Are Transit Trips Symmetrical

in Time and Space?
Evidence from the Twin Cities

Sang Gu Lee and Mark Hickman

This study exploits electronic fare collection data to examine the symmetry
of boardings and alightings along a transit route. The symmetry of board-
ings and alightings is arguably the most important concept in the estimation
of travel distances such as average trip lengths and passenger miles from
data from entry-only fare collection systems. The paper shows the ways
such data can be used to examine the symmetry of boardings and alight-
ings through travel patterns in spatial and temporal dimensions. A novel
method for aggregating stops, especially for the nearest stops in the oppo-
site direction, is used to compare hoardings in one direction with alightings
in the vpposite direction. Spatially, the method allows examination of the
characteristics of boardings and alightings in a spatial dimension. Tem-
porally, the method examines whether a specific and symmelric passen-
ger flow is vbserved between specific periods (e.g., between morning and
afternoon peaks). A case study of the Minneapolis—Saint Paul, Minnesota,
region is performed by using automatically collected data from Metro
Transit. Automatic fare collection data reveal considerable variation in
passenger flow between specific periods. The use of automated passenger-
counting data shows this variation to be statistically significant when both
temporal and spatial symmetry are examined on an individual day.

Transit passengers’ origins and destinations, sometimes represented
by their boardings and alightings, provide indispensable information
for most transportation applications, from stralegic planning to traf-
fic control and management. This information is often used to esti-
male passengers’ travel distance, such as average trip lengths and
passenger miles, that is a mandatory component of reporting in the
National Transit Database. In most cases, the symmetry of boardings
and alightings (SBAs) is arguably the most important concept, and
this concept always assumes, on the basis of the general daily activity
pattern (), that the movements of transit passengers are reversible
over the course of the day (2-4). This assumption, however, may be
examined in a more disaggregate manner through (a) each individ-
ual’s behavior or activity location and (b) time-varying (within-day)
effects. Specifically, this paper investigates whether such symmetry
occurs between specific periods within the day (e.g., within midday
periods or between the momning and afternoon peak periods).
Previously, a disaggregate approach of SBA was complicated
by the fact that bus stops (differing from rail stations) are usually
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represented as separate locations that serve different directions. In
the stop-level model, bus stops often have a directional component,
which can be treated as symmetric and nonsymmetric in relation
to whether stops are considered the same in both directions (3). In
parcel-level modeling, Furth et al. emphasize the need to determine
separate service areas for a stop’s boardings and alightings, as well
as for each direction of travel (6). Because the two opposite stops
often are not directly across from each other, it is not easy to assess
the one-to-one matching between stops in opposing directions.

With data from Google's general transit feed specification (GTFS),
a novel method for aggregating stops is proposed. More specifically,
one-to-one matching between stops in opposite directions can be
developed to caplure the characteristics of boardings and alightings
in space. This model is applied to investigate an effect of SBA over
time with a much larger data set that has been automatically collected
from various electronic technologies: automated fare collection (AFC)
systems and automated passenger-counting (APC) systems. This
approach can demonstrate an effect of SBA between specific periods
over the course of the day. The goal of this study was to explore and
implement a potential method of examining the symmetry of board-
ings and alightings by using automatically collected and other openly
shared data.

LITERATURE REVIEW
Assumption of SBA

Boarding is commonly related to trip production (e.g., a residential
area in the moming for an initial trip), while alighting is related to trip
attraction (e.g., a workplace). A number of authors have presented the
concept of symmetry in boarding and alighting for which the number
of boardings in one direction at one location is equal to the number of
alightings in the opposite direction at that same location, commonly
over the course of a 24-h day.

Because of the lack of alighting information with electronic fare
card data, Navick and Furth propose the symmelry assumption: that
the boarding pattern for a route in one direction is equivalent to
the alighting pattern in the opposite direction over the course of
an entire day (2). They mention that the symmetry of boarding and
alighting can be a valuable tool for estimating the alighting pattern
on many routes, while some routes do not exhibit such symmeiry. In
any case, additional checking is required. Navick and Furth present
a Kolmogorov—Smirnov (K-S) test to determine whether two board-
ing and alighting data sets show symmetry, through differences
between the cumulative distribution of boardings in one direction
and of alightings in the opposite direction.



