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We prove some stability and hyperstability results for the well-known Fréchet equation stemming from one of the characterizations
of the inner product spaces. As the main tool, we use a fixed point theorem for the function spaces. We finish the paper with some
new inequalities characterizing the inner product spaces.

1. Introduction

In the literature there are many characterizations of inner
product spaces. The first norm characterization of inner
product space was given by Fréchet [1] in 1935. He proved that
a normed space (𝑋, ‖ ⋅ ‖) is an inner product space if and only
if, for all 𝑥, 𝑦, 𝑧 ∈ 𝑋,

𝑥 + 𝑦 + 𝑧

2

+ ‖𝑥‖
2
+

𝑦

2

+ ‖𝑧‖
2

=
𝑥 + 𝑦


2

+ ‖𝑥 + 𝑧‖
2
+

𝑦 + 𝑧

2

.

(1)

In the same year Jordan and von Neumann [2] gave the cele-
brated parallelogram law characterization of an inner product
space. Since then numerous further conditions, character-
izing the inner product spaces among the normed spaces,
have been shown. More than 300 such conditions have been
collected in the book of Amir [3]. Many geometrical charac-
terizations are presented in the book by Alsina et al. [4]; for
some other see, for example, [5–8].

The results that we obtain are motivated by the notion
of hyperstability of functional equations (see, e.g., [9–14]),
which has been introduced in connection with the issue of
stability of functional equations (for more details see, e.g.,
[15, 16]).

The main tool in the proof of the main theorem is a
fixed point result for function spaces from [17] (for related

outcomes see [18, 19]). Similar method of the proof has been
already applied in [11, 20].

To present the fixed point theorem we introduce the fol-
lowing necessary hypotheses (R

+
stands for the set of non-

negative reals and𝐴𝐵 denotes the family of all functionsmap-
ping a set 𝐵 ̸= 0 into a set 𝐴 ̸= 0).

(H1) 𝑆 is a nonempty set,𝐸 is a Banach space, and functions
𝑓
1
, . . . , 𝑓

𝑘
: 𝑆 → 𝑆 and 𝐿

1
, . . . , 𝐿

𝑘
: 𝑆 → R

+
are

given.

(H2) T : 𝐸𝑆 → 𝐸𝑆 is an operator satisfying the inequality

T𝜉 (𝑥) − T𝜇 (𝑥)


≤

𝑘

∑
𝑖=1

𝐿
𝑖
(𝑥)

𝜉 (𝑓
𝑖
(𝑥)) − 𝜇 (𝑓

𝑖
(𝑥))

 , 𝜉, 𝜇 ∈ 𝐸
𝑋
, 𝑥 ∈ 𝑆.

(2)

(H3) Λ : R𝑆
+

→ R𝑆
+
is defined by

Λ𝛿 (𝑥) :=

𝑘

∑
𝑖=1

𝐿
𝑖
(𝑥) 𝛿 (𝑓

𝑖
(𝑥)) , 𝛿 ∈ R

𝑆

+
, 𝑥 ∈ 𝑆. (3)

Now we are in a position to present the above mentioned
fixed point theorem for function spaces (see [17]).
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Theorem 1. Let hypotheses (H1)–(H3) be valid and functions
𝜀 : 𝑆 → R

+
and 𝜑 : 𝑆 → 𝐸 fulfil the following two conditions:
T𝜑 (𝑥) − 𝜑 (𝑥)

 ≤ 𝜀 (𝑥) , 𝑥 ∈ 𝑆,

𝜀
∗
(𝑥) :=

∞

∑
𝑛=0

Λ
𝑛
𝜀 (𝑥) < ∞, 𝑥 ∈ 𝑆.

(4)

Then there exists a unique fixed point 𝜓 ofT with
𝜑 (𝑥) − 𝜓 (𝑥)

 ≤ 𝜀
∗
(𝑥) , 𝑥 ∈ 𝑆. (5)

Moreover,

𝜓 (𝑥) := lim
𝑛→∞

T
𝑛
𝜑 (𝑥) , 𝑥 ∈ 𝑆. (6)

We start our considerations from the functional equation

𝑓 (𝑥 + 𝑦 + 𝑧) + 𝑓 (𝑥) + 𝑓 (𝑦) + 𝑓 (𝑧)

= 𝑓 (𝑥 + 𝑦) + 𝑓 (𝑥 + 𝑧) + 𝑓 (𝑦 + 𝑧) ,
(7)

that is patterned on (1) and therefore quite often named after
Fréchet (see, e.g., [21]).

