GS FLX sequencer 

(Roche 454 Life Sciences, Branford, USA), typically used for this purpose, is relatively high.  

We have successfully isolated, at little cost and effort, several dozen SSR markers (sufficient to 

conduct thorough population studies) with the use of the GS Junior 454 system (Roche 454 Life 

Sciences, Branford, CT, USA). The total cost of such an analysis ranges from EUR 1000 to 1200 

(April 2012). 

SSR markers have rarely been developed for bryophytes, since most bryologists use AFLP, ISSR 

and RAPD markers [11–13]. However, specific markers are increasingly applied due to a growing 

awareness that research results may be affected by the presence of biological pollutants [14]. To date, 

conventionally generated SSRs have been developed for a few moss species of the genera  

Sphagnum [6] and Platyhypnidium [15]. This paper describes the development of SSR markers for the 

epiphytic moss species Orthotrichum speciosum. The markers will be employed in phylogeographic 

and ecological studies aimed at evaluating environmental pollution based on the genetic variability of  

O. speciosum populations. 

2. Results and Discussion 

A single sequencing run of Orthotrichum speciosum DNA library in the GS Junior pyrosequencing 

system resulted in 139,886 reads with an average read length of 426 bp. In total, 59,645,460  

high-quality base-pairs were obtained. Sequence assembling and mapping to the chloroplast genome of 

Syntrichia ruralis allowed the alignment of 814 reads and their contigs to the reference genome; the 

N50 contig size (statistical measure of average length of a set of sequences) was 939 bp. The 

Orthotrichum speciosum sequences obtained in the analysis covered the chloroplast genome of 

Syntrichia ruralis in 50.3%, at an average depth of 1.6. The remaining reads were de novo assembled 

into 5382 contigs with a length of 103 to 5445 bp. 



Int. J. Mol. Sci. 2012, 13 7588 

 

 

An analysis of the obtained sequences with the use of msatcommander enabled us to determine the 

location of 92 SSR motifs in 86 contigs. Tri- (49) and di-nucleotide (27) repeats dominated among the 

discovered microsatellite motifs. Longer repeat motifs included 7 tetra- and 2 hexa-nucleotide ones.  

In several cases, primers could not be designed since motifs were located at the edges of contigs. 

Finally, we used 46 pairs of primers, 35 of which were found to be polymorphic (Table 1). The primers 

revealed from 3 to 9 alleles per locus, 3.77 alleles on average. The values of the Nei’s genetic diversity 

coefficient [16] in the test sample ranged from 0.210 to 0.550. Significant LD occurred in the studied 

populations for only one pair of loci, os8 and os24 (p < 0.05). 

Table 1. Characteristics of simple sequence repeats (SSR) loci for Orthotrichum speciosum 

(H–Nei’s genetic diversity, Oa—Orthotrichum affine, Os—O. speciosum, Op—O. pallens, 

Od—O. diaphanum). 

