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Oscillations in Pollen Tubes
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Abstract

In the seed plants, the pollen tube is a cellular extension that serves as a conduit through which male gametes are
transported to complete fertilization of the egg cell. It consists of a single elongated cell which exhibits characteristic
oscillations in growth rate until it finally bursts, completing its function. The mechanism behind the periodic character of the
growth has not been fully understood. In this paper we show that the mechanism of pressure – induced symmetry
frustration occurring in the wall at the transition-perimeter between the cylindrical and approximately hemispherical parts
of the growing pollen tube, together with the addition of cell wall material, is sufficient to release and sustain mechanical
self-oscillations and cell extension. At the transition zone, where symmetry frustration occurs and one cannot distinguish
either of the involved symmetries, a kind of ‘superposition state’ appears where either single or both symmetry(ies) can be
realized by the system. We anticipate that testifiable predictions made by the model (f!

ffiffiffiffi
P
p

) may deliver, after calibration,
a new tool to estimate turgor pressure P from oscillation frequency f of the periodically growing cell. Since the mechanical
principles apply to all turgor regulated walled cells including those of plant, fungal and bacterial origin, the relevance of this
work is not limited to the case of the pollen tube.
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Introduction

General outline
The pollen tube has become a widely used cellular model

system. In addition to being one of the fastest growing plant cells, it

features periodic oscillations of the growth rate that have attracted

numerous attempts to model the process. While recent models

have increasingly incorporated biological features such as ion

transport and intracellular trafficking, a simple feature with

potentially significant impact has been overlooked in past

approaches, namely: geometry. We modeled the strain rates in

the cell wall caused by turgor pressure as a function of the different

symmetries present in the pollen tube and found that a crucial area

on the cellular surface of the pollen tube can be characterized by

what we have termed symmetry frustration. (The term frustration, in

the context of magnetic systems, has been introduced by Gerard

Toulouse [1]. Early work includes a study of the Ising model on a

triangular lattice with nearest-neighbor spins coupled antiferro-

magnetically [2]). This area represents the transition zone between

the hemisphere-shaped apex and the cylindrical shank. From a

biological point of view this zone is crucial since numerous

molecular landmarks of polar growth are present on one side of

this zone and are absent from the other.

The model predicts that the transition zone undergoes local

peaks in strain rate, revealing intriguing possibilities for research

on the polarity of the growth process. Furthermore, we propose

that changes between different symmetry regimes might be the

mechanical underpinning of periodic changes in growth rate and

shape observed during oscillatory growth. We believe that our

model makes an important contribution to the field of plant

cytomechanics in general and pollen tube growth in particular.

Preliminaries
Pollen tubes are rapidly growing plant cells whose morphogen-

esis is determined, at least in part, by spatial gradients in the

biochemical composition of the cell wall. Pollen tube growth is a

critical process in the life cycle of higher plants [3]. It has garnered

a lot of attention and is at the center of considerable controversy

[4]. The pollen tube is the carrier of the male gametes in flowering

plants. The controversy involves the modes of extension leading to

periodicity in growth and growth rate [3]. While some authors

claim that hydrodynamics is the central integrator of pollen tube

growth [5], [6], [7] leading to growth oscillations, others relate the

periodicity in growth dynamics to the changes in the wall material

properties [3], [8], [9].

Pollen tubes are tip growing cells, which means that cell volume

increase is confined to the tip of the cell. They display extremely

rapid growth that can be also reproduced in vitro. All activities

associated with wall growth - including delivery of new cell wall

material and cell wall deformation - occur exclusively at the

hemispherical tip of the cell [10] (Fig. 1A). Deformation of pre-

existing wall material is driven by the turgor pressure, a

hydrodynamic pressure inside the cell. Growing pollen tubes

characteristically display characteristic oscillations in growth and

growth rate [11], [12], [13]. These growth oscillations depend on

many phenomena, among which are the underlying ion and mass

fluxes, wall mechanical properties, system symmetries and turgor

pressure. In isotonic conditions [5] the average growth cycle
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period T is about 50 s, whereas in hypertonic or hypotonic

conditions it shifts to about 100 s and 25 s, respectively. The latter

produce oscillations with typical frequencies (f ~1=T ): hypertonic

– 0.01 Hz, isotonic – 0.02 Hz and hypotonic – 0.04 Hz. The

longitudinal and transverse oscillation power spectrum of an

individual Nicotiana tabacum pollen tube [14] is visualized in Fig. 2,

and can not solely be described by a double exponent model (e.g.

Fig. 8A in [15]), which, although suitable for normal cell

enlargement, but insufficient for periodical growth.

