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Abstract
We study theoretically the efficiency of an asymmetric superconducting quantum interference device
(SQUID)which is constructed as a loopwith three capacitively and resistively shunted Josephson
junctions. Two junctions are placed in series in one arm and the remaining one is located in the other
arm. The SQUID is threaded by an externalmagnetic flux and driven by an external current of both
constant (dc) and time periodic (ac) components. This system acts as a nonequilibrium ratchet for the
dc voltage across the SQUIDwith the external current as a source of energy.We analyze the power
delivered by the external current andfind that it strongly depends on thermal noise and the external
magneticflux.We explore a space of the systemparameters to reveal a set forwhich the SQUID effi-
ciency is globallymaximal.We detect the intriguing feature of the thermal noise enhanced efficiency
and showhow the efficiency of the device can be tuned by tailoring the externalmagnetic flux.

1. Introduction

The SQUID is themost sensitive instrument capable of detecting andmeasuring even extremely smallmagnetic
fields. It has been used successfully not only formagnetometry but also for voltage and currentmeasurements.
Its applications go far beyond research laboratories, often into commercial apparatus exploited inmetrology,
geophysics andmedicine, see the reviews [1, 2]. The SQUIDhas been the topic of various extensive theoretical
and experimental studies. Yet problemswith this setup remain unresolved, which in turn can be applied to other
systems.One such unresolved problem is the efficiency of the SQUID as a thermodynamicalmachinewhich
converts input energy into its other formsThis is the subject of this paper.

We study an asymmetric SQUIDdriven by an external current and analyze the charge transport and voltage
induced across the device. The asymmetric SQUID ismodeled as a ratchet far from equilibrium, i.e. as the
motion of a classical Brownian particle in a spatially periodic potential with broken reflection symmetry and
driven by a time-dependent force. In thismechanical analogy, the voltage across the SQUID corresponds to the
particle velocity. The bestmeasure for characterizing the transport of the Brownian particle is its long time
average velocity〈 〉v . However, alone it does not give any information on the quality of the transport process. Is it
effective or ineffective? To answer this question, we need to consider other attributes of the transport process.
One of them is the fluctuations of the velocity around its average value, which in the long time regime are
represented by the varianceσ = 〈 〉 − 〈 〉v vv

2 2 2. Then, typically the instantaneous velocity v(t) takes values within

the interval of standard deviation, σ σ∈ 〈 〉 − 〈 〉 +v t v v( ) ,v v
⎡⎣ ⎤⎦. Note that iffluctuations are large, i.e. if

σ > ∣〈 〉∣vv , then it is possible for the particle tomove for some time in the opposite direction to its average
velocity〈 〉v , the spread of velocities is large and overall the transport is not effective. The next featurewhich is
important in answering the question about the quality of transport phenomenon is related to the ratio of energy
input into the system and its energetic output.Howmuch of the energy input is converted into directedmotion
of the particle and howmuch of it is wasted by spreading out into the environment and dissipated as heat? A
proper quantifier to characterize this aspect of transport is the efficiency of the system.

By using the correspondence between the SQUID and amechanical ratchet system, we analyze three
quantifiers to evaluate transport quality: average voltage, itsfluctuations and the efficiency of the SQUID. In the
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previous paper [3]we analyzed the average voltage in this setup forwide parameter regimes, covering the
overdamped tomoderate damping regimes up to its fully underdamped regime.We found the intriguing
features of a negative absolute and differential conductance, repeated voltage reversals, noise induced voltage
reversals and solely thermal noise-induced ratchet voltage.We identified a set of parameters for which the
ratchet effect ismost pronounced and showed how the direction of transport can be controlled by tailoring the
externalmagnetic flux. Themain emphasis of that workwas on formulating and exploring the conditions
necessary for the generation and control of transport [4, 5], its direction, itsmagnitude, as well as its dependence
on systemparameters. However, apart from thesewell-investigated questions, other important features
concerning the quality of transport [6–8] have remained unanswered. Therefore, in this paper we concentrate
on the quality of transport and the connection between the directed transport expressed in terms of the dc
voltage, its fluctuation characteristics and energetics of the SQUID.

The theoretical aspects considered in the paper concern not only our specific SQUID ratchet but amuch
wider class of systems and amuchwider class of problems. There aremany experiments on a number of ratchet
systems [9], in particular superconducting ratchets [10], a part of which can be controlled by an external
magnetic field [11–14], as well as theoretical studies of such systems driven by harmonic and biharmonic
external currents [15–19]. However, the efficiency of transport has not been analysed in the above-cited papers.

The structure of the paper is as follows. In section 2, we recall themodel of a SQUID rocking ratchet which is
composed of three resistively and capacitively shunted Josephson junctions. In section 3we define themean
values of arbitrary state functions in the long time regime. Then in sections 4–6, the quantities characterizing the
quality of the transport such as the voltage fluctuations, the energy balance and the (Stokes) efficiency are
introduced, respectively. In section 7we elaborate on key aspects of transport efficiency in the system, starting
from the power delivered by the externally applied current, covering the tailoring of the Stokes efficiency of the
device, up to the presentation of the regime forwhich thermal noise enhances the efficiency, and discussion
about the impact of the variation of the externalmagnetic flux on the efficiency of the SQUID. Finally, the last
section provides a summary.

