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Abstract
In this paper, we present a new proof of the Mazur-Orlicz theorem, which uses the
Markov-Kakutani common fixed point theorem, and a new proof of the
Markov-Kakutani common fixed point theorem, which uses the Mazur-Orlicz
theorem.
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1 Introduction
The aim of this paper is to present new proofs of the well-known Mazur-Orlicz theorem
and Markov-Kakutani theorem. The proof of the former is based on the latter and vice
versa.

We present here the two main theorems under consideration.

Theorem . (Markov-Kakutani common fixed point theorem; see [] and []) Let X be
a (locally convex) linear topological space, C a nonempty convex compact subset of X, F a
commuting family of continuous affine selfmappings of C . Then there is an x ∈ C such that
f (x) = x for every f ∈F .

Theorem . (Mazur-Orlicz theorem; see []) Let X be a linear space, T a nonempty
set of indices, {xt , t ∈ T} ⊂ X, {βt , t ∈ T} ⊂ R, p : X → R a sublinear functional. Then the
following conditions are equivalent:

(i) there is a linear functional a : X →R such that

a(x) ≤ p(x), x ∈ X,

βt ≤ a(xt), t ∈ T ;

(ii) for every n ∈N, t, . . . , tn ∈ T and λ, . . . ,λn ∈ (,∞),

n∑

i=

λiβti ≤ p

( n∑

i=

λixti

)
.

We also recall a counterpart of the Mazur-Orlicz theorem for abelian groups.
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Theorem . Let G be an abelian group, T a nonempty set of indices, {xt , t ∈ T} ⊂ G,
{βt , t ∈ T} ⊂R, p : G →R subadditive. Then the following conditions are equivalent:

(i) there is an additive function a : G →R such that

a(x) ≤ p(x), x ∈ G,

βt ≤ a(xt), t ∈ T ;

(ii) for every n ∈N and t, . . . , tn ∈ T ,

n∑

i=

βti ≤ p

( n∑

i=

xti

)
.

In both versions the implication (i) ⇒ (ii) is obvious. Moreover, in the condition (ii) of
Theorem ., we can as well demand that

∑
λi = .

There are many different proofs of the Mazur-Orlicz theorem and its generalizations
in the literature. See for example [–] (from which the most elementary and elegant is
[]). It seems to us that the approach via the Markov-Kakutani fixed point theorem is
new and interesting. Moreover, this approach enables us to prove Theorems . and .
analogously. Let us emphasize that already in [], a corollary of the Markov-Kakutani fixed
point theorem was used to prove the Hahn-Banach theorem. This approach was simplified
in [, Lemma ..]. However, to prove the Mazur-Orlicz theorem, the authors of []
employ a lemma on supporting at a point of sublinear functionals by functionals, and an
important result in the theory of infinite systems of inequalities [, Theorem ..].

It is well known that from the Mazur-Orlicz theorem follows immediately the Hahn-
Banach theorem. Furthermore, in [], the Markov-Kakutani common fixed point theo-
rem was proven via the separation theorem (in locally convex spaces compact convex non-
void disjoint sets can be strictly separated) which is a consequence of the Hahn-Banach
theorem (not directly from the Hahn-Banach theorem, as the title of that paper suggests).
Also from the separation theorem (a locally convex space separates points) as well as the
already mentioned [, Theorem ..], the Markov-Kakutani theorem is proved in [].
Another proof of the Markov-Kakutani theorem, based also on the separation theorem,
can be found in [].

Our proof of the Markov-Kakutani common fixed point theorem uses directly the
Mazur-Orlicz theorem and is valid, as in [, –], for locally convex spaces.

Let us mention that the proof of the Markov-Kakutani theorem from [] can be found
in [], and that probably the most elementary and elegant proof of this theorem can be
found in [].

2 Proof of the Mazur-Orlicz theorem
In the proofs of Theorems . and . we use some standard argumentation, which we
formulate here as lemmas. We are unable to indicate where these reasonings appeared for
the first time.

Lemma . Let G be a group. Suppose that a : G → R is an additive function, p : G → R

subadditive, s ∈R. Moreover, assume that a(x) ≤ p(x) + s for x ∈ G. Then a(x) ≤ p(x), x ∈ G.
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Proof By simple induction we infer that

na(x) = a(nx) ≤ p(nx) + s ≤ np(x) + s, n ∈ N, x ∈ G,

which gives

a(x) ≤ p(x) +
s
n

, n ∈N, x ∈ G.

Letting n → ∞ we obtain

a(x) ≤ p(x), x ∈ G. �

Lemma . Let X be a linear topological space. Suppose that a : X → R is an additive
function, p : X →R a sublinear functional such that a(x) ≤ p(x), x ∈ X. Then a is linear.

