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Abstract

Molecular mechanisms controlling plant totipotency are largely unknown and studies on somatic embryogenesis (SE), the
process through which already differentiated cells reverse their developmental program and become embryogenic, provide
a unique means for deciphering molecular mechanisms controlling developmental plasticity of somatic cells. Among
various factors essential for embryogenic transition of somatic cells transcription factors (TFs), crucial regulators of genetic
programs, are believed to play a central role. Herein, we used quantitative real-time polymerase chain reaction (qRT-PCR) to
identify TF genes affected during SE induced by in vitro culture in Arabidopsis thaliana. Expression profiles of 1,880 TFs were
evaluated in the highly embryogenic Col-0 accession and the non-embryogenic tanmei/emb2757 mutant. Our study
revealed 729 TFs whose expression changes during the 10-days incubation period of SE; 141 TFs displayed distinct
differences in expression patterns in embryogenic versus non-embryogenic cultures. The embryo-induction stage of SE
occurring during the first 5 days of culture was associated with a robust and dramatic change of the TF transcriptome
characterized by the drastic up-regulation of the expression of a great majority (over 80%) of the TFs active during
embryogenic culture. In contrast to SE induction, the advanced stage of embryo formation showed attenuation and
stabilization of transcript levels of many TFs. In total, 519 of the SE-modulated TFs were functionally annotated and
transcripts related with plant development, phytohormones and stress responses were found to be most abundant. The
involvement of selected TFs in SE was verified using T-DNA insertion lines and a significantly reduced embryogenic
response was found for the majority of them. This study provides comprehensive data focused on the expression of TF
genes during SE and suggests directions for further research on functional genomics of SE.
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Introduction

Most plant cells, in contrast to animal cells, express an amazing

developmental plasticity allowing their reprogramming and

manifestation of totipotency [1]. Our current understanding of

the genetic mechanisms controlling plant totipotency are largely

based on studies on somatic embryogenesis (SE), the process

through which already differentiated cells reverse their develop-

mental program during in vitro culture and become embryogenic

giving rise to the formation of somatic embryos which then

develop further into entire plants. Thus, deciphering the molecular

determinants of SE can directly contribute to revealing the genetic

programme underlying the phenomenon of cell totipotency.

Moreover, considering similarities between SE and zygotic

embryogenesis (ZE), functional genomics of SE became a model

for the analysis of the molecular mechanisms of ZE [2,3].

Importantly, knowledge about the molecular mechanisms govern-

ing SE has also a practical value in plant biotechnology for the

improvement of existing and the establishment of new protocols

for plant regeneration.

The control of plant embryogenesis, similar to other develop-

mental processes, occurs through a complex set of intrinsic signals

that are involved in providing information to the dividing and

differentiating cells. Of them, phytohormones and transcription

factors (TFs) are believed to play central roles [4]. TFs constitute

sequence-specific DNA-binding proteins that are capable of

activating and/or repressing transcription of target genes and

thus are responsible for gene expression regulation. TF genes are

often expressed in a tissue- or developmental stage-specific mode

or in a stimulus-dependent manner, and many have been shown to

obey important roles in developmental processes [5,6,7]. More-

over, in adult human somatic cells a specific combination of TFs

was found to re-programme differentiated cells into pluripotent

embryonic stem cells [8,9]. More specifically, a combination of

only four over-expressed TFs was sufficient to induce the

formation of pluripotent stem cells from e.g. adult human

fibroblasts [10,11].

In contrast to the spectacular progress that has been made with

respect to the identification of key genetic factors able to transform

differentiated animal cells into totipotent stem cells much less is

known about the master regulators of genomic reprogramming in
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plant cells. Of note, transcriptional regulation is thought to play a

more important role in plants than in animals and accordingly,

recent analyses have recognized over 2,000 TFs to be encoded by

the Arabidopsis genome and revealed a higher ratio of TF genes to

the total number of genes in this plant than in several animal

model organisms such as Drosophila melanogaster or Caenorhabditis

elegans [12].

In agreement with the model that TFs play fundamental roles in

the control of plant cell totipotency, genes encoding TFs are

currently overrepresented among the genetic factors reported to be

essential for SE. The list of genes affecting SE includes BABY

BOOM (BBM) [13], WUSCHEL (WUS) [14], AGAMOUS-LIKE15

(AGL15) [15], LEAFY COTYLEDON (LEC) [16], LEC1-LIKE (L1L)

[17] and genes encoding MYB transcription factors, i.e.,

AtMYB115, AtMYB118 [18] and EMK (EMBRYOMAKER) [19].

Several TFs involved in SE have been reported to enhance plant

regeneration efficiency when overexpressed [13,14,20].

Various molecular tools have been employed to identify genes

essential for embryogenic transition of somatic plant cells.

Microarray-based transcriptome analyses were used to discover

genes involved in SE induction and somatic embryo development

in various plant species including gymnosperms such as Picea sp.

[21,22], cereals such as maize [23] and rice [24], and eudicots,

such as e.g. Glycine max [25] and Solanum tuberosum [26]. In contrast

to commonly used DNA microarrays, transcriptome analysis

based on quantitative real-time polymerase chain reaction (qRT-

PCR) provides an up to 100 times more sensitive tool for transcript

detection [27]. With respect to TFs, which are often expressed at a

low level or in a cell-specific manner, the superior sensitivity of

multi-parallel qRT-PCR over microarray hybridisations has been

reported [28]. Recently, multi-parallel qRT-PCR was employed in

a number of biological studies, e.g. to determine the expression

levels of ,1,900 TFs in Arabidopsis in response to different

carbon sources [29] or phosphorus treatment [30]. Similarly,

multi-parallel qRT-PCR has been used to study the expression of

more than 2,000 TFs in rice [31], of 1,000 TFs in Medicago

truncatula [32], or of 1,000 TFs during tomato fruit development

[33].

In the present study we took advantage of the available

Arabidopsis TF qRT-PCR platform to indentify TF genes

involved in the process of SE induced in vitro in Arabidopsis

cultures. To identify TFs prominently expressed during SE we

compared transcriptomes of Arabidopsis genotypes exhibiting

largely different embryogenic capacities, namely the highly

embryogenic accession Col-0 and the embryonal mutant tanmei/

emb2757 entirely lacking an embryogenic response in vitro [34].

Expression of 1,880 TFs was profiled at selected time points

during SE culture and TFs prominently expressed in Col-0 were

identified. The capacity for SE induction was evaluated in mutants

carrying T-DNA insertions in 17 TF genes that showed SE-

modulated expression; the majority of the mutants displayed a

significantly impaired embryogenic response, indicating that our

transcriptome screening indeed revealed genes functionally

relevant for SE. Our approach constitutes the first comprehensive

analysis of the global TF transcriptome involved in the process of

SE induced in plant tissue culture and provides the basis for a

better understanding of the genetic determinants of plant

developmental plasticity.

Results

Experimental Design
To indentify TF genes potentially involved in SE, we

employed a well established protocol for the induction of

somatic embryos (see Materials and Methods). In brief,

immature zygotic embryos (IZEs) at the late cotyledonary stage

of development were carefully excised from siliques 10–12 days

after pollination and cultured on solid medium containing the

synthetic auxin analog 2,4-dichlorophenoxyacetic acid (2,4-D,

5 mM). Induction of SE in this experimental setup is accompa-

nied by distinct morphological changes of the explant. In

Arabidopsis (Col-0 accession), a straightening and expansion of

previously bent cotyledons and swelling of the cotyledon node

are observed during the first week of in vitro culture. The first

somatic embryos become visible at days 8 to 10, on the adaxial

sides of the cotyledons proximal to the cotyledon node, and at

around day 15 the cotyledon part of the immature zygotic

embryo is covered with somatic embryos at various stages of

development [35].

The experiment was designed to monitor the expression of

1,880 TF genes at three distinctive stages of IZE-derived

embryogenic culture: (i) freshly isolated explants (0 d), (ii) explants

subjected to SE induction for 5 days (5 d), and (iii) explants at an

advanced stage of embryogenesis related to somatic embryo

formation (10 d). To identify genes exhibiting preferential

expression during SE, we compared the TF transcriptomes of

the highly embryonic Col-0 accession and the tanmei mutant

unable to form somatic embryos (Figure 1). The TANMEI/

EMB2757 (TAN, At4g29860) gene encodes a regulatory WD

repeat protein involved in early and late phases of zygotic embryo

development [36] as well as SE [34]. Its molecular mode of action

has not been reported yet, however, the fact that TAN harbours

seven WD repeats suggests that it interacts with other proteins to

exert its biochemical function. Recently, a regulatory function of

TANMEI in cell cycle progression and differentiation was

reported [37].

PCA (Principal Component Analysis; Figure 2) and HCA

(Hierarchical Cluster Analysis; not shown) demonstrated high

reproducibility of the three experimental replicates performed, i.e.,

samples representing biological repeats of the same combination

(genotype x culture time point) grouped together. In addition, we

observed a clear separation of samples from different combinations

indicating that expression profiles of embryogenic Col-0 and non-

embryogenic tanmei tissues differ significantly. Moreover, the 5 d-

and 10 d-Col-0 embryogenic cultures tended to overlap indicating

similarities between the TF transcriptomes of the different stages of

embryogenic culture.

TF Genes Related to Embryogenic Competency of
Explant Tissue

In Col-0, a large number of TFs were expressed at the

different time points (0, 5 and 10 d) of the culture (Figure 3).

The biggest number of TFs was expressed in explants before

embryogenic induction (0 d) and 83 of them were repressed

thereafter. Of the TFs analysed, 1602 were expressed in all

culture stages, whilst SE stage-specific transcripts were rare and

limited to two and seven for the 5-d and 10-d culture time

points, respectively.

To identify TFs specific for SE-competent tissue we

compared the Col-0 and tanmei transcriptomes (Figure 4A).

