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In analogy with the study of copulas whose diagonal sections have been fixed,
we study the set �h of copulas for which a horizontal section h has been given. We
first show that this set is not empty, by explicitly writing one such copula, which
we call horizontal copula. Then we find the copulas that bound both below and
above the set �h. Finally, we determine the expressions for Kendall’s tau and
Spearman’s rho for the horizontal and the bounding copulas.
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1. Introduction

We briefly recall that a copula (see Sklar, 1959; Schweizer and Sklar, 1983) is a
function C � �0� 1�× �0� 1� → �0� 1� that satisfies the following properties:

(i) for all x ∈ �0� 1�� C�x� 0� = C�0� x� = 0;
(ii) for all x ∈ �0� 1�� C�1� x� = C�1� x� = x;
(iii) it is 2-increasing, i.e., for all x� x∗� y, and y∗ in [0,1] with x ≤ x∗ and y ≤ y∗

one has

C�x∗� y∗�− C�x∗� y�− C�x� y∗�+ C�x� y� ≥ 0� (1)
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As a consequence of these properties, a copula C satisfies the Lipschitz condition

�C�x∗� y∗�− C�x� y�� ≤ �x∗� x� + �y∗ − y��

is non decreasing in each variable and is absolutely continuous in each variable.
A copula is the restriction of a bivariate distribution function that concentrates

all the probability on the unit square �0� 1�2 and which has uniform marginals; the
importance of this concept for probability and statistics stems from Sklar’s theorem
(see Sklar, 1959; Nelsen, 1999).

Given a copula C, its diagonal section is the function � � �0� 1� → �0� 1� defined
by ��u� = C�u� u�. If C is the copula of the random variables X and Y then for its
diagonal section � we have

��u� = P�X ≤ QX�u�� Y ≤ QY �u���

where QX�u�, QY �u� are the u-quantiles of the random variables X and Y ,
respectively.

The problem of finding a copula C if only the diagonal section � of C is known
has been the object of several papers. Bertino (1977) found the smallest copula with
a given diagonal section � (compare also Fredricks and Nelsen, 1997, 2002; Nelsen,
1999). In Fredricks and Nelsen (1997), through

C��x� y� = min
(
x� y�

��x�+ ��y�

2

)
�

a copula was introduced whose diagonal section coincides with a prescribed suitable
function � that plays rôle of diagonal; this copula was called diagonal copula. Other
related results can also be found in Nelsen et al. (2004) and Klement and Kolesárová
(2005).

The aim of this article is to study copulas with a given horizontal section.
The article is organized as follows. In the following section, copulas with given
horizontal sections are discussed. In Sec. 3, the greatest and smallest copula with a
prescribed horizontal section are given, and in Sec. 4, some dependence parameters
of these copulas are introduced.

2. Horizontal Sections of Copulas

Let b ∈�0� 1� be a fixed number. The horizontal b-section of a copula C is the
function hC�b � �0� 1� → �0� 1� given by hC�b�x� = C�x� b�. In general, we shall speak
of a horizontal section h. Given two random variables, U and V , having uniform
distribution on [0,1] and linked through the copula C, we have

hC�b�u� = P�U ≤ u� V ≤ b� = bP�U ≤ u �V ≤ b� = bFU �V≤b�u��

i.e., the horizontal section hC�b is b times the conditional distribution function of
U under the condition V ≤ b. In general, when no restrictions are imposed on the
random variables X and Y linked by the copula C, for each t ∈ � we have

hC�b�FX�t�� = bFX � Y≤QY �b�
�t��
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where QY is the quantile function of Y . Thus horizontal sections express our
knowledge about the random variable X under the condition that Y does not exceed
some prescribed fixed value. This corresponds to truncation (on the right) of the
random variable Y , a well-known statistical practice (see, e.g., Kendall and Stuart,
1973). For instance, if Y respresents the distance from the center of a vertical circular
target of fixed radius b on a shooting range, then one can only observe Y for the
shots that actually hit the target, namely for those shots for which Y ≤ b.

In this article, we wish to study possible copulas C linking X and Y if only such
partial knowledge expressed by a horizontal section is available.