Locus Motif Primers 
Product 

Size 

Diversity Cross-Amplification 

Number 

of Alleles 
H Oa Os Op Od 

os1 (GTT)4–7 
F-GCAACTTCCTCCAACGACC 

R CAGATTGCGGCTGACCAAG 
378–387 3 0.405 + - - - 

os2 (GT)6–12 
F-CAAACACGACCGCTTCTCC  

R-GAGAGCTATCTCCCTCGAAAG 
405–417 6 0.540 - - - - 

os3 (AGG)4–8 
F-GTACGTCGTGCCCAAATCG  

R-CGTCGCATTCCCACAGAAG  
354–366 5 0.355 + + - - 

os4 (AAT)4-6(AT)7–15 
F-CACTCAAGTGAAGAGTCATGGG  

R-CGAGCAACGTGGCATGAAC 
329–351 9 0.380 - - - - 

os5 (AT)5–12 
F-AGGATTGATTGCCTTTGCGG  

R-GATCATTCGCATCTGGGCG 
229-243 5 0.290 - - - - 

os6 (AG)6–11 
F-GTTGACGAAGCCCTCTTGG  

R-CTTTGAGACGTGGTAATCTGAAG 
411–421 7 0.550 - - - - 

os7 (ATT)4–7…(AAT)5–7 
F-TTCAACCATGTGCTAGTTGTATC  

R-AGGGTCCAAACTCTAAACTGAC 
414–425 5 0.285 - + - - 

os8 (CTT)4–8 
F-TTCCCTTCAACCGCCACTC  

R-CCGAAGGCTGGATAATTGCC 
263–275 3 0.230 + + + + 

os9 (CGT)4–7 
F-GGCCATTGAAAGCAGGCTC  

R-CGGCTACGACATCAATGAAAG 
401–410 3 0.280 + + - - 

os10 (ACC)6–10 
F-CCTCGTAGGGTATCTCCGC  

R-ATCAAGAGTCGGGACGTGG 
243–255 4 0.305 - - - - 

os11 (GTT)4–10 
F-GCGTTGTGGAGTAAGGACTG  

R-CCCATCACCACTATGATGCC 
202–220 5 0.410 - - - - 

os12 (AAAT)4–6 
F-AATGTTGGAAACCAGCCCG  

R-TCCGGATTAGAAGATTTACAGTGG
158–166 3 0.210 - + - - 

os13 (AG)6–10 
F-AGAATTGCTACTACATGAACGTG  

R-TTGTGTCCCGTCCCTCAAC 
192–200 3 0.430 + + + + 

os14 (AAC)6–9 
F-CTCCGAGTCCACTTGGTCG  

R-GACTGAAGTGCTGGCTTGG 
198–210 3 0.250 + - - - 

os15 (AAAG)6–8 
F-TGAAGTATCCAGACCAAGAGC  

R-ACATTCTGCCCTCAATGTCG 
152–160 3 0.220 - - - - 

os16 (AAG)4–7 
F-AAGAAGGCGTCAGCTTCAC  

R-TAGCTGCCCGCAACTTC 
248–257 3 0.290 + + - - 
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Table 1. Cont. 

