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Abstract

In this work we investigate the class of binary aggregation operators (=agops) satisfying the 2-increasing property,
obtaining some characterizations for agops having other special properties (e.g., quasi-arithmetic mean, Choquet-integral
based, modularity) and presenting some construction methods. In particular, the notion of P-increasing function is used in
order to characterize the composition of 2-increasing agops. The lattice structure (with respect to the pointwise order) of
some subclasses of 2-increasing agops is presented. Finally, a method is given for constructing copulas beginning from 2-
increasing and 1-Lipschitz agops.
� 2006 Elsevier Inc. All rights reserved.
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1. Introduction

The aggregation of different pieces of information is one of the major problem for all kinds of knowledge
based systems. Here the aggregations of a finite number of input values, which belong to the unit interval [0, 1],
into an output value, belonging to the same interval, are considered, following the ideas and the notations of
the books [2,4]. Specifically, binary aggregation operators (agops, for short) satisfying the 2-increasing prop-
erty are analysed in details.

The 2-increasing property has a relevant connection with the theory of copulas, whose interest in statistics is
well known (see [18]). Moreover, associative copulas form a distinguished subset of the class of continuous
triangular norms, which are largely used in the treatment of vague information (see, for example, [11]). The
2-increasing property has been considered, for instance, in the fuzzy inference processing, when one imposes
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some special conditions (see [22,17]). However, this property has a relevant rôle also in the theory of fuzzy
measures, where it is also known as ‘‘supermodularity’’ (see [6]).

Basic definitions and properties of 2-increasing binary aggregation operators are considered in Section 2. In
Section 3, the 2-increasing property is characterized in some subclasses of agops, while construction methods
are investigated in Sections 4 and 5. The lattice structure of some subclasses are, then, considered in Section 6.
Finally, we present a method for constructing a copula starting from a 2-increasing and 1-Lipschitz agop (Sec-
tion 7).

2. Definitions and basic properties

A binary aggregation operator (shortly, agop) is a mapping A from [0, 1]2 into [0,1] that satisfies the follow-
ing properties:

(A1) A(0,0) = 0 and A(1,1) = 1;
(A2) A(x,y) 6 A(x 0,y 0) for x 6 x 0 and y 6 y 0.

The class of agops will be denoted by A.
An agop A has a neutral element e 2 [0, 1] if
Aðx; eÞ ¼ x ¼ Aðe; xÞ for every x 2 ½0; 1�; ð2:1Þ

and it has an annihilator a 2 [0,1] if
Aðx; aÞ ¼ a ¼ Aða; xÞ for every x 2 ½0; 1�: ð2:2Þ

Given an agop A,

• the horizontal section of A at b 2 [0,1] is the function hb : [0,1]! [0,1] defined by hb(x) :¼ A(x,b);
• the vertical section of A at a 2 [0,1] is the function va : [0, 1]! [0,1] defined by va(y) :¼ A(a,y);
• the diagonal section of A is the function dA : [0, 1]! [0, 1] defined by dA(t) :¼ A(t, t).

The sections h0, h1, v0, and v1 are called marginals of A.
An agop A is said to be 2-increasing if, for all x1, x2, y1, and y2 in [0, 1] with x1 6 x2 and y1 6 y2, one has
V Að½x1; x2� � ½y1; y2�Þ :¼ Aðx1; y1Þ þ Aðx2; y2Þ � Aðx1; y2Þ � Aðx2; y1ÞP 0: ð2:3Þ

Inequality (2.3) is called rectangular inequality and VA([x1,x2] · [y1,y2]) is said to be the A-volume of
[x1,x2] · [y1,y2]. Notice that inequality (2.3) is equivalent to the fact that both the functions
t 7! Aðx2; tÞ � Aðx1; tÞ and s 7! Aðs; y2Þ � Aðs; y1Þ

are increasing for x1 6 x2 and for y1 6 y2, respectively. This property is also known as moderate growth (see
[17]).

A 2-increasing agop is also supermodular with respect to the pointwise order on [0,1]2. In fact, if x ^ y and
x _ y denote, respectively, the componentwise minimum and maximum of two points x and y of [0,1]2, then
inequality (2.3) can be rewritten in the form
Aðx ^ yÞ þ Aðx _ yÞP AðxÞ þ AðyÞ:

The class of 2-increasing agops will be denoted by A2.