Johnson assumes that people start their return trip from the same
place they ended the beginning trip, so that only boarding counts
are needed to estimate average distance traveled (3). Notably, this
assumption is affirmed via visual confirmation of boarding and alight-
ing maps and tables. Chu emphasizes that alighting may not be always
similar to boarding in the opposite direction for a given location (7).
These quantities, however, are likely to be of a similar magnitude.
Richardson also adapts the symmetry assumption that passenger
flows on most public transport routes are reversible over the course
of the day (4). Lu and Reddy assume the symmetric daily activity pat-
tern (“conservation of passengers” and “equal and opposite passenger
activities in opposing directions”) (/) for the same reason as Navick
and Furth (2): their data set has no record of alighting locations.

Transit Data

A huge amount of data is readily available from automated data
collection systems. These systems include AFC and APC systemns
that describe spatial and temporal patterns of passengers’ behavior.
Manipulation and synthesis of these records can make more mean-
ingful data sets that provide insight into passenger boarding, alight-
ing, origins and destinations, and transfer behavior. These data sets
can be casily integrated with other openly shared data such as GTFS
and parcel-level land use data.

A large body of literature exists on the application of automatically
collected and openly shared data for public transportation planning.
That work, focusing on AFC and APC data, can be grouped into two
categories: customer behavior analysis or travel pattern analysis (8—/3)
and demand forecasting and origin—destination estimation (/4-21).

The idea of using GTFS data for various modeling purposes is
becoming more common. Tomer et al. conduct a nationwide study
Lo examine transit accessibility lo jobs by using 168 GTFS data sets
(22). Puchalsky et al. develop the Delaware Valley regional transit
forecasting model by using GTFS data (23). The University of Ari-
zona Transit Research Unit extensively uses GTFS data for detect-
ing alighting locations, transfer stop locations, or both with fare card
transaction data (24) and for aggregating transit stops (25). That unilt
has also developed a transit trip-based shortest-path algorithm that
exploits GTFS data (26).
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Stop Aggregation Model

Although data collection technology in public transit often resolves
spatially to the level of the individual stop, this approach may have
limitations. A single stop is often associated with a single direction and
perhaps a single route. From the point of view of access to land and
activities, other stops in the immediate vicinity, serving other direc-
tions and other routes, may also provide access to the same land uses
and activities (27). The goal of the proposed stop-aggregation model
(SAM), therefore, is to define a generalized definition of a “stop™ that
more closely matches the nature of locations serving as passenger ori-
gins and destinations. This definition could include landmarks (such
as large trip generators or major intersections) or some combination of
stops that collectively serve a passenger’s activity location.

An aggregate area around a transit stop or station is defined by three
paramelers: (@) distance or proximity, measured by using euclidean
and network distances in geographic information systems; (b) text in
the description of the stop, queried using database tools in SQL; and
(c’) the catchment area. More details are described in Lee et al. (25).
SAM provides considerable potential in various research areas, as
shown in Figure 1. The use of an “aggregate” stop reduces some of the
complexity of the analysis and also provides a more behavioral inter-
pretation of stop locations and passenger behavior. Most importantly
for this study, SAM provides a way of aggregating stops in opposite
directions so that a given aggregate stop (or “stop group™) can repre-
sent a given set of transit trip generators. When symmetry is examined,
a boarding from a given stop group can be compared with an alighting
within the same stop group.

DATA
Google's GTFS

GTFS is an open data format for transit schedules that was first released
in 2005. GTFS has been used by Google since 2006 to incorporate
transit information (e.g., stops, routes, and schedules) into the Google
Maps application and is typically presented as a series of text files
with comma-separated values. Currently, many major transit agencies,
including Metro Transit in the Minneapolis-Saint Paul, Minnesota,

Land-Use pattemn
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Observing land use
and activity locations

Network Development
Intersection-level Intermodal Network Mutually Exclusive
Transit Network (e.g., Park-n-Ride) Service Areas
FIGURE 1 Various applications of SAM (0-D = origin—destination).
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metropolitan area, make their data available through GTFS (28). These
data help researchers, developers, and transit agencies efficiently share
and retrieve transit schedule and service data.

AFC and APC Systems

The data for this study were obtained from Metro Transit and covered
1 month (November 2008) of data. In the AFC system, 2.17 million
records were made by 79,775 fare cards (each with a unique identi-
fier). At the time, Metro Transit operated a fleet of 1,010 buses over
186 routes (3.4 million records in APC system).