2.Model of the SQUID ratchet

The asymmetric SQUID [10, 21–24] is presented infigure 1. It is a loopwith two resistively and capacitively
shunted Josephson junctions [25] in the left arm and one in the right arm. The crosses denote the junctions and
φ φ≡ t( )k k (k= u, d, 1, 2) are the phase differences across them. Each junction is characterized by the
capacitanceCk, resistanceRk and critical Josephson supercurrent Jk, respectively.

The SQUID is threaded by an externalmagnetic fluxΦe and driven by an external current I= I(t) which is
composed of the static dc current I0 and the ac component of amplitudeA and angular frequencyΩ, namely

Ω= +I t I A t( ) cos ( ). (1)0

To reduce the number of parameters of themodel, we consider a special case where the two junctions in the left
arm are identical, i.e. = ≡ = ≡ = ≡J J J R R R C C C, 2, 2u d u d u d1 1 1. In some regimes [3], two junctions in a

series can be considered as one forwhich the supercurrent-phase relation takes the form φ( )J sin 21 1 , where

φ φ φ= +u d1 . This result is also derived in [26] for an effective double-well structure described in terms of a
double-barrier potential (cf equation (23) therein).

Figure 1. Schematic asymmetric SQUID composed of three Josephson junctions and the equivalent circuit composed of two
junctions. The Josephson phase difference isφ φ φ= +u d1 , the externally applied current is I, the current through the left and right
arms is I1 and I2, respectively. The externalmagneticflux isΦe and the instantaneous voltage across the SQUID is =V V t( ). The long
time average voltage〈 〉V across the SQUID is expressed by the relation  φ φ〈 〉 = 〈 〉 = 〈 〉V e e˙ 2 ˙ 21 2 .
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The totalmagnetic fluxΦ piercing the loop is a sumof the external fluxΦe and theflux due to theflowof
currents,

Φ Φ= + Li, (2)e

where L is the loop inductance and ≡i i t( ) is the circulating current which tends to screen themagnetic flux. In
the ‘dispersive’ operatingmode of the SQUID [27], i.e. when the condition Φ∣ ∣ ≪Li 0 holds true (Φ = h 2e0 is
theflux quantum), the phaseφ φ≡ 1obeys the Stewart–McCumber type equation of the form [3]

 φ φ φ ξ+ + = +C
R

J I t
k T

R
t

2e
¨

2e

1
˙ ( ) ( )

2
( ), (3)B

where the effective supercurrent φJ ( ) reads

φ φ φ Φ= + +( )J J J( ) sin
2

sin ˜ . (4)1 2 e⎜ ⎟
⎛
⎝

⎞
⎠

The parameters are: = +C C C1 2, = +− − −R R R1
1

1
2

1,kB is the Boltzmann constant,T is temperature of the
system andΦ πΦ Φ=˜ 2e e 0 is the dimensionless externalmagnetic flux. Thermal fluctuations aremodeled by δ-
correlatedGaussianwhite noiseξ t( )of zeromean and unit intensity

ξ ξ ξ δ= = −t t s t s( ) 0, ( ) ( ) ( ). (5)

The Stewart–McCumber equation (3) has the formof a Langevin equation and describes a non-Markovian
stochastic process for the phaseφ. In the extended space φ φ{ , ˙ }, it is aMarkovian process and all well known
methods can be applied to analyze it.

Equation (3) can be interpreted in the framework of amodel of a classical Brownian particle. It helps to
develop the intuition and interpretation. In the one-to-one correspondence, the particle position x translates to
the phaseφ, the particle velocity =v ẋ to the voltage φ∝V ˙ , the conservative force to the supercurrent φJ ( ), the
external force to the current I(t), themassm to the capacitance ∝m C and the friction coefficient γ to the
normal conductance γ ∝ =G R1 . It is important to note that the friction γ is not proportional to the normal
resistanceR (as one could expect in the case of electrical circuits) but to the inverse ofR. The reason is that
plasma oscillations of the junction aremore damped ifmore normal electrons couple to the oscillating
condensate (i.e. whenG is greater). The voltage accelerates normal electrons and their kinetic energy is
dissipated into heat. Thus the plasma oscillations convert into heat at a rate proportional to the conductance
G [28].

3. Asymptoticmean values

Themain characteristics of the system are the current-voltage curves in the long time regime. It can be shown
that for the external current (equation (1)), they can be extracted from the relation for the averaged voltage〈 〉V
developed across the SQUID [3]

 φ φ= =V
2e

˙
2e

˙ , (6)1 2

where φ̇1 can be obtained from the Stewart–McCumber equation (equation (3)) for the phaseφ φ= 1. The above
relation holds truewhen the averaging is only over the period π Ω=T 2 of the ac current. It is also valid in the
long time regimewhen the averaging is performed over initial conditions and all realizations of thermal
fluctuations. Belowwe present a precise definition of this averaging.