Remark 2.1. Let A be a 2-increasing agop, A 2A2. Then the dual of A is defined, for every point (x,y) in
[0,1]2, by
Adðx; yÞ :¼ 1� Að1� x; 1� yÞ:
It is immediately seen that Ad is 2-decreasing, in the sense that, for its Ad-volume, V Ad ð½x1; x2� � ½y1; y2�Þ 6 0
holds. Analogously, if A is 2-decreasing, then its dual is 2-increasing. Therefore one may limit oneself to con-
sidering only 2-increasing agops, since the analogous results for the 2-decreasing ones are obtained by duality.
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Some important examples of 2-increasing agops are the restrictions to [0,1]2 of bivariate distribution func-
tions F such that F(0,0) = 0 and F(1,1) = 1, in particular copulas, which correspond to the case when the mar-
ginal distributions are uniform on the unit interval (and in such a case, they possess a neutral element 1) (see
[18]), the smallest agop, defined by
ASðx; yÞ ¼
1; if ðx; yÞ ¼ ð1; 1Þ;
0; otherwise;

�

and the weighted arithmetic means (see [3]).

In order to prove that a function F : [0,1]2! [0, 1] satisfies the rectangular inequality (2.3), the following
technical result will be useful. But, first, let D+ and D� denote the subsets of the unit square given by
Dþ :¼ fðx; yÞ 2 ½0; 1�2 : x P yg; D� :¼ fðx; yÞ 2 ½0; 1�2 : x 6 yg;

then one has

Lemma 2.2. For every agop A, the A-volume VA(R) of any rectangle R � [0,1]2 can be expressed as the sum
X
i

V AðRiÞ
of at most three terms, where the rectangles Ri may have a side in common and belong to one of the following

types:

(a) Ri � D+;
(b) Ri � D�;
(c) Ri = [s, t] · [s, t] for some s and t in [0, 1], s < t.

Proof. Let a rectangle R � [0,1]2 be given; if it belongs to one of the three types (a), (b) or (c) there is nothing
to prove. Then consider the other possible cases: R may have one, two or three vertices in D�.

Let R = [x1,x2] · [y1,y2] have one vertex in D+ and three in D�; then, since y2 > x2 > y1 > x1, one can write
R ¼ ð½x1; y1� � ½y1; y2�Þ [ ð½y1; x2� � ½y1; x2�Þ [ ð½y1; x2� � ½x2; y2�Þ;

of these rectangles, the first and the third one are of type (b), while the second one is of type (c). Now
V Að½x1; y1� � ½y1; y2�Þ ¼ Aðy1; y2Þ � Aðy1; y1Þ � Aðx1; y2Þ þ Aðx1; y1Þ;
V Að½y1; x2� � ½y1; x2�Þ ¼ Aðx2; x2Þ � Aðx2; y1Þ � Aðy1; x2Þ þ Aðy1; y1Þ;
V Að½y1; x2� � ½x2; y2�Þ ¼ Aðx2; y2Þ � Aðx2; x2Þ � Aðy1; y2Þ þ Aðy1; x2Þ:
Therefore, summing these equalities yields
V Að½x1; y1� � ½y1; y2�Þ þ V Að½y1; x2� � ½y1; x2�Þ þ V Að½y1; x2� � ½x2; y2�Þ
¼ Aðx2; y2Þ � Aðx2; y1Þ � Aðx1; y2Þ þ Aðx1; y1Þ ¼ V Að½x1; x2� � ½y1; y2�Þ;
which proves the assertion in this case. The other cases are proved in a similar manner. h

Proposition 2.3. An agop A:[0,1]2! [0,1] is 2-increasing if, and only if, the three following conditions hold:

(i) VA(R) P 0 for every rectangle R � D+;
(ii) VA(R) P 0 for every rectangle R � D�;

(iii) VA(R) P 0 for every square R � [0,1]2, R = [s, t] · [s, t].

Proof. If A is 2-increasing, (i), (ii) and (iii) follow easily. Conversely, let R be a rectangle contained in [0, 1]2.
Then, because of the previous lemma, R can be decomposed into the union of at most three sub-rectangles Ri

of type (a), (b) or (c); and for each of them VA(Ri) P 0 holds. Therefore V AðRÞ ¼
P

V AðRiÞP 0. h
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Remark 2.4. Every 2-increasing agop A induces a positive and r-additive measure lA on [0,1]2 given, for every
rectangle [x1,x2] · [y1,y2], by
lAð½x1; x2� � ½y1; y2�Þ :¼ V Að½x1; x2� � ½y1; y2�Þ;

and extended on the whole family of Borel sets of [0, 1]2 using classical measure theoretic techniques.
3. Characterizations of some subclasses of 2-increasing agops

In this section, some subclasses of agops satisfying the 2-increasing property are characterized.

