

Title: Advanced mathematical on-line analysis in nuclear experiments. Usage
of parallel computing CUDA routines in standard root analysis

Author: Andrzej Grzeszczuk, Seweryn Kowalski

Citation style: Grzeszczuk Andrzej, Kowalski Seweryn. (2015). Advanced
mathematical on-line analysis in nuclear experiments. Usage of parallel
computing CUDA routines in standard root analysis. W: "Proceedings of
IWM-EC2014 International Workshop on Multi Facets of EoS and Clustering
: Catania, 6 - 9 May 2014" (Art. no 01007). Bologna : Societa italiana di
fisica, doi 10.1051/epjconf/20158801007

brought to you by COREView metadata, citation and similar papers at core.ac.uk

https://core.ac.uk/display/197739718?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://rebus.us.edu.pl/�
https://creativecommons.org/licenses/by/3.0/pl/legalcode�

Advanced mathematical on-line analysis

in nuclear experiments.

Usage of parallel computing CUDA

routines in standard root analysis

A. Grzeszczuk, S. Kowalski

Nuclear Phys. Dept., Institute of Physics, University of Silesia, Katowice,
Poland

Abstract

Compute Unified Device Architecture (CUDA) is a parallel com-
puting platform developed by Nvidia for increase speed of graphics
by usage of parallel mode for processes calculation. The success of
this solution has opened technology General-Purpose Graphic Proces-
sor Units (GPGPUs) for applications not coupled with graphics. The
GPGPUs system can be applying as effective tool for reducing huge
number of data for pulse shape analysis measures, by on-line recalcu-
lation or by very quick system of compression. The simplified struc-
ture of CUDA system and model of programming based on example
Nvidia GForce GTX580 card are presented by our poster contribution
in stand-alone version and as ROOT application.

The requirement of high speed for visualization of computer data -
needed for present general application - forces construction changes of
graphic processors. One of possible solutions is including parallelism in com-
puting process for graphic devices, due to independence of parts of display
process in different segments of screen. Parallel mode of computing was pre-
vious used by supercomputers for advanced calculation of complexed prob-
lems. Nvidia company implemented that idea in constructions of graphic
cards. Simultaneously the other project Tesla was opened as application of
devices with like structure, strictly for parallel calculations. The same archi-
tecture of these devices enables simple adapt the graphic card as independent
strong parallel computer unit. These cards are existing in architecture of old

DOI: 10.1051/
C© Owned by the authors, published by EDP Sciences

/

0100 2015)
201epjconf

EPJ Web of Conferences
01005

88,
88

, 2015- SIF

(

�����������	
����

��������
���
�������������
��

���������������
�����������������������������
����
��������������������
��������������� ��������!����
��
�����
�����

7
7

Article available at http://www.epj-conferences.org or http://dx.doi.org/10.1051/epjconf/20158801007

http://www.epj-conferences.org
http://dx.doi.org/10.1051/epjconf/20158801007

version families, and next in solutions from 2011 year named Fermi series
500, Kepler 2012/600, Maxwell 2013/700 and Volta in next future.

CPU
central processing

unit

from previous
step of loop"

......
���

a) Main memory

condition:
Internal code (kernel)

one process in GPU
= thread

thread
0 n

thread

exit
exit

thread
n_max

Classic serial loop
b)

Parallel calculations

"no dependence

for(0<=n<=n_max)

Program
Data

Connections

Graphic card

PCI � Express
Fast internal bus

Types of NVIDIA cards:

�for calculation: Tesla
�graphic professional: Quadro ...,
�graphic common: GeForce GTX ...,

Display

used for parallel
calculations

Internal memory

GPU’s
of

Block

Figure 1: Relations between central (CPU) and graphic (GPU) processing units
(a), example for understanding of parallelism in execution of loop (b).

Figure 1 a) presents simplified construction of the card and system of
communication between central unit, main memory and graphic units, b)
shows simple example of application of parallel computing as substitution
of classical loop.

The Nvidia developed standard - Compute Unified Device Architecture
(CUDA) as frame for programming GPGPU devices. It is important to
present that this system is coupled with calculations and graphics while
other company solutions connected strictly with graphics. Nvidia provides
free software CUDA support for Windows, Linux and Mac OSX systems for
32 and 64 bit versions. The support contains drivers for cards and tool-kit
with free C++ compiler and system of libraries. The actual lasts version of
CUDA software are: driver 331.79 from May 2014 and CUDA 6 production
release.