It is convenient to rewrite equation (3) for the phaseφ and the voltage  φ≡ =V V t( ) ( 2e) ˙ in the Ito form


φ = V td

2e
d , (7)

φ= − − + +V
C R

V J I t t
C

k T

R
W td

1 1
( ) ( ) d

1 2
d ( ), (8)B⎡

⎣⎢
⎤
⎦⎥

where ξ=W t t td ( ) ( )d is the differential of theWiener process of zeromean and the secondmoment
〈 〉 =W t W t td ( )d ( ) d . The pair φ V{ , } form aMarkovian process and its probability density φ=P P V t( , , )
obeys the Fokker–Planck equation

 φ
φ∂

∂
= − ∂

∂
+ ∂

∂
+ − + ∂

∂
P

t
V P

C V R
V J I t P

k T

RC V
P

2e 1 1
( ) ( ) (9)B

2

2

2

⎡
⎣⎢

⎤
⎦⎥
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with the initial condition φ φ=P V p V( , , 0) ( , ), where a given probability density φp V( , )describes the initial
distribution of the phaseφ (0) and voltageV (0).

For any state function φf V( , ), itsmean value φ〈 〉f V( , ) t at time t is calculated from the relation

∫ ∫φ φ φ φ=
π

−∞

∞
f V V f V P V t( , ) d d ( , ) ( , , ). (10)t

0

2

Because the system is driven by the time-periodic current I(t), the probability density φP V t( , , ) approaches for
long time the asymptotic periodic probability density φP V t( , , )as in the form [29, 30]

∑φ φ= Ω

=−∞

∞

P V t W V( , , ) ( , )e , (11)
n

n
n t

as
i

where the Fourier coefficients φW V( , )n are solutions of the differential equations obtained from the Fokker–
Planck equation (9). The time-dependent asymptoticmean value

∫ ∫φ φ φ φ=
π

−∞

∞
f V V f V P V t( , ) d d ( , ) ( , , ) (12)t

as

0

2

as

is also a periodic function of time. If we are interested in the time-independent asymptotic characteristics, the
time averaging over the period π Ω=T 2 of the ac current has to be performed

∫
∫

φ Ω
π

φ

Ω
π

φ

=

=

π Ω

π Ω

+

→∞

+

f V f V u

f V u

( , )
2

( , ) d

lim
2

( , ) d . (13)

t

t

u

t t

t

u

2
as

2

In one particular case, when φ =f V V( , ) , we get the time-independent asymptotic (stationary)mean voltage

〈 〉V . Similarly, when φ = =f V V k( , ) ( 2, 3 ,...)k , we obtain the time-independent asymptotic statistical

moments of the voltage〈 〉V k .

4. Fluctuations of voltage

The asymptotic average voltage〈 〉V calculated according to the prescription (13) is themost important
transport characteristic of the system. Themagnitude of the instantaneous voltageV(t) can bemuch larger than
itsmean value.Moreover, fluctuations of voltage in the long time regime also can be large. They are described by
the voltage variance

σ = −V V . (14)V
2 2 2

The voltage typically rangeswithin the interval of several standard deviations

σ σ∈ − + = …V t V n V n n( ) , , 1, 2, (15)V V
⎡⎣ ⎤⎦

If the standard deviationσV is large, i.e. whenσ > ∣〈 〉∣VV , the voltageV(t) can spread far from its average value
and can assume the opposite sign to〈 〉V . This is the case for proteinmotors in biological cells where the
instantaneous velocity changes direction very rapidly and its absolute value is several orders ofmagnitude larger
than the average velocity [31].

5. Energetics of the SQUID

The SQUID is a devicewhich converts input energy into other forms of energy. The input energy is provided by
the external current I(t) and the energyflow is determined by the equation ofmotion (equation (3)). In the
mechanical interpretation, the kinetic energy of the particle corresponds to the energy stored in the systemof
capacitanceC, namely

≡ =E E V t CV t( ( ))
1

2
( ). (16)C C

2

The particle potential energy translates to the Josephson energy accumulated in the junctionwhen the
supercurrentflows through it

4
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∫
∫ ∫

φ φ

φ φ ϕ ϕ

φ
φ Φ

≡ =

= =

= − + + +

φ

E E t J u V u u

J u u u J

J
t

J t

( ( )) ( ( )) ( )d

2e
( ( )) ˙ ( )d

2e
( )d

2e
2 cos

( )

2
cos ( ) ˜ const. (17)

J J

t

t t

0

0 0

( )

1 2 e

⎧⎨⎩
⎡
⎣⎢

⎤
⎦⎥

⎡⎣ ⎤⎦
⎫⎬⎭

The sum

≡ +E E E (18)C J

is the total energy of the system. The energy balance can be obtained from equations (7) and (8). For this purpose
we apply the Ito differential calculus to both functions EC(V) and φE ( )J

φ

= + + …

= − − + + +

E
E

V
V

E

V
V V

R
V J V I t V

k T

RC
t

k T

R
V W t E

d
d

d
d

1

2

d

d
d d

1
( ) ( ) d

2
d ( ), d (19)