AFC data are the detailed fare card transaction data exhibiting
peoples’ transport habits over time. The AFC data include fare card
identifiers; transaction dates and times; the type of fare paid; route
and vehicle identifiers; and boarding locations, alighting locations,
or both. The 24-h span from 3 a.m. on | day to 3 a.m. on the next
day is considered a “day” because many buses end their trips after
midnight and very few night owl trips are operated. Accordingly,
weekday GTFS schedule data, with 488,105 records connecting
bus stops with specific times of a bus arrival, are associated with
location information of 14,601 stops served by Metro Transit. That
agency's Route 6, for example, has 155 stop groups (from SAM).

APC data include the number of boardings and alightings at a
stop and are recorded for about 30% of the operated bus trips by
Metro Transit. Chu emphasizes that APC data do not distinguish
between initial and transfer boardings (7). Despite this disadvan-
tage, APC data can capture the travel characteristics of cash users
who are not recorded in the AFC system but who still are strongly
associated with transit trip generators. As a case study, Route 6 of
Metro Transit in the Minneapolis—Saint Paul region is selected to
implement the proposed methodology through use of both AFC and
APC data. The route itself runs north—south along Hennepin Avenue
from downtown Minneapolis to the southern suburb of Edina.

Estimation of Stop-Level Origins-Destinations

In an earlier study, the authors found that, by looking at succes-
sive fare card transactions of each passenger, his or her origins and
destinations could be inferred at the stop level (24). In addition,
some transactions that are indicated as a transfer within the AFC
system can actually be regarded as new trips because of the duration
between alighting on the initial trip and boarding on the connecting
trip. The results of these transit origin—destination estimates were
28,260 inferred linked trips from 33,514 transactions on November

Inbound-Alighting (1A)
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TABLE 1 Fare Card Types by Number of Linked Trips

Frequency of Linked Trips

Farecard Type 1 2 3 4 5 6
Metro pass 2,512 3,036 72 10 0 0
Stored value FF 1,120 1,277 70 13 0 0
U-pass 1,994 3,104 385 180 15 6
C-pass 607 534 99 28 2 1
31D FF $85 350 398 44 12 3 1
31D ADA 181 162 19 12 3 1
31D FF $59 184 146 31 6 1 0
Other 213 164 22 2 1 0
Total 7,161 8,821 742 263 25 9

NoTE: FF = full fare; ADA = Americans with Disability Act.

10, 2008. For this study, a subset of these linked trips (17,642 of
28,260), for which the passengers made exactly two linked trips
during the day, are examined. This subset provides 8,821 unique
fare card identifiers within the AFC data (Table 1).

METHODOLOGY
Spatial Pattern Analysis

To capture the actual location of a transit user for describing his or
her activities and transit trips, SAM is used to provide one-to-one
matching between stops in opposite directions. Figure 2a shows
one possible case that can occur when a transit user makes two trips
during the day, neither of which involves a transfer.

Figure 2a shows that the first AFC transaction is made during the
early morning at a specific location on a specific route [outbound
boarding (OB)]. The second AFC transaction (the assumed return
trip) is made during the late afternoon at another location on the same
route [inbound boarding (IB)]. Accordingly, the outbound alighting
(OA) stop for the first trip and the inbound alighting (IA) stop for the
second trip can be inferred. Two pairs, OB-IA and OA-IB, are thus
established, and symmetry in space is assured. SAM captures the
stop pairs of boarding and alighting. Some cases are fully captured
(for Type 1 in Figure 2b, both OB-IA and OA-IB are in symme-
try in space) or partially captured (for Types 2 and 3 in Figure 2, ¢
and d, OB-IA and OA-IB, respectively, are in symmetry in space).

Inbound-Boarding (1B

)
é

@T)

Qutbound-Boarding (OB)

Outbound-Alighting (OA)

FIGURE 2 Approach of one-to-one matching between stops in opposite directions: (a) two pairs of

boarding and alighting.

[continued on next pagel
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FIGURE 2 (continued]

(e

Approach of one-to-one matching between stops in opposite directions: (bl Type 1

(OB-1A and DA-IB), (c] Type 2 (OB-IA onlyl, (d) Type 3 (OA-IB only), and (el Type 4 (none).