This revealed expression of 1727 TFs, of which 1690 were

commonly expressed in both types of explants. With respect to

genes related to embryogenic competency of somatic tissue,

transcripts highly enriched in Col-0 versus tanmei were of

particular interest. Following this criterion, 41 TFs only

expressed in Col-0 and TFs highly overexpressed (over 10-fold)

in Col-0 versus tanmei (108) were inspected further; for 61 TFs a

function was predicted, including genes related to stress

TF Genes Profiling during Somatic Embryogenesis

PLOS ONE | www.plosone.org 2 July 2013 | Volume 8 | Issue 7 | e69261



tolerance, zygotic embryogenesis, developmental processes,

hormone biology and in vitro responses (Table S1). We found

that one third (44) of the TFs highly enriched in Col-0 explants

were differentially expressed in the embryogenic culture. The set

of genes highly up-regulated (at least 10-fold) exclusively in Col-

0 explants and SE-modulated in the derived cultures includes

TFs related to stress responses (12) and development of zygotic

embryos (10), flowers (4), leaves (2) and roots (1).

The Global TF Transcriptome changes during Somatic
Embryogenesis in Col-0

Of the 1,880 TFs analysed, 1,768 were found to be expressed in

Col-0 explants in at least one of the three time points, and only

112 TFs were not expressed at any stage (Figure 4B). To gain

insight into TF expression patterns associated with SE we

compared the expression levels observed in explant tissue (0 d)

to the expression levels obtained after 5 d (early embryo induction)

and 10 d (advanced embryo formation) of culture.

Figure 1. Developmental changes in Arabidopsis Col-0 and tanmei IZE explants induced on auxin-containing medium. A–D) Col-0
accession. E–H) tanmei mutant. Explants were induced on auxin-containing medium (E5) and monitored at days 0 (A, E), 5 (B, F), 10 (C, G) and 15 (D, H)
of in vitro culture. A, E) Freshly isolated IZE 12 days after pollination (DAP). B) Straightening, enlargement and swelling of IZE cotyledons. C) Tissue
proliferation and somatic embryo-like protuberances formed at adaxial side (arrow). D) Numerous somatic embryos at the adaxial side of IZE
cotyledons. F) Anthocyanin accumulation in IZE cotyledons and tissue proliferation from IZE hypocotyl. G) Non-embryogenic watery callus. H)
Progression of non-embryogenic callus production. Bars: 0.2 mm (A, B, E, F); 0.3 mm (C, G); 0.6 mm (H) and 1.0 mm (D).
doi:10.1371/journal.pone.0069261.g001

Figure 2. Principal Component Analysis (PCA). The analysis demonstrates a clear separation of TF expression in Col-0 and tanmei (tan1–2), both
in explants (0 d) and during embryogenic culture (5 d and 10 d). Expression data from three independent biological replicates were analysed each.
Samples: C0, Col-0, day 0; C5, Col-0, day 5; C10, Col-0, day 10; T0, tan mutant, day 0; T5, tan mutant, day 5; T10, tan mutant, day 10. Numbers 1 to 3
denote replicates 1 to 3. Approximately 67.6% of the variation is captured by the first two components.
doi:10.1371/journal.pone.0069261.g002

TF Genes Profiling during Somatic Embryogenesis
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Our analysis revealed 729 TFs (representing ,41% of all

detected TFs) to be differentially expressed (by at least 2-fold) in

embryogenic cultures versus explants (Figure 5B; Table S2). A

closer inspection of the transcriptomes associated with embryo

induction identified 673 and 688 genes, respectively, that were

modulated at early (5 d vs. 0 d) and advanced (10 d vs. 0 d) stages

of SE. The vast majority (602 TFs; 83%) of the modulated TFs

were up-regulated, rather than down-regulated, compared to the

initial explant (0 d) transcriptome. Of the TFs modulated during

SE, 358 displayed a dramatic change in expression level (x$10)

and most (312 TFs; ,87%) were found to be up-regulated.

The transcript levels detected in the 0-, 5- and 10-d samples

were subjected to k-means clustering and four major gene

expression patterns were observed (Figure 5). The cluster analysis

confirmed that most TFs were up-regulated in embryogenic

cultures; the increased expression was either dominant during the

early stages of SE induction (Figure 5C), or was observed during

both SE stages, early and advanced (Figure 5B,D).

In summary, global transcriptome analysis identified an

extensive expressional reprogramming of TF genes during SE,

where an up-regulation of TF expression was predominantly

observed.

TF Transcriptomes of Early (Embryo-induction) versus
Advanced (Embryo-formation) SE Stages

Given that the early days of an embryogenic culture are critical

for embryogenic transition of somatic tissue and decisive for the

transcriptional re-programming of the explant, we focused our

further analysis on TFs undergoing expression changes during the

early embryogenic response. To reveal TFs modulated during SE

induction, we compared the transcriptome of the 5-d culture with

that of the explant (5 d–0 d) and the 10-d embryo culture (5 d–

10 d) (Table 1). Our analysis revealed that TF transcriptomes

associated with the early and advanced SE stages differed

significantly with respect to the level and direction of the

expression changes. In contrast to SE induction (5 d vs. 0 d),

,2.5 times fewer genes (284 vs. 673) were differentially expressed

between the early and late embryo formation stages (10 d vs. 5 d)

and a number of up-regulated genes was distinctly decreased

resulting in a similar fraction of up- (154) and down- (130)

regulated TFs in the advanced, embryo-formation culture stage. In

addition, at the embryo formation stage (10 d vs. 5 d) differentially

expressed genes exhibited less drastic changes in transcription and

accordingly, the number of genes (32) exhibiting an at least 10-fold

change in expression between the 5 d- and 10 d-cultures was over

10 times lower than in a preceding SE induction stage (5 d vs. 0 d).

Figure 3. Venn diagram demonstrating the number of genes
expressed during SE in the Col-0 accession. Numbers in
intersections represent TFs commonly expressed at the different culture
time points: 0 d, explant; 5 d, induction phase of SE; 10 d, advanced SE
culture.
doi:10.1371/journal.pone.0069261.g003

Figure 4. Numbers of TF genes expressed in explants of the highly embryogenic Col-0 genotype and the non-embryogenic tanmei
mutant (A) and in embryogenic Col-0 culture (B). +, genes for which expression was observed; - , genes for which no expression was observed.
Differentially expressed and highly-regulated genes show at least 2- (x$2) and 10-fold (x$10) change, respectively, in expression level in any of the
compared culture points.
doi:10.1371/journal.pone.0069261.g004

TF Genes Profiling during Somatic Embryogenesis
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To identify genes modulated at the early culture period, we

tracked transcript levels of individual genes during the two

successive culture periods (5 d–0 d and 5 d–10 d). To this end,

TFs up- or down-regulated, or remaining unchanged during SE

induction, were grouped together according to their expression

profiles during the subsequent embryo formation stage (Table 2).

Scrutiny of the individual gene expression patterns revealed that

most TFs (67%) up-regulated during embryo induction (5 d) did

not significantly change expression thereafter during embryo

formation; only few genes were down- (,15%) or up-regulated

(,18%) in the 10-d culture compared to the 5-d culture.

Stabilization of the TF transcriptome in advanced cultures was

also observed for genes down-regulated during SE induction (5 d–

0 d). We found that almost half of the genes (48%) down-regulated

during embryo induction were not further modulated at the later

stage of embryo formation, whilst the remaining genes were up-

(32%) or further down-regulated (20%). In contrast to the vast

number of genes differentially regulated during SE induction, a

small set of 38 TFs was found to be modulated exclusively in the

advanced SE culture. The transcript levels of these genes remained

stable until the embryo formation stage when most of them

(,66%) were found to be down-regulated.

To identify TFs specific for SE induction we searched for those

that drastically (by at least 10-fold) changed their expression levels

during the early culture stages. We identified genes of high and

temporal changes in expression specific to SE induction and

among them were the key regulators of embryogenic transition

induced in cultured cells in response to auxin treatment (Table
S3).

Collectively, by analyzing TF gene expression profiles across the

time points of SE we obtained the following results: (i) The

embryo-induction stage of SE is associated with a robust change of

the TF transcriptome. (ii) Transcriptome reprogramming during

SE induction includes a drastic up-regulation of a great majority

(over 80%) of the TFs active in culture. (iii) TF expression patterns

of embryo induction and embryo formation stages are largely

different. (iv) In contrast to SE induction, attenuation and

stabilization of transcript levels of a great fraction of the TFs is

observed in the advanced embryo formation stage.

Col-0 versus tanmei Transcriptome and SE-associated
Genes

To identify candidate TFs of SE-associated functions we

compared the transcriptomes of cultures derived from the highly

embryogenic Col-0 genotype and the tanmei mutant lacking the

embryogenic response; genes of distinctly different expression

profiles were selected. We identified 141 TF genes with SE-specific

expression (Table 3) falling into the following groups: (i) genes

exclusively expressed in embryogenic culture (2 genes); (ii) genes

Figure 5. Cluster analysis. K-means clustering revealed four main
expression patterns of TF genes in Col-0 embryogenic cultures. The
levels of expression changes are given as 40-ddCt. The cluster analysis
shows up-regulation of the great majority of TFs (B, C, D), and down-
regulation of a small group of TFs (A). Increased TF expression was
either restricted to the early stage of SE (C), or was observed during
both SE stages, early and advanced (B, D).
doi:10.1371/journal.pone.0069261.g005

Table 1. Number of TF genes whose expression changes during somatic embryo formation.