Proof As every additive function, a is Q-linear. To see that a is linear fix x ∈ X. We may
proceed as follows. The mapping R � t α	→ a(tx) ∈R is additive and dominated from above
byR+ � t 	→ tp(x) ∈R onR+. Hence α is bounded from above on some interval. Therefore,
α is continuous (see for example [, Theorem ..]). This, together with Q-linearity
gives a(tx) = ta(x) for every t ∈R.

Or we may proceed in another way (see [, p.]), as follows. Notice that

–a(y) = a(–y) ≤ p(–y), y ∈ X.

Hence

–p(–y) ≤ a(y) ≤ p(y), y ∈ X.

Fix a t ∈R and a sequence (tn)n∈N of rationals tending to t from below. We have

–(t – tn)p(–x) = –p
(
–(t – tn)x

) ≤ a
(
(t – tn)x

) ≤ p
(
(t – tn)x

)
= (t – tn)p(x).

Therefore,

–(t – tn)p(–x) ≤ a(tx) – a(tnx) ≤ (t – tn)p(x).

Letting n → ∞, we get

a(tx) = lim
n→∞ a(tnx) = lim

n→∞ tna(x) = ta(x). �

Proof of the implication (ii) ⇒ (i) of Theorem . Let us consider the mappings Fy : RG →
R

G, y ∈ G, defined by the formula

Fyf (x) = f (x + y) – f (y), x ∈ G, f ∈ R
G.

We consider RG with the Tichonoff topology. Notice that the mappings Fy are continuous
and affine. Moreover,

Fy ◦ Fz = Fy+z, y, z ∈ G, (.)
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hence the family {Fy; y ∈ G} is commuting. Let us choose t ∈ T and put s := p(xt ) – βt .
Put

C =
{

f ∈ R
G; –p(–x) ≤ f (x) ≤ p(x) + s, x ∈ G,

–p(–x) ≤ Fyf (x) ≤ p(x), x, y ∈ G,

βt ≤ f (xt), t ∈ T ,

βt ≤ Fyf (xt), t ∈ T , y ∈ G
}

.

By (.) we see that Fy(C) ⊂ C , y ∈ G. It is easy to notice that C is convex, since Fy are
affine. Moreover, C is compact as closed subset of the compact set {f ∈R

G; –p(–x) ≤ f (x) ≤
p(x) + s, x ∈ G}. Now we will show that C is nonempty. Let us define r : G →R by

r(x) = inf

(
p

(
x +

n∑

i=

xti

)
–

n∑

i=

βti

)
,

where the infimum is taken over all sequences (t, . . . , tn) ∈ Tn, n ∈ N. It can easily be
checked that r ∈ C :

• Fix x ∈ G. We have

r(x) ≤ p(x + xt ) – βt ≤ p(x) + p(xt ) – βt = p(x) + s.

• Fix x ∈ G. For an arbitrary n ∈ N and t, . . . , tn ∈ T we have

n∑

i=

βti ≤ p

( n∑

i=

xti

)
≤ p

(
x +

n∑

i=

xti

)
+ p(–x),

hence

–p(–x) ≤ p

(
x +

n∑

i=

xti

)
–

n∑

i=

βti ,

therefore

–p(–x) ≤ r(x).

• Fix x, y ∈ G. For an arbitrary n ∈N and t, . . . , tn ∈ T we have

r(x + y) ≤ p

(
x + y +

n∑

i=

xti

)
–

n∑

i=

βti

≤ p(x) + p

(
y +

n∑

i=

xti

)
–

n∑

i=

βti .

Thereby

r(x + y) ≤ p(x) + r(y),
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which means

Fyr(x) ≤ p(x).

• Fix x, y ∈ G. For an arbitrary n ∈N and t, . . . , tn ∈ T we have

r(y) ≤ p

(
y +

n∑

i=

xti

)
–

n∑

i=

βti

≤ p

(
x + y +

n∑

i=

xti

)
–

n∑

i=

βti + p(–x).

Thereby

r(y) ≤ p(–x) + r(x + y),

which means

–p(–x) ≤ Fyr(x).

• Fix t ∈ T . For an arbitrary n ∈N and t, . . . , tn ∈ T we have

βt +
n∑

i=

βti ≤ p

(
xt +

n∑

i=

xti

)
.

Hence

βt ≤ p

(
xt +

n∑

i=

xti

)
–

n∑

i=

βti ,

which implies

βt ≤ r(xt).

• Fix t ∈ T and y ∈ G. For an arbitrary n ∈N and t, . . . , tn ∈ T we have

r(y) ≤ p

(
y +

(
xt +

n∑

i=

xti

))
–

(
βt +

n∑

i=

βti

)
,

whence

r(y) + βt ≤ p

(
(y + xt) +

n∑

i=

xti

)
–

n∑

i=

βti .

