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Abstract. The strange quark star is investigated within the enlarged SU (3)
Nambu–Jona-Lasinio model. The stable quark star can exist until a maximal
configuration with ρm = 3.1 × 1015 g cm−3 with Mm = 1.61 M� and Rm =
8.74 km is reached. Strange quarks appear for density above ρc = 9.84 g cm−3

for the quark star with radius Rc = 8.003 km and Mc = 0.77M�. A comparison
of quark star properties obtained in the quark mean-field approach to a neutron
star model constructed within the relativistic mean-field theory is presented.

1. Introduction

At sufficiently high density, the transition to deconfined strange quark matter is widely expected.
Chiral symmetry is spontaneously broken in the QCD vacuum. Lattice QCD simulations at
nonzero temperature T and zero baryon chemical potential µB indicate that chiral symmetry is
restored above a temperature T ∼ 150 MeV [1]. The Nambu–Jona-Lasinio (NJL) [2] model
is an effective theory which is believed to be related to QCD at low energies, when one has
integrated out the gluon fields. The NJL model might yield reasonable results in the density
range where confinement is no longer crucial but chiral symmetry as a symmetry of full QCD
remains important. The NJL model has proved to be very successful in the description of
the spontaneous breakdown of chiral symmetry exhibited by the true (nonperturbative) QCD
vacuum. This model has been extensively used over the past few years not only to describe
hadron properties [3] (see for reviews [4, 5]) and phase transitions in dense matter [6]–[8], but
also to describe the quark strange stars [9]–[13]. The detailed properties of the quark phase in
compact stars have been a topic of recent interest [14] (for a review see [15, 16]).

Quark strange stars are astrophysical compact objects which are entirely made of deconfined
u, d, s quark matter (strange matter) staying in β-equilibrium. The possible existence of strange
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stars is a direct consequence of the conjecture [17] that strange matter may be the absolute ground
state of strongly interacting matter.

The three-flavour NJL model has been discussed by many authors; see e.g. [18]. For the
quark phase we follow Buballa and Oertel [19] in using the three-flavour version of the NJL
model.

The aim of this paper is to investigate a strange quark star within the enlarged SU (3)
NJL model. The comparison of quark star properties obtained in the quark mean-field (QMF)
approach to a neutron star model constructed in framework of the relativistic mean-field (RMF)
theory will be made. This paper is organized as follows. In section 2 we present general
properties of the NJL model in the mean-field approach based on the Feynman–Bogoliubov
inequality for the free energy of the system. In this section the equation of state (EoS) employed
is calculated for NJL model. The EoS is used then to determine the equilibrium configurations
of the quark star in section 3. Finally, in section 4 the main implications of the results are
summarized.

2. Nambu–Jona-Lasinio model

The NJL [2] model has been widely used for describing hadron properties [20] and the chiral
phase transition [21]. The enlarged [22] simplest version of the model is given by the Lagrangian

L = q̄(iγµ∂µ − m0)q + 1
2Gs

8∑
a=0

[(q̄λaq)2 + (q̄λaiγ5q)2] − 2K
∏

f={u,d,s}
(q̄fqf )

− 1
2Gv

8∑
a=0

[(q̄γµλaq)(q̄γµλaq) + (q̄γµγ5λ
aq)(q̄γµγ5λ

aq)]

+ i
2∑

f=1

Lfγ
µ∂µLf −

2∑
f=1

mfLfLf +B0. (1)

The first term contains the free kinetic part, including the current quark qf = {qu, qd, qs} masses
m0 which break explicitly the chiral symmetry of the Lagrangian, and the term representing
the free relativistic leptons Lf = {e−, µ−}. The fermion fields are composed of quarks
and leptons (electrons, muons). Here q denotes a quark field with three flavours, u, d and
s, and three colours. We restrict ourselves to the isospin SU (2) unbroken-symmetry case,
mu

0 = md
0; thus

m0 = m0,fδf,f ′ =


m0,u

m0,d

m0,s


 . (2)

The generators of the u(3) algebra λa = {λ0 =
√
2/3I, λi} (where I is an identity matrix,

λi are Gell-Mann matrices of the su(3) algebra) obey Tr(λaλb) = 2δab. Due to this nor-
malization of this algebra the coupling constants Gs and Gv can be redefined and written as
Ḡs = (2/3)Gs, Ḡv = (2/3)Gv.