The cell wall is one of the key structural players regulating plant

cell growth since plant cell expansion depends on an interplay

between intracellular pressures and the controlled yielding of the

wall [16]. Cell wall polymers are amorphous polymers existing

above their ‘glass’ transition temperature, so that considerable

segmental motion is possible. At ambient temperatures, the cell

wall is thus relatively soft (E*1 MPa) and is easily deformed. Cells

can grow to some extent simply by stretching their walls as they

take up water. However, continued cell expansion involves

synthesis of new wall material. Synthesis of cellulose at the plasma

membrane and of pectin and hemicelluloses components with

Golgi apparatus deposits successive layers on the inside of the

existing cell wall. A mechanical prerequisite for the unidirectional

growth of pollen tubes for the (scalar) hydrostatic pressure is a

softer cell wall at the tip of the cell, and a more rigid wall at the

basal part [17], [18]. This gradient of mechanical properties is

generated by the absence or scarcity of callose and cellulose at the

tip [19] as well as by the relatively high degree of esterification of

the pectin polymers in this region. The gradient in cell wall

composition from apical esterified to distal de-esterified is reported

to be correlated with an increase in the degree of cell wall rigidity

and a decrease of visco-elasticity [20]. Microindentation studies

confirm (Fig. 2 in [3], [21]) that the pollen tube tip is less rigid and

that the distal stiffness may be opposed to apical softness. Needless

to say, in order to sustain growth, a balance between the

mechanical deformation of the viscoelastic cell wall and the

addition of new cell wall material must be achieved [22].

Turgor pressure is the pressure of the cell sap against the wall in

plant cells. This is a force exerted outwardly on the plant cell wall

by the water and solutes contained therein, giving the cell a

hydrostatic rigidity. Excess turgor pressure or local cell wall

Figure 1. Nicotiana tabacum pollen tube apical region. (A)
Microscopic view (B) Schematic view: radii of curvature r1 and r2 ,
turgor pressure P and the investigated partition into two distinct
symmetry regions are indicated in the chart. Note, the ‘transition zone’
C can also exist on the spherical part, or both.
doi:10.1371/journal.pone.0075803.g001

Figure 2. Density plots of the longitudinal and transversal
power spectrum of an individual Nicotiana tabacum pollen tube.
Graphs obtained from the raw experimental data, bias subtracted [14]
by Fourier analysis, calculated by the power of the Nyquist criterion and
Nyquist rate, for different osmotic environments (21 corresponding to
the hypotonic case, 0 – isotonic case, and 2.5, 3 and 5 corresponding to
25, 30 and 50 mM NaCl in hypertonic conditions, respectively). A broad,
narrowing valley at the centre of the lower plot is clearly visible – low
frequencies seen for longitudinal modes are shifted outwards. Red
colour indicate high intensity peaks. Interpolated by DAVE, developed
at NIST [59].
doi:10.1371/journal.pone.0075803.g002
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weakening can result in the bursting of a cell. Both, turgor pressure

and the wall properties are decisive for the mechanical behaviour

and dynamics of the developing plant cell [23]. In fact, the

physical properties of the wall and the turgor pressure have pivotal

functions since they represent the ‘‘downstream parameters’’ of all

cellular signaling events [24]. For our future reference we note that

the turgor pressure in lily pollen tubes ranges from 0.1–0.4 MPa in

lily [25], [3].

Pollen tube geometry can be described by two different

symmetries - a hemisphere shaped apex, and a cylindrical shank

connected by a transition zone between the two. In this paper we

describe a mechanism of ‘symmetry frustration’ occurring in this

transition zone between the two involved symmetries as a possible

mechanism responsible for growth rate oscillations. In simple

terms by symmetry frustration we mean that a small ring of cell

wall (hereafter referred to as interface C, Fig. 1B) is unable to

‘decide’ if it should behave as an elastic cylinder or an elastic

sphere. Following this hypothesis, oscillations may arise because

this mesoscopic ring at the equator behaves as if it ‘jumps’

periodically between the two mechanical states of different strain

energy capacity.

The application of growth tensors to developing plant organs

has been known for a long time [26]. Such mathematical

descriptions has been used to model apical meristems where the

proliferating cells produce tissue stresses, which in turn influence

the structure of the developing organ and therefore determine the

principal directions of growth [27]. As one might expect, various

stresses occur along the length of any tip-growing cell because of

the varying properties of cell wall from one region to another when

exposed to the turgor pressure [28]. The distribution of the wall

stresses as well as deformation of the particular wall layers can in

principle be calculated by solving equilibrium equations of

elasticity theory. The equilibrium equation may be derived both

for materials deformed elastically (deformation vanishes when

force equals zero) or non-elastically (plastic deformation survives,

even when the acting force is removed). In this article we

concentrate on elastic properties, because the oscillatory growth of

pollen tubes is our main concern [7], [9], [8]. Plastic properties are

inherent in the proposed model via the derived (anharmonic)

‘frustration potential’, and the assumed cell wall building processes

located in the sub-apical, annular region, presumably at (above)

the C – interface [29], [30]. As an aside, note that whereas the

hydrodynamic model as it is used by Zonia [7] proposes gradual

increase in turgor until a threshold when rupture of individual

links between cell wall polymers occurs, Winship and coworkers

[3] state that turgor is essentially stable, but an exocytosis–induced

relaxation of the wall causes expansion. They postuale that

variations in cell wall mechanical properties cause the oscillations

and that variations in turgor (if there are any) are a passive

consequence due to cell wall relaxation.