C
C C

J

2

2

2 B B⎡
⎣⎢

⎤
⎦⎥

φ
φ φ= =

E
J V t

d

d
d ( ) d . (20)

J

Next, for both sides of the above equations, we calculate themean values. Exploiting the Itomartingale property,
wefind the average value of the term〈 〉 =V W td ( ) 0t and obtain the energy balance equation in the form [6, 32]

= − + +
t

E
R

V I t V
k T

RC

d

d

1
( ) (21)t t t

2 B

= − − +
R

V V I t V
1

( ) , (22)t eq t
2 2⎡⎣ ⎤⎦

where〈 〉· t denotes amean value at time t according to the prescription (10). In the right hand side of this
equation, there are three components relating to the three processes responsible for the energy change. Let us
point out that the first term in equation (21) is always negative and the third is always positive. The former
describes the rate of energy loss due to dissipation and the latter refers to the energy provided by thermal
equilibrium fluctuations. According to the equipartition theorem, in the thermodynamical equilibrium, when

=I t( ) 0, the relation〈 〉 =CV k T2 2eq
2

B holds true. This relation is utilized in equation (21) to get
equation (22). The second term in equation (21) characterizes the change of energy caused by the external
current I(t).

Now,we perform the final averaging of equation (21) according to the prescription (13). Since in the long
time regime the average values are a periodic function of time, the left hand side vanishes

∫ π Ω

φ π Ω φ

= + −

+ + −

=

π Ω+

t
E u

C
V t V t

E t E t

d

d
d

2
( 2 ) ( )

( ( 2 )) ( ( ))

0. (23)

t

t

u

J J

2
2 2⎡⎣ ⎤⎦

⎡⎣ ⎤⎦

As a consequence, in the stationary regime themean powerin delivered to the systemby the external current
I(t) over the periodT is expressed by the relation [32]

= = − = − I t V
R

V
k T

RC R
V V( )

1 1
. (24)eqin

2 B 2 2⎡⎣ ⎤⎦
From the above equation it follows that the amount of energy input to the SQUID from the external current I(t)
depends not only on the current itself (i.e. on ΩI A, ,0 ) but also on properties and parameters of the device: its
temperatureT, the resistanceR and the capacitanceC. In contrast, the energy supplied by thermal fluctuations
does not depend on the external current but only onT R, andC.

6. Efficiency of the SQUID

Ageneric definition of the efficiency of a device which converts energy is the ratio between the output energy
(work, power) and the input energy (power). Depending on the choice of input energy and output energy,
different definitions of efficiency characterize different aspects of energy conversion in the device. To explain the
problem,we use themechanical interpretation of equation (3). Then the average voltage〈 〉V corresponds to the

5
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velocity of the Brownian particle or theBrownianmotor. The thermodynamic efficiency is defined as a ratio of
thework done by themotor to the energy input. If the particle is working against a constant force (load) i0 then
in the stationary state the efficiency is defined as follows:

η = 
i V

. (25)0
0

in

In the considered case, there is no load and the Brownianmotor does not transport external objects. It works
against the friction ‘force’

 φ=F
R2e

1
˙ . (26)R

(By theway, it has not the unit ofNewton but if the above formula is againmultiplied by the factor 2e then it
has the correct physical unit.) When the external force I(t) is switched off, the velocity of themotor is damped to
zero and the system tends to thermodynamical equilibrium. Because themotorworks against the friction force,
we can utilize itsmean value to get another definition of efficiency, namely

η

σ

= = =
−

=
+ −

 
F V V

R

V

V V

V

V k T C
. (27)

R

eq

V

S
in

2

in

2

2 2

2

2 2
B

This quantity is called the Stokes efficiency [31, 33, 34]. Let us note that it depends explicitly onmassC of the
Brownian particle and only implicitly on the friction coefficientR via the Langevin equation (3).

It should bementioned that equation (27) is not the rate of thework done by themotor on its surroundings
(viscousmedium).Moreover, it is not amean powerR to overcome the friction force, for which the correct
form reads

= = F V
V

R
. (28)R R

2

However, this expression cannot be put as a numerator in the definition of the efficiency because there are
regimeswhere themean velocity is extremely small (numerically zero),〈 〉 ≈V 0 but〈 〉 ≠V 02 and the efficiency
could be large even though the particle does notmove on average in one direction. This is themain reasonwhy
the Stokes efficiency ismore adequate in such cases as considered in this paper.

Another possible definition of the efficiency is based on the remark that whatwe observe in the long time
regime is the average velocity. Therefore we can introduce ‘kinetic power’ as the ‘kinetic energy’ of the particle
per periodT,

= C V

T2
. (29)k

2

One should note that it is not exactly a proper definition of the kinetic power as it should be proportional to〈 〉V 2

instead of〈 〉V 2. However, we replaced it with the latter for the reason previously explained. Nevertheless, it is still
ameasure of performance of themotor. If the average velocity increases thenk also grows.We can insert it as a
numerator in equation (25) and thenwe get the kinetic efficiency

η
τ

η= =
−

=


RC

T

V

V V T
k

k

2 2
. (30)

eq

r
S

in

2

2 2

This quantifier can be used onlywhen the time-periodic force is switched on. Then qualitatively, it is similar to
the Stokes efficiency. However, the dependence on themassC, the friction coefficientR and the periodT is
different. Both the Stokes efficiency and the kinetic efficiency are consistent with our intuition: a decrease of
fluctuationsσV

2 leads to a smaller input power and hence to an increase of the efficiency. Consequently, the
transport is optimized in regimes thatmaximize the directed velocity andminimize itsfluctuations. Because the
kinetic efficiency is proportional to the Stokes efficiency, belowwe analyze only the latter.