Locus Motif Primers 
Product 

Size 

Diversity Cross-Amplification 

Number 

of Alleles 
H Oa Os Op Od 

os17 (GAT)4–7 
F-AGCGAGTTGATGGCGGAG  

R-TCCTCCAATGCCTTAGTCAAAC 
361–370 3 0.340 - + - - 

os18 (GTT)4–6 
F-CATGATGCTGCCCTTGTCC  

R-GTTAGCTGCATGTCACGGC 
307–313 3 0.510 + + + - 

os19 (CTT)4–6 
F-CCCACGCCACTTAGTCTTG  

R-GGAGAATGACAACCTCAGCC 
229–235 3 0.260 + + + + 

os20 (ATTT)6–9 
F-AGTTGTGTCTTCCTTCATCTATACC 

R-GATGGGCCAAAGTGTCTCG 
169–181 3 0.220 - - - - 

os21 (CTT)5–9 
F-AGCGAGTGTACATCCGAGC  

R-GCCTAAGCCCACTTGGAAAC 
193–205 4 0.290 + + + - 

os22 (GCT)4–7 
F-AAATCTACAACTTCGCACGTC  

R-TGAGATTCATGAGAGGTGTCCG 
161–170 3 0.310 - - - - 

os23 (AT)7–12 
F-TTCATTGTCCTAAGATTCCC  

R- GATGCAANTACGTCTTATAATC 
202–212 5 0.490 - - - - 

os24 (ATT)7–11 
F-GTTGAAATCTACTANAAAAGTT  

R-GCTCNAAATCNCATCTAANCT 
181–193 3 0.230 + - - - 

os25 (GTT)4–6 
F-GGAGTCCCTCCAGCAAGTATG  

R-GCGNCTAGGTCATGTACTNATGG 
326–335 3 0.260 - + - - 

os26 (GTC)5–8 
F-ACTTGCTGAAGAACGGTCTGC  

R-GTAACGTCTTGTCACTGAC 
298–307 3 0.290 + + - - 

os27 (GT)6–11 
F-CCTTCATTCCATTTGCCCNTTG  

R-GTATGTTGCCTCCTCCAATTCATT 
201–211 4 0.370 - - - - 

os28 (GA)6–10 
F-TTCTCCATGTTCTCTACTTNGG  

R-GACGGCCTCTCGGCAAGAGTTTG 
210–218 3 0.220 + + + + 

os29 (GA)7–10 
F-CATCAATGATGTAGGATNGAAN  

R- CTCAATATCTGGATTTCTGGGA 
197–203 3 0.280 + + + + 

os30 (CA)11–16 
F-ACACACNCANACACACACNCNC 

R-TGGATGCGTGTGGGCACCTGT 
260–270 4 0.410 - - - - 

os31 (GAT)4–7 
F-CGTTGATTCTATTTGATAGCTAA  

R-TTGACATGTCTGAGCCCC 
241–250 3 0.320 + + + + 

os32 (AAAT)4–6 
F-NCCNANCCATGTCAGAAAAAG  

R- GCCGCATTATGAAGTTGGA 
269–278 3 0.220 - - - - 

os33 (ATT)4–6 
F-CTACAATAAGAGCTCTTTGAA  

R-ACANTTTGGATCTCAGCCTG 
202–208 3 0.260 - - - - 

os34 (GAT)4–6 
F-AGGGCTCTANCTTATAGNTTG  

R-GAGGTGGACAGTGCAAGTGNAAG 
210–216 3 0.230 + + - - 

os35 (GGA)4–7 
F-CCCGAGTCCACTTGGNANCC  

R-GCTAAGCCCAGTTAGAAGCTC 
171–180 3 0.345 + - - - 

Nearly half of the tested SSR markers amplified also single bands in closely related species of the 

subgenus Gymnoporus. In O. affine and O. striatum, 18 and 17 pairs of primers, respectively, 

amplified single loci (Table 1), which testifies to the close relationship between the species [17]. 

Cross-amplification was considerably less successful in phylogenetically distant species of the 

subgenus Pulchella, where the primers were effective in 8 (O. pallens) and 6 (O. diaphanum) cases. 
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3. Experimental Section  

3.1. Plant Materials 

The genus Orthotrichum is a widespread moss group, which includes approximately 159 species [18], 

and is the second largest genera in the family Orthotrichaceae. Taxa belonging to this genus are found 

throughout the world from the Arctic to the Antarctic, except in deserts and wet tropical forests. 

Species of the genus Orthotrichum grow on trees and rocks to an elevation of ca. 5000 m above sea 

level [19]. The subdivision within this genus has been a matter of a continuing debate since the end of 

the 19th century. Certain taxa have been alternately included in and excluded from the genus 

Orthotrichum in the attempt to divide it into lower taxonomic units, subgenera and sections. The basis 

for the classification of the genus Orthotrichum in a historical perspective has been described in detail 

by Lewinsky [19] and Lewinsky-Haapasaari and Hedenäs [20]. 

Orthotrichum species have a wide geographical range and are usually characterized by high genetic 

diversity, in some cases pointing to the occurrence of cryptic species [17,18]. Several widespread 

species, including O. speciosum of the subgenus Gymnoporus, showed a very low level of genetic 

variation in the analyzed regions. O. speciosum is a common representative of the genus, found across 

the entire Holarctic ecozone. The species is well defined morphologically [19,21] and genetically [17], 

and it is characterized by a low level of genetic variation in nuclear and chloroplast sequences [17,22], 

which is why it has been selected as a model species for the present study. The developed markers will 

also be used in ecological studies, to replace less polymorphic ones. A population of O. speciosum 

from the Czech Republic was used for DNA isolation (Kouty nad Desnou, Hruby Jesenik Mts). 

3.2. DNA Extraction  

Total genomic DNA was extracted from 30 fresh stems. The stems were ground with silica beads in 

a MiniBead-Beater tissue disruptor for 50 seconds, and were subsequently processed using the 

DNeasy® Plant Mini Kit (Qiagen, Hilden, Germany) following the manufacturer’s protocol. DNA 

quantity was estimated with the Qubit fluorometer system (Invitrogen, Carlsbad, NM, USA), using the 

Quant-IT ds-DNA BR Assay kit (Invitrogen). 