Note that (7) can be written in the form

Δ
𝑥,𝑦,𝑧

𝑓 (0) = 0, (8)

where Δ denotes the Fréchet difference operator defined (for
functions mapping a commutative semigroup (𝑆, +) into a
group) by

Δ
𝑦
𝑓 (𝑥) = Δ

1

𝑦
𝑓 (𝑥) := 𝑓 (𝑥 + 𝑦) − 𝑓 (𝑥) , 𝑥, 𝑦 ∈ 𝑆,

Δ
𝑡,𝑧

:= Δ
𝑡
∘ Δ
𝑧
, Δ

2

𝑡
:= Δ
𝑡,𝑡
, 𝑡, 𝑧 ∈ 𝑆,

Δ
𝑡,𝑢,𝑧

:= Δ
𝑡
∘ Δ
𝑢
∘ Δ
𝑧
, Δ
3

𝑡
:= Δ
𝑡,𝑡,𝑡

, 𝑡, 𝑢, 𝑧 ∈ 𝑆.

(9)

It is easy to check that

Δ
𝑡,𝑧

𝑓 (𝑥) = 𝑓 (𝑥 + 𝑡 + 𝑧) − 𝑓 (𝑥 + 𝑡) − 𝑓 (𝑥 + 𝑧)

+ 𝑓 (𝑥) , 𝑥, 𝑡, 𝑧 ∈ 𝑆,

Δ
𝑡,𝑧,𝑢

𝑓 (𝑥) = 𝑓 (𝑥 + 𝑡 + 𝑧 + 𝑢) − 𝑓 (𝑥 + 𝑡 + 𝑧)

− 𝑓 (𝑥 + 𝑡 + 𝑢) − 𝑓 (𝑥 + 𝑧 + 𝑢)

+ 𝑓 (𝑥 + 𝑡) + 𝑓 (𝑥 + 𝑧) + 𝑓 (𝑥 + 𝑢)

− 𝑓 (𝑥) , 𝑥, 𝑡, 𝑧, 𝑢 ∈ 𝑆.

(10)

Such operators were first considered by Fréchet in [22, 23]
(we refer to [24] for more information and further references
concerning this subject); so, it is still another motivation for
(7) to be called the Fréchet equation.

Let us yet observe (see [25]) that, alternatively, (7) can be
written in the form

𝐶
2
𝑓 (𝑥, 𝑦, 𝑧) = 0, (11)

where 𝐶2𝑓(𝑥, 𝑦, 𝑧) = 𝐶𝑓(𝑥, 𝑦 + 𝑧) − 𝐶𝑓(𝑥, 𝑦) − 𝐶𝑓(𝑥, 𝑧) and
𝐶𝑓(𝑥, 𝑦) = 𝑓(𝑥 +𝑦) −𝑓(𝑥) −𝑓(𝑦); that is, 𝐶2𝑓 is the Cauchy
difference of 𝑓 of the second order.

We prove the subsequent theorem, which corresponds to
[26, Theorem 3.1], where the equation

Δ
3

𝑧
𝑓 (𝑥) = 0 (12)

has been investigated (the author has named it the super-
stability result, which is not a precise description, because
according to the terminology applied in [10–14] it should be
rather called the hyperstability result). For some analogous
investigations see [27–29]. Let us mention yet that stability of
(7) has been already studied in [30–33] and our results com-
plement the outcomes included there.

It is easy to show that every solution 𝑓 of (7), mapping a
commutative group (𝐺, +) into a real linear space 𝑋, must be
of the form 𝑓 = 𝑎 + 𝑞 with some additive 𝑎 : 𝐺 → 𝑋 and
quadratic 𝑞 : 𝐺 → 𝑋 (see, e.g., [21]). Namely, with 𝑥 = 𝑦 =

𝑧 = 0 from (7) we deduce that 𝑓(0) = 0, and, next, taking 𝑧 =

−𝑦 in (7), we obtain that the even part of 𝑓 is quadratic while
the odd part is a solution of the Jensen equation, whence it is
additive.

2. Main Results

The next theorem and corollary are the main results of the
paper (N and Z stand, as usual, for the sets of all positive
integers and integers, respectively; moreover, Z

0
:= Z \ {0}).

