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Abstract

In this paper we develop new rolling-horizon and fix-and-relax heuristics for the identical parallel machine lot-sizing and scheduling
problem with sequence-dependent set-up costs. Unlike previous papers, our procedures are based on a compact formulation relying
on the hypotheses of identical machines. This feature makes our approach suitable for large-scale applications (with hundreds of
machines) arising in the textile and fiberglass industries. Moreover, our procedures are shown to provide a feasible solution for any
feasible instance. Comparisons with lower bounds provided by a truncated branch-and-bound show that the gap between the best
heuristic solution and the lower bound never exceeds 3%.
� 2007 Published by Elsevier Ltd.
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1. Introduction

Lot-sizing and scheduling problems have been an area of active research starting from the seminal paper of Wagner
and Whitin [1]. Since then there has been a considerable amount of investigation in order to incorporate other important
features such as backlogging, capacities, multiple items, multiple machines, multiple stages, etc. See Drexl and Kimms
[2] and Staggemeier and Clark [3] for two recent surveys, and Pochet [4] for an up-to-date tutorial. In spite of this
research effort, the body of knowledge on almost all practical problems is still unsatisfactory.

This paper deals with the lot-sizing and scheduling problem with identical parallel machines (LSPIPM) and sequence-
dependent set-up costs, whose applications arise in the textile and fiberglass industries (see, e.g., [5]).

In literature, references have been mainly focused on the heterogeneous machine problem, which is a more general
case with respect to the parallel machine problem. Clark [6] has developed a very fast myopic rule-based heuristic for
rolling-horizon (RH) lot-sizing and sequencing on a set of parallel heterogeneous machines with sequence-dependent
set-up times. In this paper, a single set-up is assumed at the beginning of each period while in Clark and Clark [7]
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multiple set-ups per planning period are allowed. Meyr [8] has developed a model for simultaneous lot-sizing and
scheduling on heterogeneous parallel machines with sequence-dependent set-up times and no backlogging. For each
machine the planning horizon is divided into a predetermined number of periods which contain at most one set-up.
By extending previous findings on the single machine lot-sizing and scheduling problem [9,10], this paper describes a
local search over the set-up sequences, coupled with dual re-optimization of lot sizes. Instances with up to 19 products,
2 machines and 8 periods are considered. Finally, Staggemeier et al. [11] describe a genetic algorithm in which optimal
lot sizes are determined through linear programming.

The lot-sizing and scheduling problem is also referred to in the literature as parallel machine scheduling problem
with splitting jobs [12–14]. Indeed, a job can be split into an arbitrary number of parts and each part processed on a
different machine. This problem arises, for example, in the textile industry where a job represents a batch (for example,
a batch of 1500 socks) and the job splitting property allows decomposing each batch into sub-batches.

The algorithms described in the literature have been developed and tested on applications characterized by a small
number of machines (up to five) [15]. On the contrary, in this paper we have developed algorithms suitable for large-
scale applications (with hundreds of machines) arising in the textile and fiberglass industries. Our objective is to
minimize the total set-up cost. Indeed, in some applications, set-up costs are directly proportional to set-up times and,
consequently, schedules optimal with respect to set-up times are also optimal with respect to set-up costs. In many other
cases, particularly when set-up operations require high-skilled labor force, set-up costs are relatively high while set-up
times are negligible. Firstly, we have demonstrated the equivalence between the given formulation and the ILP model
proposed in Sumischrast and Frendewey [15]. Then we have developed new decomposition heuristics based on RH and
fix-and-relax (FR) approaches. In Sumischrast and Frendewey [15], the authors decomposed the original problem in a
set of smaller subproblems, each of them solved by applying the heuristic procedure MINSET. The heuristic methods
proposed in this paper are based on a decomposition approach too. However, our solution procedures outperform the
MINSET method, since they adopt an exact method to solve each subproblem.

The paper is organized as follows. Section 2 presents a compact formulation of the identical parallel machine case.
In Sections 3 and 4 RH and FR heuristics are introduced and shown to provide a feasible solution for any feasible
instance. The performances of these approaches have been numerically tested on a variety of medium and large size
problems. The results have been reported in Section 5. Finally, conclusions and future research directions follow in
Section 6.