The web page https://developer.nvidia.com/cuda-zone is devoted
for description CUDA systems. It is good source for information and exam-
ples for all classes of users.

Figure 2 a) shows the hierarchy of CUDA threads. On level ”De-
vice” (particular board) different procedures ”Kernel...” are executed in 3-
dimensional Grids (one kernel for one grid) on separated Blocks. Each Block
describes 3-dimensional structure of threads. On example the first procedure
Kernel 1 is executed on 6(3*2*1)blocks * 20(5*4*1)threads = 120 threads.
The example form of execution call command is also shown.

Figure 2 b) presents systems of CUDA memory and accessing commands.
The one of main problems in case of CUDA system usage is relative law speed

EPJ Web of Conferences

01007-p.2

Kernel

Kernel
Grid_2

Host Device
Grid_1

(0,0) (1,0) (2,0)
blk blk blk

blk blk blk
(0,1) (1,1) (2,1)

Block (2,1)

(0,0) (1,0) (2,0)

(0,1) (1,1) (2,1)

thr thr thr thr thr

thrthrthrthrthr

thr

thrthr

thr

thr

thr

thr

thr thr

thr thr

(3,0) (4,0)

(3,1)

(3,2)

(3,3)

(4,1)

(4,2)

(4,3)

(2,2)

(2,3)

(1,2)

(1,3)

(0,2)

(0,3)

Grid
Block

Thread

(3�dim)
(3�dim)

dim3 Block(5,4)

Kernel_1<<<Grid_1,Block>>>(parameters for function Kernel_1)
Execution command:

Thread = thr
Block = blk

Device (Grid)
Block (0,0) Block (1,0)

Shared memory Shared memory
48 kB/block

Thread Thread Thread Thread
(0,0) (1.0) (0,0) (1.0)

Regist Regist Regist Regist

Constant

Texture

Global

memory

memory

memory

mem.
Local

mem.
Local

mem.
Local

mem.
Local

64 kB

32kB/b

1535 MB Cache
786 kB

(aut.
var.)

Controll functions for menagement

cudaMalloc(&src_dev,sizeof(src));
cudaMalloc(&dst_dev,sizeof(dst));
cudaMemcpy(src_dev,src,sizeof(src),

cudaMemcpy(dst,dst_dev,sizeof(dst),
cudaMemcpyDeviceToHost);

cudaMemcpyHostToDevice);

void *src=malloc(sizeof(src));
cudaHostAlloc(&src,sizeoff(src),

CudaHostAllocMapped);

Host
cudaHostGetDevice Pointer

(&src_dev,src,0);

a) b)
Device (GPU’s card)

of global memory:

Controll functions for menagement
of mapped host memory:

dim3 Grid_1(3,2)

dim3 Grid_2(6,3)
_2

_1

Figure 2: System of threads management (a), and scheme of memories with access
to them (b).

of connection between main memory of computer and internal memory of
CUDA system. It depends on construction of computers and increases from
old to new solutions but dramatic reduce efficiency of parallel calculation
when ”amount of mathematics” is low in thread. CUDA system gives two
options to avoid this problems. In first, declared area exist in global memory
of the card. The blocks of input data from main computer memory have to
be copy to declared area and output data in opposite side. In other solution
declared part of main memory works parallel works for operations with CPU
and CUDA card with two independent addressing systems using different
mappings. The efficiency of calculation on CUDA system can be increased
after including different types of memory on card, due to differences in time
of access and optimization for each of them.

The simple system for include parallel CUDA procedures to ROOT Data
analysis framework is presented on last picture. Figure 3 a) shows example of
simple loop and its parallel implementation Main.cu on ten GPU units in one
block in one dimensional form (<<< 1, 10 >>>). Figure 3 b) presents main
source rtcuda.cu, header rtcuda.h and rtclinkdef.h help header files needed
for compilation for ROOT framework. The declaration global means
that this routine is ”kernel” procedure for GPU execution and the label
device points that it is subroutine for kernel also for GPU. It should be

emphasized that object files and libraries produced by Nvidia nvcc compiler
can be linked together with modules prepared by GNU system.