It follows easily from the properties of a copula that all horizontal b-sections of
copulas are non decreasing, 1-Lipschitz functions. Since the copulas W and M given
by W�x� y� = max�x + y − 1� 0� and M�x� y� = min�x� y� are the Fréchet–Hoeffding
lower and upper bounds of copulas, we have

hW�b ≤ hC�b ≤ hM�b (2)

i.e., for all x ∈ �0� 1�,

max�x + b − 1� 0� ≤ hC�b�x� ≤ min�x� b��

In particular, hC�b�0� = 0 and hC�b�1� = b for the horizontal section of every copula C.
For fixed b ∈�0� 1�, let �b be the set of all non decreasing 1-Lipschitz functions

h satisfying the same bounds as in (2). The question arises whether for each h ∈ �b

there is a copula C whose horizontal b-section coincides with h, i.e., C�x� b� = h�x�
for all x ∈ �0� 1�.

Proposition 2.1. Let b ∈�0� 1�, h ∈ �b. Then the function C̃h � �0� 1�
2 → �0� 1�

defined by

C̃h�x� y� =


yh�x�

b
if y ≤ b�

�1− y�h�x�+ �y − b�x

1− b
otherwise�

(3)

is a copula whose horizontal b-section coincides with h.

Proof. We first verify the boundary conditions. Let x and y belong to �0� 1�.
Because of h�1� = b and h�0� = 0, we have C̃h�x� 1� = �1−b�x

1−b
= x and C̃h�1� y� =

yh�1�
b

= y in the case y ≤ b, while, if y > b, then we obtain C̃h�1� y� = �1−y�b+�y−b�

1−b
= y.

Similarly, C̃h�x� 0� = C̃h�0� y� = 0.
We next verify the 2-increasing property of C̃h. Put R = �x� x∗�× �y� y∗� with 0 ≤

x ≤ x∗ ≤ 1 and 0 ≤ y ≤ y∗ ≤ 1, and denote by VC̃h
�R� the C̃h-volume of the rectangle

R, i.e.,

VC̃h
�R� = C̃h�x� y�+ C̃h�x

∗� y∗�− C̃h�x
∗� y�− C̃h�x� y

∗�� (4)

If R ⊆ �0� 1�× �0� b�, then from (3) and since h is non decreasing, we obtain

VC̃h
�R� = 1

b
�h�x∗�− h�x���y∗ − y� ≥ 0�
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If R ⊆ �0� 1�× �b� 1�, then from (3) and the 1-Lipschitz property of h we have

VC̃h
�R� = 1

1− b
�y∗ − y��h�x�− h�x∗�+ x∗ − x� ≥ 0�

The 2-increasing property of C̃h in general follows from the additivity of the
C̃h-volume. �

Copulas defined by (3) will be called horizontal copulas. Note that all the
horizontal copulas C̃h are absolutely continuous.

Remark 2.1. Formally, we can also deal with b ∈ 	0� 1
. However, then the sets �b

are trivial. For b ∈ 	0� 1
, the horizontal copula is C̃h = �, the product copula �

defined by ��x� y� = xy, see (3) (using the convention 0
0 = 0).

Moreover, if h ∈ �b is piecewise linear then the horizontal copula C̃h is
piecewise bilinear (compare the checkerboard approximation copulas in Li et al.,
1998, and the bilinear extension of discrete copulas in Sungur and Ng, 2005).

Example 2.1. Fix b ∈�0� 1�. The horizontal copula for the greatest element hM of
�b given by hM�x� = min�x� b�, is the ordinal sum C̃hM

= ��0� b��	� �b� 1��	�.
The smallest element hW of �b given by hW�x� = max�x + b − 1� 0�, leads to the

horizontal copula C̃hW
, which is a W -ordinal sum of �-summands (compare Mesiar

and Szolgay, 2004),

C̃hW
= W -��0� 1− b��	� �1− b� 1��	��

3. Properties of the Class ���h

The proof of the following result is trivial and therefore omitted.

Proposition 3.1. Let b ∈�0� 1� and h ∈ �b. The set �h of all copulas, whose horizontal
b-section is h, is a convex and compact subset of the space of all continuous real valued
functions defined on �0� 1�2 with respect to the topology of uniform convergence.

Next, we show that the set �h has a greatest and a smallest element.