Proposition 3.1. Let A be a 2-increasing agop. Then:

(a) the neutral element e 2 [0,1] of A, if it exists, is equal to 1;

(b) the annihilator a 2 [0,1] of A, if it exists, is equal to 0.

(c) if A is continuous on the border of [0,1]2, then A is continuous on [0,1]2.

Proof. Let A be a 2-increasing agop.
If A has neutral element e 2 [0, 1[, then
Að1; 1Þ þ Aðe; eÞ ¼ 1þ Aðe; eÞP Aðe; 1Þ þ Að1; eÞ ¼ 1þ 1;
a contradiction. Therefore e = 1 and, as a consequence, A is a copula.
Let A have an annihilator a 2 [0, 1]. Assume, if possible that a > 0; then
Aða; aÞ � Aða; 0Þ � Að0; aÞ þ Að0; 0Þ ¼ �a P 0;
a contradiction; as a consequence, a = 0.
Let A be continuous on the border of [0, 1]2 and let (x0,y0) be a point in ]0,1[2 such that A is not continuous

in (x0,y0). Suppose, without loss of generality, that there exists a sequence fxngn2N in [0, 1], xn 6 x0 for every
n 2 N, such that fxngn2N tends to x0 as n! +1 and
lim
n!þ1

Aðxn; y0Þ < Aðx0; y0Þ:
Therefore, there exist � > 0 and n0 2 N such that A(x0,y0) � A(xn,yn) > � for every n P n0. But, because A is
continuous on the border of the unit square, there exists n > n0 such that Aðx0; 1Þ � Aðxn; 1Þ < �. But this vio-
lates the 2-increasing property, because, in this case,
V ð½xn; x0� � ½y0; 1�Þ < 0:
Thus the only possibility is that A is continuous on [0,1]2. h

Proposition 3.2. Let Mf be a quasi-arithmetic mean, viz. let a continuous strictly monotone function f : ½0; 1� ! R

exist such that
Mf ðx; yÞ :¼ f �1 f ðxÞ þ f ðyÞ
2

� �
:

Then Mf is 2-increasing if, and only if, f�1 is convex.

Proof. Let s and t be real numbers and set a :¼ f�1(s) and b :¼ f�1(t). If Mf is 2-increasing, then
Mf ða; aÞ þMf ðb; bÞP Mf ða; bÞ þMf ðb; aÞ ¼ 2Mf ða; bÞ; ð3:1Þ

because Mf is also commutative, and (3.1) is equivalent to
f �1ðsÞ þ f �1ðtÞP 2f �1 sþ t
2

� �
:

This shows that f�1 is Jensen-convex and hence convex.
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Conversely, let f�1 be convex; one has to prove that, whenever x1 6 x2 and y1 6 y2,
Mf ðx1; y1Þ þMf ðx2; y2ÞP Mf ðx2; y1Þ þMf ðx1; y2Þ;
or, equivalently, that
f �1ðs1Þ þ f �1ðs4ÞP f �1ðs2Þ þ f �1ðs3Þ;
where
s1 :¼ f ðx1Þ þ f ðy1Þ
2

; s4 :¼ f ðx2Þ þ f ðy2Þ
2

;

s2 :¼ f ðx2Þ þ f ðy1Þ
2

; s3 :¼ f ðx1Þ þ f ðy2Þ
2

:

Assume now that f is (strictly) increasing; setting
a :¼ s4 � s2

s4 � s1

;

one has a 2 [0, 1] and
s2 ¼ as1 þ ð1� aÞs4; s3 ¼ ð1� aÞs1 þ as4:
Because f�1 is convex, one has
f �1ðs2Þ þ f �1ðs3Þ 6 f �1ðs1Þ þ f �1ðs4Þ;
namely the assertion.
If, on the other hand, f is (strictly) decreasing, then one sets
a :¼ s1 � s2

s1 � s4
in order to reach the same conclusion. h

Remark 3.3. Notice that, if Mf is a quasi-arithmetic mean generated by a function f, with f�1 convex, then
Mf ðx; yÞ 6
xþ y

2
for every ðx; yÞ 2 ½0; 1�2:
In fact, if f is increasing, so is f�1, and Mf ðx; yÞ 6 xþy
2

is equivalent to the fact that f is Jensen-concave and, thus,

f�1 convex. Instead, if f is decreasing, so is f�1, and Mf ðx; yÞ 6 xþy
2

is equivalent to the fact that f is Jensen-con-
vex and, thus, f�1 convex.

