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Abstract

Introduction: This paper describes a method for automatic analysis of the choroid in
OCT images of the eye fundus in ophthalmology. The problem of vascular lesions
occurs e.g. in a large population of patients having diabetes or macular
degeneration. Their correct diagnosis and quantitative assessment of the treatment
progress are a critical part of the eye fundus diagnosis.

Material and method: The study analysed about 1’000 OCT images acquired using
SOCT Copernicus (Optopol Tech. SA, Zawiercie, Poland). The proposed algorithm for
image analysis enabled to analyse the texture of the choroid portion located
beneath the RPE (Retinal Pigment Epithelium) layer. The analysis was performed
using the profiled algorithm based on morphological analysis and texture analysis
and a classifier in the form of decision trees.

Results: The location of the centres of gravity of individual objects present in the
image beneath the RPE layer proved to be important in the evaluation of different
types of images. In addition, the value of the standard deviation and the number of
objects in a scene were equally important. These features enabled classification of
three different forms of the choroid that were related to retinal pathology: diabetic
edema (the classification gave accuracy ACC1 = 0.73), ischemia of the inner retinal
layers (ACC2 = 0.83) and scarring fibro vascular tissue (ACC3 = 0.69). For the cut
decision tree the results were as follows: ACC1 = 0.76, ACC2 = 0.81, ACC3 = 0.68.

Conclusions: The created decision tree enabled to obtain satisfactory results of the
classification of three types of choroidal imaging. In addition, it was shown that for
the assumed characteristics and the developed classifier, the location of B-scan does
not significantly affect the results. The image analysis method for texture analysis
presented in the paper confirmed its usefulness in choroid imaging. Currently the
application is further studied in the Clinical Department of Ophthalmology in the
District Railway Hospital in Katowice, Medical University of Silesia, Poland.

Keywords: Eye, Image processing, OCT, Texture analysis, Conditional erosion and
dilation
Introduction
Choroid plays an essential role in many physico-chemical processes. The structure is

important also for ciliary-retinal vessels (observed in minority of patients) originating

from the choroid which supply the speckle field and protect against loss of central vi-

sion, for example in the case of central retinal artery (CRA) occlusion [1]. Visible chor-

oidal vessels are found to a lesser extent in foveal avascular zone (FAZ). In the case of
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fluorescein angiography, it shows no presence of the fluorescence in that area (due to

high amount of pigment). Conversely, any leakage of the pigment or FAZ staining indi-

cates macular disease. Fluorescein diagnostic method is, in this case, profiled to carry

out this type of diagnosis [2]. In practice, therefore, diagnosis of the eye fundus and

choroidal layer using optical coherence tomography (OCT) also brings correct results

[3,4]. The analysis of the vascular layer located beneath the RPE layer (retinal pigment

ephitelium) in the OCT image of the eye is presented in a small number of publications

[4-14]. They are mainly related to qualitative analysis of the choroidal layer without

quantitative treatment of the characteristic distributions which occur there. Therefore,

in this paper quantitative analysis of the choroidal layer using the new developed algo-

rithm for image analysis and processing was proposed. Most of currently used OCT de-

vices are not intended for choroidal imaging. The authors tried to obtain data resulting

from the choroid reflectivity in a wide variety of patients. The algorithm was profiled to

the analysis of the following types of images:

– neovascular AMD or exudations secondary to diabetic or thrombotic edema

(specific layouts of shadows in the choroid caused by retinal changes) [5,6],

– diffuse macular edema without blood and exudations or ischemia of the inner

retinal layers (global reduction of brightness in an OCT image) in such patients

there is need to differentiate between the choroidal atrophy due to degeneration or

high myopia [7],

– scarring fibrovascular tissue a uniform image proves its presence in most patients [7-9].

These types of images are presented in Table 1 they are subject to further analysis.