Compared culture stages Number of genes showing differential expression Up-regulated genes Down-regulated genes

Fold change x$2

5 d–0 d 673 546 (81%) 127 (19%)

10 d–0 d 688 542 (79%) 146 (21%)

10 d–5 d 284 154 (60%) 130 (40%)

Fold change x$10

5 d–0 d 357 312 (87%) 46 (13%)

10 d–0 d 379 331 (87%) 48 (13%)

10 d–5 d 32 6 (19%) 26 (81%)

x, fold change.
doi:10.1371/journal.pone.0069261.t001

TF Genes Profiling during Somatic Embryogenesis
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differentially expressed in Col-0, but steadily expressed in tanmei

(72 genes); (iii) genes exhibiting opposite expression patterns in

Col-0 and mutant cultures, including genes up-regulated in Col-0

and down-regulated in tanmei (33), and genes down-regulated in

Col-0 and up-regulated in tanmei (10); examples are shown in

Figure 6; and (iv) genes significantly down-regulated in non-

embryogenic tanmei culture (24). We found that, similar to the

global Col-0 transcriptome, SE-specific transcripts were predom-

inantly up-regulated during SE and for a substantial part of them

the changes in expression level were drastic (x$10) (Figure 7).

Annotation of Differentially Expressed Genes
The TF genes differentially expressed in embryogenic Col-0

culture were annotated to 50 gene families of which 14 included

the great majority (541 genes; 74%) of the differentially expressed

transcripts (Figure S1). The most frequently represented families

were bHLH (75), AP2/EREBP (69), MYB (62), NAC (54), C2H2

(49); WRKY (45), HB (41) and MADS (38), each of which

represents 5–11% of the SE-modulated genes.

We next analysed the representation of TF families within the

set of SE-associated genes. The SE-associated genes represented

32 TF families and particularly enriched were the MADS (20),

MYB (16), AP2/EREBP (15), C2H2 (12), NAC (11), bHLH (11)

and ABI3/VPI (4) families. We also noticed that several SE-

associated genes belong to the WRKY (7) and DREB (7) families

known for their involvement in stress responses.

Functional Categories of Differentially Regulated Genes
To provide an overview of the potential contribution of TF

genes to the regulatory mechanisms involved in SE, the genes

Table 2. Number of differentially expressed TF genes exhibiting convergent expression profiles across SE culture.

Embryo-induction stage (5 d vs. 0 d)a Embryo-forming stage (10 d vs. 5 d)b

Expression change Number of genes Down-regulation Up-regulation Steady expression

x$2 x$10 x$2 x$10 x,2

Up-regulation x$2:546 81 5 100 11 368

x$10:307 62 5 58 3 187

Down-regulation x$2:125 25 1 40 12 60

x$10:45 1 1 25 9 19

Steady expression x,2:38 25 1 13 2 0

x, fold change of gene expression.
aExpression behavior of TF genes within the first five days of somatic embryogenesis.
bExpression change of the genes grouped in column 1 (‘‘Embryo-induction stage’’) during the second phase of somatic embryogenesis (expression at day 10 compared
with expression at day 5).
doi:10.1371/journal.pone.0069261.t002

Figure 6. Expression profiles of SE-associated genes. The graph shows contrasting expression levels of TFs in embryogenic (Col-0) and non-
embryogenic (tanmei) cultures. The relative transcripts levels of the genes are shown as ddCt.
doi:10.1371/journal.pone.0069261.g006

TF Genes Profiling during Somatic Embryogenesis
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differentially expressed in embryogenic culture were annotated

according to their known or predicted functions (Figure 8A). In

total, 519 genes (71%) were functionally annotated and the

analysis revealed that the most abundant transcripts are related to

plant development, phytohormone biology and stress responses. A

great majority (,78%, 407) of the SE-modulated TFs are related

to plant development and in particular TFs involved in flower

development were highly abundant (24%; 125). Other numerously

represented genes of the plant development category were

reported to be involved in embryo and seed development

(,22%, 71).

The number of TFs related to phytohormones and stress

responses were similar and these functional categories included

,43% and ,39% of the genes, respectively. Within 221

hormone-related, SE-modulated TFs all major classes of phyto-

hormones were represented and the most numerous were genes

related to auxin (,24%, 54). Half of the auxin-related genes

encoded major auxin signaling molecules: ARF (7) and AUX/IAA

(20). Beside auxin-related TFs, many genes related to other

phytohormones (e.g. ethylene, ABA, cytokinin, GA) were observed

to be prevalently up-regulated during SE (Figure 9). Among 201

stress-related TFs modulated during SE, genes responding to

different abiotic stress factors (salt, water, temperature, oxidative

stress) were represented more frequently than those involved in

pathogen responses.

Within the group of functionally annotated SE-modulated TFs,

101 (,20%) represented SE-specific expression, and the number

and representation of functional categories were similar to those of

globally affected genes (Figure 8B). A great majority (,70%) of

the SE-specific TFs were annotated to plant developmental

processes and predominantly contribute to flower development

(,27%).

We observed some notable differences between SE-modulated

and SE-associated genes with respect to functional annotations.

Strikingly, the number of stress-responsive TFs, especially those

related to biotic stress, was higher (,50%) among SE-associated

transcripts, whilst the percentage of phytohormone-related genes

was lower (,33%), but interestingly the representation of

cytokinin- and gibberellin-related genes was increased over

auxin-related genes.

Figure 7. Number of TF genes of modulated expression in embryogenic cultures. A) TFs expressed in Col-0 culture. B) TFs of SE-specific
expression pattern, i.e. those displaying distinctly different expression profiles in Col-0 and tanmei cultures. Numbers of TFs of steady (fold change,2)
and modulated (fold change$2) expression in embryogenic cultures referenced to the indicated culture time points (i.e. 5 d–0 d; 10 d–0 d, and 5 d–
10 d) are given. Genes with up- and down-regulated expression are indicated.
doi:10.1371/journal.pone.0069261.g007

TF Genes Profiling during Somatic Embryogenesis
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Table 3. TF genes showing SE-specific expression.

Fold change 2DDCt

AGI Gene name TF family Known or predicted function Col-0 tan

5d–0d 5d–10d 5d–0d 5d–10d

AT1G02030 C2H2 Seed germination 30.06 2.10 Steady expression

AT1G06170 bHLH89/EN24 bHLH Flower development, ZE [49] 7.89 4.59 Steady expression

AT1G19790 SRS7 SRS Flower development 3.92 1.32 Steady expression

AT1G25250 IDD16 C2H2 1.10 22.50 Steady expression

AT1G25560 EDF1/TEM1 AP2/EREBP Flowering time 2.95 29.51 Steady expression

AT1G28160 ERF087 AP2/EREBP Stress 9.51 21.88 Steady expression

AT1G34650 HDG10 HB 25.63 214.72 Steady expression

AT1G44830 AP2/EREBP Biotic stress 6.19 22.79 Steady expression

AT1G51220 C2H2 2.50 1.21 Steady expression

AT1G54330 ANAC020 NAC 16.34 22.64 Steady expression

AT1G59640 BIG PETAL bHLH Flower development 4.47 21.29 Steady expression

AT1G59810 AGL50 MADS Flower development 32.67 21.12 Steady expression

AT1G60920 AGL55 MADS 340.14 3.41 207.94 21.47

AT1G65300 MADS Seed/embryo development 64.45 1.66 3.51 21.56

AT1G66380 MYB114 MYB ZE [49], cell wall 88.65 1.32 Steady expression

AT1G67030 ZFP6 C2H2 Cell cycle 89.26 1.78 13.36 22.03

AT1G68240 bHLH 92.41 22.00 Steady expression

AT1G68480 C2H2 Flower development 3.51 21.01 Steady expression

AT1G77850 ARF17 ARF Auxin 3.84 21.78 2.48 1.56

AT1G77980 AGL66 MADS Flower development 2.93 21.47 Steady expression

AT2G17150 NIN-like 4.53 219.43 Steady expression

AT2G23740 SUVR5/SET6 C2H2 Flower development 5.86 21.45 2.17 21.28

AT2G27300 ANAC040/NTL8 NAC Salt stress 2957.17 2.38 Steady expression

AT2G30590 WRKY21 WRKY SE Dactilis glomerata [121] 5.78 1.95 Steady expression

AT2G31650 SET-domain Histone methylation 4.99 1.55 3.41 21.80

AT2G33480 ANAC041 NAC 2.73 1.78 Steady expression

AT2G35700 AP2/EREBP Biotic stress 2.19 22.35 1.88 1.46

AT2G38470 WRKY33 WRKY Biotic and abiotic stress 4.11 23.20 21.07 21.92

AT2G39880 MYB25 MYB 5.39 21.99 3.41 1.09

AT2G42280 bHLH 4.38 21.01 Steady expression

AT2G44430 MYB Flower development 4.86 21.32 Steady expression

AT2G46770 EMB2301/NST1 NAC ZE [49], cell wall 67.65 21.06 44.32 2.64

AT2G47810 NFYB5 CCAAT-HAP3 Flower development 1.88 22.20 Steady expression

AT2G47890 COL13 C2C2(Zn) CO-like Flower development 4.92 229.04 Steady expression

AT3G01220 ATHB20 HB Auxin 9.13 3.01 Steady expression

AT3G03200 ANAC045 NAC 2.04 22.14 Steady expression

AT3G04730 IAA16 Aux/IAA Auxin 16.34 2105.42 Steady expression

AT3G06490 MYB108/BOS1 MYB JA, GA, stress 107.63 21.34 Steady expression

AT3G10470 C2H2 Flower development 625.99 21.13 55.33 1.35

AT3G17600 IAA31 Aux/IAA ZE [38] 7.62 3.43 Steady expression

AT3G17730 ANAC057 NAC 12.64 1.08 Steady expression

AT3G19070 GARP-G2-like Cell wall 22.01 1.01 Steady expression

AT3G21890 MZN24.1 C2C2(Zn) CO-like Light 15.03 22.22 Steady expression

AT3G23240 ERF1B AP2/EREBP Ethylene 4.53 4.23 Steady expression

AT3G24310 MYB71 MYB 195.36 25.13 Steady expression

AT3G27940 LBD26 AS2 (LOB) I 128.89 27.41 199.47 25.31

AT3G30260 AGL79 MADS Root development 14.32 22.60 6.63 25.24
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Table 3. Cont.