The NJL model is nonrenormalizable; thus it is not defined until a regularization procedure
has been specified. This cut-off limits the validity of the model to momenta well below the
cut-off. In most of our calculations we will adopt the parameters presented in table 1. With Λ,
Gs specified above, chiral symmetry is spontaneously broken in vacuum.
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Table 1. Parameter sets of the NJL models.

NJL (su(2)) [21] NJL (I) [19] NJL (II) [22] ENJL [22]

mu = md 5.5 MeV 5.5 MeV 5.5 MeV 3.61 MeV
ms 0 140.7 MeV 132.9 MeV 88.0 MeV
Λ 631 MeV 602.3 MeV 631.4 MeV 750.0 MeV
ḠsΛ2 2.19 3.67 3.67 3.624
KΛ5 0 12.36 9.40 9.40
ḠvΛ2 0 0 0 3.842

The model contains eight parameters of the standard NJL model (the current mass m0,u,
m0,s of the light and strange quarks, the coupling constants Gs, determinant coupling K and the
momentum cut-off Λ) and the additional constant Gv (Gv = xvGs, xv = 1.06 [12]). In the quark
massless limit the system has a U(3)L × U(3)R chiral symmetry. The system has following
global currents: the baryon current

Jν
B = 1

3qλ
0γνq (3)

and the isospin current which exists only in the asymmetric matter:

Jν
3 = 1

2qγ
νλ3q, Jν

8 = 1
2qγ

νλ8q. (4)

The conserved baryon and isospin charges are given by the relations

Qi = 1
3

∫
d3x q+λiq, i = {0, 3, 8}

which are connected to commuting Cartan algebra. The physical system is defined by the
thermodynamic potential [23]

Ω = −kT lnTr(e−β(H−µiQi)) (5)

where H stands for the Hamiltonian. It is more convenient to use chemical potentials connected
to the quark flavour f in such a way that µiQi =

∑
f µfQ̄f :

µu = µ0 + µ3 +
1√
3
µ8 µd = µ0 − µ3 +

1√
3
µ8 µs = µ0

s − 2√
3
µ8. (6)

Quarks and electrons are in β-equilibrium which can be described as a relation among their
chemical potentials:

µd = µu + µe = µs µµ = µe

where µu, µd, µs and µe, µµ stand for quarks and lepton chemical potentials, respectively. These
conditions mean that matter is in equilibrium with respect to the weak interactions. If the electron
Fermi energy is high enough (greater than the muon mass) in the neutron star matter, muons start
to appear as a result of the following reactions:

d → u + e− + νe s → u + µ− + νµ.

The neutron chemical potential is

µn ≡ µu + 2µd.

New Journal of Physics 4 (2002) 14.1–14.18 (http://www.njp.org/)

http://www.njp.org/


14.4

In a pure quark state the star should to be charge neutral. This gives us an additional constraint
on the chemical potentials:

2
3nu − 1

3nd − 1
3ns − ne − nµ = 0 (7)

where nf (f ∈ u, d, s), ne are the particle densities of quarks and electrons, respectively. The
EoS can now be parametrized by just one parameter, namely the dimensionless u quark Fermi
momentum x (kF,u = Mx (M = 939 MeV is the nucleon mass)).

In the mean-field approach the quantum correlations

(A − 〈A〉)(B − 〈B〉) = AB − A〈B〉 − B〈A〉 + 〈A〉〈B〉 ∼ 0

may be neglected. This allows us to replace AB by

AB ∼ A〈B〉 +B〈A〉 − 〈A〉〈B〉.
Using this approximation, the Lagrange function L may be expressed as

L̄ = q̄(iγµDµ − m0)q + gs

8∑
a=0

σa(q̄λaq) − 1
2m

2
sσ

aσa + 1
2m

2
vV

a
µ V

aµ

− 2K
∑
f

(q̄fqf )
∏
f ′ �=f

〈q̄f ′qf ′〉 + 4K
∏
f

〈q̄fqf〉 (8)

where the covariant derivative is given by

Dµ = ∂µ + 1
2 igvV

a
µ λ

a. (9)

Here, the meson fields first appear as nondynamical variables

Gs〈q̄λaq〉 = gsσ
a (10)

Gv〈q̄λaγµq〉 = gvV
a
µ . (11)

This pattern may be extended to the axial mesons:

Gs〈q̄λaiγ5q〉 = gsφ
a (12)

Gv〈q̄λaγµiγ5q〉 = gvA
a
µ. (13)

The meson masses are defined as

mσ = gs/
√
Gs (14)

mv = gv/2
√
Gv. (15)

This is a process of bosonization in which the NJL model produces essentially the u(3)
linear sigma model as an approximate effective theory for the scalar and pseudoscalar meson
sector [24].