Material
The study analysed about 1’000 OCT images acquired using SOCT Copernicus

(Optopol Tech. SA, Zawiercie, Poland). The patients ranged in age from 12 to 78 years

and had different types of choroidal structure. It was a group of patients routinely exam-

ined, analyzed retrospectively and anonymously. The routine tests were carried out in

accordance with the Declaration of Helsinki. The images were acquired in DICOM or

RAW format with a resolution of 256×1024 pixels at 8 bits per pixel. Image analysis

was carried out in Matlab with Image Acquisition Toolbox and Signal Processing tools

(version 4.0 and 7.1 respectively), whereas code optimization was carried out in the C

language. The proposed algorithm for image analysis enabled to analyse the texture of

the choroid portion located beneath the RPE (Retinal Pigment Epithelium) layer. The

analysis of the choroid was performed using the new profiled algorithm based on tex-

ture analysis and mathematical morphology that is described below. The division into
Table 1 Types of images and their features visible in OCT images

Symbol Imaging type Features visible in the image

Z1 neovascular AMD or exudations secondary to diabetic
or thrombotic edema

characteristic layouts of shadows in the
choroid caused by retinal changes

Z2 diffuse macular edema without blood and exudations
or ischemia of the inner retinal layers

global reduction in brightness in the OCT
image

Z3 scarring fibrovascular tissue uniform image is evidence of its presence
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types of images (3 groups) was carried out by an ophthalmologist for 1′000 images

representing learning, validation and test groups (proportion: 60%, 20%, 20% respect-

ively). At this stage, patients with other type of images were also eliminated from fur-

ther analysis - only images with visible alterations in the choroid were further analyzed.
Method
Preprocessing

The input image LGRAY with a resolution M×N = 256×1024 pixels (M – number of

rows, N – number of columns of the image) was subjected to median filtering using a

mask h sized Mh×Nh = 3×3 pixels, thus obtaining the image LMED. The size of the filter

mask h was chosen on the basis of medical evidence on the extent of artefacts found in

this layer of the eye fundus OCT image and resolution of the image LGRAY. The images

of successive stages of image pre-processing are shown in Figures 1 and 2. The image

LMED is further analysed to detect the RPE layer yRPE ' (n) [3,15-17]. For this purpose,

every n-th column of the image LMED is examined. The position of maximum bright-

ness for each column is determined, i.e.:

yRPE
0 nð Þ ¼ arg max

m∈ 1;Mð Þ
LMED m; nð Þ ð1Þ

where:

m,n – coordinates of rows and columns of the matrix m∈(1,M) and n∈(1,N).

The Equation (1) can be directly applied only if for all the analysed rows and succes-

sive columns, there is only one maximum value of brightness. In practice, it occurs in

about 80% of the analysed cases at the resolution of 8 bits per pixel. The Equation (1) is

also very sensitive to noise, especially in the case of single bright pixels – salt and pep-

per noise. This type of noise is sometimes not fully filtered during median filtering. For

this reason, the Equation (1) was expanded to the following form (yRPE '' (n)):

LMAX m; nð Þ ¼
m if LMED m; nð Þ < max

m∈ 1;Mð Þ
LMED m; nð Þ � pr

0 others

(
ð2Þ

yRPE
00 nð Þ ¼ med

m∈ 1;Mð Þm≠0
LMAX m; nð Þð Þ if

XM
m¼1

LMAX m; nð Þ
M other

> 0

8><
>: ð3Þ

where:

med - median

pr - coefficient determined in the range from 0 to1.