2. Formulation

In the LSPIPM, we are given m parallel identical machines and n products (or part types) to be manufactured over
a discrete planning horizon {1, . . . , T }. As customary in the textile and fiberglass applications which motivated our
work, we assume that machine changeovers are associated with sequence-dependent set-up costs while set-up idle
times are negligible. This is often the case whenever the cost for switching between certain products is relatively high
(e.g., because of high-skilled labor requirement) even though the switching time is relatively less [16]. Let cij be the
cost to switch from product i to j (cii = 0, i = 1, . . . , n) and let mi be the number of machines initially set up to
produce product i(

∑
i=1,...,nmi = m). Moreover, demands and production capacity are both assumed to be known and

no backlog is allowed. Let dit be the demand for product i in period t and let ai be the production rate of product i.
We formulate the LSPIPM as follows:

Minimize
n∑

i=1

n∑
j=1

T∑
t=1

cij yij t (1)

s.t.

xi1 −
n∑

j=1
j �=i

yji1 +
n∑

j=1
j �=i

yij1 = mi, i = 1, . . . , n, (2)

xit −
n∑

j=1
j �=i

yjit +
n∑

j=1
j �=i

yij t = xit−1, i = 1, . . . , n; t = 2, . . . , T , (3)



3646 P. Beraldi et al. / Computers & Operations Research 35 (2008) 3644–3656

�∑
t=1

xit �
�∑

t=1

Dit , i = 1, . . . , n; � = 1, . . . , T , (4)

xit �0, integer, i = 1, . . . , n; t = 1, . . . , T , (5)

yijt �0, i, j = 1, . . . , n; t = 1, . . . , T , (6)

where Dit = �dit /ai� is the number of time periods required to produce dit on a single machine; xit is the number of
machines producing part type i in period t ; yijt is the number of machines switched from part type i to part type j at
the beginning of period t . Constraints (2) and (3) express the relation between xit and yijt variables. Constraints (4)
state that the number of machines assigned to part type i in periods 1, . . . , � is sufficient. Constraints (5) and (6) are
the usual non-negativity and integrality constraints.

The formulation (1)–(6) can be obtained from the ILP model proposed in [15], by relaxing the integrality constraints
on Y’s variables. The validity of formulation (1)–(6) stands on the following proposition.

Proposition 1. For a given set of xit variables satisfying constraints (4) and (5), there exists an optimal solution of
formulation (1)–(3), (6) in which yijt variables are integers.

Proof. This result follows from the observation that the coefficient matrix associated with (2) and (3) is totally uni-
modular and the right-hand sides mi and xit are integers. �

As a result, no integrality constraints need to be imposed explicitly on yijt variables. Compared to formulations
for the heterogeneous machine case [7,8], model (1)–(6) contains much less integer variables. Indeed the proposed
formulation is characterized by O(nT ) general integer variables against the O(n2mT ) binary variables in (Meyer,
2002). This feature makes the linear programming lower bounds provided by (1)–(6) much tighter than those reported
in the literature for the heterogeneous machine case.

Unfortunately, when fed into a commercial mixed integer programming (MIP) solver, formulation (1)–(6) allows
solving only small-sized instances (e.g., instances with up to n=10 and T =10). In the next three sections, new RH and
FR heuristics, specifically tailored for large-scale identical parallel machine instances (like those arising in the textile
and fiberglass industries) are described and computationally assessed.

3. The RH heuristic

RH heuristics are usually used in dynamic lot-sizing and scheduling problems, where demands are gradually revealed
during the planning horizon and part types have to be allocated to machines in an on-going fashion as new orders arrive
(see, e.g., [17,18]). On the other hand, a RH approach is still suitable when product demand is perfectly known. In
this case, a large multi-stage problem is decomposed into a number of smaller subproblems. The limited size of these
subproblems allows using exact methods for their solution, which would be impossible for the overall problem. The
number and the size of the subproblems define the computational burden and the solution quality of the heuristic
procedures.

More formally, the RH methodology partitions the planning horizon into k time intervals [tr , Tr ] (r =1, . . . , k) such
that t1 = 1, tr =Tr−1 + 1 (r = 2, . . . , k) and Tk =T . For each time interval [tr , Tr ], we solve a subproblem LSPIPMr

RH

consisting of formulation (1)–(6) over [tr , Tr ], subject to an additional set of constraints Cr on the xit variables. Such
constraints are generated on the basis of the solution values of subproblems LSPIPM1

RH , . . . , LSPIPMr
RH .

Our implementations of the RH concept are designed in such a way that subproblems LSPIPMr
RH (r = 1, . . . , k)

are always feasible if the LSPIPM instance is feasible, as proved subsequently.
Given the solution values x̂r−1

it and ŷr−1
ij t of subproblem LSPIPMr−1

RH , let D̂r
it be the demand for product i due on

period t , unsatisfied at time tr (t � tr ):

D̂1
it =

t∑
�=1

Di�, i = 1, . . . , n; t = 1, . . . , T1, (7)
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D̂r
it =

t∑
�=1

Di� −
Tr−1∑
�=1

x̂r−1
i� , r = 2, . . . , k; i = 1, . . . , n; t = tr , . . . , Tr . (8)

Therefore, in subproblem LSPIPMr
RH constraints (3) are replaced by

xitr −
n∑

j=1
j �=i

yjitr +
n∑

j=1
j �=i

yij tr = x̂iT r−1 , r > 2; i = 1, . . . , n, (9)

and inequalities (4) are replaced by

�∑
t=tr

xit �
�∑

t=tr

D̂r
it , 1�r �k; i = 1, . . . , n; � = tr , . . . , Tr . (10)

We have developed two distinct RH procedures, named RH1 and RH2 in the following. The two heuristics differ in the
definition of the set of additional constraints Cr on the xit variables.