The 2-increasing property can be considered also in the class of Choquet integral-based agop, a class of
agops based on the ideas of [5] (see, also, [1,3]).

Proposition 3.4. The Choquet integral-based agop, defined for a and b in [0,1] by
AChðx; yÞ ¼
ð1� bÞxþ by; if x 6 y;

axþ ð1� aÞy; if x > y;

�

is 2-increasing if, and only if, a + b 6 1.

Proof. It is easily proved that ACh is 2-increasing on every rectangle contained either in D+ or in D�. Now, let
R :¼ [s, t] · [s, t], s < t. Then
V ACh
ð½s; t� � ½s; t�Þ ¼ sþ t � ½ð1� bÞsþ bt� � ½at þ ð1� aÞs�
is greater than 0 for all s and t such that 0 6 s < t 6 1 if, and only if, a + b 6 1. Therefore, we have the desired
assertion by using Proposition 2.3. h
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Notice that, if a + b = 1, we have the weighted arithmetic mean. Instead, if a = b 6 1/2, we have the OWA
operator ACh(x,y) = (1 � a)min{x,y} + amax{x,y}. OWA operators have been introduced by Yager (see
[21]) and they are agops that lie between the minimum and the maximum. A recent application of OWA oper-
ators is given in [20].

Remark 3.5. The above proposition can be also proved by using some known results on fuzzy measures. In
fact, following [6], it is known that a Choquet integral operator based on a fuzzy measure m is supermodular if,
and only if, the fuzzy measure m is supermodular. But, in the case of 2 inputs, say X2 :¼ f1; 2g, we can define a
fuzzy measure m on 2X2 by giving the values m({1}) = a and m({2}) = b, where a and b are in [0,1]. Moreover,
it is also known that m is supermodular if, and only if, a + b 6 1.

A special subclass of 2-increasing agops is that formed by modular agops, i.e. those A’s for which
VA(R) = 0 for every rectangle R � [0, 1]2. For these operators the following characterization holds.

Proposition 3.6. For an agop A the following statements are equivalent:

(a) A is modular;

(b) increasing functions f and g from [0, 1] into [0,1] exist such that f(0) = g(0) = 0, f(1) + g(1) = 1, and
Aðx; yÞ ¼ f ðxÞ þ gðyÞ: ð3:2Þ
Proof. If A is modular, set f(x) :¼ A(x, 0) and g(y) :¼ A(0, y). From the modularity of A
0 ¼ V Að½0; x� � ½0; y�Þ ¼ Aðx; yÞ � f ðxÞ � gðyÞ þ Að0; 0Þ;
which implies (b). Viceversa, it is clear that every function of type (3.2) is modular. h
4. Construction of 2-increasing agops

In the literature, there is a variety of construction methods for agops (see [3] and the references therein). In
this section, some of these methods are used to obtain an agop satisfying the 2-increasing property.

Proposition 4.1. Let u : [0,1]! [0,1] be a continuous and strictly increasing function with u(0) = 0 and
u(1) = 1. The following statements are equivalent:

(a) u is concave;

(b) for every A 2A2, the function
Auðx; yÞ :¼ u�1ðAðuðxÞ;uðyÞÞÞ
is a 2-increasing agop.
Proof. ðaÞ ) ðbÞ Let A be a 2-increasing agop and let R = [x1,x2] · [y1,y2] be any rectangle contained in
[0,1]2. Then
V AuðRÞ ¼ u�1ðAðuðx1Þ;uðy1ÞÞÞ þ u�1ðAðuðx2Þ;uðy2ÞÞÞ � u�1ðAðuðx2Þ;uðy1ÞÞÞ � u�1ðAðuðx1Þ;uðy2ÞÞÞ:
Setting
s1 :¼ Aðuðx1Þ;uðy1ÞÞ; s4 :¼ Aðuðx2Þ;uðy2ÞÞ;
s2 :¼ Aðuðx2Þ;uðy1ÞÞ; s3 :¼ Aðuðx1Þ;uðy2ÞÞ;
yields
s1 6 s2 6 s4; s1 6 s3 6 s4 and s1 þ s4 P s2 þ s3:
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Thus w :¼ s2 + s3 � s1 belongs to the interval [max{s2, s3}, s4]; moreover, s1 + w = s2 + s3. Put a :¼ (w � s2)/
(w � s1) and notice that a so defined belongs to [0, 1]. Now
s2 ¼ as1 þ ð1� aÞw and s3 ¼ ð1� aÞs1 þ aw:
Since u�1 is convex and increasing, one has
u�1ðs2Þ þ u�1ðs3Þ 6 u�1ðs1Þ þ u�1ðwÞ 6 u�1ðs1Þ þ u�1ðs4Þ;