Several possible mechanisms have been proposed to account for

the behaviour of growing pollen tubes in quantitative terms [31],

[13], [32]. A model for calcium dependent oscillatory growth in

pollen tubes has been put forward by Kroeger et al. [33]. More

recently, Fayant et al. used a finite element technique [18] to

establish a biomechanical model of polar growth in walled cells.

Other models have included a chemically mediated mechanism of

mechanical expansion of the pollen tube cell wall in which

deposition causes a turnover of cell wall cross-links, thereby

facilitating mechanical deformation [34]. The possible role of wall

ageing in the self-regulation of tip-growth was considered in [35];

while a model based on plasma membrane flow and cyclosis

regulation in growing pollen tubes was discussed in [36]. Campas

and Mahadevan (2009) treat the irreversible expansion of the cell

wall during growth as an example of the extension of an

inhomogeneous viscous fluid shell under the action of turgor

pressure, fed by a material source in the neighborhood of the

growing tip [37]. Lastly, a realistic osmotic model of the growing

pollen tube has been proposed recently by Hill et al. [38].

However, none of the models produced oscillations on mechanical

basis. Indeed, the model presented in [36] actually does not

describe the cell wall, and hence, can not predict oscillations. The

authors assume that the growth oscillations are given to

understand the phase angle differences between growth velocity

and the regulating mechanisms. But yet, by definition, oscillation is

the repetitive variation, typically in time, of some measure about a

central value (often a point of equilibrium), and pollen tubes do not

exhibit such form of oscillations. In fact, what we observe in pollen

tubes is a periodical elongation (without shrinking phase), and can

be a result of transitions between two or more different states,

which is another definition of oscillation, we adopt in this paper.

Our approach does not invalidate previous studies. We explore

the relationship between turgor pressure and nontrivial cell

geometry in terms of mutually exclusive instability models [39]

based on cylindrical and spherical geometries, both of which are

present in rapidly extending pollen tubes. We base our physical

model on the parametrized description of a tip-growing cell that

allows the manipulation of cell size, cell geometries, cell wall

thickness, and local mechanical properties. However, the me-

chanical load (contrary to op. cit.) is applied in the form of

constant hydrostatic pressure.

An important feature of pollen tubes elongation is the

observation that the growth rate oscillates and that additionally,

many of the underlying processes also oscillate with the same

fundamental period, but usually with different phase (e.g. Fig. 1c in

[7]). The possible roles of these oscillating ion gradients and fluxes

in the control of pollen tube growth [40] is beyond the scope of this

paper and will not be discussed here. We share the view expressed

in [34], [41] that the wall extension is primarily a biophysical

(mechanical) process, and although ultimately dependent on

enzymatic activity, under conditions where the enzymatic

background can be subtracted out the biophysical process still

proceedes normally. The origin of the oscillation is still unclear,

though all hypotheses agree in that, the cell wall mechanics are

essential to the oscillation [36].

Any new model should deliver testable and quantitative

predictions that can be validated by experimental data. In case

of pollen tubes, it is necessary to present predictions that go

beyond stress values which are inherently difficult to measure. The

presented model satisfies this requirement by offering, among

other things, an experimentally testifiable power law (v!
ffiffiffiffi
P
p

)

which relates the turgor pressure P and the oscillation angular

frequency v.

Results and Discussion

In order to construct a stress-mechanical model of observed

pollen tube growth oscillations we begin with an analysis of the

mechanical properties of a tip growing cell. In particular we focus

on the circular perimeter located at the junction of hemispherical

dome and the cylindrical shank. This is based on the observation

that cell wall assembly by exocytosis occurs mainly in an annular

region around the apical pole of the cell [42], [6] and that the

concomittant turgor driven deformation of the cell wall causes

characteristic strain in the hemisphere shaped apex of the cell [18],

[34]. The dynamic properties of such a complex growing system

should be self-consistent (meaning that the turgor pressure and the

wall mechanical properties are conjugate magnitudes that usually

Growth Oscillations in Pollen Tubes
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form coupled equations, which have to be solved iteratively).

Nevertheless, in the first approximation the following heuristic

solution can be proposed.

Assuming an intrinsic and constant turgor pressure P [38], and

a much lower external pressure, presumably atmospheric pressure

producing an effective pressure within the wall material
~PP~Pzpext, the equilibrium equation for the displacement vector

~uu, which is the shortest distance from the initial to the final position

of a moving point, takes the form [43]

2(1{n)grad(div~uu){(1{2n)curl(curl~uu)~~00, ð1Þ

where n is the Poisson coefficient. For our purposes Young’s

modulus E(z) and Poisson coefficient n are assumed to be picewise

constant functions, so they remain constant on the interface C
(Fig. 1a); ‘‘grad’’, ‘‘div’’ and ‘‘curl’’ are differential operators, here

acting on the displacement vector ~uu.

Note, that by acting divergence operator on both sides of Eq. (1)

we receive D div~uu~0, i.e. div~uu denoting the volume change due

to displacement field is a harmonic function, i.e. satisfying

Laplace’s equation.

Eq. (1) may be solved analytically providing that the problem

exhibits a high degree of symmetry. In particular it can be solved

exactly for both spherical and cylindrical symmetries given the fact

that both symmetries are necessarily present (Fig. 1B). It follows

that the symmetries of both subdomains must be used in any

description of pollen tube shape and dynamical properties.