3.1. RH1 heuristic

Let Lir be the set of due-dates � for product i in time interval [tr+1, T ]:
Lir = {� ∈ [tr+1, T ] : D̂r

i� > 0}, i = 1, . . . , n; r < k. (11)

Cr consists of the following constraints:

Tr∑
t=tr

xit +
∑
t∈Lir
t � �

uit �
�∑

t=tr+1

D̂r
it , i = 1, . . . , n; � ∈ Lir ; r < k, (12)

N∑
i=1

∑
t∈Lir
t � �

ui� �m(� − tr+1 + 1), i = 1, . . . , n; � ∈ Lir ; r < k, (13)

where ui� are additional non-negative integer variables defined for i = 1, . . . , n, � ∈ Lir and r < k. For each product i,
ui� variables represents a feasible value of the unsatisfied demand due within �. Constraints (12) state the relationship
between the x and u variables. Constraints (13) state that an unsatisfied demand due within � cannot exceed production
capacity in time interval [tr+1, T ].

3.2. RH2 heuristic

The second RH heuristic is made up of two steps.
Step 1. Solve a MIP made up of the linear relaxation of (1)–(6) and of the additional inequalities:

Tr∑
�=tr

xi� = qir , i = 1, . . . , n; r < k, (14)

qir �0, integer, i = 1, . . . , n; r < k. (15)

In this auxiliary problem, only qir variables are constrained to be integer. Let q̂ir be their optimal values.
Step 2. Run an RH heuristic in which Cr consists of constraints

Tr∑
�=tr

xi� � q̂ir , i = 1, . . . , n; r < k. (16)
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Each q̂ir value represents a dummy product demand to be due within Tr . Constraints (16) are the corresponding due-date
constraints. In Proposition 3 it will be proved that the due-date constraints (16) guarantee the feasibility of the heuristic
approach.

It is worth noting that both RH1 and RH2 procedures result in a feasible schedule for the overall problem as stated
by the following two propositions.

Proposition 2. If an LSPIPM instance is feasible then subproblems LSPIPMr
RH (r = 1, . . . , k) of RH1 are feasible

too.

Proof. First, we observe that an instance of LSPIPM is feasible if and only if:

n∑
i=1

t∑
�=1

Di� �mt, t ∈ [1, T ]. (17)

Then we prove by induction that if an LSPIPM instance is feasible then all subproblems LSPIPMr
RH (r = 1, . . . , k) of

RH1 are feasible too. Let xit (i = 1, . . . , n; t = 1, . . . , T ) and yijt (i, j = 1, . . . , n; t = 1, . . . , T ) be a feasible solution
to the LSPIPM and let [tr , Tr ] (r = 1, . . . , k) be a partition of the planning horizon [1, T ]. Since xit and yijt values
constitute a feasible solution to the original problem, then the following relations hold:

T1∑
t=1

xit +
�∑

t=t2

xit �
�∑

t=t2

D̂1
it , i = 1, . . . , n; � = t2, . . . , T , (18)

n∑
i=1

xit = m, t = 1, . . . , T1. (19)

Conditions (18) and (19) imply

Tr∑
t=tr

xit +
∑
t∈Li1
t ��

uit �
�∑

t=t2

D̂1
it , i = 1, . . . , n; � ∈ Li1, (20)

N∑
i=1

∑
t∈Li1
t ��

ui� = m(� − t2 + 1), i = 1, . . . , n; � ∈ Li1, (21)

where

ui� =
�∑

t=tr+1

xit , i = 1, . . . , n; � ∈ Li1. (22)

As a result, xit , yijt , ui� (i, j = 1, . . . , n; � ∈ Li1, t = 1, . . . , T1) determine an LSPIPM1
RH feasible solution. For any

r > 1, suppose subproblems LSPIPM1
RH , . . . , LSPIPMr−1

RH are feasible. Let LSPIPMr∗
be the LSPIPM defined over

the planning horizon [tr , T ] in which demands and initial product–machine assignments have been set on the basis
of the solution values of LSPIPM1

RH , . . . , LSPIPMr−1
RH . We prove that if LSPIPMr∗

is feasible, then the feasibility of
LSPIPMr

RH can be determined as illustrated for LSPIPM1
RH . The following relations are verified:

�∑
t=tr

xit �
�∑

t=tr

Dit , i = 1, . . . , n; � = tr , . . . , T , (23)

Dit =
t∑

�=1

Di� −
t∑

�=1

x̂i�, i = 1, . . . , n; t = tr , . . . , T . (24)
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In addition, since

N∑
i=1

x̂iT r−1 = m, (25)

the capacity available in [tr , �] ⊆ [tr , T ] is equal to m(� − Tr−1). Then,

n∑
i=1

�∑
t=tr

Dit =
n∑

i=1

⎛
⎝

�∑
t=1

Dit −
Tr−1∑
t=1

x̂it

⎞
⎠ �

n∑
i=1

�∑
t=1

Dit − mT r−1. (26)

Finally, since LSPIPM ≡ LSPIPM1∗
is feasible then

n∑
i=1

�∑
t=tr

Dit �
n∑

i=1

�∑
t=1

Dit − mT r−1 �m(l − Tr−1), (27)

which shows that LSPIPMr∗
is feasible. �

Proposition 3. If an LSPIPM instance is feasible then subproblems LSPIPMr
RH (r = 1, . . . , k) of RH2 are feasible

too.