Theorem 2. Let (𝑋, +) be a commutative group,𝑋
0
:= 𝑋\{0},

𝑌 a Banach space, and 𝑓 : 𝑋 → 𝑌, 𝑐 : Z
0

→ [0,∞) and
𝐿 : 𝑋3
0

→ [0,∞) satisfying the following three conditions:

M := {𝑚 ∈ Z
0
: 𝑐 (−2𝑚) + 2𝑐 (𝑚 + 1) + 2𝑐 (−𝑚)

+ 𝑐 (2𝑚 + 1) < 1} ̸= 0,
(13)

𝐿 (𝑘𝑥, 𝑘𝑦, 𝑘𝑧) ≤ 𝑐 (𝑘) 𝐿 (𝑥, 𝑦, 𝑧) , 𝑥, 𝑦, 𝑧 ∈ 𝑋
0
,

𝑘 ∈ {−2𝑚,𝑚 + 1, −𝑚, 2𝑚 + 1} , 𝑚 ∈ M,
(14)

𝑓 (𝑥 + 𝑦 + 𝑧) + 𝑓 (𝑥) + 𝑓 (𝑦) + 𝑓 (𝑧)

−𝑓 (𝑥 + 𝑦) − 𝑓 (𝑥 + 𝑧) − 𝑓 (𝑦 + 𝑧)


≤ 𝐿 (𝑥, 𝑦, 𝑧) , 𝑥, 𝑦, 𝑧 ∈ 𝑋
0
.

(15)

Then there is a unique function 𝐹 : 𝑋 → 𝑌 satisfying (7) for
all 𝑥, 𝑦, 𝑧 ∈ 𝑋 and such that

𝑓 (𝑥) − 𝐹 (𝑥)
 ≤ 𝜌
𝐿
(𝑥) , 𝑥 ∈ 𝑋

0
, (16)

where

𝜌
𝐿
(𝑥)

:= inf
𝑚∈M

𝐿 ((2𝑚 + 1) 𝑥, −𝑚𝑥, −𝑚𝑥)

1 − 𝑐 (−2𝑚) − 2𝑐 (𝑚 + 1) − 2𝑐 (−𝑚) − 𝑐 (2𝑚 + 1)
,

𝑥 ∈ 𝑋
0
.

(17)
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Proof. Replacing 𝑥 by (2𝑚 + 1) 𝑥 and taking 𝑦 = 𝑧 = −𝑚𝑥 in
(15) we get
𝑓 (𝑥) + 𝑓 ((2𝑚 + 1) 𝑥) + 2𝑓 (−𝑚𝑥)

−2𝑓 ((𝑚 + 1) 𝑥) − 𝑓 (−2𝑚𝑥)


≤ 𝐿 ((2𝑚 + 1) 𝑥, −𝑚𝑥, −𝑚𝑥) =: 𝜀
𝑚

(𝑥) , 𝑥 ∈ 𝑋
0
, 𝑚 ∈ Z

0
.

(18)

Further, put

T
𝑚
𝜉 (𝑥) := 𝜉 (−2𝑚𝑥) + 2𝜉 ((𝑚 + 1) 𝑥) − 2𝜉 (−𝑚𝑥)

− 𝜉 ((2𝑚 + 1) 𝑥) , 𝜉 ∈ 𝑌
𝑋
, 𝑥 ∈ 𝑋, 𝑚 ∈ Z

0
.

(19)

Then,

T
𝑛

𝑚
𝑓 (0) = 0, 𝑛 ∈ N, 𝑚 ∈ Z

0
, (20)

and inequality (18) takes the form
T𝑚𝑓 (𝑥) − 𝑓 (𝑥)

 ≤ 𝜀
𝑚

(𝑥) , 𝑥 ∈ 𝑋
0
, 𝑚 ∈ Z

0
. (21)

Define an operator Λ
𝑚

: R
𝑋0

+
→ R
𝑋0

+
for 𝑚 ∈ Z

0
by

Λ
𝑚
𝜂 (𝑥) := 𝜂 (−2𝑚𝑥) + 2𝜂 ((𝑚 + 1) 𝑥)

+ 2𝜂 (−𝑚𝑥) + 𝜂 ((2𝑚 + 1) 𝑥)
(22)

for 𝜂 ∈ R
𝑋0

+
and 𝑥 ∈ 𝑋

0
. Then it is easily seen that, for each

𝑚 ∈ Z
0
, the operatorΛ := Λ

𝑚
has the formdescribed in (H3)

with 𝑘 = 4, 𝑆 = 𝑋
0
, 𝐸 = 𝑌, and

𝑓
1
(𝑥) = −2𝑚𝑥, 𝑓

2
(𝑥) = (𝑚 + 1) 𝑥,

𝑓
3
(𝑥) = −𝑚𝑥, 𝑓

4
(𝑥) = (2𝑚 + 1) 𝑥,

𝐿
1
(𝑥) = 𝐿

4
(𝑥) = 1, 𝐿

2
(𝑥) = 𝐿

3
(𝑥) = 2, 𝑥 ∈ 𝑋

0
.