namely V AuðRÞP 0.
ðbÞ ) ðaÞ Consider the 2-increasing agop given by
Aðx; yÞ :¼ u�1ðxÞ þ u�1ðyÞ
2

:

Since Au is 2-increasing, one has, for s 6 t,
Auðs; sÞ þ Auðt; tÞP Auðs; tÞ þ Auðt; sÞ;

or, equivalently,
u�1ðsÞ þ u�1ðtÞP 2u�1 sþ t
2

� �
:

Thus u�1 is Jensen-convex, and, because of its continuity, convex; therefore, u is concave. h

Proposition 4.2. Let f and g be increasing functions from [0,1] into [0,1] such that f(0) = g(0) = 0 and

f(1) = g(1) = 1. Let A be a 2-increasing agop. Then, the function defined by
Af ;gðx; yÞ :¼ Aðf ðxÞ; gðyÞÞ

is a 2-increasing agop.

Proof. It is obvious that Af,g(0,0) = 0, Af,g(1,1) = 1 and Af,g is increasing in each place, since it is the compo-
sition of increasing functions. Moreover, given R = [x1,x2] · [y1,y2], one obtains
V Af ;gðRÞ ¼ V Að½f ðx1Þ; gðx2Þ� � ½f ðy1Þ; gðy2Þ�ÞP 0;
which is the desired assertion. h

Example 4.3. Let f and g be increasing functions from [0, 1] into [0,1] with f(0) = g(0) = 0 and f(1) = g(1) = 1.
Then
Af ;gðx; yÞ :¼ f ðxÞ � gðyÞ

is a 2-increasing agop as a consequence of the previous proposition, by taking A = P, the product agop.

From Sklar’s theorem (see [18]), the following is easily derived.

Corollary 4.4. The following statements are equivalent:

(a) H is the restriction to the unit square [0,1]2 of a bivariate probability distribution function on [0, 1]2, with

H(0,0) = 0 and H(1,1) = 1;
(b) there exist a copula C and increasing and left continuous functions f and g from [0,1] into [0,1] such that

f(0) = g(0) = 0 and f(1) = g(1) = 1, and one has
Hðx; yÞ :¼ Cðf ðxÞ; gðyÞÞ:
Remark 4.5. In view of Proposition 4.2, we notice that a copula can be constructed from every 2-increasing
agop that is continuous on the boundary and which has an annihilator (necessarily equal to zero). Indeed, it
suffices to put
f ðxÞ :¼ supft 2 ½0; 1� : Aðt; 1Þ ¼ xg; gðyÞ :¼ supft 2 ½0; 1� : Að1; tÞ ¼ yg:
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For example, let B and C be copulas and consider the function A 0(x,y) = B(x,y) Æ C(x,y). As one will show in
the sequel (see Section 5), A 0 is a continuous 2-increasing agop with annihilator 0. Moreover, one has
f ðxÞ ¼ gðxÞ ¼ supft 2 ½0; 1� : A0ðt; 1Þ ¼ xg ¼
ffiffiffi
x
p
:

Therefore, in view of Proposition 4.2 the function
A0ðf ðxÞ; gðyÞÞ ¼ Bð
ffiffiffi
x
p
;
ffiffiffi
y
p Þ � Cð

ffiffiffi
x
p
;
ffiffiffi
y
p Þ
is a copula. The same procedure holds if one considers A 0(x,y) = Ba(x,y) Æ Cb(x,y) for all a,b P 1, as conse-
quence of the results in Section 5.

Sometimes, it is useful to construct an agop with specified values on its diagonal, horizontal or vertical sec-
tion (see, for example, [12,13]). Specifically, given a suitable prescribed function f, the problem is whether there
is a 2-increasing agop with (diagonal, horizontal or vertical) section equal to f. The following result, whose
proof can easily be produced by the reader, answers the question.