In this paper the variational method based on the Feynman–Bogoliubov inequality [25] is
incorporated (see more details in [26]):

Ω ≤ Ω1 = Ω0(meff ) + 〈H − H0〉0 (16)

with the trial Lagrange function described by

L0(meff ) = q(iγµD̄µ − meff )q (17)

and suggested by the mean-field form of the Lagrange function (8). The covariant derivative

D̄µ = ∂µ + 1
2 igvV

a
µ λ

a (18)
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is limited to the commuting Cartan subalgebra λi = {λ0, λ3, λ8}. This approach introduces
the fermion interactions with homogeneous boson condensates σa, V a

µ which together with
the effective masses meff will be treated as variational parameters. Ω0 is the thermodynamic
potential of the effectively free-quasiparticle system:

Ω0(meff ) = E0 − kBT
Nq

2π2

∑
f

∫ Λ

0
dk k2

(
ln

(
1 + e−β(

√
k2+m2

eff,f
−µf)

)

+ ln
(
1 + e−β(

√
k2+m2

eff,f
+µf)

))
. (19)

We cannot ignore the energy of quantum fluctuations because it depends on the quark effective
mass. As fermions give −(1/2)h̄ω to the vacuum energy, we get

E0 = − Nq

2π2

∑
f={u,d,s}

∫ Λ

0
dk k2

√
k2 +m2

eff,f (20)

assuming that if meff = m0, then the energy of quantum fluctuations may be neglected. The
effective quark masses entering into the Lagrangian function L0(meff ) of the trial system are
calculated from the extremum conditions

∂Ω1

∂meff,f

= 0 (21)

which give

(meff )f,f ′ = meff,fδf,f ′ = mcδf,f ′ − Gs

8∑
a=0

〈q̄fλaqf〉0λ
a
f,f ′ + 2Kδf,f ′

∏
f ′ �=f

〈q̄f ′qf ′〉0

or

meff,f = mc,f − Ḡs〈q̄fqf〉0 + 2K
∏
f ′ �=f

〈q̄f ′qf ′〉0, (22)

where

〈qfqf〉0 =
meff,qNq

π2

∫ Λ

0

k2 dk√
k2 +m2

eff,f


 1

exp
(
β

(√
k2 +m2

eff,f − µf

))
+ 1

+
1

exp
(
β

(√
k2 +m2

eff,f + µf

))
+ 1

− 1


 . (23)

At T = 0 we have only

〈q̄fqf〉0 = −meff,f
Nq

2π2

∫ Λ

kF

dk
k2√

k2 +m2
eff,f

. (24)

In vacuum we get the constituent quarks with mass

mc = m0 − 2Ḡs〈q̄q〉0v + 2K
∏

f ′={u,d,s}
〈q̄f ′qf ′〉0v (25)

where

〈q̄fqf〉0v = −mv,f
Nq

2π2

∫ Λ

0
dk

k2√
k2 +m2

v,f

. (26)
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Figure 1. The effective quark masses for different NJL models as a function of
the u quark dimensionless Fermi momentum x = kF,u/M (M = 939 MeV is the
nucleon mass).

At minimum the effective free energy has the form

Ωeff = Ω1|min = Ω0(meff ) +Beff (27)

with the effective bag constant

Beff = 1
2Gs〈q̄λaq〉2 − 4K

∏
f={u,d,s}

〈q̄fqf〉 − 1
2Gv〈q̄γµλaq〉〈q̄γµλaq〉 − B0. (28)

Quarks as effectively free quasiparticles in vacuum with nonvanishing bag ‘constant’. The
constant B0 was chosen in this way to have free massive (mv,u,d = 367.61 MeV, mv,s =
549.45 MeV for the NJL (I) parameters set and mv,u,d = 366.13 MeV, mv,s = 504.13 MeV for
the enlarged NJL model). However, in a high-density medium they are less massive (figure 1) but
the effective bag constant (figure 2) grows to B

1/4
eff � 150–180 MeV. The frequently encountered

case with current quarks and bag constant is valid only in very high-density limit. This is the case
when the quark matter phase is being modelled in the context of the MIT bag model [9, 27, 28]
as a Fermi gas of u, d and s quarks. In this model the phenomenological bag constant BMIT

is introduced to mimic QCD interactions. In the original MIT bag model the bag constant was
constant and the value B = Bc = (154.5 MeV)4 makes the strange matter absolutely stable.