The value of the coefficient pr [18] is determined once for the Equation (2) and is 0.9

(it was determined arbitrarily). Depending on its selection (pr), the number of pixels

that influence the calculation of the median is changed. An increase in the value of pr
increases the number of pixels from which the median is calculated. Equations (2) and

(3) by selecting pr enable correct calculations of the RPE layer individual points only if

there is one cluster. In other cases, when there are two or more clusters, the calcula-

tions are more difficult. These are cases where the RPE layer is not the brightest layer for

the analysed column. Such situations are very rare. The specificity of the Equations (2)



Figure 1 The method for obtaining tomographic images of the fundus. For a sample 2D tomographic
image, the RPE layer (retina pigment epithelium) and the choroid layer CHO are highlighted. Image analysis
applies to the proposed algorithm which analyses the choroid layer using new methods of texture analysis
and mathematical morphology. In each case, a flat two-dimensional input image is analysed, whose reso-
lution (and that of the OCT apparatus) does not affect the obtained results.
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and (3) enables to receive values equal to M (last row) for cases where none of the pixels

is larger than maxm ∈ (1,M)LMED(m, n) * pr for the analysed column.

Based on the course of yRPE '' (n) (hereinafter abbreviated to yRPE), the image LRPE
was created in the following way:

LRPE m; nð Þ ¼ LMED m; nð Þ if m≥ yRPE nð Þ
−1 others

�
ð4Þ

The values of “-1” added to the matrix LRPE enable to distinguish the area above the
RPE layer from the pixels beneath the RPE with a value of “0”. The final element of

image pre-processing is affine transformation of the image LRPE to the image LCHO



Figure 2 The course of image pre-processing. The subsequent steps of LGRAY image analysis: filtration
with a median filter – LMED, determination of the RPE layer (retinal pigment epithelium) – yRPE(n), coordinate
system conversion – LCHO. These steps are part of the image pre-processing which is necessary for further
analysis of images.
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containing only the interesting area of the choroid Figure 2. The image LCHO includes

all the pixels of the image LRPE from the layer yRPE(n) to the last row (M). The

remaining space in the matrix LRPE is filled with the values “-1”. Thus prepared image

LCHO with a resolution MC×NC is subjected to appropriate analysis and processing as

described in the next sub-section.

Image processing

The input image LCHO shown in Figure 2 provides the basis for further processing. The

specific properties of optical scanners as well as the object (eye) specificity contribute

to the fact that brightness uniformity correction is necessary for further processing. For

this purpose, the image LMEAN, which results from filtration with an averaging filter

with a mask h2 sized Mh2×Nh2 = 30×30 pixels, was subtracted from the image LCHO. As

a result, the image LCHOM was obtained, i.e.:

LCHOM m; nð Þ ¼ LCHO m; nð Þ
−

1
Mh2⋅Nh2

XMh2

m2 ¼ 1

XNh2

n2 ¼ 1

LCHO mþm2−
Mh2

2
; nþ n2−

Nh2

2

� �
⋅ h2 m2; n2ð Þ

� �

ð5Þ
for m∈(Mh2/2, MC-Mh2/2) and n∈(Nh2/2, NC-Nh2/2).

The size of the mask h2 is closely related to the size of objects subjected to detection.

In the case of the diseases listed in Table 1, the maximum size of objects is 20×20

pixels. Therefore, it was assumed that the size of the mask h2 must be at least twice as

large. This is necessary to carry out the removal of uneven brightness. Further process-

ing steps are related to the detection of objects with the use of morphological opera-

tions. For these operations, it is necessary to define the binary image LBW. This image

contains information on the location of pixels of the image LCHOM derived from the

image LRPE i.e.:
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LBW m; nð Þ ¼ 1 if LRPE m; nð Þ ¼ −1
0 others

�
ð6Þ

The proper steps of image processing are related to sequential morphological analysis.
Morphological opening operations were performed on the image LCHOM. The size of the

structural element SEi was varied every 2 pixels in the range from 3×3 to 11×11 pixels

(where the subscript i indicates the size, i.e.: SE3 is a structural element sized 3×3 etc.). An

opening operation was carried out for every i-th size of the symmetric structural element

SE, i.e.:

LOi ¼ min
SEi

max
SEi

LCHOMð Þ
� �

⋅LBW ð7Þ

These images (LOi) after normalization to the range 0 to 1 may be subjected to binari-
zation at a constant threshold pr.