However, other stop locations may nol be successfully aggregated
proximally by using SAM if there is a complicated configuration of a
specific route for which SAM rules are not applied (e.g., a large sepa-
ration of stops in opposing directions). In this case, the caichment-
based SAM (for Type 4 in Figure 2¢, none of the pairs is in symmetry
in space, so temporal analysis is applicable) may still find the nearest
stop in the opposite direction (25).

Temporal Pattern Analysis

To examine SBA across periods, specific periods are assumed. The
periods used in this study are based on the Metro Transit fare policy
(in which peak hours are between 6 and 9 a.m. and between 3 and
6:30 p.m.), as follows:

[ Morning prepeak, before 6:00 a.m.;

I Morning peak, 6:00 to 9:00 a.m.;
Midday, 9:00 a.m. to 3:00 p.m.;
Afternoon peak, 3:00 to 6:30 p.m.; and

LI Afternoon postpeuk, after 6:30 p.m.

On the basis of the fare card transaction times, all trips (OB, OA,
IB, and IA) are assigned to each period. APC data are also applied
to these same periods. As a result, the symmetry associated with the
combination of temporal and spatial patterns (e.g., OB at the morning
peak, 1A at the afternoon peak) can be examined.

K-S Test

The K-S test quantifies a distance between the empirical distribu-
tion functions of two samples. To accommodate Type 4, catchment-
based SAM was applied to a specific trip on Route 6. In the test
sets, which are boardings in one direction with alighting in the other
direction (87 pairs from 99 northbound stops and 95 southbound
stops), the test statistic can be compared with the critical value at a
95% level of confidence (a significance level of .05):

(i +n,)

nn,

K-Sgos = 1.36

where n; and n; are the number of passengers counted in the two
directions, respectively, and K-S, is the greatest absolute deviation

between the cumulative distribution of boardings in the subject
direction and alightings in the opposite direction (2). The approach
here to performing the K-S test focuses mainly on a specific pas-
senger flow between the specific period pairs. This approach dif-
fers from the authors’ previous work, which focused on symmetry
across the entire day.

RESULTS
Analysis of Spatial and Temporal Patterns

The authors applied SAM to the full transit network in the
Minneapolis-Saint Paul region by using the stop list from the
Metro Transit GTFS. The result of SAM shows the reduction in
the network complexity: 14,601 individual stops in the network are
reduced to 7,951 aggregated stop groups (25). This study's AFC-
based stop-level linked trips (17,642 trips by 8,821 unique identi-
fiers) are applied to the aggregated stop groups for spatial (Types 1
through 4) and temporal (five periods) analyses.

Table 2 presents the results of spatial and temporal travel pattern
analyses that used the AFC data. Spatially, while 2,300 of 8,821
identifiers (26%) fall into Type 4, 2,715 of 8,821 identifiers (31%)
are fully addressed (Type 1). The spatial travel patterns for Types 2
and 3 show a significant difference in percentage of identifiers; this
result suggests that home-based trips are more likely to capture an
OB-1A pair. Temporally, momning and afternoon peak period trips
encompass about 50% of the 17,642 trips.

Lee and Hickman found that activity and travel patterns in spatial and
temporal dimensions differ significantly across fare card types, at least
comparing Metro Pass (only available only to participating employers)
and Stored Value cardholders with U-Pass (available only to University
of Minnesota students) and C-Pass (offered to students at participating
colleges) cardholders (29). Different patterns by fare card type seem to
be consistent with the patierns observed in this SBA analysis.

After application of OB-IA pairs, OA-IB pairs, or both to a spatial
model, considerable passenger flows between specific period pairs
for Type 1 by fare card type is also investigated. Table 3 illustrates
the four highest passenger flows of Type 1 for the period pairs of
morning to midday, moming to afternoon, midday to midday, and
midday to afternoon, by fare card type. This allows observation of
the use of a specific type of fare card during specific period pairs.
For Metro Pass holders, more than 90% of travel is concentrated in
the morning-to-afternoon pair, which seems to be consistent with a
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TABLE 2 Results of Spatial and Temporal Travel Pattern Analyses