To avoid quantum fluctuations, the meson fields may be redefined to produce the
phenomenological sigma field as

gsϕa = Gs(〈q̄λaq〉0 − 〈q̄λaq〉0v) (29)

so the effective quark mass can be rewritten as

meff = mc − gsϕaλ
a. (30)
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Figure 2. The effective bag constant as a function of the u quark dimensionless
Fermi momentum x = kF,u/M (M = 939 MeV is the nucleon mass).

Thus, the effective quark mean-field (QMF) theory appears. The Lagrange function in the
mean-field approximation may be written in the following form:

LQMF = q(iγµDµ − mc)q + 1
2∂µϕa∂

µϕa − 1
2m

2
σϕaϕa − 1

4F
a
µνF

a,µν + 1
2m

2
vV

a
µ V

aµ. (31)

Unfortunately, the vacuum quantum fluctuations are missed, but meson fields gain the dynamical
character. Restricting ourselves to just the u(2) × u(1) subalgebra (a = {0, 1, 2, 3, 8}) case we
have the simplest version of the QMF theory. Defining a new basis with τa, a = {0, 1, 2, 3, 4}
as

τ 0 =


 1 0 0
0 1 0
0 0 0


 τ i =

(
σi 0
0 0

)
for τ 4 =

√
2


 0 0 0
0 0 0
0 0 1


 (32)

(i = {1, 2, 3}) the meson fields may be decomposed as follows:

ϕ = ϕaτ
a = στ 0 + δiτ

i + σsτ
4 and Vµ = V a

µ λ
a = ωµτ

0 + ωs,µτ
4 + biτ

i.

Now the new meson fields are denoted by

ωµ =

√
2
3
V 0
µ +

1√
2
V 8
µ ,

ωs,µ =
√

1
3V

0
µ − V 8

µ ,

and biµ = V i
µ (with i = {1, 2, 3}), respectively. The simplest u(2) version (σs = 0, ωs,µ = 0) has

the Lagrange density function with the following form:

LQMF = 1
2∂µσ∂

µσ − U(σ) − 1
4ΩµνΩµν + 1

2M
2
ωωµω

µ + 1
2∂µδi∂

µδi − 1
2m

2
δδ

2
i

− 1
4R

a
µνR

aµν + 1
2M

2
ρ b

a
µb

aµ + q(iγµDµ − mc)q + gqσσqq + gqδδiqτ
iq. (33)

The field tensors Ra
µν , Ωµν and the covariant derivative Dµ are given by

Ra
µν = ∂µb

a
ν − ∂νb

a
µ + gρεabcb

b
µb

c
ν , (34)
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Ωµν = ∂µων − ∂νωµ, (35)

Dµ = ∂µ + 1
2 igρb

a
µτ

a + 1
2 igωωµ. (36)

The δ = 0 limit gives the simplest version of the QMF model.
Some years ago, Guichon proposed an interesting model concerning the change of the

nucleon properties in nuclear matter (the quark–meson coupling (QMC) model) [30]. The
model construction mimics the RMF theory, where the scalar (σ) and the vector meson (ω)
fields couple not with nucleons but directly with quarks. The quark mass has to change from its
bare current mass due to the coupling to the σ meson. More recently, Shen and Toki [31] have
proposed a new version of the QMC model, where the interaction takes place between constituent
quarks and mesons. They refer the model as the quark mean-field model (QMF). In this work
we shall also investigate the quark matter within the QMF theory using parameters coming from
the enlarged Nambu–Jona-Lasinio (ENJL) model. Enlargement of the NJL model is based on
inclusion of vector mesons while the QMF model includes vector mesons at the beginning.