LBi ¼ 1 if LOi −min
LOi

LOið Þ
� �

=max
LOi

LOi −min
LOi

LOið Þ
� �

0 others
< Pr

8<
: ð8Þ

The value of the threshold pr is fixed at 0.5 due to the previously performed opera-

tions of removing uneven brightness and standardization. The images LBi require ad-

justments related to the removal of small artefacts and holes in objects. This process

was carried out using relationships of conditional erosion and dilation of the binary

image LBi. In the case of a symmetrical structural element SEi, relationships of condi-

tional erosion and dilation [19] are simplified to the following form:

LE Cð Þ m; nð Þ ¼

¼
LBi m; nð Þ for 1− pweð Þ⋅pmn m; nð Þ ≤ sre m; nð Þ
min

mSEi;nSEi∈SEi
LBi mþmSEi; nþ nSEið Þð Þ for 1− pweð Þ⋅pmn m; nð Þ > sre m; nð Þ

(
ð9Þ

LD Cð Þ m; nð Þ ¼

¼
LBi m; nð Þ for pwd þ 1ð Þ⋅pmn m; nð Þ ≥ srd m; nð Þ
max

mSEi;nSEi∈SEi
LBi m−mSEi; n−nSEið Þð Þ for pwd þ 1ð Þ⋅pmn m; nð Þ < srd m; nð Þ

(
ð10Þ

where:

LE(C)(m,n) – the resulting binary image after subjecting the image LBi to conditional

erosion,

LD(C)(m,n) – the resulting binary image after subjecting the image LBi to conditional

dilation,

pwe – constant erosion effectiveness,

pwd – constant dilation effectiveness,

pmn(m,n) – threshold dependent on the coordinates m, n,

sre – the mean value of the analysed area for erosion,

srd – the mean value of the analysed area for dilation.

The mean values sre, srd for erosion and dilation respectively were calculated from the

following equations:
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sre m; nð Þ ¼
XMSEi

mSEi¼1

XNSEi

nSEi¼1

LOi mþmSEi; nþ nSEið Þ
MSEi⋅NSEi

ð11Þ

srd m; nð Þ ¼
XMSEi

mSEi¼1

XNSEi

nSEi¼1

LOi m−mSEi; n−nSEið Þ
MSEi⋅NSEi

ð12Þ

The constants pwe and pwd determining the effectiveness of erosion and dilation re-

spectively take the following values:

pwe∈ −1:0;−0:9;…;−0:1; 0:0; 0:1;…; 0:9; 1:0f g;
pwd∈ −1:0;−0:9;…;−0:1; 0:0; 0:1;…; 0:9; 1:0f g

ð13Þ

The choice of this range results from the condition of the left side of inequality, i.e.:
1−pweð Þ⋅pmn m; nð Þ|fflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
I

> sre m; nð Þ|fflfflfflfflffl{zfflfflfflfflffl}
II

ð14Þ

The values of pmn are in the range from 0 to 1, whereas the values of (1–pwe) should

be non-negative in the range from 0 to 2. The values of (1–pwe) and (1 + pwd) for pwe =

pwd = 0 are equal to 1, which means high intensity of conditional operations. For the

other values of the thresholds pwe and pwd, for example for pwe = pwd = 1, there is a

complete lack of effectiveness of erosion operations and significant effectiveness of dila-

tion (the impact of selection of pwe and pwd values is presented later in this section).