By assuming cylindrical symmetry (for the displacement vector

field ~uu~(ur,uw,uz)~(ur,0,0), which is obtained under the

assumption that the total length of the cylinder part remains

constant (the axial elongation of the more rigid shank upon

application of a constant internal pressure P we assume as

negligible), and hence (in first approximation) we accept uz~0 in

(ur,uw,uz)~(ur,0,0) instead of (ur,uw,uz)~(ur,0,uz), which would

lead to unavoidable numerical solution of Eq. (1)), and represent-

ing field operators (grad, div and curl) in cylindrical (polar)

coordinates, Eq. (1) can be reduced to a much simpler form:

d

dr

1

r

d

dr
(rur)

� �
~0: ð2Þ

This differential equation can be solved for the displacement field

ur to yield the displacement for the cylindrical symmetry

uc
r~arz

b

r
, ð3Þ

where a and b are constants to be determined from the boundary

conditions [43]. For displacement in the spherical tip the

introduction of spherical coordinates with the origin in the center

of a sphere allows us to define the displacement field ~uu as a

function of the radius r: ~uu~(ur,uh,uw)~(ur,0,0). Therefore

rot~uu~0 and Eq. (1) reads: grad div~uu~0. Hence for displace-

ment spherical symmetry yields

us
r~arz

b

r2
, ð4Þ

The upper index in Eqs (3) and (4) has been substituted to

differentiate solutions for cylindrical (c) and spherical (s) geome-

tries. With these assumptions a realistic cell geometry for an

elongating pollen tube can be described in terms of a cylinder of

radius rT capped by a prolate half-spheroid with short radius rT

and a long radius rL ([18]; Fig. 1). Our working model for pollen

tube growth thus consists of a thin-walled hollow cylinder ending

by a hemispherical shell immersed in an external pool of pressure

pext and filled with a cell sap with turgor pressure P (we equate

both radii rT~rL, for simplicity). The inner radius of the cylinder

and the sphere is r1, while the outer radius is r2 (Fig. 1B). Another

simplifying assumption is that we deal with weak (elastic)

interactions at the interface C, because of ongoing wall building

processes resulting in the fact that the deflection field may differ

slightly on both sides of the interface. From the mechanical point

of view the two domains may be treated as being weakly coupled.

This is consistent with the view that new deposition is associated

with wall-loosening whereby load–bearing cross–links are broken,

while simultaneously creating new load–free cross–links; thereby

effecting a fail-safe scenario for mechanical expansion [34].

It has been proposed [44], [33] that mechanical properties of

the cell wall at the growing tip must be different from those in the

shank, and suggested that therefore an anisotropy in the cell wall

elasticity is required to account for the transition between spherical

and tubular shape at the tip of the cell. It has also been

documented [45] that the rigidity of the tip of the pollen tube

increases with increasing distance from the apex. Therefore, in a

first approximation the elastic properties of our cylinder modeling

the cell wall at the shank, and our hemisphere modeling the tip,

are represented by two pairs of material constants: Young’s

modulus E and Poisson coefficient n. Further calculations may

assume different, and perhaps more representative values for these

coefficients for distal (thick and rigid) and apical (thin and elastic)

walls of a pollen tube. Nonetheless, the proposed effect of

geometrical frustration will be preserved even for slow gradient

or other monotonic behaviour (along the long axis) of elastic

parameters at the vicinity of the equator C. In other words, the

effect of a continuous gradient of Young modulus and Poisson

coefficient in a broad transition zone that engulf both the shank

and the apical dome on the symmetry frustration and growth

oscillations is of minor weight. Assumptions, about different values

of mechanical constants at the apical dome and cylindrical shank,

are fully justified (see e.g. Fig. 4 in [45]), where spatial distribution

of the Young’s modulus is presented). Because we consider

relatively small elastic deformations, the stress and strain tensors

are related by the Hooke’s law of elasticity making the deformation

reversible. For the radial part of the stress tensor sij we have:

srr~{pext at r~r2 and srr~{P at r~r1. Since the off-diagonal

elements vanish, we are left with the strain urr~
dur

dr
~a{

b

r2
,

uww~
ur

r
~az

b

r2
and uzz~0, the radial srr element of the stress

tensor reads:

srr~
E

(1zn)(1{2n)
a{(1{2n)

b

r2

� �
: ð5Þ

By assuming boundary conditions as above, parameters a and b
can be calculated [46]. They both depend on the material

constants: Young’s modulus E and Poisson coefficient n, cylinder

geometry (r1, r2 – radii) and on pressure values P and pext. In fact,

to receive smooth solutions on C – interface equations for different

geometries should be connected by transmission (gluing) condi-

tions equating the forces and deflections on each side: sn~s’n’
and u~u’, where n denotes the exterior normal to the boundary.

In first approximation we let both subdomains be weakly coupled

(visco – plastic phase) while cyclic wall building processes take

place at C, and strongly coupled mechanically (visco – elastic

phase) when wall building processes expire. We consider only the

Growth Oscillations in Pollen Tubes
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radial part of the stress srr, deflection ur and strain urr~Lrur

tensors on C, for simplicity. This Ansatz, however, does not

qualitatively influence the results.