Theorem 3.1. Let b ∈�0� 1�� h ∈ �b. Then the function Ch � �0� 1�
2 → �0� 1� defined by

Ch�x� y� =


y if y ≤ h�x��

h�x� if h�x� < y ≤ b�

y − b + h�x� if b < y ≤ x + b − h�x��

x otherwise�

(5)

is the greatest copula whose horizontal b-section coincides with h.
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Proof. Using the properties h�0� = 0� h�1� = b and the definition (5) of Ch, we
obtain, for all x and y in �0� 1�,

Ch�x� 1� = x and Ch�1� y� =
{
y if y ≤ b�

y − b + h�1� = y otherwise�

Similarly, for all x and y in �0� 1�� Ch�x� 0� = Ch�0� y� = 0, which means that Ch

satisfies the boundary conditions of copulas.
Next, consider a rectangle R = �x� x∗�× �y� y∗� with 0 ≤ x ≤ x∗ ≤ 1 and 0 ≤ y ≤

y∗ ≤ 1. The 2-increasing property of Ch is equivalent to the property VCh
�R� ≥ 0 for

each R ⊆ �0� 1�2, where VCh
�R� is the Ch-volume of R. The unit square is divided

by the curves y = h�x�� y = b� y = x + b − h�x� into four subsets. Evidently, if R is
entirely contained in one of these sets, then VCh

�R� = 0. The only two interesting
cases where the 2-increasing property of Ch must be verified are the following ones.

Consider first that y = x + b − h�x� and y∗ = x∗ + b − h�x∗�. Then

VCh
�R� = x∗ − y + b − h�x∗� = y∗ − y ≥ 0�

Next, if y = h�x� and y∗ = h�x∗�, then

VCh
�R� = y∗ − h�x� = y∗ − y ≥ 0�

Note that any other rectangle R ⊆ �0� 1�2 is always a finite union of rectangles
of the types discussed above and the 2-increasing property of Ch follows from the
additivity of VCh

. Evidently, Ch�x� b� = h�x�, for every x ∈ �0� 1�.
Next, notice that Ch can be written in the form Ch = Gh ∧M , where

Gh�x� y� =
{
h�x� if y ≤ b�

y − b + h�x� otherwise�
(6)

is the greatest 1-Lipschitz non decreasing function from �0� 1�2 into � such that
Gh�x� b� = h�x� (see Kolesárová and Klement, 2005). Since M is the upper Fréchet–
Hoeffding bound for copulas, each copula C ∈ �h is bounded by Gh ∧M = Ch. �

Theorem 3.2. Let b ∈ �0� 1�� h ∈ �b. Then the function Ch � �0� 1�
2 → �0� 1� defined by

Ch�x� y� =


0 if y ≤ b − h�x��

y − b + h�x� if b − h�x� < y ≤ b�

h�x� if b < y ≤ 1− x + h�x��

x + y − 1 otherwise�

is the smallest copula whose horizontal b-section coincides with h.

Proof. The proof is similar to that of Theorem 3.1. We omit the details of
verification of the boundary conditions. The unit square is again divided into four
subsets by the curves y = b − h�x�� y = b, and y = 1− x + h�x�. The 2-increasing
property of Ch will be examined only in the following two relevant cases.
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Consider first the rectangle R = �x� x∗�× �y� y∗� with y = b − h�x∗� and
y∗ = b − h�x�. Then, from the isotony of h we have

VCh
�R� = y∗ − b + h�x∗� = h�x∗�− h�x� ≥ 0�

Next, if R = �x� x∗�× �y� y∗� with y = 1− x∗ + h�x∗� and y∗ = 1− x + h�x�, then

VCh
�R� = h�x�+ x∗ + y∗ − 1− h�x�− h�x∗� = x∗ + 1− x + h�x�− 1− h�x∗�

= x∗ − x + h�x�− h�x∗� ≥ 0�

The last inequality follows from the 1-Lipschitz property of h.
Since any other rectangle R ⊆ �0� 1�2 is a finite union either of rectangles that

are of the two types described above or of rectangles that are subsets of one of
the mentioned four areas, where VCh

�R� = 0, the 2-increasing property is proved.
It is clear that, for all x ∈ �0� 1�, one has Ch�x� b� = h�x�.

Observe that Ch may be expressed in the form Ch = Fh ∨W , where

Fh�x� y� =
{
y − b + h�x� if y ≤ b�

h�x� otherwise�

i.e., Fh is the smallest non decreasing 1-Lipschitz function on �0� 1�2 with horizontal
b-section given by h. Since the lower Fréchet–Hoeffding bound for copulas is W ,
Ch is the smallest copula with the required property. �

Corollary 3.1. For every function h ∈ �b, and for every copula C, the following
statements are equivalent:

(i) C ∈ �h;
(ii) Ch ≤ C ≤ Ch.

Remark 3.1.