However, very often pmn(m,n) = const, irrespective of the location (pmn≠f(m,n)). Adopt-

ing pmn(m,n) = const is due to the nature of conditional operations, where in a general

case a condition may not only be dependent on the mean values of sre and srd, but also

on other values of the pixel saturation degree. These special properties of conditional

dilation and erosion enable to obtain effective correction of the quality of the input im-

ages LBi. Sequential execution of conditional dilation and erosion (in this case, three

times) allows to obtain corrected images LKi (Figure 3). The shape of the structural

element SEi adopted in all of these relationships was as a circle of a pre-specified size

because of the shape of the recognized objects. For each image LKi, characteristics were

determined for each object. These features include:

w(1) to w(5) - number of objects in the image LKi for i∈(3, 5, 7, 9, 11),
w(6) to w(10) - the average position of the centre of gravity in the x-axis for all the

objects in the image LKi for i∈(3, 5, 7, 3, 11),
w(11) to w(15) - the average position of the centre of gravity in the y-axis for all the

objects in the image LKi for i∈(3, 5, 7, 9, 11),
w(16) to w(20) - standard deviation of the mean brightness of pixels of all the objects

in the image LKi for i∈(3, 5, 7, 9, 11),

These features were selected taking into account medical conditions. They are related

to the location of vascular lesions from w(6) to w(15), uniformity of brightness distribu-

tion within these changes from w(16) to w(20) and the area of changes for the appro-

priate number of objects from w(1) to w(5). These characteristics form the basis for



Figure 3 Image analysis of the sequence of images LKi. Subsequent results are shown for i∈(3, 5, 7, 9,
11). For each image LKi and thus for each i the values of the features from w(1) to w(20) are calculated. For
example, one of the objects whose coordinates of the centre of gravity are calculated is shown on the top
of the zoom – in this case, they are (176, 281). The features w(6) to w(16) are the mean value of gravity
centre coordinates of all objects in the image LKi.
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building a classifier using decision trees (Figure 4 shows the block diagram of the

algorithm).

Results
The values of the 20 features obtained (four different types) are further used to build a

decision tree. An ophthalmologist divided more than 1′000 images into three groups

(Z1, Z2 or Z3 - Table 1). The division into groups Z1, Z2 or Z3 was performed manually



Figure 4 The block diagram of the algorithm. The block diagram is divided into three main parts,
namely image pre-processing using the known techniques of image analysis and processing, the principal
analysis of images proposed by the authors and the classifier based on decision trees. The individual
processing blocks are described in detail in the paper.
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by an ophthalmologist. As a result, the following frequency of occurrence of choroidal

imaging was obtained: the group Z1 included 23% of all cases, the group Z2 included

44% of all cases, and the group Z3 included 33% of all cases. This corresponds to 233,

436 and 331 images respectively. Whereas the division into learning, validation and test

groups had the following proportions: 60%, 20% and 20% respectively. These groups

were formed after rejecting the images with a mixed character of the changes observed -

the type of the disease was not a criterion for exclusion here. A variety of overlapping

diseases can be found in the excluded images. The cases of spatially invisible layer of

choroid, images resulting from the errors in the acquisition or lacking a visible layer of

RPE (for various reasons) were also excluded. Due to the fact that these are retrospect-

ive studies, the excluded images did not often cover the full range of the choroid, were

deliberately obscured or distorted at the acquisition stage.

The nodes of the decision tree are different features from w(1) to w(20), the branches

are the values corresponding to these attributes, and the leaves make individual deci-

sions – type identification (Z1, Z2 or Z3 – Table 1). In all cases, a non-parametrical al-

gorithm creating CART (Classification and Regression Trees) binary trees was used as

the method for decision tree induction. An increase in the nodes purity was used as

the criterion assessing the quality of CART divisions. The Gini index was used as the

measure of nodes impurity. The tree creation was not limited by a minimum number

of vectors in a node. As the considerations apply to the construction of a classifier

based on the knowledge base, w(1) to w(20) features, a preliminary prepared tree

Figure 5 was built based on the full information, using the training group. The results of

the classification for the complete decision tree for the test group as follows:

– for Z1 – SPC1 = 0.74, TPR1 = 0.32, ACC1 = 0.64,

– for Z2 – SPC2 = 0.56, TPR2 = 0.86, ACC2 = 0.70,

– for Z3 – SPC3 = 0.88, TPR3 = 0.097, ACC3 = 0.63.