3.3. DNA Library Preparation and Sequencing 

Eight hundred nanograms of DNA was sheared by nebulization, purified with the MinElute PCR 

Purification Kit (Qiagen), and subsequently processed according to the GS Rapid Library Preparation 

Kit Method Manual (Roche/454 Life Sciences). The quality of DNA library was assessed by gel 

electrophoresis in the FlashGel System (Lonza). DNA fragments were clonally amplified using the GS 

Junior Titanium emPCR Lib-L Kit (Roche/454 Life Sciences). Sequencing was performed using the GS 

Junior pyrosequencing system according to the Sequencing Method Manual (Roche/454 Life Sciences). 

Pyrosequencing data were assembled using GS Reference Mapper software (Roche/454 Life 

Sciences). A two-step assembly was performed. First, the obtained sequences were assembled using 

the chloroplast genome data of Syntrichia ruralis (GenBank: NC_012052.1) to separate chloroplast 

reads from nuclear reads. Syntrichia ruralis is one of the two moss species with sequenced cpDNA 
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genomes and is closer related to Orthotrichum than the Physcomitriella patens. The remaining reads 

were assembled using the GS Newbler de novo assembler (Roche/454 Life Sciences). 

The obtained contigs were searched for microsatellite motifs using msatcommander with default 

settings [23]. This program was also used for primer design. To avoid designing primers for any 

potential SSR locus twice, the contigs containing the same motif were compared in Bioedit 7.0.5 [24]. 

3.4. Genotyping Test 

We tested PCR amplification and the level of polymorphism of the designed primer pairs.  

The sequences used in genotyping test were deposited in GenBank (accession numbers from JX154169 

to JX154203). The polymorphism of SSR markers was tested in two O. speciosum populations of  

20 specimens each, and in the material used in our previous studies [17,22]. The cross-species 

amplification of SSR loci was tested in both closely related O. affine and O. striatum, and more 

phylogenetically distant O. diaphanum and O. pallens [25,26]. 

SSR-PCR reactions were performed in 20 µL of a reaction mixture containing 40 ng genomic DNA, 

1.0 µM of each primer, 1.5 mM MgCl2, 200 µL M dNTP (dATP, dGTP, dCTP, dTTP), 1× PCR buffer, 

1 µL BSA and 1 U Genomic RedTaq polymerase (Sigma, St. Louis, USA). SSR marker reactions were 

performed under the following thermal conditions: (1) initial denaturation—5 min at a temperature of 

94 °C; (2) denaturation—1 min at 94 °C; (3) annealing—1 min at 53 °C; (4) elongation—1 min at  

72 °C, final elongation7 min at 72 °C. Stages 2–4 were repeated 34 times. The products of the PCR 

reaction were separated on the QIAxcel capillary electrophoresis system, which is a cost-effective 

system suitable for SSR marker electrophoresis [27]. Electrophoresis was performed using the Qiaxcel 

High Resolution Kit with the alignment marker 15–500 bp (Qiagen) and the DNA size marker  

25–500 bp (Qiagen). Standard OM700 settings were used as the electrophoresis program. 

To check consistency of designed primers, randomly selected 24 amplicons were resequenced using 

amplification primers. Purified PCR products were sequenced in both directions using the ABI BigDye 

1.1 Terminator Cycle Kit (Applied Biosystems, Foster City, USA), and were visualized using an ABI 

Prism 3130 Automated DNA Sequencer (Applied Biosystems).  

An analysis of genetic diversity was performed using PopGen 1.32 software [28]. The linkage 

disequilibrium (LD) was tested using FSTAT v.2.9.3 [29]. 

4. Conclusions  

The genetic resources of epiphytic mosses have declined due to air pollution and excessive tree 

cutting. The development of SSR markers from O. speciosum and related species open new 

possibilities in studying their genetic variation, phylogeography and populations structure. The SSR 

loci reported here are the first SSR markers to be designed specifically for species belonging to the 

Orthorichaceae family, and the third moss species. The method described in this paper allowed us to 

obtain at least 35 polymorphic loci, at a total cost of approximately EUR 1000–1200, using a fast and 

easy approach. 
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