Quantitative calculations stemming from Eqs (3)–(5) originating

from the gradient of mechanical properties at C are presented in

File S1 (see also Figures S1, S2, S3, S4, S5 in File S1: Fig. S1 –

Displacement ur due to the effective turgor pressure ~PP acting on

the cell wall as a function of the radial distance r from the pollen

tube long axis; Fig. S2 – Tensile stress srr due to the effective

turgor pressure ~PP acting on the cell wall at the position where the

cylinder (shank) joins the hemisphere (apex) as a function of the

radial distance r from the pollen tube long axis; Fig. S3 – Tensile

stress difference srr(apex){srr(distal) at the apex and the distal

part; Fig. S4 – Tensile stress difference sc
rr{ss

rr calculated at the

boundary zone between the approximately hemispherical apical

and the cylindrical distal part of the growing pollen tube

(parametrisation by the turgor pressure); Fig. S5 – Tensile stress

difference sc
rr{ss

rr calculated at the boundary zone between the

semispherical apical and the cylindrical distal part of the growing

pollen tube (parametrisation by the wall thickness)).

On the other hand, because curvature discontinuity and stress

singularity both occur at the transition zone the expression for

tensile stress difference due to the symmetry change

sc
rr{ss

rr:srr(cylinder){srr(sphere) which becomes

sc
rr{ss

rr~

P
r3

1r3
2

r3 r3
2{r3

1

� �{
r2

1r2
2

r2 r2
2{r2

1

� �{
r3

1

r3
2{r3

1

z
r2

1

r2
2{r2

1

" #
ð6Þ

and conversely from the opposite formula: ss
rr{sc

rr, it is shown

that calculations performed for C - interface, where both

geometries (cylindrical and spherical) meet, a symmetry frustration –

leading to oscillations of the radial part of the stress tensor – may

take place. The term ‘frustration’ signifies the fact that none of the

locally involved symmetries is distinguished. On the other hand,

(by evaluating E~
Ð

srrdr) from Eq. (6) the calculated strain

energy density reads:

E+!+P
r1

2r2
2 2r3z2r r1

2zr1r2zr2
2

� �
{r1r2(r1zr2)

� �
2r2 r1

4zr1
3r2{r1r2

3{r2
4ð Þ : ð7Þ

The quasi–discrete energy levels E{ and Ez (possesing a small

dispersion dE%0:0003 [energy u.]) presented in Fig. 3 are non–

degenerate due to the constant turgor pressure P, which leads to

the observed splitting of energy levels. Still, since both levels

originate from the symmetry change at C, they can be account for

the oscillations in the pollen tube growth functions. Thus, the

resonant frequency of growth (growth rate) corresponds to the energy

difference Ez{E{%2E (since Ez%{E{), which in turn is

directly proportional to the turgor pressure P. Consequently, we

can equate the transition energy 2E between the resonating levels

(Fig. 3) with the pollen tube oscillation frequency observed in

experiments. We note that Eq. (7) implies that if P~0 then the

system exhibits no oscillations, which is exactly the case. (See also

the plot of the potential energy Uz(r) at r~r0 in Fig. 4).

Notwithstanding, we note that the considered effect is exclu-

sively connected with geometrically induced stress in the wall,

which may be linked with symmetry frustration, (see [18], Fig. 4F)

and one can express it in measurable units [Pa m]. A spatially

degenerate ground state will undergo a geometrical distortion (the

alteration of the original shape) that removes that degeneracy,

because the distortion lowers the overall energy of the whole

complex. Indeed, in calculating the definite integral over the

function expressed by Eq. (6):

ðr2

r1

½:::�dr (with r1~5 and

r2~5:25mm) we obtain a strain energy density: E+~+0:256
[MPa mm]. Therefore, the difference of strain energy density

between the two levels is about 0.5 MPa for micrometer length

scales typical for the width of the pollen tube cell wall (about

Figure 3. Frustration – induced energy splitting in a pollen
tube apical region. Corresponding symmetry exchange takes place
between the resonating residual energy levels E{+dE and Ez+dE of
different major symmetry. Calculation performed at the transition zone
C between the (hemi-spherical) apical and the (cylindrical) distal part of
a growing pollen tube (see Eq. (7)), at a constant turgor pressure P~0:3
MPa. The inner and the outer wall radius in both subsystems read:
r1~5 mm, r2~5:25mm (wall thickness *250nm), respectively. The
dispersion of each energy level dE%0:0003. For bifurcation diagram
and tensegrity force see arXiv:1211.1143.
doi:10.1371/journal.pone.0075803.g003

Figure 4. One of the two branches of the anharmonic

(‘frustration’) potential U+(r)!+
a

r3
+

b

r2
, as a function of wall

constituing molecules separation r. (Here: a~b~1; in general the

coefficients a and b are linear in P, see Appendix S1). Oscillations take

place between U{ and Uz potential energy level (compare with [60],
Fig. 2), by tunneling through symmetry change, yielding v, while the
amplitude is determined by the actual pressure P level, in accord with
experiments ([4], [9]). The source of the potential: pressure – induced
(residual) internal stress field in the wall. See also arXiv:1211.1143.
doi:10.1371/journal.pone.0075803.g004
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250 nm). Such energy densities may lead to oscillations, which are

observable not only in growth rates. From our model it can also be

inferred that the apical geometry oscillates (due to deformation ur

located initially at C, compare Figs. 3B and 4B in [47]), to produce

a so called ‘‘pearled’’ morphology [34]. Evidence of such

deformations at C can be seen in Fig. 1c and 6a, c (ibid.) as

crests smeared out on a distance l, in agreement with our model.