Fold change 2DDCt

AGI Gene name TF family Known or predicted function Col-0 tan

5d–0d 5d–10d 5d–0d 5d–10d

AT3G50700 ATIDD2 C2H2 9.13 29.00 Steady expression

AT3G51080 GATA9 C2C2(Zn) GATA ZE 3.63 21.10 Steady expression

AT3G53200 MYB 103.25 21.41 6.63 230.48

AT3G56660 BZIP49 bZIP Stress 467.88 21.65 Steady expression

AT3G56770 bHLH Biotic stress 13.55 3.18 Steady expression

AT3G60490 AP2/EREBP Stress 5.78 21.16 23.18 28.46

AT3G61890 ATHB-12 HB Water and salt stress 56.10 26.68 Steady expression

AT3G61910 ANAC066/NST2 HB Cell wall 2.81 21.57 Steady expression

AT4G00940 C2C2(Zn) DOF 8.22 213.74 Steady expression

AT4G01260 GeBP 55.72 1.80 Steady expression

AT4G01540 NTM1/ANAC068 NAC Cell cycle; cytokinins 6.68 1.32 Steady expression

AT4G05100 MYB74 MYB JA; ethylene; stress 9.92 21.09 Steady expression

AT4G17460 HAT1 HB 24.93 22.99 Steady expression

AT4G20970 bHLH 64.89 21.20 765.36 21.22

AT4G22070 WRKY31 WRKY SE Solanum tuberosum [26] 2225.63 5.74 Steady expression

AT4G22680 MYB85 MYB Vascular tissue, cell wall 124.50 6.32 Steady expression

AT4G24540 AGL24 MADS Flowering time 4.76 5.35 1.48 21.12

AT4G27950 CRF4 AP2/EREBP Ethylene, stress 10.93 21.57 Steady expression

AT4G28110 MYB41 MYB ABA, water and salt stress 6.02 21.93 Steady expression

AT4G28500 ANAC073/SND2 NAC 116.97 21.02 Steady expression

AT4G30080 ARF16 ARF ZE 6.23 1.16 4.17 21.93

AT4G32280 IAA29 Aux/IAA Auxin; root development 94.35 1.52 Steady expression

AT4G32730 MYB3R1 MYB Cell cycle; cytokinins 5.54 1.05 Steady expression

AT4G38620 MYB4 MYB ZE [49] 11.55 1.23 2.43 1.11

AT4G38910 ATBPC5 BPC/BRR 7.52 5.66 34.78 1.85

AT4G39250 ATRL1 MYB-related Seed/embryo development 115.36 21.47 167.73 35.26

AT4G39410 WRKY13 WRKY 4.17 11.31 1.73 21.84

AT5G01200 MYB-related 41.07 23.18 Steady expression

AT5G02350 CHP-rich Root development 5.03 1.04 21.15 4.00

AT5G04390 C2H2 60.55 4.11 10.85 21.29

AT5G06500 AGL96 MADS ZE [49] 10.63 1.65 Steady expression

AT5G06510 NF-YA10 CCAAT-HAP2 Seed/embryo development 24.59 22.99 17.51 4.14

AT5G06650 GIS2 C2H2 GA 6.23 22.22 Steady expression

AT5G10030 OBF4 bZIP ABA, SA, biotic stress 24.42 2.50 Steady expression

AT5G11190 AP2/EREBP Ethylene, biotic stress 136.24 21.15 Steady expression

AT5G14000 ANAC084 NAC ZE [49] 8.51 22.55 Steady expression

AT5G15130 WRKY72 WRKY ZE [49] 1652.00 21.21 229.13 1.19

AT5G18000 B3 Flower development 1184.45 1.93 Steady expression

AT5G22890 C2H2 Root development 94.35 22.25 Steady expression

AT5G23260 AGL32/TT16 MADS Seed/embryo development 20.53 3.14 Steady expression

AT5G24110 WRKY30 WRKY 11746.96 25.46 Steady expression

AT5G26870 AGL26 MADS Root development 2.08 3.56 Steady expression

AT5G26950 AGL93 MADS 11.16 22.73 Steady expression

AT5G27070 AGL53 MADS 18.64 21.09 Steady expression

AT5G27130 AGL39 MADS Seed/embryo development 10.13 21.57 1067.48 1.93

AT5G27580 AGL89 MADS 14.22 2.50 Steady expression

AT5G27910 NF-YC8 CCAAT-HAP5 8.46 21.46 1.26 22.93
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Table 3. Cont.

Fold change 2DDCt

AGI Gene name TF family Known or predicted function Col-0 tan

5d–0d 5d–10d 5d–0d 5d–10d

AT5G38800 ATbZIP bZIP Epidermal developmental, cell wall 243.88 21.31 Steady expression

AT5G39760 ZF-HD 5.82 1.06 4.29 22.16

AT5G40220 AGL43 MADS 80.45 2.17 Steady expression

AT5G43175 bHLH 1120.56 21.11 9741.98 1.58

AT5G50570 SBP 5.66 1.03 Steady expression

AT5G50670 SBP 4.86 21.12 Steady expression

AT5G51780 bHLH 5.66 22.64 Steady expression

AT5G52260 MYB19 MYB 44.63 1.67 Steady expression

AT5G56200 DEL1/E2L3 C2H2 Endoreduplication 103.97 1.83 1.21 247.84

AT5G58010 LRL3 bHLH Root development 13.64 22.43 Steady expression

AT5G60440 AGL62 MADS Seed/embryo development 5.46 1.47 Steady expression

AT5G62165 AGL42 MADS 55.72 215.56 103.25 21.33

AT5G66870 ASL1/LBD36 AS2 (LOB) I Flower development 12.55 1.11 3.18 2.45

AT5G66980 B3 Flower development 250.73 1.55 Steady expression

AT5G66990 NIN-like 2.04 2709.18 2.85 241.36

AT2G17150 NIN-like 4.53 21.45 Steady expression

AT2G23740 SUVR5/SET6 C2H2 Flower development; histone 5.86 2.38 2.17 21.28

methylation

AT1G33760 ERF022 AP2/EREBP Ethylene, stress 2155.42 22.60 Steady expression

AT1G43640 TLP 5 TUB Protein degradation 26.32 1.36 214.32 233.36

AT1G49190 ARR19 GARP-ARR-B ZE [38] 225.28 1.27 Steady expression

AT1G77200 ERF037 AP2/EREBP Callus differentiation O. sativa [43] 23.48 2.11 Steady expression

ZE globular stage [49]

AT2G25900 ATTZF1 C3H ZE [49] 215.35 22.57 Steady expression

AT2G42150 MYB Seed/embryo development 24.00 1.60 Steady expression

AT3G02310 AGL4/SEP2 MADS Flower development 27.89 23.12 23.10 21.24

AT3G02940 MYB107 MYB ZE [38] 265.80 214.83 Steady expression

AT3G03760 LBD20/ASL21 AS2 (LOB) I 26.68 24.11 Steady expression

AT3G27810 MYB21 MYB JA, GA 2162.02 1.38 Steady expression

AT3G50060 MYB77 MYB ZE [45], auxin response,
lateral root growth

23.20 1.83 Steady expression

AT3G57600 DREB2F/ERF051 AP2/EREBP Water stress 21.84 2.64 22.77 7.84

AT4G01250 WRKY Biotic stress 23.25 3.39 Steady expression

AT4G14540 CCAAT-HAP3 212.64 0.00 4.82 3.51

AT4G32800 AP2/EREBP Stress 24.17 1.21 Steady expression

AT4G36900 DEAR4/RAP2.10 AP2/EREBP Root development; biotic stress 212.38 21.45 21.89 21.48

AT4G38000 DOF4.7 C2C2(Zn) DOF Flower development 27.67 1.58 Steady expression

AT5G04400 ANAC077 NAC 289.88 1.02 Steady expression

AT5G15800 AGL2/SEP1 MADS Flower development 234.30 22.75 Steady expression

AT5G39660 DOF5.2 C2C2(Zn) DOF Flowering time, root development 24.72 23.51 Steady expression

AT5G51990 DREB1D/CBF4 AP2/EREBP Water stress 2121.10 23.51 2110.66 1.05

AT5G65100 EIL Flower development 23.12 8.51 271.51 22.27

AT5G65590 C2C2(Zn) DOF 225.99 21.13 Steady expression

AT5G27810 MADS 215.56 21.42 Steady expression

AT5G43840 HSFA6A HSF Heat stress 26.19 21.69 Steady expression

AT4G28790 bHLH 21.99 5.17 21.95 1.21

AT1G69180 YABBY Flower development 22.97 248.84 344.89 22.03
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Functional Test of SE-modulated Transcription Factors
To further elucidate the involvement of TFs in SE we analysed

the capacity for SE induction in mutants carrying T-DNA

insertions in 17 TF genes of SE-modulated expression (Table
S4). Twelve of them (,70%) were found to display a significantly

impaired embryogenic response manifested by a reduced number

of explants undergoing embryogenic transition (Figure 10A). The

SE-defective phenotypes suggest that the mutated TFs contribute

to SE induction; however, the precise molecular functions of most

of the genes are unknown. Among the mutants showing reduced

embryogenic potential were those affected in genes related to

auxin signaling (AUX/IAA). All iaa mutants analysed (i.e., iaa16,

iaa29, iaa30 and iaa31) displayed significantly impaired SE

efficiency, manifested by a lower frequency of explants undergoing

SE induction compared to the Col-0 wild type (Figure 10A).

Furthermore, one of them (iaa30) also produced significantly fewer

somatic embryos per responding explant (Figure 10B).