Here the QMF model is somewhat generalized by the inclusion of the isovector δ(a0(980))
meson. It splits u and d masses (or proton and neutron masses in the case of the RMF
approach [35, 36]). Both δi- and biµ-mesons may be neglected in the case of symmetric nuclear
matter. Their role in the asymmetric nuclear matter of the neutron star is significant and is a
subject of current interest to us.

The QMF model is more flexible. The SU(3) symmetry restricts gqσ =
√
2/3gs, gqω = gω,

gqρ = gρ to gρ = gω = gv and mρ = mω = mv.
The dependence of the effective quarks mass mF,f (or δf = mF,f/M) on the dimensionless

Fermi momentum x = kF,u/M is presented in figure 1.
There is no quark confinement in the NJL and QMF models. There is no mechanism (except

for in the NJL solvable model [13]) to prevent hadrons from decaying into free constituent quarks.
Free constituent quarks will produce nearly the same density and pressure as free nucleons:
3mv,u,d ∼ M . Without any mechanism of confinement the quark star for small densities will have
properties very similar to those of neutron stars (the case xv > 0.65 in paper [12]) or even white
dwarfs. However, this is a rather unphysical artefact. It is natural to assume that quarks are not
allowed to propagate over the distance λ ∼ m−1

eff . In this language the confinement mechanism
introduces the infrared cut-off λ [40]. The quark confinement mechanism in the form of the
harmonic oscillator potential [31] may give the nucleon mass M = M(σ) = M − gNσσ + · · ·
and generate the RMF approach.

RMF theory [32] is very useful in describing nuclear matter and finite nuclei. Recent
theoretical studies show that the properties of nuclear matter can be described nicely in
terms of the RMF theory. Properties of the neutron star in this model have also been
examined [9, 10, 26, 33, 34].

Its extrapolation to large charge asymmetry is of considerable interest in nuclear astrophysics
and particularly in constructing a neutron star model where extreme conditions of isospin are
realized. The construction of neutron star model is based on various realistic equations of state
and results in a general picture of neutron star interiors. Thus the proper form of the EoS is
essential in determining neutron star properties such as the mass range, mass–radius relation
and the crust thickness. However, a complete and more realistic description of a neutron star
requires taking into consideration not only the interior region of a neutron star but also the
remaining layers, namely the inner and outer crust and the surface. The Lagrangian of the RMF
theory which helps towards the construction of a neutron star model contains baryon and meson
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Figure 3. The binding energy Eb for the quark and nuclear system. The pure
quark system (u, s, d quarks with the bag constant B) and QMF have nonrealistic
behaviour for small densities as B �= 0. For comparison, the symmetric nuclear
matter (the RMF approach with TM1 [39] parametrization) result is presented.

degrees of freedom and, as input quantities, coupling constants of the mesons and parameters of
the potential U(σ) which are determined from nuclear matter properties:

LQMF = 1
2∂µσ∂

µσ − U(σ) − 1
4ΩµνΩµν + 1

2M
2
ωωµω

µ

− 1
4R

a
µνR

aµν + 1
2M

2
ρ b

a
µb

aµ + 1
4c3(ωµω

µ)2 + ψ(iγµDµ − M)ψ + gNσσψψ. (37)

Now ψ describes nucleons and gNσ = 3gqs , gNω = 3gqω and gNρ = gqρ.
The potential function U(σ) may possesses a polynomial form introduced by Boguta and

Bodmer [37] in order to get a correct value for the compressibility K of nuclear matter at
saturation density:

U(σ) = 1
2m

2
σσ

2 + 1
3g2σ

3 + 1
4g3σ

4. (38)

Different parameter sets give different forms of the EoS in the high-density region above
saturation. In this paper the TM1 [39] parameter set was exploited. The RMF model has its own
phenomenology, but its parameters should be connected to the enlarged NJL model. The TM1
parametrization suggests that xv = 0.65.

The ρ-meson plays decisive role in accounting for the asymmetry energy of nuclear matter;
thus its inclusion in a theory of neutron star matter is essential. Also the proton number density is
determined by this meson. The results for the binding energy are presented in figure 3. It shows
that the nucleon or quark matter in β-equilibrium has a larger energy per particle than symmetric
nuclear matter. For neither parameter set are these matters self-bounded. Figure 3 depicts the
binding energy for different models. It reproduces the standard results for symmetric nuclear

New Journal of Physics 4 (2002) 14.1–14.18 (http://www.njp.org/)

http://www.njp.org/


14.10

matter too. The asymmetric matter is less bound than the symmetric matter. In this model we
are dealing with the electrically neutral neutron or quark star matter being in β-equilibrium.
Therefore the imposed constrains, namely the charge neutrality and β-equilibrium, imply the
presence of leptons.