(where: SPC = TN/(FP + TN) – specificity, TPR = TP/(TP + FN) – sensitivity, TN –

true negative, TP – true positive, FN – false negative, FN – false positive, subscripts

“1”, “2” or “3” indicate the type of images). A closer analysis of the resulting decision

tree enables, at this stage, rough assessment of the importance of individual features.

For this form of the complete decision tree, there occur only features w(1), w(6), w(15)

and w(20). Additional information is provided by the ROC graph (Receiver Operating

Characteristic) designated for Z1, Z2, Z3 to assess the impact of individual features from

w(1) to w(20) separately. This graph (ROC) is shown in Figure 6. Based on the ROC

graph and the complete decision tree, it can be concluded that there is a negligible im-

pact of the features w(11) to w(20) on the obtained results. Additionally, the sensitivity

of features to changes in the decision-making threshold value is the smallest for the fea-

ture w(11), and the highest for w(8) (Figure 6). For this reason, decision trees were created

for each configuration of features, thereby forming 220 full decision trees (unpruned trees)

and the same number of cut decision trees (over two million decision trees in total - 2′

097′152). Figure 7 shows the graph of cost relationships (misclassification error) as a func-

tion of stratified cross-validation and resubstitution. The graph was also shown by com-

puting a cutoff value that is equal to the minimum cost plus one standard error. The best



Figure 5 The complete classification tree. The decision tree was created for the classification of imaging
types Z1, Z2, Z3 for the features w(1) to w(20). The characteristic elements such as the presence of the feature w
(20) in the first node of the tree and successively features w(1), w(6) and w(15) for the other nodes are visible
here. The results obtained on this basis are, for example, SPC2 = 0.56, TPR2 = 0.86, ACC2 = 0.70 for Z2.
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level computed by the classregtree test method is the smallest tree under this cutoff (best

level = 0 corresponds to the unpruned tree). The best results obtained for the complete

decision tree are shown in Table 2. The best results of ACC2 = 0.83 were obtained for the

features w(1), w(2), w(3) and w(4).

In the classification of groups Z1, Z2, Z3 the features from w(9) to w(12) as well as from

w(18) to w(20) did not occur. This means that their influence can be neglected for the best

classifications (top 3 results). These features (from w(9) to w(12) as well as from w(18) to

w(20)) define the average location of the centre of gravity for i = 9 and 11 in the x-axis, for

i = 3, 5 in the y-axis and the standard deviation of the average brightness of pixels of all

objects for i = 9 and 11. The same results of ACC2 were obtained for various configura-

tions of the features w(1), w(2), w(3) and w(4) or w(5), w(7), w(8), w(16) and w(17), which

is also quite interesting (Table 2). The best results for the cut decision tree are shown in

Table 3. ACC2 = 0.82, obtained for the features w(1), w(4) w(5), w(7) w(8), w(12) and w

(15), is the best result for the cut decision tree. The results for the groups Z1, Z2, Z3 con-

firm that the features from w(17) to w(20) have the smallest influence. The summary fre-

quency chart of the occurrence of individual features from w(1) to w(20) for the cut and

complete decision trees for the first 1′000 best results is interesting (Figure 8). It shows

the greatest frequency of occurrence of the feature w(14) for the complete decision tree

and the feature w(4) for the cut decision tree. From a practical standpoint, however, min-

imizing the number of features occurring in the classification seems to be the most vital.

Therefore, when analysing only the three top results for the cut decision tree, one feature

for Z1, six features Z2 and one feature for Z3 are obtained. This means that only the group

Z2 requires the largest number of features in the classification. This information is essen-

tial for optimizing the computational complexity of the algorithm. The analysis time for a

single image does not exceed one second for the Pentium 4 CPU 3.0 GHz, 8GB RAM.