7. The results

7.1.Dimensionlessmodel
There are several dimensionless forms of equation (3) depending on the choice of scaling time. In this system
there are four characteristic frequencies: plasma frequency ω = J C2ep

2
1 , the characteristic frequency of the

6
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junction ω = RJ2ec 1 , the frequencyω = RC1r related to the relaxation time and the frequencyΩ of the ac
current. There are three independent characteristic time scales related to these frequencies (note that
ω ω ω=p c r

2 ). Here, we follow [20] and define the newphase x and the dimensionless time t̂ as

φ π
τ

τ= + = =x s
t

RJ2
, ,

e
. (31)

c
c

l

Then equation (3) takes the dimensionless form

ω ξ+ = − ′ + + +Cx s x s U x s F a s D s˜ ¨ ( ) ˙ ( ) ( ( )) cos ( ) 2 ˆ ( ), (32)

where the dot and prime denote a differentiation over the dimensionless time s and the phase x, respectively.We
introduce a spatially periodic potentialU(x) of period π2 of the following form [20]

Φ π= − − + −( )U x x
j

x( ) sin ( )
2

sin 2 ˜ 2 . (33)e

This potential is reflection-symmetric if there exists x0 such that + = −U x x U x x( ) ( )0 0 for any x. If ≠j 0, it is
generally asymmetric and its reflection symmetry is broken, seefigure 2.We classify this characteristic as a
ratchet potential. However, even for ≠j 0 there are certain values of the external flux Φ̃e for which it is still
symmetric. The dimensionless capacitance C̃ is the ratio between two characteristic time scales τ τ=C̃ r c, where
the relaxation time is τ = RCr . Other rescaled parameters are =j J J2 1, =F I J0 1, =a A J1 andω Ωτ= c. The

rescaled zero-meanGaussianwhite noiseξ sˆ ( )has the auto-correlation function ξ ξ δ〈 〉 = −s u s uˆ ( ) ˆ( ) ( ) and its
intensity =D k T Je B 1 is the quotient of the thermal energy and the Josephson coupling energy. The
dimensionless voltage = =v t x s V t RJ( ) ˙ ( ) ( ) 1 and therefore the physical average voltage〈 〉V is given by the
relation

=V RJ v . (34)1

In particular, after such a scaling procedure the dimensionless input powerPin is expressed as

= −P v D C̃ (35)in
2

and consequently, the Stokes efficiency reads

η
σ

=
+ −

=
−

v

v D C

v

v D C˜ ˜
. (36)

v
S

2

2 2

2

2

The key feature for the occurrence of the directed transport〈 〉 ≠v 0 is the symmetry breaking. This is the case
when either the dc current ≠F 0 or the reflection symmetry of the potentialU(x) is broken.

The systemdescribed by equation (32) becomes deterministic when the thermal noise intensityD is set to
zero. Even in this case it exhibits complex dynamics including chaotic regimes [35, 36]. The application of noise
generally smooths out its characteristic response function. There are two classes of states of the driven system
dynamics: the locked states, inwhich the phase stays inside afinite number of potential wells and the running
states for which it runs over the potential barriers. The latter are crucial for the occurrence of the transport. They
can be either chaotic (diffusive) or regular.

7.2.Details of simulations
The Fokker–Planck equation (9), corresponding to the Langevin equation (3), cannot be solved by the use of
closed analytical forms Therefore, in order to obtain the relevant transport characteristics we have to resort to

Figure 2.The potential (equation (33)) for the symmetric case j=0 (solid red line) in comparisonwith the ratchet potential for
=j 1 2 and two values of the externalmagnetic fluxΦ π=˜ 2e (dashed green line) andΦ π= −˜ 2e (dotted blue line).
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comprehensive numerical simulations of driven Langevin dynamics.We have integrated equation (32) by
employing aweak version of the stochastic second order predictor corrector algorithm [37] with a time step
typically set to about π ω−10 · 23 . Since equation (32) is a second-order differential equation, we have to specify
two initial conditions, x (0) and ẋ (0).Moreover, because for some regimes the systemmay be nonergodic in
order to avoid the dependence of the presented results on the specific selection of initial conditions we have
chosen phases x (0) and dimensionless voltages ẋ (0) equally distributed over the interval π[0, 2 ]and −[ 2, 2],
respectively. All quantities of interest were ensemble-averaged over −10 103 4 different trajectories which
evolved over −10 103 4 periods of external ac driving.Numerical calculations were done using a CUDA
environment implemented on amodern desktopGPU. This scheme allowed for a speed-up of a factor of the
order 103 times as compared to a commonpresent-day CPUmethod [38, 39]. Some of the results obtained are
presented next.