Such geometrical oscillations of the wave–length l will be obtained

when frustration occurs, and the cylindrical and spherical

symmetries will be present on C – contour interchangeably;

compare Movie S1 and S2 in [47]. However, what we also note

that there is no sign of deflection at a distance shorter than the

tube radius R. The latter observation further supports the main

idea presented in this paper of specific role of the C – interface in

initiating oscillations. By assuming, after [34], the value of the

linear velocity vavg~0:2 [mm/s] of the elongating cell and taking

the average oscillation period T~50 s from Fig. 5 we can confirm

the observed wavelength of about l~10 mm, which is a doubled

value of the radius R, as expected assuming the correctness of our

approach. In this picture, the wavelength l includes the times

necessary for local deflection, wall stress/stress relaxation, and

recovery through wall building processes for every period T .

Transitions between the different states of symmetry are shown

in Fig. 3. The system is pumped with energy sufficient to jump

over the energy gap between the (hemi-)spherical and cylindrical

geometries. A positive feedback mechanism is necessary to drive

the oscillations and to prevent damping due to viscosity. The

necessary additional energy is absorbed (presumably generated by

ATP–pumping [48]) in the transition zone producing the ‘exited

state’ Ez. The system then returns (by spontaneous symmetry

breaking), to the lower symmetry (cylindrical) state E{, reducing

the energy of the overall system stimulating axial expansion. Both

transitions (up and down) complete one growth cycle with the

predicted transition’s rate v!
2p

T
, where T is the period. The

whole process is repeated at the expense of pressure P and ATP–

energy needed for wall synthesis (exhibiting growth oscillations),

and eventually expires or reaches critical instability at which point

the cell bursts approximately at C, see SI: Movie S3 in [47].

In a mechanical anharmonic oscillator, the relationship between

force and displacement is not linear but depends upon the

amplitude of the displacement. In the case of the pollen tube the

nonlinearity arises because of the visco-elastic flow/stretching of

the wall material. The cell wall (acting as a spring component) is

not capable of exerting a restoring force that is proportional to its

displacement. As a result of this nonlinearity, the vibration

frequency and amplitude can change, depending on the displace-

ment of the system elements acting under pressure P. Appendix S1

in File S1 outlines an approximate derivation of the (dual)

‘frustration potential’, which is a sum of the attractive and

repulsive forces, possibly responsible for experimentally observed

growth rate oscillations in pollen tubes (we base our calculation on

the local force equation of motion [49]). The oscillations given in

Eq. (12) and visualized in Fig. 4, we describe thus: Pollen tube

oscillations are trapped at the potential well about the equilibrium

point r0 of the corresponding symmetric (harmonic) potential.

Oscillation frequencies and amplitudes depend upon the turgor

pressure values, see Eqs (6) and (7), as it is observed (e.g. Fig. 4 in

[9]; [4]). Wall expansion is allowed by stress relaxation (molecular

separation for r – values exceeding those of harmonic potential).

Dissociation energy, at zero potential level, corresponds to system

instability (burst at C). The low-lying (trapped) values deliver high

frequencies and small amplitudes, while the higher-lying potential

values – low frequencies and larger amplitudes of oscillations.

Above the critical threshold (corresponding to ‘zero energy’ at the

vertical scale) a bond breaking occurs and the pollen tube bursts at

the transition zone, or delivers male gametes completing its

function. The plot represents only one branch of the full

frustration potential; the second branch is in ‘dual’ subspace,

and the oscillations take place between both branches. For the

negative values, the mechanism of symmetry breaking favorizes

this ‘lower order’ (cylindrical) symmetry for cell extension.

The ‘frustration potential’ presented in Fig. 4 is a more

convenient model for vibrational structure of wall constituing

molecules than harmonic oscillator potential, because it explicitly

includes the effects of bond breaking and accounts for anharmo-

nicity of real bonds in the extending cell wall. It is also responsible

for the inherent instability at the C – interface of a growing tube

(and – in consequnce – polymer building process), which can be

experimentally supported by the fact that the pollen tubes almost

always rupture at the transition zone where the radial part of the

strain tensor is considerable (Movie S3 in [47]), or stress takes on

the extreme value ([18], Fig. 5F – a yellow-orange coloured

stripes). The form of the potential also contributes to the long

debate among plant physiologists about the elastic/inelastic

extension of plant cell wall in simple terms: Any departure from

Figure 5. Least square fit of the experimental data (v) as a
function of turgor pressure P. Data collected for hypertonic (25 mM
NaCl), isotonic and hypotonic (hypo-osmotic stress induced by the
addition of water to the gel cultures) treatment of Nicotiana tabacum
pollen tube [14] are fitted to the square root function derived in this