Figure 6 ROC Chart (Receiver Operating Characteristic). The graphs show the impact of threshold values
for individual features w(1) to w(20) for the different imaging types Z1, Z2, Z3. A negligible impact of the features
w(11) and w(20) on the obtained results can be inferred here. In addition, sensitivity of features to changes in
decision-making threshold values is the smallest for the feature w(11) and the highest for w(8).
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Comparison with other authors’ results

The analysis of the choroidal layer is dealt with in a number of publications [20-23]. In

most cases, however, it is qualitative analysis. It includes the analysis of the choroidal

layer thickness [20] or analysis with the use of Heidelberg Eye Explorer software [21].

In the first case, central serous chorioretinopathy case-series is presented. The follow-

ing results were obtained – mean subfoveal choroidal thickness was significantly (sig-

nificance level psl = 0.04) larger in the affected eyes (455 ± 73 μm) than in the

contralateral unaffected eyes (387 ± 94 μm), in which it was significantly (psl = 0.005)

larger than in the control group (289 ± 71 μm). The control group and the group of pa-

tients in this case [20] comprised 15 + 15 patients. The largest vessel diameter was

significantly (psl < 0.001, correlation coefficient: 0.73) correlated with the thickness of

the total choroid. A similar small number of patients was analysed in [21]. The de-

scribed software enables to measure some features of the choroid. However, this

method is fully manual. Another interesting analysis is shown by Mrejen S. in [22]. The

results obtained there concern the use of various imaging techniques in the diagnosis

of the choroid. An automatic method for the analysis of the choroid is shown in the

work of Park S.Y. [23]. The analysis presented there concerned only determination of

the location of the selected layers in the tomographic image of the fundus. In addition,

the correlation between the early treatment diabetic retinopathy study and EDI (en-

hanced depth imaging) was demonstrated. The automatically measured retinal thick-

ness and volume of 9 early treatment diabetic retinopathy study subfields with

conventional and EDI raster scan showed an intraclass correlation coefficient of 0.861



Figure 7 The graph of the cost relationships (misclassification error) as a function of stratified
cross-validation and resubstitution. The blue shows the cross-validation error. The best choice, the place
of decision tree trimming is circled as the closest cut below the minimum error value plus a mean square
error (min + 1 std. err).

Table 2 The three top results obtained for different configurations of the features w(1)
to w(20)* for the complete decision tree

Z1 Z2 Z3

w/N° 1 2 3 1 2 3 1 2 3

w(1) 0 0 0 1 1 0 1 1 1

w(2) 0 0 0 1 1 0 0 0 1

w(3) 0 0 0 1 1 0 1 0 0

w(4) 1 1 1 1 1 0 0 0 0

w(5) 0 0 0 0 1 1 0 0 0

w(6) 1 1 1 0 0 0 1 0 0

w(7) 0 0 0 0 0 1 0 1 1

w(8) 0 1 0 0 0 1 0 0 0

w(9) 0 0 0 0 0 0 0 0 0

w(10) 0 0 0 0 0 0 0 0 0

w(11) 0 0 0 0 0 0 0 0 0

w(12) 0 0 0 0 0 0 0 0 0

w(13) 0 0 1 0 0 0 0 0 0

w(14) 0 0 0 0 0 0 0 0 0

w(15) 1 1 1 0 0 0 0 0 0

w(16) 0 0 0 0 0 1 0 0 0

w(17) 0 0 0 0 0 1 0 0 0

w(18) 0 0 0 0 0 0 0 0 0

w(19) 0 0 0 0 0 0 0 0 0

w(20) 0 0 0 0 0 0 0 0 0

ACCi 0.73 0.73 0.73 0.83 0.83 0.83 0.69 0.69 0.69

*The occurrence of a given feature w is indicated by “1” and its lack by “0”.
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Table 3 The three top results obtained for different configurations of the features w(1)
to w(20) for the cut decision tree