In addition to the analysis of the insertion mutants, the capacity

for SE was evaluated in eight transgenic lines overexpressing TFs

of SE-modulated expression under the control of a ß-estradiol-

inducible promoter (Figure 10C,D). We observed a significantly

reduced embryogenic response in cultures overexpressing DOF5.2;

both, SE efficiency and SE productivity were impaired, i.e. fewer

explants underwent SE induction and a lower number of somatic

embryos were produced by the responding explants, indicating

that DOF5.2 acts as a negative regulator of SE. This conclusion is

Table 3. Cont.

Fold change 2DDCt

AGI Gene name TF family Known or predicted function Col-0 tan

5d–0d 5d–10d 5d–0d 5d–10d

AT2G14210 AGL44/ANR1 MADS ZE [49] 22.64 252.71 Steady expression

AT3G46770 REM22 B3 Flower development 2106.15 2213.78 Steady expression

AT4G00870 bHLH Flowering time 21.10 27.16 3.20 21.93

AT4G25480 DREB1A/CBF3 AP2/EREBP ABA, water stress 23.61 213.55 Steady expression

AT1G19040 NAC 424.61 639.15 Steady expression

doi:10.1371/journal.pone.0069261.t003

Figure 8. Functional categories of differentially expressed genes. A) TFs differentially expressed during SE. B) SE-associated TFs. TFs were
annotated to four major categories (plant development, phytohormones, stress and others) and various subcategories. Given are the numbers of TFs
in the different functional categories.
doi:10.1371/journal.pone.0069261.g008
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consistent with the observation, that DOF5.2 expression declines

during early somatic embryo formation, compared to explants

(0 d). In contrast, overexpression of bHLH109 resulted in

significantly increased SE productivity, in accordance with the

fact that bHLH109 transcript abundance strongly increases during

SE (Figure S2).

AUX/IAA Genes
The AUX/IAA genes negatively affecting SE induction potential

when mutated (i.e., IAA16, IAA29, IAA30 and IAA31) were

subjected to a closer analysis and their transcript levels were

evaluated at different time points in cultures derived from the IZE

explants. To reveal relations between gene expression and auxin

treatment, explants treated with auxin and undergoing SE

induction were compared to those of developing seedlings on

Figure 9. Hormone-related TFs. The graph shows the percentages of hormone-related TFs up- or downregulated in embryogenic Col-0 culture. A
great majority of the hormone-related TFs is up-regulated including those related to brassinosteroids, auxin, SA, cytokinins, GA, ethylene, JA and ABA.
doi:10.1371/journal.pone.0069261.g009

Figure 10. Functional test of SE-modulated transcription factors. Embryogenic capacity of TF T-DNA insertion mutants (A, B) and transgenic
lines expressing the indicated TFs under the control of a ß-estradiol-inducible promoter (C, D) was analysed and SE efficiency (A, C) and SE
productivity (B, D) were evaluated. Values significantly different from the parental Col-0 genotype are marked by asterisks (n = 3; means 6 SD are
given; Mann-Whitney’s U test; p,0.05).
doi:10.1371/journal.pone.0069261.g010
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auxin-free medium. The qRT-PCR analysis indicated that

expression patterns during SE varied between the genes; two of

the genes (IAA16 and IAA30) were up-regulated while two others

(IAA29 and IAA31) were down-regulated during SE (Figure 11).

Among the AUX/IAA genes analysed, IAA16 displayed the highest

increase in transcript level in embryogenic culture. We found that

transcript levels of the studied IAA genes were significantly

influenced by auxin and expression of most of them (IAA16,

IAA29 and IAA30) was distinctly stimulated on auxin medium.

Discussion

An Extensive Up-regulation of the TF Transcriptome
Accompanies SE Induction

This study provides the first, to our knowledge, comprehensive

analysis focused on TFs and their expression during the time

course of SE. Our analysis indicates that in embryogenically

induced somatic tissue of Arabidopsis a large part of the TF

transcriptome (over 1,600 TFs) is active. Similarly, over 1,300 TFs

were expressed throughout seed development in Arabidopsis and

TF genes were found to constitute a much higher fraction (17%) in

seed-specific than global (6%) transcriptomes [38]. Thus, tissues

undergoing embryogenesis, both in in planta and in vitro, appear to

be highly enriched for TF transcripts supporting the model that

regulatory genes have a strong impact on plant developmental

processes and in particular, embryogenesis. In support of this, the

transcriptome of embryogenesis-related tissues in Medicago trunca-

tula includes a high number of TF mRNAs, and 91% vs. 77% of

the TF genes were found to be expressed in pods containing

developing seeds vs. leaves [32]. Similarly, transcriptome data for

reproductive cells in Brassica napus showed a distinctly increased

number of TF genes expressed in microspores of high embryo-

genic potency than in non-embryogenic pollen [39].

To identify SE-related TF genes we focused on transcripts

differentially expressed during the time course of the embryogenic

culture and found that 729 TFs display differential expression in

embryogenic culture. Likewise, in shoot organogenesis induced in

poplar, 588 TFs (23% of the total) were found differentially

expressed [40]. These data reflect the massive genetic reprogram-

ming of somatic cells associated with the induction of new

morphogenic paths under in vitro conditions and indicate that the

control of gene expression at the transcriptional level greatly

contributes to the morphogenic switches induced in vitro.

Strikingly, when global mRNAs were analysed in embryogenic

cultures of other plants much fewer transcripts than found in the

present study were reported to be differentially expressed. In rice

cultures induced towards different regeneration processes includ-

ing SE, only 1–3% of the genome was reported to be differentially

expressed [41]. Likewise, in soybean and potato 2.6% and 4% of

all transcripts were found to be modulated, respectively [25,26].

The results obtained by global transcriptome analyses suggested a

relatively low frequency of differentially expressed TF transcripts

[26,42,43].

The relatively high number of modulated genes observed in the

present study may in part be due to the higher sensitivity of qRT-

PCR over hybridization-based approaches, as reported earlier

[28,44]. In accordance with this we identified over twice as many

TF mRNAs (1730) in IZE explant tissue than previously

discovered (847) by microarrays in the mature green stage of

zygotic embryos [38]. Our study furthermore revealed that up-

regulation of TF gene expression dominated over down-regula-

tion; up-regulated TFs were almost four times more frequent than

down-regulated ones. In ZE, only a moderate predominance

(slightly over 50%) of up- over down-regulated mRNAs was

observed in early stages of seed development spanning from

globular to bent cotyledon embryos [45]. Likewise, recent analysis

Figure 11. Expression profiles of AUX/IAA genes. Shown are expression levels of AUX/IAA genes (IAA16, IAA29, IAA30 and IAA31) in explants
induced towards alternative morphogenic pathways, i.e. somatic embryogenesis (SE) and seedling development (E0). Values significantly different
from E0 are labeled by asterisks (n = 3; means 6 SD are given; Mann-Whitney’s U test; p,0.05).
doi:10.1371/journal.pone.0069261.g011
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on several marker genes in pine, including TF mRNAs,

documented generally higher gene expression level during SE

than during ZE [46].

Similar to our results on the TF transcriptome, global

transcriptome analysis in an embryogenic culture of M. truncatula

indicated a distinct prevalence of up- over down-regulated

transcripts [47]. Similarly, differentially expressed genes in cotton

embryogenic cultures were also found to be upregulated in most

cases [42]. In differentiating embryogenic rice callus, activation of

gene expression was more common than repression, but a distinct

prevalence of up- versus down-regulated genes was not observed

[43]. Few reports indicated that TFs were mostly down-regulated,

in contrast to global mRNA profiles [25,26]. However, the overall

relatively small number of TF transcripts detected in these

experiments (possibly due to technical limitations associated with

microarrays used in those studies) may explain these earlier results.

TFs Strongly Modulated during SE-induction
The next striking feature of the TF transcriptome during SE

induction revealed here was the drastic change (by at least 10-fold)

of the expression of almost half (49%) of the modulated transcripts.

In contrast, highly up-regulated transcripts were much less

frequent in the global ZE transcriptome and constituted only 1–

5% of the differentially expressed mRNAs [38]. It can perhaps be

assumed that a rapid, massive and strong stimulation of TF

expression occurring in vitro in SE-induced tissue results from a

genome response to auxin treatment. Likewise, in potato, the most

dramatic modulation of the transcriptome was observed during the

SE induction phase enforced on auxin-containing medium [26],

while a drastic fall in gene expression levels was observed in oil

palm embryogenic culture after auxin removal from the medium

[48].

Early versus Advanced Stages of SE
Our analysis demonstrated that different TF expression patterns

discriminated early from advanced stages of embryogenic culture.

In contrast to the embryo induction stage, stabilization of the

transcriptome was observed at the more advanced culture stage

associated with embryo formation, and most genes (58%) that

changed expression by more than 2-fold during the embryo

induction stage (i.e., between 0 d and 5 d) retained their

expression level thereafter, thus changed expression by less than

2-fold between 5 d and 10 d. Divergent expression profiles were

also reported for early and late stages of embryogenesis during

seed development [39,49]. However, data on gene expression

profiles specific to different stages of embryogenic cultures are

generally scarce. In potato, similar to our results, the differentially

expressed transcription-related genes are distinctly less abundant

during advanced embryo formation than in the embryo-induction

phase [26]. Also studies in maize and Medicago truncatula revealed a

lower frequency of highly expressed genes in more advanced

embryogenic cultures [23,50].

Apart from distinctly different expression profiles of early and

advanced embryogenic cultures, it must be stressed that the great

majority (.1,600) of the TFs were expressed across both stages of

SE, and the number of TFs exclusively expressed at either the

early or advanced SE stage was found to be very small (below 10).

Also in ZE, many genes, including TFs, were expressed across

multiple embryogenic stages [38,45] and only a small number of

genes was specifically active in each given ZE stage [51,52].