(23)

Moreover, for every 𝜉, 𝜇 ∈ 𝑌𝑋0 , 𝑥 ∈ 𝑋
0
, 𝑚 ∈ Z

0
,

T𝑚𝜉 (𝑥) − T
𝑚
𝜇 (𝑥)



=
𝜉 (−2𝑚𝑥) + 2𝜉 ((𝑚 + 1) 𝑥) − 2𝜉 (−𝑚𝑥)

− 𝜉 ((2𝑚 + 1) 𝑥) − 𝜇 (−2𝑚𝑥) − 2𝜇 ((𝑚 + 1) 𝑥)

+ 2𝜇 (−𝑚𝑥) + 𝜇 ((2𝑚 + 1) 𝑥)


≤
(𝜉 − 𝜇) (−2𝑚𝑥)

 + 2
(𝜉 − 𝜇) ((𝑚 + 1) 𝑥)



+ 2
(𝜉 − 𝜇) (−𝑚𝑥)

 +
(𝜉 − 𝜇) ((2𝑚 + 1) 𝑥)



=

4

∑
𝑖=1

𝐿
𝑖
(𝑥)

(𝜉 − 𝜇) (𝑓
𝑖
(𝑥))

 ,

(24)

where (𝜉 − 𝜇) (𝑦) = 𝜉(𝑦) − 𝜇(𝑦) for 𝑦 ∈ 𝑋
0
. It is easy to check

that, in view of (14),

Λ
𝑚
𝜀
𝑘
(𝑥) ≤ (𝑐 (−2𝑚) + 2𝑐 (𝑚 + 1) + 2𝑐 (−𝑚)

+ 𝑐 (2𝑚 + 1)) 𝜀
𝑘
(𝑥) , 𝑘, 𝑚 ∈ Z

0
, 𝑥 ∈ 𝑋

0
.

(25)

Therefore, since the operator Λ
𝑚
is linear, we have

𝜀
∗

𝑚
(𝑥) :=

∞

∑
𝑛=0

Λ
𝑚

𝑛
𝜀
𝑚

(𝑥)

≤

∞

∑
𝑛=0

(𝑐 (−2𝑚) + 2𝑐 (𝑚 + 1)

+2𝑐 (−𝑚) + 𝑐 (2𝑚 + 1))
𝑛
𝜀
𝑚

(𝑥)

=
𝜀
𝑚

(𝑥)

1 − 𝑐 (−2𝑚) − 2𝑐 (𝑚 + 1) − 2𝑐 (−𝑚) − 𝑐 (2𝑚 + 1)
,

𝑚 ∈ M, 𝑥 ∈ 𝑋
0
.

(26)

Thus, byTheorem 1 (with 𝑆 = 𝑋
0
and𝐸 = 𝑌), for each𝑚 ∈ M

there exists a function 𝐹
𝑚

: 𝑋
0

→ 𝑌 with

𝐹


𝑚
(𝑥) = 𝐹



𝑚
(−2𝑚𝑥) + 2𝐹



𝑚
((𝑚 + 1) 𝑥)

− 2𝐹


𝑚
(−𝑚𝑥) − 𝐹



𝑚
((2𝑚 + 1) 𝑥) , 𝑥 ∈ 𝑋

0
,


𝑓 (𝑥) − 𝐹



𝑚
(𝑥)



≤
𝜀
𝑚

(𝑥)

1 − 𝑐 (−2𝑚) − 2𝑐 (𝑚 + 1) − 2𝑐 (−𝑚) − 𝑐 (2𝑚 + 1)
,

𝑥 ∈ 𝑋
0
.

(27)

Moreover,

𝐹


𝑚
(𝑥) = lim

𝑛→∞
T
𝑛

𝑚
𝑓 (𝑥) , 𝑥 ∈ 𝑋

0
, 𝑚 ∈ M. (28)

Define 𝐹
𝑚

: 𝑋 → 𝑌 by 𝐹
𝑚
(0) = 0 and 𝐹

𝑚
(𝑥) := 𝐹

𝑚
(𝑥) for

𝑥 ∈ 𝑋
0
and 𝑚 ∈ M. Then it is easily seen that, by (20),

𝐹
𝑚

(𝑥) = lim
𝑛→∞

T
𝑛

𝑚
𝑓 (𝑥) , 𝑥 ∈ 𝑋, 𝑚 ∈ M. (29)

Next, we show that

T
𝑛

𝑚
𝑓 (𝑥 + 𝑦 + 𝑧) + T

𝑛

𝑚
𝑓 (𝑥) + T

𝑛

𝑚
𝑓 (𝑦) + T

𝑛

𝑚
𝑓 (𝑧)

−T
𝑛

𝑚
𝑓 (𝑥 + 𝑦) − T

𝑛

𝑚
𝑓 (𝑥 + 𝑧) − T

𝑛

𝑚
𝑓 (𝑦 + 𝑧)