Z1 Z2 Z3

w/N° 1 2 3 1 2 3 1 2 3

w(1) 0 1 0 1 1 1 1 0 0

w(2) 0 0 1 0 0 0 1 0 0

w(3) 0 0 0 0 1 1 0 1 0

w(4) 1 1 1 1 0 0 0 0 1

w(5) 0 0 0 1 0 1 0 0 0

w(6) 0 0 0 0 1 1 0 0 0

w(7) 0 0 0 1 0 0 0 0 0

w(8) 0 0 0 1 0 0 0 0 0

w(9) 0 0 0 0 1 1 0 0 0

w(10) 0 0 0 0 0 0 0 0 0

w(11) 0 0 0 0 0 0 0 0 0

w(12) 0 0 0 1 1 1 0 0 0

w(13) 0 0 0 0 0 0 0 0 0

w(14) 0 0 0 0 0 0 0 0 0

w(15) 0 0 0 1 0 0 0 0 0

w(16) 0 0 0 1 1 1 0 0 0

w(17) 0 0 0 0 0 0 0 0 0

w(18) 0 0 0 0 0 0 0 0 0

w(19) 0 0 0 0 0 0 0 0 0

w(20) 0 0 0 0 0 0 0 0 0

ACCi 0.76 0.76 0.76 0.82 0.81 0.81 0.68 0.68 0.68
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to 0.995 and 0.873 to 0.99 respectively. The number of analyzed cases was 35 patients

with chorioretinal diseases and 20 healthy subjects. In this paper, the number of cases

is much higher and the image analysis and processing are fully automatic. It seems that

useful results can be obtained even with non-EDI SOCT. However, it should be further

tested with other devices.

Summary

This paper shows a new fully automated method for the analysis of choroidal images. A div-

ision into three types of choroidal images was proposed. The created decision tree enabled

to obtain satisfactory classification results. For example, for the classification of images Z2,

the accuracy ACC2 was 0.81 (pruned tree). Additionally, the features which have the great-

est impact on the classification efficiency were characterized (creating more than 2 million

decision trees). These are the characteristics from w(1) to w(9), w(12), w(15) and w

(16) which are responsible for the number of objects in the scene and the average pos-

ition of the centre of gravity in the x-axis for i = 3, 5, 7, 9 and the average position of the

centre of gravity in the y-axis for i = 5, 11 and STD for i = 3. In addition, it was shown that

for the adopted classifier of the cut decision tree, for the top 1′000 results the feature w

(4) was most common. It was also noted that the different locations of scanning

differentiate the images of the choroid but the classification result remains the same.



Figure 8 The graph of occurrence frequency of individual features w(1) to w(20) for the complete
decision tree and the cut one for the first top 1′000 results. The graph shows that the highest occurrence
concerns the feature w(14) for the complete decision tree and the feature w(4) for the cut decision tree. The
occurrence frequency of the features corresponds with the results shown in Tables 2 and 3.
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Foveal location, however, has the greatest ability to differentiate changes. Individual

B-scans located on the macula periphery are closer to each other. The proposed al-

gorithm for image analysis and the classifier were implemented in the C language. Cur-

rently, the application is further studied in the Clinical Department of Ophthalmology in

District Railway Hospital, Medical University of Silesia in Katowice, Poland.

The presented methodology of the procedure does not cover a large range of opportun-

ities offered by modern methods of image analysis and processing. Currently, there is on-

going work on the optimization of the algorithm in terms of computational complexity.

Moreover, its aim is to replace some of the time-consuming functions with some other

more efficient ones. In particular, the possibility of applying different methods of texture

analysis [23-31], Boolean function [32] or other methods of image analysis [33,34] or the

impact of other factors [35-41] is considered. Other types of classifiers ensuring the ana-

lysis of other characteristics acquired from images are particularly taken into account.

Consent
Written informed consent was obtained from the patient for the publication of this

report and any accompanying images.
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