Likewise, in Brassica napus, 30% of the genes expressed in

microspore cultures upon embryogenic transition were also

associated with developing androgenic embryos [53]. These

observations thus indicate an extensive overlap in the transcription

regulatory machinery of SE-competent (explant) and SE-respond-

ing tissue and that many regulatory genes and their associated

biological processes are shared across different stages of embryo-

genic culture.

SE-associated TFs
A common approach in screens for SE-associated genes is to

contrast transcriptome profiles of embryogenic and non-embryo-

genic tissues and select the genes differing in expression profiles

[22,25,50,54]. This strategy eliminates the genes expressed in

response to auxin but not directly involved in the embryogenic

switch. A similar approach used here identified 141 genes of

distinctly different expression profiles in cultures derived from the

highly embryogenic Col-0 accession versus the non-embryogenic

tanmei mutant. A subset of the 141 genes includes regulators

previously found to affect embryogenic development, including

sixteen genes reported to be expressed during ZE [38,45,49].

Considering the suggested similarities between the genetic

programmes governing zygotic and somatic embryogenesis [2],

the number of genes required for somatic embryo development

was assumed to be convergent to that in ZE. In ZE, the number of

genes essential for embryo development in Arabidopsis was

estimated to be 500–1000, including 220 EMB genes identified

as required for normal zygotic embryo development [55,56,57].

However, in a recent analysis of the ZE global transcriptome less

than 2% of the genes were found to be seed-specific and among

them 48 TF genes were reported to be active exclusively, or at

elevated levels, in seeds [38]. Strikingly, the majority of the seed-

specific TFs [38] were not identified here among the TFs of SE-

modulated expression in embryogenic Arabidopsis cultures. We

found that only three of them (ARR19, MYB107, IAA31) displayed

SE-specific expression, whilst 12 other seed-specific TFs were

modulated in Col-0 embryogenic culture. This apparently lower

than expected similarity between SE- and seed-specific gene

expression was also stressed in a study on cucumber embryogenic

cultures [58]. In addition, comparative expression profiling of

some genes during ZE and SE in pine indicated some differences

in the level and pattern of expression, including TF genes [46].

The differences in the gene expression patterns in ZE and SE likely

reflect specificities of molecular mechanisms underlying embryo-

genic development in zygotic vs. somatic cells. Furthermore, the

heterogeneity of the cell population analysed in embryogenic

cultures may, in contrast to the more homogenous cell populations

in ZE, substantially affect the gene expression profiles in tissues

undergoing SE.

Stress-responsive TFs
The induction of SE was considered as a tissue response to stress

imposed by in vitro culture [59,60,61]. In support of this, the

activity of many stress-related genes was found to be associated

with embryogenic cultures in different plants [25,47,48,50,62,63].

Similarly, in our study numerous stress-responsive TFs were

expressed in Arabidopsis embryogenic cultures, representing half

of the transcripts with SE-specific expression. The great majority

(80%) of the stress-related TFs were up-regulated especially at the

early stage of SE. Activation of such a large number of stress-

related genes during in vitro embryo induction is unlikely to

indicate a specific mechanism relevant to SE, but rather reflects a

general response of the plants genome to the environment imposed

in vitro. A significant proportion (39%) of the stress-related TFs

modulated in embryogenic culture belong to the AP2/EREBP,

WRKY and NAC families that are commonly activated in

response to biotic and abiotic stresses [64,65,66,67].
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A massive involvement of TF genes in stress responses can be

expected as transcriptional control provides a crucial mechanism

of plant responses to various stresses [68]. Several exogenous

factors can trigger the expression of stress-related genes under

in vitro conditions, and 2,4-D used in SE-induction medium is

supposed to act as a powerful ‘stressor’ [59,60,69]. The strong

response of stress-related genes in somatic cells under 2,4-D

treatment observed here is in accordance with reports on other

plant cultures [25,26,70,71,72]. Other tissue culture-related

conditions can also be expected to influence gene expression

in vitro. Recently, WIND1 (WOUND INDUCED DEDIFFERENTI-

ATION1) encoding a TF involved in establishment and mainte-

nance of the dedifferentiated status of somatic cells in the absence

of exogenous hormones was reported to be activated by tissue

wounding [73]. Increased expression of WIND1 in embryogenic

cultures was detected here and in other plant cultures [50,74].

Hormone-related TFs
Our analysis revealed a large number of hormone-related TFs

that changed their expression during SE, indicating an extensive

involvement of hormone-related signaling pathways in this

process.

Auxin-responsive genes. Auxin is a key trigger of SE in

most plants, including Arabidopsis [75]. In accordance with this

we observed a large number of auxin-responsive genes to be

modulated in Arabidopsis embryogenic culture and similar

observations were documented during SE in other plants

[26,41,43,76,77]. Members of the ARF and AUX/IAA transcrip-

tion regulator/signalling families act in concert to modulate

expression of auxin-responsive genes [78,79]. We found that

expression of over half (27/42) of all AUX/IAA and ARF genes

changed during SE in Arabidopsis. In ZE of Arabidopsis, the

majority of AUX/IAA and ARF genes were found active [80,81].

Transcripts of these genes constituted up to 4% of the seed-specific

transcriptome [38] and, as indicated in the present study, AUX/

IAA and ARF transcripts constituted a similar fraction of the SE-

associated transcriptome.

Within the group of ARF regulators, ARF5 (AT1G19850)

encoding the MONOPTEROS (MP) auxin response factor, was

up-regulated in embryogenic cultures of Arabidopsis (this study)

and similarly in soybean [25]. MP constitutes a key gene in the

control of zygotic embryo patterning via affecting polar auxin

transport through activation of the auxin efflux carrier gene PIN1

[82]. Significant activity of MP in embryogenic cultures may

indicate that, similar to ZE, polar auxin transport and patterning

are associated with somatic embryo induction and development.

In support of this, mutations in both, MP and TIR1 (TRANSPORT

INHIBITOR RESPONSE1) were found to partly impair SE

induction in Arabidopsis IZE explants (Malgorzata D. Gaj and

A. Trojanowska, unpublished data). An important role of polar

auxin transport for proper embryogenesis is supported by the fact

that embryo development is impaired in vivo [83] and in vitro

[84,85,86,87] when auxin transport is disturbed.

We also observed an upregulation of several other ARF genes in

embryogenic cultures, including ARF6, ARF8, ARF16 and ARF17.

We found ARF6 to be co-expressed with ARF8, similarly to what

has been reported for ZE [45,49]. ARF8 has been suggested to

control the level of free IAA (indole-3-acetic acid) in a negative

feedback fashion by regulating expression of GH3 genes [88].

Expression of ARF16 and ARF17 was also modulated during ZE

[45,49]. ARF17 has been implicated as a regulator of GH3-like

early auxin response genes [89]. ARF16 together with ARF10 and

IAA17/AXR3 regulate distal stem cell differentiation in Arabidop-

sis roots acting upstream of PLETHORA (PLT) [90]. Of note, these

genes (ARF10, ARF16, IAA17, PLT1 and PLT2) were up-regulated

in embryogenic Arabidopsis cultures.

Similar to ARFs, reports on AUX/IAA expression in embryo-

genic cultures of plants are rare; of note, however, homologs of the

Arabidopsis IAA9 and IAA8 genes were found expressed during SE

in Cyclamen persicum and Gossypium hirsutum [91,92]. In the present

analysis almost 70% of the AUX/IAA family members displayed

modulated expression in embryogenic cultures suggesting their

involvement in SE. In support of this we found iaa mutants (iaa16,

iaa29, iaa30 and iaa31) to be significantly impaired in the

embryogenic response.

AP2/EREBP TFs and ethylene responses. The SE-modulated

TF transcriptome was highly enriched for members of the AP2/

EREBP family. Numerous AP2/EREBP genes were previously

shown to control SE and shoot organogenesis in vitro, and several

members of the family were reported to promote embryo

development in somatic tissues when overexpressed, including

e.g. BABY BOOM (BBM) [13], AGAMOUS-LIKE15 (AGL15)

[15,93] and EMBRYOMAKER (EMK) [19]. Expression of AP2/

EREBP TFs was frequently found to be modulated in embryogenic

cultures of different plants [25,50,76,77,94,95] including Arabi-

dopsis (this report). Many members of the ERF subfamily are

involved in ethylene responses [65]. Hence, enhanced expression

of AP2/EREBP genes during the in vitro culture may reflect a

general stress response of the tissues as e.g. induced by wounding

or hormonal treatment [68], while some ERF genes may be

specifically involved in the induction of SE. The role of ethylene

for somatic embryo development was demonstrated in Medicago

truncatula, where SOMATIC EMBRYO-RELATED FACTOR1

(MtSERF1), an ERF subfamily TF affecting ethylene biosynthesis,

is crucial for embryo induction [50]. Likewise, in Pinus silvestris an

increased content of endogenous ethylene appears to be required

for somatic embryo development [95]. Recently, ethylene

biosynthesis and perception were also reported to be involved in

SE induction in Arabidopsis [96]. In support of this, the extensive

modulation of many (49) ethylene-related TFs of the ERF, MYB,

bHLH, NAC and WRKY families was observed here for

embryogenic Col-0 cultures, and mutations affecting ERF022

(encoding an ERF TF; Figure 10) and ACC SYNTHASE4 (ACS4;

involved in ethylene biosynthesis) appeared to significantly

decrease explant capacity for SE (data not shown). Our

preliminary analysis indicates regulatory relationships between

ERF022 and genes acting in ethylene signaling and biosynthesis

(Katarzyna Nowak and Malgorzata D. Gaj, unpublished). Another

ethylene related gene, RAP2.6L (RELATED TO AP2 6L;

AT5G13330) of the AP2/EREBP family, was found here to be

up-regulated in embryogenic cultures. RAP2.6L expression is also

induced during shoot organogenesis [94], in proliferating cells of

newly formed tissues after wounding, and by stress hormones and

abiotic stresses [97,98].