≤ (𝑐 (−2𝑚) + 2𝑐 (𝑚 + 1) + 2𝑐 (−𝑚) + 𝑐 (2𝑚 + 1))
𝑛

× 𝐿 (𝑥, 𝑦, 𝑧)

(30)

for every 𝑥, 𝑦, 𝑧 ∈ 𝑋
0
, 𝑛 ∈ N

0
:= N ∪ {0}, 𝑚 ∈ M.
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Fix 𝑚 ∈ M. For 𝑛 = 0, the condition (30) is simply (15).
So, take 𝑟 ∈ N

0
and suppose that (30) holds for 𝑛 = 𝑟 and

𝑥, 𝑦, 𝑧 ∈ 𝑋
0
. Then,


T
𝑟+1

𝑚
𝑓 (𝑥 + 𝑦 + 𝑧) + T

𝑟+1

𝑚
𝑓 (𝑥) + T

𝑟+1

𝑚
𝑓 (𝑦) + T

𝑟+1

𝑚
𝑓 (𝑧)

−T
𝑟+1

𝑚
𝑓 (𝑥 + 𝑦) − T

𝑟+1

𝑚
𝑓 (𝑥 + 𝑧) − T

𝑟+1

𝑚
𝑓 (𝑦 + 𝑧)



=
T
𝑟

𝑚
𝑓 (−2𝑚 (𝑥 + 𝑦 + 𝑧))

+ 2T
𝑟

𝑚
𝑓 ((𝑚 + 1) (𝑥 + 𝑦 + 𝑧))

− 2T
𝑟

𝑚
𝑓 (−𝑚 (𝑥 + 𝑦 + 𝑧))

− T
𝑟

𝑚
𝑓 ((2𝑚 + 1) (𝑥 + 𝑦 + 𝑧))

+ T
𝑟

𝑚
𝑓 (−2𝑚𝑥) + 2T

𝑟

𝑚
𝑓 ((𝑚 + 1) 𝑥)

− 2T
𝑟

𝑚
𝑓 (−𝑚𝑥) − T

𝑟

𝑚
𝑓 ((2𝑚 + 1) 𝑥)

+ T
𝑟

𝑚
𝑓 (−2𝑚𝑦) + 2T

𝑟

𝑚
𝑓 ((𝑚 + 1) 𝑦)

− 2T
𝑟

𝑚
𝑓 (−𝑚𝑦) − T

𝑟

𝑚
𝑓 ((2𝑚 + 1) 𝑦)

+ T
𝑟

𝑚
𝑓 (−2𝑚𝑧) + 2T

𝑟

𝑚
𝑓 ((𝑚 + 1) 𝑧)

− 2T
𝑟

𝑚
𝑓 (−𝑚𝑧) − T

𝑟

𝑚
𝑓 ((2𝑚 + 1) 𝑧)

− T
𝑟

𝑚
𝑓 (−2𝑚 (𝑥 + 𝑦)) − 2T

𝑟

𝑚
𝑓 ((𝑚 + 1) (𝑥 + 𝑦))

+ 2T
𝑟

𝑚
𝑓 (−𝑚 (𝑥 + 𝑦)) + T

𝑟

𝑚
𝑓 ((2𝑚 + 1) (𝑥 + 𝑦))

− T
𝑟

𝑚
𝑓 (−2𝑚 (𝑥 + 𝑧)) − 2T

𝑟

𝑚
𝑓 ((𝑚 + 1) (𝑥 + 𝑧))

+ 2T
𝑟

𝑚
𝑓 (−𝑚 (𝑥 + 𝑧)) + T

𝑟

𝑚
𝑓 ((2𝑚 + 1) (𝑥 + 𝑧))

− T
𝑟

𝑚
𝑓 (−2𝑚 (𝑦 + 𝑧)) − 2T

𝑟

𝑚
𝑓 ((𝑚 + 1) (𝑦 + 𝑧))

+ 2T
𝑟

𝑚
𝑓 (−𝑚 (𝑦 + 𝑧)) + T

𝑟

𝑚
𝑓 ((2𝑚 + 1) (𝑦 + 𝑧))



≤ (𝑐 (−2𝑚) + 2𝑐 (𝑚 + 1) + 2𝑐 (−𝑚) + 𝑐 (2𝑚 + 1))
𝑟

× (𝐿 (−2𝑚𝑥, −2𝑚𝑦, −2𝑚𝑧)

+ 2𝐿 ((𝑚 + 1) 𝑥, (𝑚 + 1) 𝑦, (𝑚 + 1) 𝑧)

+ 2𝐿 (−𝑚𝑥, −𝑚𝑦, −𝑚𝑧)

+𝐿 ((2𝑚 + 1) 𝑥, (2𝑚 + 1) 𝑦, (2𝑚 + 1) 𝑧))

≤ (𝑐 (−2𝑚) + 2𝑐 (𝑚 + 1) + 2𝑐 (−𝑚)

+ 𝑐 (2𝑚 + 1))
𝑟+1

𝐿 (𝑥, 𝑦, 𝑧)

(31)

for every 𝑥, 𝑦, 𝑧 ∈ 𝑋
0
, which completes the proof of (30).