Proof. Let x̃it (i = 1, . . . , n; t = 1, . . . , T ) be the optimal solution values of xit variables in the initialization step. The
following relations hold:

Tr∑
t=tr

x̃it = q̂ir , i = 1, . . . , n; r = 1, . . . , k, (28)

Tr∑
�=1

x̃i� �
Tr∑

�=1

Di�, i = 1, . . . , n; r = 1, . . . , k. (29)

Constraints (29) dominate constraint (4) for every i and for t = Tr . Therefore, LSPIPMr
RH can be reformulated as an

LSPIPM over [tr , Tr ] in which the right-hand side of (4) is set equal to q̂ir for t = Tr . If (8) is satisfied, then

n∑
i=1

�∑
t=1

D̂r
it �m(� − tr + 1), � ∈ [tr , Tr ]; r = 1, . . . , k, (30)

n∑
i=1

q̂ir �m(Tr − tr + 1), r = 1, . . . , k. (31)

Inequality (31) is verified because of (28). As far as (30) is concerned, it should be noted that
∑N

i=1x̂it = m (t =
1, . . . , Tr−1). Hence,

n∑
i=1

�∑
t=1

Dit �ml, � = 1, . . . , T1, (32)

n∑
i=1

�∑
t=1

Dit −
n∑

i=1

Tr−1∑
t=1

x̂it �m(l − tr + 1), � = tr , . . . , Tr ; r > 2. (33)

As the left-hand sides of (32) and (33) are equal to D̂r
it the thesis is proved. �

Proposition 4. If subproblems are formulated according to either RH1 or RH2 it results that: if all subproblems
LSPIPMr

RH (r = 1, . . . , k) are feasible then the original LSPIPM is feasible too.
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Proof. Let the values x̂r
it and ŷr

ij t denote the solution values of x and y variables for subproblem LSPIPMr
RH , r =

1, . . . , k. By hypothesis, the values x̂r
it and ŷr

ij t , with i = 1, . . . , N , j = 1, . . . , N and t = tr , . . . , Tr for r = 1, . . . , k,
satisfy constraints (2)–(3). Due to their network structure, the following equality is satisfied for each period:

N∑
i=1

x̂r
it = M, t = tr , . . . , Tr . (34)

Moreover, x̂r
it satisfy the due-date constraints (4) as follows:

�∑
t=tr

x̂r
it �

�∑
t=tr

D̂r
it , i = 1, . . . , N; � = tr , . . . , Tr ; r = 1, . . . , k. (35)

Since the parameter D̂r
it is defined as reported in (8) it results that

N∑
i=1

�∑
t=1

Dit �
N∑

i=1

�∑
t=1

x̂r
it �M∗t, t = 1, . . . , T . (36)

As stated preliminary in proof of Proposition 2, the thesis is proved. �

Given the above Proposition it results that a solution to the LSPIPM can be obtained as follows:

xit = x̂r
it ∀i = 1, . . . , N; t ∈ [tr , Tr ]; r = 1, . . . , k, (37)

yijt = ŷr
ij t ∀i; j = 1, . . . , N; t ∈ [tr , Tr ]; r = 1, . . . , k. (38)

4. The FR heuristic

The FR methodology [19] decomposes a large-scale MIP problem into a number of smaller MIP subproblems. The
limited size of these subproblems allows using exact methods for their solution, which would be impossible for the
entire problem (see, e.g., [20,21]). As in the RH approach, the number and the size of the subproblems define the
computational burden and the solution quality of the heuristic procedures.

When the FR approach is applied to formulation (1)–(6), integer variables xit (i = 1, . . . , n; t = 1, . . . , T ) are
partitioned into k sets ({xit : (i, t) ∈ Xh}, h = 1, . . . , k) and the rth subproblem LSPIPMr

FR amounts solving (1)–(6)
with the following constraints:

xit = x̂it , (i, t) ∈
⋃

h=1,...,r−1

Xh, (39)

xit �0 and integer, (i, t) ∈ Xr , (40)

xit �0, (i, t) ∈
⋃

h=r+1,...,k

Xh, (41)

where x̂it are the solution values of the integer variables in subproblems LSPIPM1
FR, . . . , LSPIPMr−1

FR . Since only a
reduced subset of variables are kept integer at each stage r , LSPIPMr

FR is expected to be solved relatively easily.
The FR methodology may provide a lower bound (associated to subproblem 1 solution) as well as an upper bound. It

is worth noting [22] that a generic FR algorithm may fail to identify a feasible solution even if the problem is feasible.
However, in the following we demonstrate that if the LSPIPM problem is feasible, then the four variable partition
policies we propose always result in feasible subproblems.