Cytokinin-related TFs. Although cytokinin is not included

in SE-induction medium, the involvement of cytokinin-related TFs

in embryogenic development may be expected due to widespread

crosstalk between auxin and cytokinin signalling [99,100,101,102].

We here observed 16 cytokinin response-associated TFs to be

affected in the auxin-induced embryogenic Col-0 cultures,

including key cytokinin regulatory genes, i.e. CYTOKININ

RESPONSE FACTORS (CRFs) and Arabidopsis RESPONSE REGU-

LATORS (ARRs). Of eight CRFs, four (CRF2, 3, 4 and 5) were up-

regulated in Col-0 embryogenic cultures. CRFs mediate a large

fraction of the transcriptional response to cytokinin to regulate

development of embryos, cotyledons, and leaves and they function

together with type-B ARRs [103]. Two type-B ARR genes, i.e.

ARR19 and ARR10, had altered expression in Col-0 cultures.
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ARR10 transcripts were up-regulated in early and advanced stages

of SE and similarly, up-regulation of the ARR10 homolog MtRR1

(Mtr.43735.1) was reported in embryogenic cultures of M. truncatula

[47]. ARR10, together with ARR1 and ARR12, is proposed to play

a general role in cytokinin signal transduction [104].

Gibberellin-related TFs. In Arabidopsis, the endogenous

level of gibberellins in somatic tissue seems to be negatively

correlated with embryogenic potential. The lec mutants, displaying

increased GA content [105], were found to have a drastically

reduced ability for SE [106]. Similarly, the pickle mutant which has

elevated levels of bioactive GAs displays reduced embryogenic

potential in cultures of IZEs, and exogenously supplied GA3 was

demonstrated to decrease tissue capacity for SE induction [106].

In support of the inhibitory effect of GA on embryogenic

capacity in Arabidopsis, several genes important for the negative

regulation of GA responses were found to display an SE-specific

up-regulation, including the DELLA-encoding genes RGL1 (RGA-

LIKE1, RGA for repressor of ga1-3) and RGL2. DELLA proteins

interact with multiple environmental and hormonal response

pathways and restrain plant growth [107]. The stimulation of

DELLA-encoding genes in Col-0 embryogenic cultures may also

be associated with stress responses as DELLA accumulation was

reported to elevate the expression of genes encoding ROS

detoxification enzymes, thus reducing ROS levels [108]. Another

suppressor of GA responses, SHORT INTERNODES (SHI), was

found to be up-regulated in Col-0 embryogenic cultures; in intact

plants, SHI affects the development of shoot and root primordia

[109].

Role of TFs in SE
To increase the probability of finding TFs functionally relevant

for SE, we included the tanmei mutant in our transcriptome

analysis. As tanmei lacks the capacity for SE, TFs differentially

expressed between Col-0 and the mutant may represent candidate

regulators of SE, although genes not specifically associated with SE

may also be expressed at different levels in the two genetic

backgrounds. Considering the results of our global expression

analysis we selected 21 genes (18 of which showed altered

expression in Col-0 vs. tanmei, and three genes displayed differential

expression in embryogenic culture) to test their potential relevance

for somatic embryo formation, using T-DNA insertion mutants

and transgenic lines expression the TFs under the control of a ß-

estradiol-inducible promoter [110]. The majority (70%) of the

mutants analyzed were significantly impaired in their SE capacity

suggesting an involvement of the tested TFs in this process.

We found that various T-DNA insertion lines impaired in SE

were actually mutated in genes related to stress responses,

including ERF022, NTL8, DREB2F, ATHB-12, LBD20 and

MYB74. Mutating ERF022 increases the plants sensitivity to

osmotic and salinity stress, whilst overexpressing it triggers the

opposite phenotype (Katarzyna Nowak and Malgorzata D. Gaj,

data not shown). NTL8 of the NAC TF family was reported to

regulate gibberellic acid-mediated salt signalling during Arabi-

dopsis seed germination [111]. Expression of DREB2F is affected

by abiotic and biotic stresses (eFP browser: http://www.bar.

utoronto.ca/efp/cgi). ATHB12 together with ATHB7 was reported

to encode a potential regulator of growth in response to water

deficit [112]. LBD20 (LOB DOMAIN-CONTAINING PROTEIN20)

has recently been suggested to be involved in transcriptional

regulation of plant defence responses against pest or pathogen

attack [113]. MYB74 is a close homolog of MYB102 which was

demonstrated to be induced by osmotic stress and wounding

[114]. Summarizing, the SE-impaired phenotypes observed in

mutants of stress-related genes strongly support the notion that SE

induction shares, at the molecular level, processes that are also

relevant to general stress responses.

In contrast to the insertion mutants, phenotypes of transgenic

lines overexpressing TFs under the control of a chemically

inducible promoter were generally less informative. However, for

two TFs, i.e. DOF5.2 and bHLH109, we observed a clear function

in SE. The phenotype observed upon induced overexpression of

DOF5.2 (reduced SE capacity) together with the fact that

expression of the gene decreases during early stages of somatic

embryogenesis suggests that DOF5.2 functions as a negative

regulator of SE induction. Currently, the exact molecular function

of DOF5.2 is unknown, however, the gene was shown to be

specifically expressed in the quiescent centre of roots and a role for

stem cell niche maintenance in the root meristem possibly by

affecting auxin flux was postulated [115].

The other gene found to affect SE is bHLH109, which in

contrast to DOF5.2 appears to act as a positive regulator of somatic

embryo formation. Accordingly, expression of bHLH109 was

found to be highly upregulated in embryogenic cultures, and auxin

strongly enhanced its expression. Identifying the downstream

target genes controlled by bHLH109 will help to better

understand through which regulatory networks the bZIP TF

promotes embryogenic development in the future.

Conclusions

Our study provides the first comprehensive analysis of the

global TF transcriptome of plant somatic tissue undergoing

embryogenic induction during in vitro culture. TF genes of

drastically different expression in embryogenic vs. non-embryo-

genic cultures were selected as candidates for further studies

aiming at the characterization of genes with decisive roles in SE.

The results presented here indicate the presence of a regulatory

burst at the gene expression level that is associated with early

stages of somatic embryo development. The global TF transcrip-

tome associated with SE induction reflects the combinational

effects of stress and hormone signalling related to the in vitro

environment imposed during culture. Accordingly, among the TFs

showing SE-specific expression those involved in stress and

hormone responses, plant and especially flower development were

found most frequent. The use of Arabidopsis for this study opens

new avenues for advanced analysis of the selected SE- associated

candidate genes based on genomic data, mutant collections,

transgenic lines and other genomic tools available for this model

species. The study provides guidelines for further research on

functional genomics of SE.

Materials and Methods

Plant Material and Growth Conditions
Two Arabidopsis thaliana (L.) Heynh. genotypes of different

embryogenic capacity were analyzed, i.e. the highly embryogenic

Col-0 ecotype and the SE-impaired tanmei (tan1-2) mutant [34].

Additionally, mutants carrying T-DNA insertions [64] in selected

TF genes were analysed with respect to their capacity for somatic

embryo formation. The parental Col-0 ecotype and the insertion

mutants were obtained from NASC (The Nottingham Arabidopsis

Stock Center; http://arabidopsis.info/). T-DNA insertion lines

(Table S4) originated from the SALK and SAIL collections;

homozygous plants carrying insertions in TF genes were selected

from a segregating T3 population according to standard

procedures. Seeds of the tan1-2 mutant were kindly provided by

J. J. Harada (University of California, Davis, USA). Plants were

grown in Jiffy-7 peat pots of 42 mm diameter (Jiffy) in a ‘walk-in’
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type phytotron, under controlled conditions: 22uC, 16h/8h (light/

dark), 100 mE/m2s light intensity.

Estradiol-inducible TF Overexpression Lines
To generate transgenic plants expressing TFs under the control

of an estradiol-inducible promoter, the coding regions of the

selected genes (NTL8, ERF022, bHLH89, bHLH109, REM22,

AGL2, WRKY31, DOF5.2) were amplified by PCR from Arabi-

dopsis leaf or zygotic embryo cDNA using primers IOE-fwd and

IOE-rev (Table S5), inserted into pBluescript SK (Stratagene)

and then cloned via XhoI (or AscI) and SpeI sites into the pER8

vector [110]. Agrobacterium tumefaciens strain GV3101 was used for

A. thaliana (Col-0) transformation. Seedlings of selected homozy-

gous transgenic lines were used for expression analysis. RNA was

isolated (TriPure Reagent; Roche) from ß-estradiol-treated (5 mM,

2 d) and mock-treated (0.01% ethanol) seedlings, and cDNA was

synthesized using RevertAid First Strand cDNA Synthesis Kit

(Fermentas). The resulting cDNA was used for qRT-PCR (Table
S6). LightCycler Fast-Start DNA Master SYBR Green I (Roche)

and appropriate primers were used for qRT-PCR reactions.

Induction of Somatic Embryogenesis
A standard protocol was used to induce somatic embryogenesis

in Arabidopsis under in vitro conditions [116]. In brief, explants,

i.e., immature zygotic embryos (IZEs) at the late cotyledonary

stage of development, were excised from siliques 10–12 days after

pollination. Siliques were surface-sterilized with sodium hypochlo-

rite (20% commercial bleach) and washed thoroughly with sterile

water. Then IZEs were isolated and placed on E5 solid medium

containing B5 salts and vitamins [117] and supplemented with

5 mM 2,4-D, 20 g l-1 sucrose and 3.5 g l-1 Phytagel (Sigma). To

induce overexpression of TFs in pER8-TF-transformed transgenic

cultures, E5 medium was supplemented with 5 mM of ß-estradiol.

Cultures were maintained in the controlled conditions of a growth

chamber: 22uC, 16h/8h (light/dark), light intensity 50 mE/m2 s. At

selected time points of the culture (0, 5 and 10 d), explants of Col-0

and tan1-2 were sampled for transcriptome analysis.