Letting 𝑛 → ∞ in (30), we obtain that

𝐹
𝑚

(𝑥 + 𝑦 + 𝑧) + 𝐹
𝑚

(𝑥) + 𝐹
𝑚

(𝑦) + 𝐹
𝑚

(𝑧)

= 𝐹
𝑚

(𝑥 + 𝑦) + 𝐹
𝑚

(𝑥 + 𝑧) + 𝐹
𝑚

(𝑦 + 𝑧) , 𝑥, 𝑦, 𝑧 ∈ 𝑋
0
.

(32)

So, we have proved that for each 𝑚 ∈ M there exists a
function 𝐹

𝑚
: 𝑋 → 𝑌 satisfying (7) for 𝑥, 𝑦, 𝑧 ∈ 𝑋

0
and

such that
𝑓 (𝑥) − 𝐹

𝑚
(𝑥)



≤
𝜀
𝑚

(𝑥)

1 − 𝑐 (−2𝑚) − 2𝑐 (𝑚 + 1) − 2𝑐 (−𝑚) − 𝑐 (2𝑚 + 1)
,

𝑥 ∈ 𝑋
0
.

(33)

Now, we show that𝐹
𝑚

= 𝐹
𝑘
for all𝑚, 𝑘 ∈ M. So, fix𝑚, 𝑘 ∈

M. Note that 𝐹
𝑘
satisfies (32) with 𝑚 replaced by 𝑘. Hence,

replacing 𝑥 by (2𝑚+ 1)𝑥 and taking 𝑦 = 𝑧 = −𝑚𝑥 in (32), we
obtain thatT

𝑚
𝐹
𝑗
= 𝐹
𝑗
for 𝑗 = 𝑚, 𝑘 and

𝐹𝑚 (𝑥) − 𝐹
𝑘
(𝑥)



≤
𝜀
𝑚

(𝑥)

1 − 𝑐 (−2𝑚) − 2𝑐 (𝑚 + 1) − 2𝑐 (−𝑚) − 𝑐 (2𝑚 + 1)

+
𝜀
𝑘
(𝑥)

1 − 𝑐 (−2𝑘) − 2𝑐 (𝑘 + 1) − 2𝑐 (−𝑘) − 𝑐 (2𝑘 + 1)
,

𝑥 ∈ 𝑋
0
,

(34)

whence, by the linearity of Λ and (25),
𝐹𝑚 (𝑥) − 𝐹

𝑘
(𝑥)



=
T
𝑛

𝑚
𝐹
𝑚

(𝑥) − T
𝑛

𝑚
𝐹
𝑘
(𝑥)



≤
Λ𝑛
𝑚
𝜀
𝑚

(𝑥)

1 − 𝑐 (−2𝑚) − 2𝑐 (𝑚 + 1) − 2𝑐 (−𝑚) − 𝑐 (2𝑚 + 1)

+
Λ
𝑛

𝑚
𝜀
𝑘
(𝑥)

1 − 𝑐 (−2𝑘) − 2𝑐 (𝑘 + 1) − 2𝑐 (−𝑘) − 𝑐 (2𝑘 + 1)

≤
(𝑐 (−2𝑚) + 2𝑐 (𝑚 + 1) + 2𝑐 (−𝑚) + 𝑐 (2𝑚 + 1))

𝑛
𝜀
𝑚

(𝑥)

1 − 𝑐 (−2𝑚) − 2𝑐 (𝑚 + 1) − 2𝑐 (−𝑚) − 𝑐 (2𝑚 + 1)

+
(𝑐 (−2𝑚) + 2𝑐 (𝑚 + 1) + 2𝑐 (−𝑚) + 𝑐 (2𝑚 + 1))

𝑛
𝜀
𝑘
(𝑥)

1 − 𝑐 (−2𝑘) − 2𝑐 (𝑘 + 1) − 2𝑐 (−𝑘) − 𝑐 (2𝑘 + 1)
(35)

for every 𝑥 ∈ 𝑋
0
and 𝑛 ∈ N. Now, letting 𝑛 → ∞ we get

𝐹
𝑚

= 𝐹
𝑘
=: 𝐹.