Time-based variable partitioning. This strategy partitions the planning horizon into k time intervals [th, Th] (h =
1, . . . , k) such that t1 = 1, th = Th−1 + 1 (h = 2, . . . , k) and Tk = T subproblems are solved, one for each time period:

Xh = {(i, t) : i = 1, . . . , n; t ∈ [th, Th]}, h = 1, . . . , k. (42)
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Thus, the resulting FR heuristic (FR1) determines first the values of those integer variables associated with decisions
that occur early in time.

Product-based variable partitioning. The second strategy which is based upon a partitioning of products, partitions
the planning horizon into k time intervals [ih, nh] (h = 1, . . . , k) such that i1 = 1, ir = nr−1 + 1 (h = 2, . . . , k) and
nk = n Then,

Xh = {(i, t) : i ∈ [ih, nh]; t = 1, . . . , T }, h = 1, . . . , n. (43)

Thus, the resulting FR heuristic (FR2) determines first the values of those integer variables associated with high overall
demands.

Time–product hybrid variable partitioning. The third strategy (FR3) partitions the planning horizon into a number
of intervals and applies a product partitioning in each interval.

Time–product hybrid variable partitioning. In the fourth strategy, products are partitioned first and then a time-
partitioning procedure is used.

We now prove that the above four FR heuristics always provide a feasible schedule if LSPIPM is feasible.

Proposition 5. If any of the above FR procedures is used, all subproblems are feasible whenever LSPIPM is feasible.

Proof. Let ŷij t (i, j =1, . . . , n; t =1, . . . , T ) be the optimal solution values of yijt variables in LSPIPM. We prove the
proposition by induction. LSPIPM1

FR is a relaxation of the original LSPIPM. Since LSPIPM is feasible by hypothesis,
LSPIPM1

FR is feasible too. For r > 1, the demonstration has to be specialized for each of the proposed FR heuristics.
Procedure FR1. Let LSPIPMr

FR be the rth subproblem solved by a FR procedure and let LSPIPM
′r
FR be a subproblem

(1)–(6) defined over a planning horizon [tr , T ]. In LSPIPM
′r
FR , product demands D̄it (i = 1, . . . , n; t = tr , . . . , T ) are

determined on the basis of the optimal solution values of LSPIPM1
FR, . . . , LSPIPMr−1

FR . Relations (17) imply that
LSPIPM

′r
FR is feasible. Moreover, LSPIPM

′r
FR is equivalent to LSPIPMr

FR if r = k, while LSPIPMr
FR is a relaxation

of LSPIPM
′r
FR if 1 < r < k. In both cases the feasibility of LSPIPM

′r
FR implies the feasibility of LSPIPMr

FR .
Procedure FR2. Let LSPIPM

′r
FR be a subproblem (1)–(6) with a restricted set of products {ir , . . . , n} subject to the

following constraints:

n∑
i=ir

xit = mt, t = 1, . . . , T , (44)

where

mt = m −
nr−1∑
i=1

x̂it , t = 1, . . . , T , (45)

and x̂it are the optimal solution values of variables xit in subproblems LSPIPM1
FR, . . . , LSPIPMr−1

FR . As demands in
LSPIPM

′r
FR are the same as in LSPIPM, the following inequalities hold:

�∑
t=1

x̂it �
�∑

t=1

Dit , � = 1, . . . , T ; i = 1, . . . , nr−1. (46)

Conditions (17) (which are verified since LSPIPM is feasible by hypothesis), can be rewritten as follows:

�∑
t=1

n∑
i=ir

Dit �m� −
�∑

t=1

nr−1∑
i=1

Dit , � = 1, . . . , T . (47)

Then, on the basis of (44) and (46), the total product demand does not exceed the available production capacity

�∑
t=1

N∑
i=ir

Dit �
�∑

t=1

mt, � = 1, . . . , T . (48)
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Hence, LSPIPM
′r
FR is feasible. As in the FR1 case, if r = k, subproblem LSPIPMr is equivalent to LSPIPM

′r
FR

while it is a relaxation of LSPIPM
′r
FR if 1 < r < k. In both cases the feasibility of LSPIPM

′r
FR implies the feasibility

of LSPIPMr
FR .

Procedures FR3 and FR4. In these cases, the proof is a trivial extension of those illustrated for FR1 and FR2. �

Following the idea underlying the proof of Proposition 4 it can be demonstrated what follows.