(i) For all b ∈ �0� 1� and for every h ∈ �b� Ch, and Ch are singular copulas
with supports on the curves y = h�x�� y = x + b − h�x� and y = b − h�x�,
y = 1− x + h�x�, respectively.

(ii) The upper bound Ch and the lower bound Ch of copulas in �h can also be
written as

Ch�x� y� = min�h�x�+max�y − b� 0��M�x� y���

Ch�x� y� = max�h�x�+min�y − b� 0��W�x� y���

(iii) Observe that quasi-copulas (see Alsina et al., 1993; Genest et al., 1999) have
the same set �b of b-horizontal sections as copulas. Moreover, for each
b ∈ �0� 1� and h ∈ �b� Ch and Ch are the greatest and smallest quasi-copula
with given horizontal section h, respectively. However, the quasi-copula Q =
med

(
Ch� Ch� b · 1�0�1�2

)
has horizontal section h, but need not be a copula

whenever h � 	hW � hM
.
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Example 3.1.

(i) For the smallest element hW of �b the greatest copula with b-horizontal section
given by hW is given by

ChW
�x� y� =


0 if �x� y� ∈ �0� 1− b�× �0� b��

min�x� y − b� if �x� y� ∈ �0� 1− b�×�b� 1��

min�y� x+ b − 1� if �x� y� ∈ �1− b� 1�× �0� b��

x + y − 1 otherwise�

Note that ChW
is the W -ordinal sum W -��0� 1− b�M	� �1− b� 1�M	� which is a

shuffle of M (see Nelsen, 1999).
(ii) It can be easily shown that, for the greatest element hM of �b, the smallest

copula ChM
with b-horizontal section given by hM is the ordinal sum

��0� b�W	� �b� 1�W	�.

For b ∈ �0� 1� and a horizontal section h ∈ �b, define h−� ĥ � �0� 1� → �0� 1� by
h−�x� = x − h�x� and ĥ�x� = x − b + h�1− x�. Obviously, both h− and ĥ belong to

�1−b. Moreover, we have �̂C̃h� = C̃ĥ, where Ĉ is the survival copula of the copula C.

Similarly, we obtain �̂Ch� = Cĥ and �̂Ch� = Cĥ.
Given a copula C, define the copula C− � �0� 1� → �0� 1� by

C−�x� y� = x − C�x� 1− y�

(observe that if C is the copula of the random variables X and Y then C− is the
copula of the random variables X and −Y ). Then we have �C̃h�

− = C̃h−� �Ch�
− =

Ch− and �Ch�
− = Ch− .

4. Kendall’s Tau and Spearman’s Rho in ���h

If X and Y are continuous random variables with copula C, then the population
version of Kendall’s tau is given (see Nelsen, 1999) by

�C = 4
∫∫

�0�1�2
C�x� y� dC�x� y�− 1� (7)

By recourse to Theorem 3.1 in Li et al. (2002), (7) may be written in the form

�C = 1− 4
∫∫

�0�1�2
D1C�x� y�D2C�x� y�dx dy� (8)

where D1 and D2 are the partial derivatives with respect to the first and second
coordinate, respectively.

Since the partial derivatives of C̃h exist almost everywhere in �0� 1�2, one has

D1C̃h�x� y� =
y

b
h′�x�1�0�b��y�+

�1− y�h′�x�+ y − b

1− b
1�b�1��y� a.e.�

D2C̃h�x� y� =
h�x�

b
1�0�b��y�+

x − h�x�

1− b
1�b�1��y� a.e.�
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so that ∫∫
�0�1�2

D1C̃h�x� y�D2C̃h�x� y�dx dy

= b2

4
+ 1− b2

2�1− b�2

∫ 1

0
�x − xh′�x�− h�x�+ h�x�h′�x��dx

+ 1
1− b

∫ 1

0
�xh′�x�− bx − h�x�h′�x�+ bh�x��dx�

After some calculation we obtain �C̃h
= 4

∫ 1
0 h�x�dx − 2b�

As for Ch, the greatest copula in �b, one easily computes its partial derivatives

D1Ch�x� y� = h′�x�1�h�x��x+b−h�x���y�+ 1�x+b−h�x��1��y� a.e.�

D2Ch�x� y� = 1�0�h�x���y�+ 1�b�x+b−h�x���y� a.e.

Hence, �Ch
= 4

∫ 1
0 h�x� dx − 1+ 2�1− b�2.