7.3. Power delivered by external current
Let us begin our analysis of the SQUID efficiency by looking at the powerPin delivered by the external current
I(t). Notably, it depends implicitly not only on the parameters of the applied external current (F, a,ω) but also
on the quantities characterizing the device, like the capacitance C̃ .We have found that, generally, the input
power (equation (35)) tends to increase for larger values of the dc current F and ac driving amplitude a. The
dependence on the frequencyω ismore complex. However, inmost casesPin is relatively largewhenω is small. It

is because very fast oscillation of the driving current can induce neither the average voltage〈 〉v nor〈 〉v2 . In panel
(a) offigure 3we show the representative dependence of the input powerPin on the dimensionless capacitance C̃
of the SQUID.One can observe thatPin ismaximal for the overdamped or close to damped regime and decreases
when C̃ grows. Since, in themechanical framework, the capacitance C̃ translates to themass of the Brownian
particle it is intuitively clear that when the inertial termbecomes large then the device needsmore power to
respond equivalently. Perhaps themost surprising thing is the fact thatPin depends explicitly on the thermal
noise intensityD, i.e. on the temperature of the system. Typically, it decreases for increasingD. However, there
are also regimes forwhichPin is enhanced by thermal noise. In panel (b) offigure 3we exemplify this situation.
Indeed, for awide interval of temperature the input power is almost amonotonically increasing function of the
noise intensityD. Finally, the influence of the constant externalmagnetic flux Φ̃e onPin is depicted in the last
panel. It is remarkable that one can tune the input powerPin by changing the externalmagnetic flux. The reader
should note that for the presented regime it ismaximal whenΦ =˜ 0e , i.e. potentialU(x) is reflection symmetric.
In such a case there is no average voltage drop〈 〉 =v 0 across the device when additionally the dc current F
vanishes. It follows that large input powerPin does not necessarily translate into the efficient directed transport.

7.4. Tailoring the Stokes efficiency
The systemdescribed by equation (32) has a seven-dimensional parameter space ω ΦC a F j D{ ˜, , , , , ˜ , }e .We set
F=0 and check how it depends on the remaining systemparameters.We limit our considerations to positive a
because the system (32) is symmetric under changes of sign of a. Depending on themagnitude of the
dimensionless capacitance C̃ of the device it can operate in three distinct regimes: overdamped ( →C̃ 0),
damped (moderate C̃) and underdamped ( → ∞C̃ ).We note that the conditions that are necessary for the
generation and control of the direction of transport have been extensively studied in these regimes in our recent
work [3]. Since very fast oscillation of the driving current cannot induce the average voltage〈 〉v it is sufficient to
limit our considerations to low andmoderate ac driving frequenciesω.We have performed scans of the
following area of the parameter space ω× × ∈ × ×C a˜ [0.1; 10] [0; 10] [0.1; 1]at a resolution of 200 points
per dimension to determine the general behavior of the system. The results are depicted infigure 4.

Figure 3.The power, equation (24), delivered by the external current I(t) is presented in the dimensionless form, equation (35), as a
function of the dimensionless capacitance C̃ , the thermal noise intensityD and the externalmagneticflux Φ̃e in panels (a)–(c),
respectively. Other parameters read a=1.9,ω = 0.6, =j 1 2. In panel (a) = −D 9.7 · 10 5 andΦ π=˜ 2e . In panel (b) =C̃ 0.645 and
Φ π=˜ 2e . In panel (c) =C̃ 0.645 and = −D 9.7 · 10 5.
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Wecan see that, regardless of the regime inwhich the device operates, its Stokes efficiencyηS is zero or
negligibly small for <a 1and high frequenciesω. This is due to the fact that the rockingmechanism is either too
weak or too fast to induce finite average voltage〈 〉v . The areas of non-zero efficiencyηS have a striped structure.
For a given amplitude a, the ratchet behavior generally tends to disappear as the frequencyω grows.On the other
hand, for a given frequency, there is an optimumamplitude a thatmaximize the Stokes efficiency. The increase
in the capacitance C̃ causes blurring of the regions for which the efficiency is nonzero.Moreover, this tendency is
often accompanied by its reduction. Consequently, the studied device operates best in the overdamped or close
to damped regimes.

7.5.Optimal regime
Wehave explored the parameter space of the system (32) andwe have been able to detect a regime forwhich the
efficiency ηS is globallymaximal. It is in the vicinity of the point ω =C a{ ˜, , } {0.496, 1.55, 0.406}. All relevant
transport characteristics, i.e. the average voltage〈 〉v , itsfluctuationsσv and the efficiency ηS corresponding to the
neighborhood of this set of parameters are presented infigure 5.