Proposition 6. If subproblems are formulated according to a FR approach it results that: if all subproblems LSPIPMr
FR

(r = 1, . . . , k) are feasible then the original LSPIPM is feasible too.

The determination of a solution to the original problem LSPIPM can be recovered as already illustrated in (37)
and (38).

5. Computational results

Both RH and FR procedures have been implemented in C + + and linked to CPLEX 7.0 in order to solve MIP
subproblems. The resulting codes have been run on a PC with a 800 MHz Pentium processor with 256 MB of RAM.
In particular, for the set-up cost parameter three classes of problems, i.e., S1, S2 and S3, have been generated and
values have been taken from uniform distributions defined in the intervals [1,10], [1,100] and [1,1000], respectively.
Moreover for the due-date parameter, two classes of problems have been considered, each of them characterized by
either identical due-dates (D1) or due-dates uniformly distributed over the planning horizon (D2). For each combination
of these parameters (i.e., set-up and due-date), a set of test problems has been generated. All tests were characterized by
100 machines (i.e., m=100): a typical value for textile and fiberglass industries. In all the tests, the solution provided by
each heuristic has been compared with a lower bound provided by a truncated branch-and-bound algorithm (which has
been allowed to run for 3600 s). This parameter has been used to determine the solution quality. The column headings
of Tables 1–4 are as follows:

• HEUOBJ: percentage deviation of the solution value provided by heuristic HEU from the truncated branch-and-
bound lower bound;

• HEUSEC: computing time in seconds for heuristic HEU.

Tables 1 and 2 report computational results for the FR procedures FR1, FR2, FR3 and FR4 on 60 instances with
n = 24 and T = 30. Both the solution quality and the efficiency of the FR procedures depend on the number and size
of the subproblems. In order to determine the best trade off between efficiency and solution quality, a preliminary
computational campaign was carried out. For each FR procedure, we have determined the number of subproblems as
the maximum k value providing an optimality gap not exceeding 10%. The k value was equal to 3 and 6 for FR1,
FR2 and FR3, FR4, respectively. As reported in Table 2, the most efficient FR procedures were FR3 and FR4, char-
acterized by subproblems with approximately 100 integer variables. FR1 and FR2 were the less efficient procedures
since the number of subproblems was halved, but the size of each subproblem was doubled. The boxplots in Fig. 1
report the solution quality produced by the four FR procedures. On the basis of these boxplots, we may state that
the FR2 procedure outperforms the other ones. To prove with statistical evidence that the highest quality solution
is provided by a pure product-partitioning policy (i.e., by the FR2 heuristic), the analysis of the variance and the
Tukey’s pairwise comparison were applied to the values reported in Table 1 (with family error rate = 0.05). For each
problem class, except D2–S3, the two procedures demonstrated the superiority of the FR2 procedure. For this rea-
son, the RH algorithms were then compared only with the FR2 procedure (see Tables 3 and 4). The RH approaches
were capable of solving instances with up to 30 time periods and 12 products (i.e., n = 12, T = 30). As mentioned
for the FR approach, the k value (k = 3) was determined by preliminary tests. A boxplot representation of the re-
sults have been shown in Figs. 2 and 3. Moreover, the median, the minimum, the maximum, the first and the third
quartiles of the deviations from the lower bound have been reported in Table 5. On the basis of these statistics, it is
possible to conclude that FR2 outperforms RH procedures. In particular, the median value is significantly lower for
FR2 than for RH procedures, and the third quartile for FR2 is significantly lower than the first quartile for the best
RH procedure.
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Table 1
FR1, FR2, FR3 and FR4 solution quality (n = 24, T = 30)

Instance D1–S1 D2–S1 D1–S2

FR1OBJ FR2OBJ FR3OBJ FR4OBJ FR1OBJ FR2OBJ FR3OBJ FR4OBJ FR1OBJ FR2OBJ FR3OBJ FR4OBJ

1 1.75 0.83 2.5 2.25 1.30 0.62 1.64 1.37 1.69 0.5 0.9 0.78
2 1.66 0.65 1.29 1.85 1.40 1.03 0.58 0.34 0.46 0.7 2 1.35
3 1.66 0.68 2.15 2.35 1.20 0.76 1.44 1.81 1.06 0.82 1.56 1.11
4 1.48 1.69 2.86 2.01 1.70 0.51 1.52 1.52 1.75 1.7 0.94 1.11
5 1.95 1.69 2.86 2.73 1.90 0.42 1.54 1.46 1.29 1.4 0.94 1.1
6 2.13 0.88 2.75 2.38 1.5 0.8 1.3 1.36 1.53 1.65 0.9 1.07
7 3.83 2.24 3.83 3.67 1.32 0.6 0.88 0.79 1.03 1.27 1.36 0.95
8 1.41 1.03 1.88 1.97 1.54 0.59 1 1 1.03 1.2 0.99 1.19
9 2.07 1.27 3.11 2.65 1.60 1.47 1.32 1.57 1.35 1.45 1.42 0.92