paper (v~2pA
ffiffiffiffi
P
p

; ½A2�~m=kg). Stable turgor values (implemented
equidistant measures) correspond to those ranging between 0.1 and
0.4 MPa, which has been also recorded using a turgor pressure probe
[25]. The initial point (0,0) is an exact physical constrain, as the pollen
tube will not oscillate (v~0) for the vanishing turgor pressure (P~0).
doi:10.1371/journal.pone.0075803.g005
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the parabola centered around r0 will lead to plastic extension,

corresponding to elongation growth (see Fig. 4). In addition, at a

given pressure P the infinite potential barrier at low distance r
prevents the growing cell wall from shrinking.

In order to calculate the value of the angular resonance

frequency v we momentarily accept the approximate (classical)

relation: E!v2. Assuming P~0:3 MPa, taking the approximate

A constant from the fit (see Fig. 5) we get f%0:09 Hz, a value

which belongs to the observed frequency spectrum in pollen tube

growth functions (0:01{*0:20 Hz, (see [14] for tobacco, Fig. 2;

and [50] for lily). As an aside, we stress that the calculated from

Eq. (7) resonance frequency satisfies a power law v!
ffiffiffiffi
P
p

(see

Appendix S1 for detailed derivation). The application of this

important relation to the experimental data is presented in Fig. 5.

From this discussion it is easy to see, that this relation

(v~2pA
ffiffiffiffi
P
p

, or equivalently f ~A
ffiffiffiffi
P
p

, where A is a constant

that is connected with the wall mechanical properties which can be

determined from experiment, and [P] = MPa), if inverted, can

serve (after calibration) to estimate turgor pressure P values from

oscillation frequencies (or periods T ) which are reatively easy to

determine.

It is clear that the material properties of the cell wall in the

apical region will not be homogeneous, and therefore a proper

mechanical description of growth must involve a gradient in

material properties from the apical to the distal region [18], [35].

It has been shown [35] that the calculated ‘‘expansion propensity’’

as a function of the distance from the apex measured in units of the

tube radius R [35]) shrinks to an area near the apex. Closer

examination reveals that the inflection point is located at about

one pollen tube cylinder radius R, location targeted by our

calculations. This means that the slope is the greatest at z*R (in

axial direction). This, and the fact that the ‘dilution’ sector is

shown (Fig. 2 in [35]) exactly at the limit of the two considered

axisymmetric zones, is consistent with the view that intense

changes of the wall mechanical properties occur at the limits of the

distal and apical parts. The ‘dilution’ effect is caused in our model

by a rapid surface expansion due to displacement ur about the C –

interface. A corresponding radial strain may trigger exocytosis that

results in delivery of new cell wall material which rejuvenates this

area. This is also the conclusion of Geitmann and Dumais [42].

However, we should note that what we observe mainly reflects the

changing symmetry at C and the analytical consequences of

curvature discontinuity (compare e.g. Eqs 3 and 4). These and

other observations, [51], [42] indicate that exocytosis is likely to

occur predominantly in the same annular region (cf. [52], Fig. 1)

where wall expansion rates are greatest. The observation that tip

growth is mainly confined to the annular region around the pole is

in accord with calculations presented in this article (and also in

[47], Movie S1 and S2, where tip growth ‘above’ the equator takes

place).

Probing the mechanical properties of the ‘‘weld-zone’’ which

joins the cylindrical and spherical parts may enable us to calculate

the local rates of exocytosis, reversing the direction of causality

implied by the conventional explanation for this phenomenon,

where oscillating exocytosis rates are the cause of oscillating

growth. The oscillation frequency can be estimated from Fig. 5 to

be a value of approximately f*0:02{0:03 Hz, which is in accord

with the main observed periodical mode [5] in the longitudinal

power spectrum of pollen tube oscillatory motion, and presumably

also with the rate of exocytosis and new cell wall assembly in

Nicotiana tabacum pollen tubes [4]. This periodical growth activity,

can in turn be related to the stress-relaxation rate at the C –

interface (Fig. 3 in [53]). In addition, even small stress/strain

fluctuations at this narrow cylindrical ring, could lead to

macrosopic changes in the orientation of the ring and direction

change of the elongating pollen tube as reported in Zonia and

Munnik, Fig. 1F [29], and in Fig. 1 [54]. In general it seems that

growth in pollen tubes is associated with spatially confined

dynamic changes in cell wall mechanical properties ([55]; and

File S1). For instance, the time course of an experiment, showing

very slight changes in turgor pressure during cell growth was

measured by pressure probe in growing Lilium longiflorum pollen

tubes ([3], Fig. 1a) and re-analysed in ([7], Fig. 3b–c). Even though

direct measurements failed to indicate large-scale turgor changes

during growth, rapid small-scale pressure changes (jumps) are

visible, which presumably were caused by changes in the

orientation of the tilt angles of wall building cellulose microfibrils.