157

Type 1 Type 2 Type 3 Type 4
Time Period 2,715 2,564" 1,242¢ 23007
From To OB-1A OA-1B OB-1A OA-1B OB-1A OA-IB OB-1A OA-1B
OB-OA IB-1A (%) (%) (%) (%) (%) (%) (%) (%)
Morning prepeak Morning peak 0 0 0 0 0 0 0 0
Midday 1 1 1 1 1 1 1 0
Afternoon peak 2 1 2 1 3 I 1 1
Afternoon postpeak ] 0 0 0 0 0 0 0
Morning peak Morming peak 0 0 0 0 1 1 1 1
Midday 8 8 7 7 10 9 9 8
Allernoon peak 49 48 58 58 33 34 47 46
Afternoon posipeak 4 3 7 5 4 4 6 5
Midday Midday 8 9 5 6 10 12 7 8
Aftermoon peak 15 16 9 11 16 16 16 17
Afternoon postpeak 7 6 6 6 8 8 6 6
Afternoon peak Afternoon peak 2 2 1 1 5 5 3 3
Afternoon postpeak - + 3 3 8 8 4 3
Afternoon postpeak Allernoon postpeak 0 1 0 0 1 1 0 0

NOTE: 8,821 fare cards.
“ldentifiers.

conventional commuter travel pattern. For U-Pass holders, travel
during the morning-to-afternoon pair is much less concentrated.

K-S Test Result

Finally, tests are performed for Route 6 during normal weekdays to
compare the cumulative distribution of northbound (southbound)
boardings with southbound (northbound) alightings, by using only the
APC data. Because | day may have unique characteristics, the K-S
test is performed by using data of the “specific time period pairs”
versus “across the entire day.” Comparison between K-S, and
K-S s (Table 4) shows different results in SBA. Most cases of sym-
metry across the entire day fail the K-S test, while many of the tests
between specific period pairs indicate symmetry at a 95% confidence
interval with the K-S test. As an example, the test for Route 6 in both
directions on November 17, 2008, is shown in Figure 3.

The K-S test results seem to suggest symmetry, at least between
the travel during the morning and afternoon peak periods, between
the midday and the afternoon postpeak periods, and during mid-

day. This symmetry seems to be confirmed at least on specific days.
However, if one examines the total for all weekdays (the Total rows
in Table 4 for each period pair), in general, these fail the K-S test,
indicating that the hypothesis of symmetry cannot be accepted with
at least 95% confidence. One might then conclude that, on any given
day, symmetry by period may be observed, while on an average day,
symmetry by time period is not observed.

Discussion of Results

Although the authors have had considerable success at inferring
transit origins and destinations from AFC data, not all fare cards
illustrate full tours in the course of a given day (24). These data can
lead to some confusion about the true origins and destinations for
some of the linked trips. For example, the 7,161 linked trips (one
linked trip per day reported in the AFC data) in Table | seem to indi-
cate that passengers made only a single one-way trip. However, the
majority of these fare cards indicate a second or subsequent transac-
tion. Although interpretation of these data is somewhat ambiguous,

TABLE 3 Passenger Flows in Type 1 by Fare Card Type over Selected Periods

Morning Peak Moming Peak to Midday to

lo Midday Afternoon Peak Midday to Midday Afternoon Peak Total

OB-1A OA-IB OB-T1A OA-IB OB-IA OA-IB OB-IA OA-IB OB-1A OA-IB
Farecard Type (%) (%) (%) (%) (%) (%) (%) (%) (%) (%)
Metro pass 8 10 56 57 4 4 7 10 37 37
Stored value FF 7 9 17 17 11 11 12 12 14 15
U-pass 68 65 18 17 67 65 70 68 38 37
C-pass 7 5 2 2 5 8 5 4 3 4
31D FF $85 % 3 5 5 1 2 2 3 4 4
31D ADA 6 6 0 0 4 4 1 | 1 1
31D FF %59 2 2 0 0 4 4 1 0 1 1
Other 0 0 1 1 4 3 2 2 1 1
Total 100 100 100 100 100 100 100 100 100 100
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TABLE 4 Test Results for Symmetry Hypothesis for Route 6 by Periods

Total Total Accept
Boarding Number Boardings Alighting Alightings Symmetry
Date Direction of Trips (ny) Direction (n3) K-S, K-Sq0s Hypothesis?