10 2.64 0.97 3.33 3.06 1.82 0.64 1.33 1.5 1.06 1.3 1.41 0.93

Instance D2–S2 D1–S3 D2–S3

FR1OBJ FR2OBJ FR3OBJ FR4OBJ FR1OBJ FR2OBJ FR3OBJ FR4OBJ FR1OBJ FR2OBJ FR3OBJ FR4OBJ

1 1.46 0.91 1.1 1.21 1.14 1.06 0.9 0.93 1.64 0.81 1.42 1.34
2 0.54 0.58 1.23 2.56 1.59 0.61 2 2.04 0.61 0.68 0.88 1.07
3 1.3 0.65 1.24 1.08 1.26 0.94 1.56 1.55 1.02 0.57 1.05 1.71
4 0.99 1.37 1.85 1.66 1.42 0.64 0.94 0.9 0.79 0.95 1.42 0.98
5 1.46 1.23 0.54 0.68 0.67 0.28 0.94 1.02 1.51 0.61 1.12 0.9
6 1.1 0.71 1.13 1.39 0.74 0.62 0.9 0.88 0.65 0.75 1 1.95
7 0.88 0.42 1.23 0.94 1.08 0.63 1.36 1.48 3.38 1.7 1.59 1.72
8 1.1 0.48 1.21 1.6 1.24 0.6 0.99 1.1 0.89 0.64 1.1 1.45
9 1.24 0.74 1.26 3.13 1.31 1.15 1.42 1.52 0.89 0.72 1.1 1.44

10 1.16 0.83 1.69 1.38 1.32 1.02 1.41 1.49 1.39 0.81 1.02 1.16

Table 2
FR1, FR2, FR3 and FR4 computing times (n = 24, T = 30)

Instance D1–S1 D2–S1 D1–S2

FR1SEC FR2SEC FR3SEC FR4SEC FR1SEC FR2SEC FR3SEC FR4SEC FR1SEC FR2SEC FR3SEC FR4SEC

1 86 164 129 117 178 278 56 68 184 388 50 140
2 76 185 55 101 116 344 46 50 282 806 99 73
3 88 155 91 152 104 271 87 80 140 391 87 93
4 60 259 74 112 191 450 69 81 695 234 72 91
5 93 425 85 215 209 276 73 83 219 184 82 102
6 95 171 102 112 202 191 77 86 116 160 67 75
7 144 390 88 168 81 187 72 81 120 158 70 74
8 79 270 84 187 326 352 79 113 148 379 75 103
9 73 239 97 113 103 221 67 75 126 202 88 205

10 91 195 84 90 111 306 82 120 169 253 73 85

Instance D2–S2 D1–S3 D2–S3

FR1SEC FR2SEC FR3SEC FR4SEC FR1SEC FR2SEC FR3SEC FR4SEC FR1SEC FR2SEC FR3SEC FR4SEC

1 103 183 59 102 200 262 55 90 174 369 97 127
2 102 180 92 121 789 274 68 70 346 208 68 107
3 99 166 156 249 716 198 96 93 565 191 96 133
4 86 293 81 127 337 190 115 110 165 260 115 109
5 166 280 77 90 131 165 85 89 207 204 85 94
6 121 223 124 126 233 783 92 90 110 214 92 121
7 288 196 77 93 151 174 102 100 178 176 102 114
8 95 195 104 140 287 490 104 106 754 245 104 100
9 87 153 113 115 220 224 96 98 127 207 96 120

10 108 247 105 98 135 222 93 94 176 595 93 170
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Table 3
FR2, RHP1 and RHP2 solution quality (n = 12, T = 30)

Instance D1–S1 D2–S1 D1–S2

FR2OBJ RH1OBJ RH2OBJ FR2OBJ RH1OBJ RH2OBJ FR2OBJ RH1OBJ RH2OBJ

1 1.79 11.32 91.51 0.3 6.61 154.13 0.06 12.35 124.06
2 1.29 9.89 99.27 0.43 0.87 312.83 2.21 10.63 84.15
3 2.56 16.88 121.88 0.3 4.23 196.62 1.22 10.71 129.25
4 5.88 15.88 124.46 0.47 3.36 365.63 1.99 17.16 146.84
5 3.54 18.37 122.45 0.27 9.85 141.54 1.38 12.93 134.97
6 1.06 9.4 81.2 0.37 7.51 154.46 2.15 11.98 100.91
7 2.97 11.06 111.98 0.5 5.98 247.28 1.68 15.83 124.98
8 2.98 12.24 120.41 0.28 11.59 178.41 2.34 19.72 123.39
9 2.31 14.08 131.92 0.96 4.17 73.57 0.27 9.33 103.26