The capacity for SE in T-DNA insertion mutants and

transgenic lines overexpressing TFs was evaluated after 21 days

of in vitro culture. Embryogenic potential of mutants and

transgenic lines was evaluated by calculation of SE efficiency

(i.e., the percentage of explants forming somatic embryos) and SE

productivity (i.e., the average number of somatic embryos

produced per SE-responding explant). SE efficiency and produc-

tivity of the analysed genotypes was compared to Col-0-derived

cultures. All experiments were conducted in three independent

replicates, and at least 30 explants (10 explants/Petri dish) were

analysed per replicate.

Statistical Analysis
Kruskal-Wallis ANOVA rank and Mann-Whitney’s U statistical

tests were applied to calculate significant differences (at p = 0.05)

between combinations.

Transcriptome Profiling by Multi-parallel qRT-PCR
Quantitative RT-PCR was used to compare the expression

levels of 1,880 Arabidopsis TF genes in the SE cultures of Col-0

and tan1–2. Total RNA was isolated at 0, 5 and 10 d of wild-type-

(WT) and mutant-derived cultures, using RNAqueous kit (Am-

bion). The isolates were digested with Turbo DNA-free kit

(Ambion) to remove DNA contaminants. SuperScript III reverse

transcriptase (Invitrogen) was used for cDNA synthesis. qRT-PCR

was done as described [31,118,119]. PCR reactions were run on

an ABI PRISM 7900 HT sequence detection system (Applied

Biosystems Applera, Darmstadt, Germany).

Data analysis was performed using SDS 2.2.1 software (Applied

Biosystems). All amplification curves were analysed with a normal-

ized reporter (Rn: the ratio of the fluorescence emission intensity of

SYBR Green to the fluorescence signal of the passive reference dye)

threshold of 0.3 to obtain the CT (threshold cycle) values. Four

replicates of the reference control gene, UBQ (AT1G55060), were

measured ineachPCRrun,and theirmedianCT wasused for relative

expression analyses. Expression data were submitted to the NCBI

Gene Expression Omnibus (GEO) repository (www.ncbi.nlm.nih.

gov/geo/) under accession number GSE45697.

Tofindsignificantchangesbetweenthegenotypes (Col-0and tan1–

2) and the time points, ANOVA followed by false discovery rate

(FDR) correction was applied using a customRscript (http://www.r-

project.org). Only TFs which displayed an FDR corrected p-

value,0.05 were considered for further analysis. Furthermore,

different comparisons between genotypes and time points were

performed using Students t-test (p,0.05). The analysis was

performed in two ways: (1) to identify differentially expressed TFs

thatarespecific forthedifferent timepoints inCol-0,and(2) to identify

TFs differentially expressed between Col-0 and tan1–2 at each time

point. The fold change was calculated using (2)–DDC
T, where DDCT

representsDCT reference condition 2DCT compared condition.Theobtained

results were transformed to log2 scale. Candidates were extracted

using thresholds of 2- and 10-fold change.

Principal component analysis (PCA) was performed using the

prcomp function of the ‘‘stats’’ package in R [120].

Supporting Information

Figure S1 TF families among differentially expressed
and SE-associated genes. For each TF family the percentage of

genes differentially expressed or being SE-associated is indicated.

(TIF)

Figure S2 Expression levels of bHLH109 and
DOF5.2 TFs in explants induced towards alternative
morphogenic pathways, i.e. somatic embryogenesis
(SE) and seedling development (E0). Values significantly

different from E0 are marked by asterisks (n = 3; means 6 SD are

given; Mann-Whitney’s U test; p,0.05).

(TIF)

Table S1 TFs exclusively or highly expressed in em-
bryogenic Col-0 explants compared to non-embryogenic
tanmei mutant explants.

(DOC)

Table S2 Expression values of 729 TFs modulated in
Col-0 embryogenic culture.

(XLS)

Table S3 TFs showing an at least 10-fold expression
change during early culture stages.

(DOC)

Table S4 T-DNA insertion lines used for the functional
analysis of selected TFs.

(DOC)

Table S5 Primers used for the amplification of open
reading frames.

(DOC)

Table S6 Expression level of transgenes in seedlings
treated with ß-estradiol (5 mM) for 2 days.
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TF Genes Profiling during Somatic Embryogenesis

PLOS ONE | www.plosone.org 17 July 2013 | Volume 8 | Issue 7 | e69261



Acknowledgments

We thank Marek Bukowski, Monika Depa, Marta Markiewicz, Aneta
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35. Kurczyńska EU, Gaj MD, Ujczak A, Mazur E (2007) Histological analysis of

direct somatic embryogenesis in Arabidopsis thaliana (L.) Heynh. Planta 226:

619–626.
36. Yamagishi K, Nagata N, Matsudaira Yee K, Braybrook SA, Pelletier J, et al.

(2005) TANMEI/EMB2757 encodes a WD repeat protein required for embryo

development in Arabidopsis. Plant Physiol 139: 163–173.
37. Nezames CD, Sjogren CA, Barajas JF, Larsen PB (2012) The Arabidopsis cell

cycle checkpoint regulators TANMEI/ALT2 and ATR mediate the active

process of aluminum-dependent root growth inhibition. Plant Cell 24: 608–
621.

38. Le BH, Cheng C, Bui AQ, Wagmaister JA, Henry KF, et al. (2010) Global
analysis of gene activity during Arabidopsis seed development and identifica-

tion of seed-specific transcription factors. Proc Natl Acad Sci USA 7: 8063–

8070.
39. Whittle CA, Malik MR, Li R, Krochko JE (2010) Comparative transcript

analyses of the ovule, microspore, and mature pollen in Brassica napus. Plant

Mol Biol 72: 279–299.
40. Bao Y, Dharmawardhana P, Mockler DC, Strauss SH (2009) Genome scale

transcriptome analysis of shoot organogenesis in Populus. BMC Plant Biol 9:

132–147.
41. Su N, He K, Jiao Y, Chen C, Zhou J, et al. (2007) Distinct reorganization of the

genome transcription associates with organogenesis of somatic embryo, shoots,

and roots in rice. Plant Mol Biol 63: 337–349.
42. Zeng F, Zhang X, Zhu L, Tu L, Guo X, et al. (2006) Isolation and

characterization of genes associated to cotton somatic embryogenesis by
suppression subtractive hybridization and macroarray. Plant Mol Biol 60: 167–

183.

43. Chakrabarty D, Trivedi KP, Shri M, Misra P, Asif MH, et al. (2010)
Differential transcriptional expression following thidiazuron-induced callus

differentiation developmental shifts in rice. Plant Biol 12: 46–59.

44. Busch W, Lohmann JU (2007) Profiling a plant: expression analysis in
Arabidopsis. Curr Opin in Plant Biol 10: 136–141.

45. Xiang D, Venglat P, Tibiche C, Yang H, Risseeuw E, et al. (2011) Genome-

wide analysis reveals gene expression and metabolic network dynamics during
embryo development in Arabidopsis. Plant Physiol 156: 346–356.

46. Lara-Chavez A, Egertsdotter U, Flinnnajlepiej BS (2012) Comparison of gene

expression markers during zygotic and somatic embryogenesis in pine. In Vitro
Cell Dev Biol - Plant 48: 341–354.

47. Imin N, Goffard N, Nizamidin M, Rolfe BG (2008) Genome-wide

transcriptional analysis of super-embryogenic Medicago truncatula explant
cultures. BMC Plant Biol 8: 110.

48. Lin HC, Morcillo F, Dussert S, Tranchant-Dubreuil C, Tregear JW, et al.

(2009) Transcriptome analysis during somatic embryogenesis of the tropical
monocot Elaeis guineensis: evidence for conserved gene functions in early

development. Plant Mol Biol 70: 173–192.
49. Spencer MWB, Casson SA, Lindsey K (2007) Transcriptional profiling of the

Arabidopsis embryo. Plant Physiol 143: 924–940.

50. Mantiri FR, Kurdyukov S, Lohar DP, Sharopova N, Saeed NA, et al. (2008)
The transcription factor MtSERF1 of the ERF subfamily identified by

transcriptional profiling is required for somatic embryogenesis induced by

auxin plus cytokinin in Medicago truncatula. Plant Physiol 146: 1622–1636.
51. Casson S, Spencer M, Walker K, Lindsey K (2005) Laser capture

microdissection for the analysis of gene expression during embryogenesis of

Arabidopsis. Plant J 42: 111–123.

TF Genes Profiling during Somatic Embryogenesis

PLOS ONE | www.plosone.org 18 July 2013 | Volume 8 | Issue 7 | e69261



52. Harada JJ, Pelletier JM (2012) Genome-wide analyses of gene activity during
seed development. Seed Sci Res 22: S15–S22.

53. Malik MR, Wang F, Dirpaul JM, Zhou N, Polowick PL, et al. (2007)
Transcript profiling and identification of molecular markers for early

microspore embryogenesis in Brassica napus. Plant Physiol 144: 134–154.

54. Low ET, Alias H, Boon SH, Shariff EM, Tan CY, et al. (2008) Oil palm (Elaeis

guineensis Jacq.) tissue culture ESTs: Identifying genes associated with

callogenesis and embryogenesis. BMC Plant Biol 8: 62.

55. Franzmann LH, Yoon ES, Meinke DW (1995) Saturating the genetic map of

Arabidopsis thaliana with embryonic mutations. Plant J 7: 341–350.

56. McElver J, Tzafrir I, Aux G, Rogers R, Ashby C, et al. (2001) Insertional

mutagenesis of genes required for seed development in Arabidopsis thaliana.
Genetics 159: 1751–1763.

57. Tzafrir I, Pena-Muralla R, Dickerman A, Berg M, Rogers R, et al. (2004)
Identification of genes required for embryo development in Arabidopsis. Plant

Physiol 135: 1206–1220.
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