3. The quark star properties

To calculate the properties of the quark star we need the energy–momentum tensor. The energy–
momentum tensor can be calculated taking the quantum statistical average

T̄µν = 〈Tµν〉, (39)

where

Tµν = 2
∂L
∂gµν

− gµνL. (40)

In the case of the fermion fields it is more convenient to use the reper field eaµ defined as follows:
gµν = eaµe

b
νηab where ηab is the flat Minkowski space-time matrix. Then

Tµν = eaµ
∂L
∂eaν

− gµνL. (41)

We define the density of energy and pressure by means of the energy–momentum tensor

T̄µν = (P + ε)uµuν − Pgµν =



ε = c2ρ 0 0 0

0 P 0 0
0 0 P 0
0 0 0 P


 (42)

where uµ is a unit vector (uµu
µ = 1). Both ε and P depend on the quark chemical potential

µ or Fermi momentum xf . The fermion (quarks and leptons) contributions to the energy and
pressure are

εF =
∑

f={u,d,s}
ε0χB(xf , T ) +

∑
f={e,µ}

ε0χL(xf , T ) (43)

PF =
∑

f={u,d,s}
P0φ(xf , T ) +

∑
f={e,µ}

P0φ(xf , T ). (44)

The fact that effective quark mass meff,f = δfM depends on fermion concentration (or quark
chemical potential µf ) must now be included in χ(xf , T ) and φ(xf , T ):

χ(x, T ) =
3
π2

∫ Λ/M

λ
dz z2

√
z2 + δ2(x)




1

exp
((√

δ2(x) + z2 − µ′
)
/τ

)
+ 1

+
1

exp
((√

δ2(x) + z2 + µ′
)
/τ

)
+ 1


 , (45)

φ(x, T ) =
1
π2

∫ Λ/M

λ

z4 dz√
z2 + δ2(x)




1

exp
((√

δ2(x) + z2 − µ′
)
/τ

)
+ 1

+
1

exp
((√

δ2(x) + z2 + µ′
)
/τ

)
+ 1


 (46)
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Figure 4. The form of the EoS for quark (NJL (I), enlarged NJL and QMF model)
matter and the nucleon one (TM1 [39]). The blue colouring (ns

B = 3.94n0
B)

indicates the strange (s) quark appearance in the strange star.

where τ = (kBT )/M ,

µ′ = µ/M =
√
δ2(x) + x2 (47)

and

x = k/M (48)

for each flavour f . As in [33], we have introduced in (47), (48) the dimensionless ‘Fermi’
momentum even at finite temperature, which exactly corresponds to the Fermi momentum at
zero temperature. To avoid free-quark contributions to the EoS coming from small densities,
the infrared cut-off λ = δ [40] was introduced. The case λ = 0 with the NJL (I) parameter set
nicely reproduces the result of the paper [12].

The parametric dependence on µ (or xf ) defines the EoS. The various equations of state for
different parameter sets are presented in figure 4. The binding energies

Eb = ρ/nB − Mc2

for the bulk nuclear (nB is the baryon number density, nB = (np + nn)) and quark matter
(nB = (nu + nd + ns)/3) are presented in figure 3.

The metric is static, spherically symmetric and asymptotically flat:

gµν =



eν(r) 0 0 0
0 −eλ(r) 0 0
0 0 −r2 0
0 0 0 −r2 sin2 θ


 (49)

(where ν(r) and λ(r) are functions of a radius r). The Einstein equations (in the isotropic case)
lead to the standard Tolman–Oppenheimer–Volkoff (‘OTV’) equations [41]. The equations
describing masses and radii of quark stars are determined by the proper form of the EoS. The
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Figure 5. The electron and quark dimensionless Fermi momenta as functions of
the u quark one (x = kF,u/M , M = 939 MeV is the nucleon mass). The muon
distribution is not visible on this scale.