The parallelism expands models of programming in last years on two
ways. The first one is inclusion parallel methods in automatic compilation
and optimization system. The second is using of parallel algorithms for so-

IWM EC 2014-

01007-p.3

int src[] = {0, 1, 2, 3, 4, 5, 6, 7, 8, 9};
int dst[10] = {0};

__device__ int foo(int aa, int bb)
{
 return aa*bb;
}

__global__ void kernel(int * src, int * dst)
{
 dst[threadIdx.x] = src[threadIdx.x] * 2;
 dst[threadIdx.x] = foo(dst[threadIdx.x],10);
}

int main()
{
 int * src_dev, * dst_dev;

 cudaMalloc(&src_dev, sizeof(src));
 cudaMalloc(&dst_dev, sizeof(dst));
 cudaMemcpy(src_dev, src, sizeof(src), cudaMemcpyHostToDevice);

 kernel<<<1, 10>>>(src_dev, dst_dev);

 cudaMemcpy(dst, dst_dev, sizeof(src), cudaMemcpyDeviceToHost);

 for(int i = 0; i < 10; i++) printf("%d\t", dst[i]);
 printf("\n");
}

Main.cu

Compilation:

or

#include <stdio.h>

nvcc �o test main.cu

nvcc �c main.cu

g++ �o test main.o �lcudart

a)
"Classic" serial loop

for(int n=0; n<10; n++){
 dst[n]=dst[n]*2;
 dst[n]=foo(dst[n],10);
}
 n <=> threadIdx.x

rtcuda.cub)

#include <stdio.h>
#include "rtcuda.h"

int src[] = {0, 1, 2, 3, 4, 5, 6, 7, 8, 9};
int dst[10] = {0};

__device__ int foo(int aa, int bb)
{
 return aa*bb;
}

__global__ void kernel(int * src, int * dst)
{
 dst[threadIdx.x] = src[threadIdx.x] * 2;
 dst[threadIdx.x] = foo(dst[threadIdx.x],10);
}

 cudaMalloc(&src_dev, sizeof(src));

int rtc::rtcuda()
{
 int * src_dev, * dst_dev;

 cudaMalloc(&dst_dev, sizeof(dst));
 cudaMemcpy(src_dev, src, sizeof(src), cudaMemcpyHostToDevice);
 kernel<<<1, 10>>>(src_dev, dst_dev);
 cudaMemcpy(dst, dst_dev, sizeof(src), cudaMemcpyDeviceToHost);
 for(int i = 0; i < 10; i++) printf("%d\t", dst[i]);
 printf("\n");
 return 0;

#endif
};
static int rtcuda();
public:
{
class rtc

#define _rtc_
#ifndef _rtc_
#include ".../RConfig.h"

rtcuda.h

#endif
#pragma link C++ defined_in rtcuda.h;
#ifdef __CINT__

rtclinkdef.h

}

}

g++ �c �I/$ROOTSYS/include rtc_Dict.C
rtcuda.h rtclinkdef.h

rootcint �f rtc_Dict.C �c �I/usr/include/cudart \

g++ �shared �o rtc.so rtcuda.o rtc_Dict.o \

nvcc �c rtcuda.cu

Compilation for root:

�lcudart �lcrypt �pthread �lnsl �lm �ldl �rdynamic

Figure 3: The example of simple loop solving for illustration of parallel program-
ming as stand-alone program (a) and as ROOT application (b).

lution of particular problems. The Cetus (http://cetus.ecn.purdue.edu)
[1] project from Purdue University is example of translation system for
paralleling of loops in source of program. The other example is CULA
(http://www.culatools.com) [2] library containing parallel versions part
of linear algebra LAPACK routines. The CUDA system can be used
for increase of speed of on-line data compression in acquisition - algo-
rithm references from Mast. Thes. A. Nicolaisen TU of Danemark
(http://www2.imm.dtu.dk/pubdb/views/edoc download.php/6642/pdf/
imm6642.pdf) [3].

The our idea is connection CUDA architecture to on-line simplified anal-
ysis acquisition for reducing amount of data, especial for many channels
pulse shape analysis. The gauss code for fitting shapes of pulses for on-line
GPU analysis was adapted and is testing under ROOT system.

References

[1] Cetus - A Source-to-Source Compiler Infrastructure for C Programs,
Purdue University 2011

[2] CULA - GPU-accelerated linear algebra libraries, EM Photonics 2013

[3] A. L. V. Nicolaisen, Algorithms for Compression on GPU, Mast. Thes.
DTU Compute, Kongens Lyngby, August 2013

EPJ Web of Conferences

01007-p.4

	2015-173
	2015-173-epjconf_ec2014_01007