(There is, however, no evidence for cellulose microfibrils to be

involved in small changes in turgor. These small jumps in turgor

may be simply imprecisions in the measurement method. This

method requires readjusting the meniscus in a pressure probe

needle for each data point and the measurement is inherently

associated with significant noise). The direction of maximal

expansion rate is usually regulated by the direction of net

alignment among cellulose microfibrils, which overcomes the

prevailing stress anisotropy [56]. As stated (ibid.), the measured

periodicity for pressure oscillations ranges from 12 s to 25 s, which

is the same as the routinely reported for oscillatory dynamics in lily

pollen tubes [50], [55] and approximately agrees with the

calculated frequency (f ~1=12%0:09 Hz) from our model. Closer

examination of Figs. 3a–c in [7] reveals, in addition, a slight but

steady diminishing of turgor (negative slope) which can be a

consequence of cell volume expansion in every cycle. The latter

observation may be associated with the passive role of the turgor

pressure in pollen tube growth, at least at unchanging osmotic

potentials. In conlusion, we agree with the view, that in pollen tube

growth the energy supply is derived from turgor pressure, while

the growth rate and direction is derived from the local wall

properties [3].

It is clear that expansive growth in a plant cell relies on the

interplay between the internal turgor and the forces in the cell wall

opposing deformation. Which of these two parameters controls the

dynamics of growth has been a matter of some controversy,

particularly in the case of pollen tube growth [55]. The long-

standing model considers that cyclic changes in cell wall properties

initiate growth [57], [3]. A newer model based on accumulating

data from recent work indicates that oscillations in hydrodynamic

flow and intracellular pressure initiate growth [58], [7]. Both

models agree that once growth initiated, osmotic pressure drives

cell elongation. We have shown that the rapid growth phases

during oscillatory growth in pollen tubes may be preceded by a

strain – induced softening of the cell wall at the brink of the apical

and distal parts (C). We also showed that cellular turgor pressure

does not need to undergo changes during these repeated growth

phases to display periodicity in growth. However, turgor pressure

is still central in controlling the dynamics of pollen tube growth

because of its ability to change wall stress and hence oscillation

frequencies in the different osmotic environments [4].

There are many observations of collateral oscillations that could

affect growth rates (such as oscillations in wall material deposition

and/or extracellular ion fluxes). However, even from purely

mechanical calculations, performed at the boundary between the

wall cylinder shell and hemispherical shell at the apex, the

following picture for the sequence of events for the elongating

pollen tube emerges: Constant turgor pressure produces different

strain rates in the apical and distal parts of the wall because they

possess various mechanical properties and different symmetries.

This phenomenon is amplified at the narrow interface between the

Growth Oscillations in Pollen Tubes

PLOS ONE | www.plosone.org 7 November 2013 | Volume 8 | Issue 11 | e75803



cylindrical shank and the hemi-spherical tip. Consequently, a

locally elevated stress is produced in the wall, in the order of tenths

of a megapascal, causing serious instability at the brink of both

sections, generated by symmetry frustration. The cell wall

relaxation (loosening) process takes place so that to reduce tensile

stress. This initiates a wall building process (which is an implicit

assumption of the model) in meridional direction. However, as the

tip continues to grow the frustration zone moves with it, and the

whole process repeats itself. This results in time – periodicity in the

growth dynamics recognized in the literature as pollen tube

oscillations.

Final Comment

This article offers a solution for the mechanism underlying

observed pollen tube growth oscillations. It is based on the

phenomenon of pressure – induced symmetry frustration of the cell

wall in the apical region. The physical mechanism results in the

appearance of quasi-discrete energy levels at (different) constant

pressures in an analytically determined landscape of asymmetric

topological potentials. Oscillatory growth is the inevitable outcome

of the transitions between them. Moreover, a scaling relation

between the turgor pressure P and the angular frequency of the

oscillations v is derived, which is represented by a power 1/2 –

law (v!
ffiffiffiffi
P
p

). This prediction is successfully verified against real

plant physiological experimental data. We hope this work will

likely be appealing not only to plant physiologists but also to a

physics audience who will appreciate the unique nature of

instability as well as the analogy to pollen tubes.

Supporting Information

File S1 Appendix S1. Figure S1, Displacement

ur[1023 mm] due to the effective turgor pressure P
(P = 0.3 MPa, pext = 0.05 MPa) acting on the cell wall as
a function of the radial distance r from the pollen tube
long axis. Figure S2, Tensile stress srr (610) due to the

effective turgor pressure P acting on the cell wall at the
position where (a) the cylinder (shank) joins (b) the
hemisphere (apex) as a function of the radial distance r
from the pollen tube axis. Figure S3, Tensile stress
difference srr(apex) 2 srr(distal) at the apex and the

distal part. Figure S4, Tensile stress difference s
c

rr
{s

s

rr

(upper curves) and the opposite case s
s

rr
{s

c

rr
(lower

curves) calculated at the boundary zone between the
approximately hemispherical apical and the cylindrical
distal part of the growing pollen tube. Figure S5, Tensile

stress difference s
c

rr
{s

s

rr
(upper curves) and the

opposite case s
s

rr
{s

c

rr
(lower curves) calculated at the

boundary zone between the semispherical apical and the
cylindrical distal part of the growing pollen tube.
(PDF)
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