form obtained for the EoS is the basis for calculating macroscopic properties of the star. In order
to construct the mass–radius relation for a given form of the EoS the OTV equations have to be
solved:

dP (r)
dr

= −G

r2

(
ρ(r) +

P (r)
c2

)(m(r) + (4π/c2)P (r)r3)
(1 − 2Gm(r)/c2r)

(50)

dm(r)
dr

= 4πr2ρ(r). (51)

The continuity condition for the energy–momentum tensor T µν
;ν = 0 defines the connection

between the gravitational potential ν(r) (49) and the pressure and density profiles P (r) and
ρ(r):

dν(r)
dr

= − 2
P (r) + c2ρ(r)

dP (r)
dr

. (52)

Equation (51) determines the function λ(r):

e−λ(r) = 1 − 2Gm(r)
r

.

Now we have solved the OTV equation, the pressure P (r), mass m(r) and density profile ρ(r)
are obtained. To obtain the total radius R of the star, the fulfilment of the condition P (R) = 0
is necessary. Introducing the dimensionless variable ξ, which is connected with the star radius
r by the relation r = aξ, enables us to define the functions P (r), ρ(r) and m(r):

ρ(r) = ρ0χ(x(ξ)) (53)

P (r) = P0ϕ(x(ξ)) (54)

m(r) = M�u(ξ) (55)
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Figure 6. The mass–radius M(R) dependence for the quark star (NJL (I), ENJL
(xv = 1.06, the solid brown curve, and xv = 0.65, the solid violet curve), QMF
model and pure u, d, s matter (QMC)). To compare this relation to the neutron
star in the RMF approach, it is presented as the black curve (TM1—solid curve)
for pure npe nuclear matter and (TM1 + Bonn + Negele + Vautherin—dotted
curve) with a crust.

in terms of ξ. Dimensionless functions defined as

α0 =
GM�ρc
P0a

, β0 = 3
Ms

M�
, Ms = 4

3πρ0a
3 (56)

are needed to obtain the OTV equation of the following form:

dϕ
dξ

= −α0(χ(x(ξ)) + ϕ(x(ξ)))
u(ξ) + β0ϕ(x(ξ))ξ3

ξ2(1 − (rg/a)u(ξ)/ξ)
(57)

du
dξ

= β0χ(x(ξ))ξ2 (58)

with rg being the gravitational radius. The equations (57), (58) are easy integrated numerically.
These are equations for dimensionless mass u(ξ) = m(r)/M� up to dimensionless radius ξ and
the u quark dimensionless Fermi momentum x = kF,u/M . Knowing the variable x, all star
properties can be calculated. Quark and electron dimensionless Fermi momenta dependences
on x are presented in figure 5.

Both nuclear and quark matter, being in β-equilibrium, are not bound (figure 3). Quark
matter at moderate densities is bound, due to the presence of the bag constant B which acts as
a negative pressure P = −B + · · · (figure 4). Higher-density matter is bound only by gravity.
The gravitational binding energy of the star is defined as

Eb,g = (Mp − m(R))c2 (59)

where

Mp = 4π
∫ R

0
dr r2

(
1 − 2Gm(r)

c2r

)−1/2
ρ(r) (60)
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Figure 8. The profile for the effective quark Fermi momentum of the maximal
quark star (ENJL model) with the central density ρc = 3.11 × 1015 g cm−3.

is the proper star mass.
Strange quark stars in the NJL model are rather small in comparison to neutron ones. To

allow comparison of these strange stars to neutron star models obtained in the RMF approach,
the mass–radius relations are also presented in figure 6. (The black solid line (TM1) for
pure npe nuclear matter and the dotted line for a star with a crust (TM1 + Bonn + Negele
+ Vautherin [42]).) The smaller size of the quark star is due to the fact that the pressure
(figure 4) reaches zero for higher densities (nm

B ∼ 0.26 fm−3 = 1.75n0
B) than for the symmetric

New Journal of Physics 4 (2002) 14.1–14.18 (http://www.njp.org/)

http://www.njp.org/


14.15

0.0 1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0 9.0 10.0

r ( km )

0.0 1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0 9.0 10.0

0.0

50.0

100.0

150.0

200.0

250.0

300.0

350.0

400.0

450.0

500.0

550.0

600.0

m
ef

f,f
 (M

eV
)