Therefore

r(y) + βt ≤ r(y + xt),
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which means

βt ≤ Fyr(xt).

This completes the proof that r ∈ C .
By the Markov-Kakutani theorem we infer that there is an a ∈ C which is a fixed point

of every Fy, y ∈ G. This implies that

a(x + y) = a(x) + a(y), x, y ∈ G,

βt ≤ a(xt), t ∈ T

and

a(x) ≤ p(x) + s, x ∈ G.

From the last inequality, according to Lemma ., we infer that

a(x) ≤ p(x), x ∈ G.

The proof is completed. �

Proof of the implication (ii) ⇒ (i) of Theorem . We proceed as in the proof of Theo-
rem .. The obtained additive function a, due to Lemma ., is linear. The proof is com-
pleted. �

3 Proof of the Markov-Kakutani common fixed point theorem
Theorem . Let X be a locally convex linear topological space, C ⊂ X nonempty convex
and compact, F : C → C continuous and affine. Then F has a fixed point.

In the proof we will use Theorem ., however, we could also use Theorem ., as well.

Proof Put

B =
{

F(x) – x; x ∈ C
}

.

Assume on the contrary that  /∈ B. Of course, the set B is nonempty. Since F is affine, it
is convex. Moreover, B = (F – id)(C) is the continuous image of the compact set C , hence
B is compact. Let U ⊂ X \ B be a convex, balanced neighborhood of . Then U is also
absorbing. Let p : X → R be the Minkowski functional of U , i.e.,

p(x) = inf{r > ; x ∈ rU}, x ∈ X.

We know that p is sublinear and {x ∈ X; p(x) < } ⊂ U . Thus

p(x) ≥ , x ∈ B. (.)
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Moreover, since C is compact, from the inclusion C ⊂ X =
⋃∞

n= nU we infer that there is
an N ∈N such that C ⊂ NU , hence

p(x) ≤ N , x ∈ C. (.)

Put T = C and βt = , xt = F(t) – t for t ∈ T . Notice that xt ∈ B for t ∈ T . For an arbitrary
n ∈N, t, . . . , tn ∈ T , λ, . . . ,λn ∈ (,∞), the convexity of B implies

n∑

i=

λi∑n
i= λi

xti ∈ B.

Therefore, by (.),

 ≤ p

( n∑

i=

λi∑n
i= λi

xti

)
.

We obtain

n∑

i=

λi ≤ p

( n∑

i=

λixti

)
,

but

n∑

i=

λiβti =
n∑

i=

λi,

hence the condition (ii) of the Mazur-Orlicz theorem is satisfied. We infer that there is a
linear functional a : X →R with

a(x) ≤ p(x), x ∈ X

and

 = βt ≤ a(xt) = a
(
F(t) – t

)
, t ∈ C.

For x ∈ C and n ∈N we obtain

a
(
Fn(x) – x

)
=

n∑

k=

a
(
Fk(x) – Fk–(x)

)

=
n∑

k=

a
(
F
(
Fk–(x)

)
– Fk–(x)

)

≥
n∑

k=

βFk–(x) = n.

Therefore

a
(
Fn(x)

) ≥ a(x) + n, x ∈ C, n ∈N.



Przebieracz Fixed Point Theory and Applications  (2015) 2015:10 Page 8 of 9

But according to (.) we get

N ≥ p
(
Fn(x)

) ≥ a
(
Fn(x)

) ≥ a(x) + n, x ∈ C, n ∈N,

which is a contradiction. �

The Markov-Kakutani theorem follows easily from Theorem .. For convenience of the
reader we repeat the argumentation from [, , ] or [].

Proof of Theorem . From Theorem . we infer that the sets

AF =
{

x ∈ C; F(x) = x
}

, F ∈F ,

are nonempty. Moreover, the sets AF are convex and compact. To prove that

⋂

F∈F
AF �= ∅

it is enough to show that for every n ∈N and F, . . . , Fn ∈F the intersection

n⋂

k=

AFk

is nonempty. We will show it by induction. Assume that

A :=
n⋂

k=

AFk �= ∅.

For every x ∈ A and k ∈ {, . . . , n} we have

Fk ◦ Fn+(x) = Fn+ ◦ Fk(x) = Fn+(x),

which means that Fn+(x) ∈ A. We have shown that Fn+(A) ⊂ A. Notice also that A is
nonempty convex compact. Therefore, we can apply Theorem . for F = Fn+|A : A → A.
We infer that there is a fixed point of F , which means AFn+ ∩A �= ∅. This ends the induction
and the whole proof. �
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