Let us beginwith the dependence of the transport characteristics on the dc current F. It is depicted in
figures 5(a)–(c) for small values of ∈ −F ( 0.5, 0.5). Panel (a) presents the current-voltage curve. In the low
temperature limit ( = −D 10 5) the average voltage is almost quantized at values ω = ±n n, 0, 1 ,... For a
symmetric potential, these plateaus correspond to standard Shapiro steps [27]. However, in our case steps at half
integermultiples ofω can also be observed. This is due to the deviation ofU(x) from a simple xsin form,which
is the sole case forwhich steps lie only at integer values of ωn [20].However, in both the symmetric and
asymmetric cases a proper amount of noise is sufficient towipe out their evident structure [40]. This Shapiro-
like current-voltage curve is characteristic for the device operating in the low temperature limit of overdamped
or damped regimes. Panel (b) offigure 5 presents the dependence of the voltage fluctuationsσv on the dc current
F. It is a rather complicated nonlinear and non-monotonic function of Fwithout any immediately obvious
relation to the average voltage of panel (a). However, themost important observation is that the voltage
fluctuations areminimal for F=0. This fact is of fundamental importance for the influence of F onηS. In
figure 5(c) we can see thatηS is locallymaximal for F=0. For large values of F (not shownhere) themean voltage
is an almost linear function of F and the efficiency approaches the value 1. It supports the statement in [31] that
when the Stokes efficiency is close to 1, the driving is close to a constant force.

The role of the frequencyω of the ac current is illustrated infigures 5(d)–(f). Panel (d) presents the
dependence of the average voltage〈 〉v onω. In the adiabatic limitω → 0 it undergoes rapid oscillations. This
behavior has its reflection in the influence of the frequency on the voltage fluctuationsσv (see figure 5(e)).
According to the previous statement, very fast oscillations of the driving current cannot induce the non-zero
average voltage. Therefore, for sufficiently high frequency there is no transport and as a consequence the Stokes
efficiency ηS is zero.However, a strong peak in efficiency is observed for amoderate value ofω = 0.406. It is

Figure 4.The Stokes efficiencyηS defined by equation (27) in the parameter plane ωa{ , } of the ac current for three distinct regimes:
overdamped ( =C̃ 0.2),moderate damping ( =C̃ 2) and underdamped ( =C̃ 10) in panels (a), (b) and (c), respectively. The
remaining parameters are: F=0, = −D 10 5, =j 1 2 andΦ π=˜ 2e .
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associatedwith the fact that for this frequency the average voltage〈 〉v ismaximal and simultaneously its
fluctuations,σv, areminimal.

The impact of the amplitude a of the ac current is shown infigures 5(g)–(i), respectively. In particular, the
resonance-like behavior is observed in the dependence of the average voltage〈 〉v on the amplitude a (see
figure 5(g)). Apart from two clearly visible peaks, the directed transport is almost imperceptibly small. This fact
has critical impact on the functional dependence of the efficiency ηS. It is proportional to〈 〉v 2 so it vanishes too
when the device response is zero. The influence of the variation of the amplitude a on the voltage fluctuationsσv

is depicted in panel (h). It is an almost linearly increasing function of a. Only one evident deviation from this
trend can be noted, i.e. a localminimumaround a=1.55 corresponding to the first high peak infigure 5(g). It
should be stressed that there is no contradictionwith the dependence of the average voltage since〈 〉 =v 0 does

not necessarilymean〈 〉 =v 02 and thereforeσv can at the same time assume a nonzero value.

Figure 5.Optimal regime for the Stokes efficiency of the transport occurring in equation (32). The dependence of the average voltage
〈 〉v , itsfluctuationsσv andfinally the Stokes efficiencyηS on the static dc-bias F, frequencyω, amplitude a, capacitance C̃ and thermal
noise intensityD is presented in panels (a)–(o). Parameters are: F=0,ω = 0.406, a=1.55, =C̃ 0.496, = −D 10 5, =j 1 2 and
Φ π=˜ 2e .
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The dependence of all relevant transport characteristics on the capacitance C̃ is very complicated, as shown
infigures 5(j)–(l). Thefirst panel of this group shows the average voltage versus the capacitance C̃ .We note the
important feature of the voltage reversal [35, 41]: the voltage changes its sign from the positive to negative values
and again to positive values as C̃ grows, starting from zero. Therefore the capacitance can serve as a parameter to
manipulate the direction of transport processes. The efficiencyηS ismaximal close to the border between the
overdamped and damped regimes. It is (almost) zero in the underdamped limit which corresponds to large
capacitance → ∞C̃ . This is a consequence of the fact that for this regime the average voltage〈 〉v vanishes or is
negligibly small.

The last three panels offigure 5 depict the influence of the thermal noise intensityD on all previously studied
quantities. An increase in the noise intensityD leads to both amonotonic decrease of the induced average voltage
〈 〉v and an increase of itsfluctuationsσv. Consequently, the efficiency is the best in the low temperature regime
when the deterministic dynamics of the system (32) plays a crucial role.