0.0

50.0

100.0

150.0

200.0

250.0

300.0

350.0

400.0

450.0

500.0

550.0

600.0

d
s
u

Figure 9. The quark effective mass profile inside the maximal quark star (ENJL
model) with the central density ρc = 3.11 × 1015 g cm−3.

nuclear matter (n0
B ∼ 0.15 fm−3). At the surface, such a star has higher density than saturated

nuclear matter. This makes the star smaller and denser. The same situation arises in the QMF
approach when the bag constant is included. In the NJL model the effective bag constant
has dynamical origin (equation (28)). Its main contributions come from quantum vacuum
fluctuations and scalar mesons. The strange quark s appears only for densities that are high
enough (nB > ns

B = 3.94n0
B). For smaller densities the quark star is built only from u and

d quarks. It is important to stress that even then the quantum vacuum fluctuations come from
all flavours including s quarks and all antiparticles. There are no s quarks for small densities
in the strange quark star—only its quantum fluctuations. In the QMF approach there are no
quantum fluctuations at all. This represents a significant difference between the NJL and QMF
approaches. Another one is that the bag constant in the QMF model must be added ‘by hand’.
This makes the QMF approach unreliable for smaller densities (figure 4).

The gravitational binding energy of a strange quark star (QMF approach) and that of
a neutron (RMF) star are presented in figure 10. The arrow shows a possible transition
from the unstable neutron star to the strange one with conservation of the baryon number
MB = M� (MB = mnc

2NB).
In the enlarged NJL model [22], vector mesons are included. Their contributions to the

effective bag constant are positive (figure 2). This means that a strange quark star possesses a
slightly bigger radius and mass than in the NJL (I) model.

However, a maximum stable strange quark star is obtained for ρ2 = 3.1 × 1015 g cm−3

and has the following parameters: M = 1.61 M� and R = 8.74 km. The baryon number for
this star is the same as in the case of a pure neutron star with MB = 2.126 M�. Below the
density ρs = 3.94ρ0 (ρ0 = 2.5× 1014 g cm−3), there are no strange quarks and quark stars. The
stable stars are those with dM/dρc > 0 [38] (figure 7). The gravitational binding energy for a
strange quark is lower than the neutron one for ρ > 1.6 × 1015 g cm−3. The M(ρ) dependence
for the quark star is presented in figure 7. For the quark star with the maximal central density
ρc = 3.11 × 1015 g cm−3, the star profile is presented in figure 8. Quark and electron mass
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2NB.

distributions inside the star are presented in figure 8. The quark partial fractions defined as

Xf =
nf

(nu + nd + ns)
=

3nf

nB

,

where f = (u, d, s), are presented in figure 5. The quark and electron partial fraction distribution
inside the star is presented in figure 8.

4. Conclusions

The properties of the strange quark star in the bag model with B = Bc and the current quark
masses (mu = md = 0, ms = 150 MeV) are presented in [9]. The star model based on the QMC
is very similar (the dotted green curve in figure 6) and close to that based on the ENJL model
parametrized by the TM1 parameter set (xv = 0.65, the solid violet curve 6). The properties of
strange stars with quark masses changing continuously from the constituent quark masses to the
small current (see figure 1) are presented in [43]. All these stars are more compact than neutron
stars (see the figure 6) and are similar to those of the NJL (I) model.

In this paper the enlarged NJL model is used to construct the EoS and properties of the strange
quark star. The stable strange quark star exists from the minimal central density up to the maxi-
mal one ρ2 = 3.1× 1015 g cm−3, which gives the following star parameters: M = 1.61M� and
R = 8.74 km. Its baryon number is the same as for the pure neutron star with MB = 2.126M�.
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A very similar strange star—but less compact—is obtained in the solvable NJL model [13]. The
gravitational binding energy for a strange quark star is lower than the neutron one for densities
ρ > 1.6 × 1015 g cm−3. The conversion of an unstable neutron star into a strange star is an
exciting subject which may help to explain the gamma-ray-burst enigma [44].

Similarly to the QMF model, the enlarged NJL one includes the coupling to vector mesons.
This is crucial for the quark star properties. Also the quark s mass is important. The mass of
an s quark is also relevant because its smaller mass causes strange quarks to appear for lower
densities. Nonzero strangeness of the matter gives, as a result, a strange star. It is fascinating
that the neutron and strange star properties are strictly connected to the inner structures of nuclei
and nucleons.
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