Moming Peak (o Aftemoon Peak

11/17/08 NB 2 141 SB 142 0.1392 0.1617 Yes
SB 2 145 NB 162 0.1411 0.1555 Yes
11/18/08 NB 2 146 SB 144 0.1867 0.1597 No
SB 2 142 NB 149 0.1488 0.1595 Yes
11/19/08 NB 2 139 SB 132 0.1002 0.1653 Yes
SB 2 127 NB 151 0.1468 0.1637 Yes
11/20/08 NB 2 156 SB 152 0.0693 0.1550 Yes
SB 2 145 NB 172 0.0562 0.1533 Yes
11/21/08 NB 1 66 SB 79 0.1623 0.2268 Yes
SB 1 78 NB 70 0.0945 0.2239 Yes
Total NB 9 648 SB 649 0.0543 0.0755 Yes
SB 9 637 NB 704 0.0806 0.0744 No
Midday to Afternoon Postpeak
11/17/08 NB 1 41 SB 44 0.1585 0.2952 Yes
SB 1 41 NB 47 0.3939 0.2906 No
11/18/08 NB 1 60 SB 67 0.1953 0.2417 Yes
SB 1 64 NB 58 0.1633 0.2466 Yes
11/19/08 NB 1 54 SB 71 0.1886 0.2456 Yes
SB 1 66 NB 51 0.2326 0.2536 Yes
11/20/08 NB 1 62 SB 84 0.2281 0.2277 No
SB 1 80 NB 53 0.2608 0.2409 No
11/21/08 NB 1 48 SB 67 0.1595 0.2572 Yes
SB 1 65 NB 52 0.2346 0.2530 Yes
Total NB 5 265 SB 333 0.1510 0.1120 No
SB 3 316 NB 261 0.1967 0.1138 No
Midday to Midday
11/17/08 NB 5 274 SB 342 0.1144 0.1103 No
SB 5 324 NB 288 0.1065 0.1101 Yes
11/18/08 NB 3 182 SB 199 0.1270 0.1395 Yes
SB 3 192 NB 197 0.0953 0.1379 Yes
11/19/08 NB 5 335 SB 328 0.1198 0.1056 No
SB 5 3l6 NB 360 0.0878 0.1048 Yes
11/20/08 NB 5 333 SB 308 0.0823 0.1075 Yes
SB 5 300 NB 330 0.0700 0.1085 Yes
11/21/08 NB 4 216 SB 286 0.1242 0.1226 No
SB -4 257 NB 229 0.0920 0.1236 Yes
Total NB 22 1,340 SB 1,463 0.0936 0.0514 No
SB 22 1,389 NB 1,404 0.0668 0.0515 No
NoTE: NB = northbound; SB = southbound.
the fare card transactions with two linked trips per passenger per CONCLUSIONS

day are used as a starting point for this study and represent more
than 60% of the entire data set (17,642 of 28,260 linked trips). Of
course, some bias exists in this data set because of the assumed
spatial symmetry of two linked trips per day. Additional analysis of
the AFC data to infer individuals® movements is a promising line
of future study.

The APC data show a possible imbalance problem (i.e., in one
vehicle trip, the total number of boardings may not equal the total
number of alightings). This discrepancy results either from APC
device errors (intrinsic to APC technology) or from some passen-
gers possibly remaining on board after a given vehicle trip to travel
in the reverse direction. Despite the limitations and caveats that
accompany the APC data, they provide important information for
understanding boarding and alighting activities at the stop level.

This study demonstrates boarding and alighting patterns in a more
disaggregate manner and examines individuals’ movements in spa-
tial and temporal dimensions. In contrast to previous studies, this
one provides a systematic matching technique for aggregating stops
(SAM) that allows for a more structured analysis of the symmetry
of boardings and alightings. A much larger data set that has been
automatically collected from various electronic technologies (AFC
and APC systems) is applied to examine the symmetry of boardings
and alightings spatially and temporally.

The results of the analysis of spatial travel patterns support a part of
Lu and Reddy s assumption of “equal and opposite passenger activities
in opposing directions™ (/). Analysis of temporal travel patterns at a
disaggregate level can reduce aggregation errors (e.g., data from the
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FIGURE3 Selected K-S tests for Route 6 (November 17, 2008): (a) morning peak to afternoon peak, (b) midday to afternoon

postpeak, and (c) midday to midday.



180

course of the entire day), and the authors observe a considerable pas-
senger Cow that depends on fare card type between specilt periods in
the AFC data. Finally. by using APC data to examine both temporal
and spatial symmetry, the authors observe symmetry by period pairs
on an individual day. However, the authors Thd that symmetry is not
generally found between these same period pairs when total boardings
and alightings for a full set of weekdays are compared.
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