Thus, in view of (33), we have proved that
𝑓 (𝑥) − 𝐹 (𝑥)



≤
𝜀
𝑚

(𝑥)

1 − 𝑐 (−2𝑚) − 2𝑐 (𝑚 + 1) − 2𝑐 (−𝑚) − 𝑐 (2𝑚 + 1)
,

𝑥 ∈ 𝑋
0
, 𝑚 ∈ M,

(36)

whence we derive (16).
Since (in view of (32)) it is easy to notice that 𝐹 is a

solution to (7) (i.e., (7) holds for all 𝑥, 𝑦, 𝑧 ∈ 𝑋), it remains to
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prove the statement concerning the uniqueness of 𝐹. So, let
𝐺 : 𝑋 → 𝑌 be also a solution of (7) and ‖𝑓(𝑥) − 𝐺(𝑥)‖ ≤

𝜌
𝐿
(𝑥) for 𝑥 ∈ 𝑋

0
. Then,

‖𝐺 (𝑥) − 𝐹 (𝑥)‖ ≤ 2𝜌
𝐿
(𝑥) , 𝑥 ∈ 𝑋

0
. (37)

Further, T
𝑚
𝐺 = 𝐺 for each 𝑚 ∈ Z

0
. Consequently, with a

fixed 𝑚 ∈ M,

‖𝐺 (𝑥) − 𝐹 (𝑥)‖

=
T
𝑛

𝑚
𝐺 (𝑥) − T

𝑛

𝑚
𝐹 (𝑥)

 ≤ 2Λ
𝑛

𝑚
𝜌
𝐿
(𝑥)

≤
2Λ𝑛
𝑚
𝜀
𝑚

(𝑥)

1 − 𝑐 (−2𝑚) − 2𝑐 (𝑚 + 1) − 2𝑐 (−𝑚) − 𝑐 (2𝑚 + 1)
(38)

for 𝑥 ∈ 𝑋
0
and 𝑛 ∈ N. Next, analogously as (25), by induction

we get

Λ
𝑛

𝑚
𝜀
𝑚

(𝑥) ≤ (𝑐 (−2𝑚) + 2𝑐 (𝑚 + 1)

+ 2𝑐 (−𝑚) + 𝑐 (2𝑚 + 1))
𝑛
𝜀
𝑚

(𝑥)
(39)

for 𝑥 ∈ 𝑋
0
, 𝑛 ∈ N. This implies that 𝐺 = 𝐹.

Theorem 2 yields at once the following hyperstability
result.

Corollary 3. Let (𝑋, +) be a commutative group,𝑋
0
:= 𝑋\{0},

let 𝑌 be a normed space, 𝑓 : 𝑋 → 𝑌, 𝑐 : Z
0

→ [0,∞),
𝐿 : 𝑋3
0

→ [0,∞), and let the conditions (13), (14), and (15) be
valid. Assume that

inf
𝑚∈M

𝐿 ((2𝑚 + 1) 𝑥, −𝑚𝑥, −𝑚𝑥) = 0, 𝑥 ∈ 𝑋
0
. (40)

Then 𝑓 satisfies (7) for all 𝑥, 𝑦, 𝑧 ∈ 𝑋.

Proof. Note that without loss of generality we may assume
that 𝑌 is complete, because otherwise we can replace it by its
completion. Next, in view of (40), 𝜌

𝐿
(𝑥) = 0 for each 𝑥 ∈ 𝑋

0
,

where 𝜌
𝐿
is defined by (17). Hence, fromTheorem 2, we easily

derive that 𝑓 is a solution to (7).

3. Final Remarks

Remark 4. Note that if, in Theorem 2,

lim inf
𝑚→∞

𝑐 (−2𝑚) + 2𝑐 (𝑚 + 1) + 2𝑐 (−𝑚) + 𝑐 (2𝑚 + 1) = 0

(41)

(this is the case when, e.g., lim
|𝑚|→∞

𝑐(𝑚) = 0), then (13)
holds and

𝜌
𝐿
(𝑥) := inf

𝑚∈M
𝜀
𝑚

(𝑥) , 𝑥 ∈ 𝑋
0
. (42)

Further, let 𝑋 be a normed space and

𝐿 (𝑥, 𝑦, 𝑧) = 𝜀 (‖𝑥‖
𝑝
+

𝑦

𝑝

+ ‖𝑧‖
𝑝
) , 𝑥, 𝑦, 𝑧 ∈ 𝑋

0
(43)

with some reals 𝜀 > 0 and 𝑝 < 0. Then, the condition (14)
is valid, for instance, with 𝑐(𝑘) = |𝑘|

𝑝 for 𝑘 ∈ Z
0
. Obviously,

(40) holds, and there exists 𝑚
0
∈ N such that

|2𝑚|
𝑝
+ 2|𝑚 + 1|

𝑝
+ 2|𝑚|

𝑝
+ |2𝑚 + 1|

𝑝
< 1, 𝑚 ≥ 𝑚

0
;

(44)

so we obtain (13), as well. Consequently, by Corollary 3, every
function 𝑓 : 𝑋 → 𝑌, fulfilling the inequality (15), satisfies
(7) for all 𝑥, 𝑦, 𝑧 ∈ 𝑋. In this way we have obtained a
hyperstability result that corresponds to the recent hypersta-
bility outcomes in [11, 20] and some classical stability results
concerning the Cauchy equation (see, e.g., [9, page 3], [15,
page 15, 16], and [16, page 2]).