Finally, we compute Kendall’s tau for Ch, the smallest copula in �b. Its partial
derivatives are

D1Ch�x� y� = h′�x�1�b−h�x��1−x+h�x���y�+ 1�1−x+h�x��1��y� a.e.�

D2Ch�x� y� = 1�b−h�x��b��y�+ 1�1−x+h�x��1��y� a.e.

Thus �Ch
= 4

∫ 1
0 h�x� dx − 1− 2b2.

Summarizing these results, we have the following.

Proposition 4.1. Let b ∈�0� 1� and h ∈ �b. Then:

(i) �C̃h
= 4

∫ 1
0 h�x�dx − 2b,

(ii) �C̃h
= 4

∫ 1
0 h�x�dx − 1+ 2�1− b�2,

(iii) �Ch
= 4

∫ 1
0 h�x�dx − 1− 2b2,

(vi) for each copula C ∈ �h we have �C = 4
∫ 1
0 h�x�dx + c, where the constant c

satisfies c ∈ �−1− 2b2�−1+ 2�1− b�2�.

Observe that for each b ∈ �0� 1� and each h ∈ �b we have

�C̃h
= �Ch

+ �Ch

2
�

Moreover, in particular we get

�C̃hM
= 2b�1− b��

�C̃hW
= −2b�1− b��

�ChW
= �1− 2b�2

(
and obviously �ChM

= �M = 1
)
�

�ChM
= −�1− 2b�2 �and �ChW

= �W = −1��
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Turning our attention to Spearman’s rho, recall that for continuous random
variables X and Y whose copula is C, the population version of Spearman’s rho
(denoted by C) is given by (see Nelsen, 1999)

C = 12
∫∫

�0�1�2
C �x� y�dx dy − 3� (9)

It is not difficult to compute Spearman’s rho for distinguished copulas in the
class �h. The results are summarized below.

Proposition 4.2. Let b ∈�0� 1� and h ∈ �b. Then

(i) C̃h
= 6

∫ 1
0 h�x�dx − 3b,

(ii) Ch
= 1− 6b + 12

∫ 1
0 h�x��x + b − h�x��dx,

(iii) Ch
= −1+ 12

∫ 1
0 h�x��h�x�− x − b + 1��dx.

Observe that the copulas C̃h and Ch+Ch

2 have the same Spearman’s rho, i.e.,

C̃h
= Ch+Ch

2
= Ch

+ Ch

2
�

Moreover, for each copula C ∈ �h we have C ∈ �Ch
� Ch

�. In particular, we get

C̃hM
= 3b�1− b��

C̃hW
= −3b�1− b��

ChW
= 1− 6b + 6b2 �and ChM

= M = 1��

ChM
= −1+ 6b − 6b2 �and ChW

= W = −1��

5. Concluding Remarks

We have discussed possible extensions of copulas when only one horizontal section
h ∈ �b for some b ∈�0� 1� is known. Evidently, for all �� � ∈ �0� 1� with �+ � ≤ 1 the
convex combination

C����b�h = �Ch + �Ch + �1− �− ��C̃h (10)

also is an element of �h. Observe that, in the case b ∈ 	0� 1
, the copulas given by
(10) form the Fréchet family of copulas (see Nelsen, 1999).

For the possible identification of a copula C����b�h where not only some
horizontal section h ∈ �b with b ∈�0� 1�, but also �C����b�h

or C����b�h
are known, we

give the equations for these dependence parameters �C����b�h
or C����b�h

as functions of
b� h� �, and �:

�C����b�h
= 4

∫ 1

0
h�x�dx + 2�2�1− b�2 − 2�2b2 + �1− �− ��2�1− 2b�

+ 4���1− 2b�+ ��1− �− ��
8− 16b + 4b2

3

+ ��1− �− ��
4− 8b − 4b2

3
− 1�
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C����b�h
= 12

∫ 1

0
h�x� · ���− ���x + b − h�x��+ � − 2�1− �− ���dx

+ ��1− 6��− � − 3�1− �− ��b�

making it possible to transform the first equation by means of the second one into
a quadratic equation in one variable.

Moreover, each element of the class 	C̃h �h ∈ �b� b ∈ �0� 1�
, i.e., each horizontal
copula satisfies the remarkable property 3�C̃h

= 2C̃h
(note that the members of

the family of Farlie–Gumbel–Morgenstern copulas as considered in Eyraud, 1938;
Morgenstern, 1956; Gumbel, 1958; Farlie, 1960, and Nelsen, 1999 have the same
property).
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