7.6. Noise enhanced Stokes efficiency
Wehave found the opposite scenario when thermal noise enhances the efficiency. This perhaps surprising effect
is exemplified infigure 6. Panel (c) presents the dependence of the efficiency ηS onD. Evidently, in some intervals
ofD, the increase in temperature causes the increase inηS. There is also the optimal value of temperature or
equivalently the thermal noise intensity ≈D 0.0004 for which the efficiency takes itsmaximum.Moreover, in
this case the ratchetmechanism is solely activated by thermal equilibrium fluctuations as for lownoise intensity
no rectification can be observed. This statement is confirmed in the functional dependence of the average voltage
〈 〉v which is presented in panel (a). It is also remarkable that in this regime an increase in thermal noise intensity
D leads to a decrease in voltage fluctuationsσv.

7.7. Impact of externalmagneticflux
Aswas shown before, the efficiency can be tuned in several ways.However, it seems that from the experimental
point of view the simplestmethod is to vary the external constantmagnetic flux Φ̃e. The dependence of the
average voltage〈 〉v , itsfluctuationsσv and the efficiency on the externalmagneticflux Φ̃e in the previously
presented regime forwhich thermal noise induces the ratchet effect (cf figure 6) is depicted infigure 7. From the
symmetry considerations of equation (32) it follows that for an arbitrary integer number n, the transformation
Φ π Φ→ −n˜ 2 ˜

e e reverses the sign of the average voltage〈 〉 → −〈 〉v v . This fact can be directly observed in panel
(a) offigure 7.However, this is not the case for the voltage fluctuationsσv, where they are symmetric around

Figure 6.Noise enhanced Stokes efficiency. The dependence of the average voltage〈 〉v , itsfluctuationsσv andfinally the efficiencyηS
on thermal noise intensityD is presented in panels (a)–(c), respectively. Parameters read: a=1.899,ω = 0.403, =C̃ 6, =j 1 2 and
Φ π=˜ 2e .

Figure 7.The impact of the externalmagnetic flux on the average voltage〈 〉v , itsfluctuationsσv andfinally the efficiency ηS is presented
in panels (a)–(c) for the noise intensityD=0.0004which corresponds to themaximum infigure 6(c). Other parameters are the same
as infigure 6.
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Φ =˜ 0e . A careful inspection of panel (b) reveals that one can reduce themagnitude ofσv by nearly two times just
by the correct adjustment of the externalmagnetic flux. This fact has further consequences in the dependence of
the efficiencywhich is depicted in panel (c). It can be slightly tuned by a small variation of the external
magnetic flux.

Infigure 8we present how the Stokes efficiency behaves in the parameter plane Φ j{ ˜ , }e that specifies the form
of the spatially periodic potentialU(x). For both sufficiently small and large j it vanishes completely. One can
observe that for a given externalmagnetic flux Φ̃e the Stokes efficiency generally tends to decrease as the
parameter j grows.On the contrary, for a given j there is an optimal value of the externalmagnetic flux Φ̃e for
which the Stokes efficiency ismaximal.We note that for two presented regimes, the set structure of the non-zero
efficiency in the parameters plane Φ j{ ˜ , }e is radically different. The left panel looks like butterflywings and the
right is similar to a rocking horse.

8. Summary

In this paper, we have comprehensively studied the Stokes efficiency of the asymmetric SQUID in the case of the
non-zero capacitance of all Josephson junctions and in the presence of thermal noise. It allowed us to analyze the
transport properties in the system for the entire scale of regimes; overdamped, damped and underdamped.We
focused on the connection between the directed transport characterized by the voltage across the SQUID and its
efficiency. In particular, we examined voltagefluctuations and the energetic performance of the device.We
derived the expression for the power delivered by externally applied current and discussed its dependence on the
systemparameters. Apart from the expected influence of the current parameters I0,A andΩ, it also depends on
the thermal noise intensityD, i.e. on the temperature of the system.

Wehave found that regions of low efficiency of the SQUIDdominate in the parameter space. However, we
have identified remarkable and distinct regimes of high efficiency,η ≈ 0.65S . It turns out that the device operates
best in the overdamped or close to damped regimes.Moreover, with the help of the computational power of
modernGPU supercomputers we have identified the tailored set of parameters for which the efficiencyηS is
globallymaximal and for this regimewe discussed the impact of the variation of almost all systemparameters on
the relevant transport quantities. In particular, it follows that thermalfluctuations often have a destructive
influence on the energetic performance of the device.Moreover, wewere able to detect also the regime forwhich
thermal noise enhances the efficiency by inducing the large average voltage andminimizing its variance. Last but
not least, we discussed in detail the impact of the externalmagnetic flux Φ̃e on the performance and effectiveness
of the SQUID.

Our results can readily be experimentally verifiedwith an accessible setup consisting of three resistively and
capacitively shunted Josephson junctions formed into an asymmetric SQUIDdevice. Some partial transport
characteristics like voltage have been experimentally studied in the overdamped regime [10, 24].However, the
underdamped regime has not been tested and the efficiency has not beenmeasured, whichmakes our study a
challenge for experimentalists.
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Figure 8.The Stokes efficiency of the rocked SQUID in the parameter plane Φ j{ ˜ , }e . The left panel corresponds to the optimal regime as
in figure 5 and the remaining parameters are the same as there. The right panel presents the regime depicted in figure 6with
D=0.0004.
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