10 0.76 11.34 127.32 0.33 4.69 178.28 0.66 11.86 152.57

Instance D2–S2 D1–S3 D2–S3

FR2OBJ RH1OBJ RH2OBJ FR2OBJ RH1OBJ RH2OBJ FR2OBJ RH1OBJ RH2OBJ

1 0.21 22.52 267.02 2.89 11.91 76.07 0.3 18.3 391.53
2 0.5 19.44 119.39 0.71 13.21 236.84 2.2 7.6 212.97
3 0.43 25.83 238.9 0.63 7.61 80.03 0.04 33.08 74.66
4 0.62 106.26 123.65 0.48 9.38 68.01 0.31 9.07 106.21
5 0.61 17.41 279.63 0.23 5.76 63.19 0.28 40.26 101.07
6 0.52 18.47 201.15 0.96 8.85 72.1 1.85 3.44 216.97
7 0.11 5.49 202.94 0.44 25.04 117.05 0.58 17.95 232.87
8 0.51 6.95 226.44 0.81 17 154.12 0.77 51.13 282.27
9 0.28 5.07 98.07 4.1 20.81 195.28 0.08 93.71 95.67

10 0.47 62.46 357.92 1.87 18.96 147.02 0.22 12.54 152.12

Table 4
FR2, RHP1 and RHP2 computing times (n = 12, T = 30)

Instance D1–S1 D2–S1 D1–S2

FR2OBJ RH1OBJ RH2OBJ FR2OBJ RH1OBJ RH2OBJ FR2OBJ RH1OBJ RH2OBJ

1 8.74 212.5 5.61 3.8 3.29 9.39 11.15 73.49 30
2 35.9 127 5.72 3.9 27.02 15.81 4.24 130 20.43
3 98.32 226.8 9.73 2.27 4.73 29.88 7.5 121.7 30.48
4 22.94 89.97 10.43 2.22 4.83 9.6 2.48 342.8 13.84
5 166.03 1253 15.6 2.18 3.5 10.54 1.67 498.6 10.16
6 20.41 308.2 9.12 1.55 1.92 50.64 19.49 68.1 27.52
7 321.58 1018 16.14 2.28 1.05 20.44 122.64 908.1 21.7
8 106.95 91.89 8.24 1.9 1.6 14.22 12.79 87.49 28.84
9 28.13 186.9 5.11 1.5 2.69 10.27 14.67 56.95 8.18

10 5.77 61.63 6.92 5 21.75 111.66 35.76 1869 13.52

Instance D2–S2 D1–S3 D2–S3

FR2OBJ RH1OBJ RH2OBJ FR2OBJ RH1OBJ RH2OBJ FR2OBJ RH1OBJ RH2OBJ

1 24.43 6.54 12.79 9.8 1166 27.8 12.75 56 11.31
2 16.95 6.1 32.62 3.47 100 15.71 5.23 157 27.63
3 13.55 45.92 39.83 2.49 146 37.46 4.06 44 52.73
4 22.87 114.2 9.44 7.31 267 549.03 22.04 6.61 63
5 18.47 43.01 13.09 5.67 484 18.89 10.75 7.31 92.99
6 16.44 47.79 171.8 51.97 3768 28.84 19.47 91.51 31.74
7 6.56 31.46 18.73 6.36 4194 14.34 15.85 57 17.53
8 13.66 150 9.34 18.76 290 67.18 3.46 551 58.93
9 19.37 13.8 19.61 74.23 533 80.25 3.2 2.8 12.91

10 20.85 61 16.37 21.31 2324 19.56 3.9 3.41 19.62
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Fig. 1. Solution boxplot for the FR procedures.
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Fig. 2. Solution boxplot for the FR2, RH1 and RH2 procedures.
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Fig. 3. Solution boxplot for the FR2 and RH1 procedures.

6. Conclusions

In this paper we have developed new RH and FR heuristics for the identical parallel machine lot-sizing and schedul-
ing problem with sequence-dependent set-up costs. Unlike previous papers, our procedures are based on a compact
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Table 5
FR2, RHP1 and RHP2 descriptive statistics

Procedure N Median Minimum Maximum Q1 Q3

FR2 60 0.61 0.040 5.88 0.30 1.83
RH1 60 11.95 0.87 106.26 7.92 18.35
RH2 60 130.60 63.2 391.5 101.6 202.5

formulation relying on the hypotheses of identical machines. This feature makes our approach suitable for large-scale
applications (with approximately 100 machines) arising in the textile and fiberglass industries. Comparisons with lower
bounds provided by a truncated branch-and-bound show that FR procedures outperform RH heuristics. For all FR algo-
rithms, the gap between the heuristic solution and the lower bound never exceeds 6%. In particular, the highest quality
solution is almost always obtained by the FR2 procedure in a reasonable amount of time. From qualitative analyses
of the solutions, the superiority of the product-partitioning policy FR2 can be explained as follows. For each product
due-date, the FR2 solution makes use of as few machines as possible for as many time periods as possible. On the other
hand, RH heuristics delay as much as possible product demand satisfaction, worsening subproblem total set-up cost as
due-dates become more and more urgent.
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