Below, we provide two further simple and natural exam-
ples of functions 𝐿 and 𝑐 satisfying the conditions (13) and
(14). The first one, clearly, includes the case just described.

(a) 𝐿(𝑥, 𝑦, 𝑧) = (𝛼
1
‖𝑥‖
𝑠1 +𝛼
2
‖𝑦‖
𝑠2 +𝛼
3
‖𝑧‖
𝑠3)
𝑤 for 𝑥, 𝑦, 𝑧 ∈

𝑋
0
with some 𝑤, 𝛼

𝑖
, 𝑠
𝑖

∈ R such that 𝛼
𝑖

> 0 and
𝑤𝑠
𝑖
< 0 for 𝑖 = 1, 2, 3, and 𝑐(𝑚) ≡ |𝑚|

−V|𝑤| , where
V := min {|𝑠

1
|, |𝑠
2
|, |𝑠
3
|}.

(b) 𝐿(𝑥, 𝑦, 𝑧) = 𝛼‖𝑥‖
𝑠
‖𝑦‖
𝑡
‖𝑧‖
𝑢 for 𝑥, 𝑦, 𝑧 ∈ 𝑋

0
with some

reals 𝛼 > 0 and 𝑠, 𝑡, 𝑢 such that 𝑠 + 𝑡 + 𝑢 < 0.
Clearly, if two functions 𝐿 satisfy the condition (14),

then so do their sum and product, with suitable functions 𝑐.
Therefore, we can easily produce numerous examples of such
functions. Of course there are some other such examples that
are a bit more artificial; for instance, 𝐿(𝑥, 𝑦, 𝑧) = 𝐵(‖𝐴(𝑥)‖

−𝑛
)

for 𝑥 ∈ 𝑋
0
, where 𝑛 ∈ N, 𝐴 : 𝑋 → 𝑋 and 𝐵 : R → R

are functions with 𝐴(𝑥𝑚) = 𝑚𝐴(𝑥) and 𝐵(𝑡𝑚) = 𝑚𝐵(𝑡) for
𝑥 ∈ 𝑋, 𝑡 ∈ R and 𝑚 ∈ Z.

We end the paper with a simple example of applications
of our main result.

Corollary 5. Let𝑋 be a normed space and𝑋
0
:= 𝑋\{0}.Write

𝐷(𝑥, 𝑦, 𝑧) :=

𝑥 + 𝑦 + 𝑧


2

+ ‖𝑥‖
2
+

𝑦

2

+ ‖𝑧‖
2

−
𝑥 + 𝑦


2

− ‖𝑥 + 𝑧‖
2
−

𝑦 + 𝑧

2

(45)

for𝑥, 𝑦, 𝑧 ∈ 𝑋. Assume that one of the following two hypotheses
is valid.

(i) There exist 𝑤
0
, 𝛼
𝑖
, 𝑠
𝑖

∈ R such that 𝛼
𝑖
, 𝑤
0
𝑠
𝑖

> 0 for
𝑖 = 1, 2, 3 and

sup
𝑥,𝑦,𝑧∈𝑋0

𝐷(𝑥, 𝑦, 𝑧)

(𝛼
1‖𝑥‖
𝑠1 + 𝛼
2

𝑦

𝑠2 + 𝛼
3‖𝑧‖
𝑠3)
𝑤0

< ∞. (46)

(ii) There exist reals 𝑠, 𝑡, 𝑢 such that 𝑠 + 𝑡 + 𝑢 > 0 and

sup
𝑥,𝑦,𝑧∈𝑋0

𝐷(𝑥, 𝑦, 𝑧)

‖𝑥‖
𝑠𝑦


𝑡

‖𝑧‖
𝑢

< ∞. (47)

Then 𝑋 is an inner product space.

Proof. Write 𝑓(𝑥) = ‖𝑥‖
2 for 𝑥 ∈ 𝑋. Then, with 𝐿 and 𝑐

of the forms described in Remark 4 (with 𝑤 = −𝑤
0
), from

Corollary 3 we easily derive that 𝑓 is a solution to (7), which
yields the statement.
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