Proposition 4.6. Let h, v and d be increasing functions from [0,1] into [0,1], d(0) = 0 and d(1) = 1. Then:

• Ad(x,y) = d(x) is an agop whose diagonal section is d;
• an agop Ah with horizontal section at b 2 ]0,1[ equal to h is given by
Ahðx; yÞ ¼
1; if ðx; yÞ ¼ ð1; 1Þ;
0; if y ¼ 0;

hðxÞ; otherwise;

8<:

• an agop Av with vertical section at a 2 ]0, 1[ equal to v is given by
Avðx; yÞ ¼
1; if ðx; yÞ ¼ ð1; 1Þ;
0; if x ¼ 0;

vðyÞ; otherwise:

8<:

In [16] (see also [3]), an ordinal sum construction for agops is given. Here, we modify the method given

there in order to ensure that an ordinal sum of 2-increasing agops is again a 2-increasing agop.
Consider a partition of the unit interval [0,1] by the points 0 = a0 < a1 < � � � < an = 1 and let A1,A2, . . . ,An

be n 2-increasing agops. For i = 1,2, . . . ,n, consider the function eAi defined on the square [ai,ai+1]2 by
eAiðx; yÞ ¼ ai þ ðaiþ1 � aiÞAi
x� ai

aiþ1 � ai
;

y � ai

aiþ1 � ai

� �
:

Then eAi is 2-increasing on [ai,ai+1]2, because it is obtained by A via the transformation u(t) :¼ (t � ai)/
(ai+1 � ai) (see Proposition 4.1); in fact, eAi is the rescaling of the 2-increasing agop Ai in [ai,ai+1]2. Now, define,
for every point (x,y) such that ai 6 min{x,y} < ai+1,
A1;nðx; yÞ :¼ eAiðminfx; aiþ1g;minfy; aiþ1gÞ: ð4:1Þ

Therefore, it is not hard to prove that A1,n is also a 2-increasing agop, called the ordinal sum of the agops
{Ai : i = 1,2, . . . ,n}; we write
A1;n ¼ ðhai; aiþ1;Aii : i ¼ 1; 2; . . . ; nÞ:
Example 4.7. Consider a partition of [0,1] by means of the points 0 = a0 < a1 < � � � < an = 1. Let
{Ai : i = 1,2, . . . ,n} be 2-increasing agops such that, for every index i, Ai = AS, the smallest agop. Let A1,n

be the ordinal sum (hai,ai+1,Aiii=1,2,. . .,n). For every point (x,y) such that ai 6 min{x,y} < ai+1, A1,n(x,y) = ai.
5. Composition of 2-increasing agops: the P-increasing property

The composition of two agops poses interesting problems. In particular, in order to preserve the 2-increas-
ing property for the composed agop, the notion of P-increasing function is useful. It was introduced in [8] and
it is here reproduced.
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A function w : [0,1]2! [0,1] is said to be P-increasing if, and only if,
wðs1; t1Þ þ wðs4; t4ÞP maxfwðs2; t2Þ þ wðs3; t3Þ;wðs3; t2Þ þ wðs2; t3Þg; ð5:1Þ

for all si, ti 2 [0, 1] (i 2 {1,2,3,4}) such that
s1 6 s2 ^ s3 6 s2 _ s3 6 s4; t1 6 t2 ^ t3 6 t2 _ t3 6 t4; ð5:2Þ
s1 þ s4 P s2 þ s3; t1 þ t4 P t2 þ t3: ð5:3Þ
The term ‘‘P-increasing’’ stands for ‘‘ probabilistically increasing’’, where the first word arises from the fact
that functions of this type have been used to characterize some operations on bivariate distribution functions
(see [8]).

The above conditions, which, at first sight, may appear impractical, can be characterized in the following
simpler manner (for the proof see [8]).

Theorem 5.1. A function w : [0,1]2! [0,1] is P-increasing if, and only if, the following statements hold:

(a) w is 2-increasing;

(b) w is increasing in each place;

(c) w is convex in each place.

Notice that, in view of the above (c), every P-increasing function has horizontal and vertical sections that
are continuous on ]0,1[.

The characterization of the composition of 2-increasing agops is given through the P-increasing property.

Theorem 5.2. Let H be an agop. The following statements are equivalent:

(a) H is P-increasing;

(b) for every ðA;BÞ 2A2 �A2, F(x,y) = H(A(x,y), B(x,y)) is a 2-increasing agop.

Proof. Part ðaÞ ) ðbÞ is a particular case of the generalized composition of 2-increasing agops studied in [7].
Conversely, let si, ti 2 [0,1] (i 2 {1, 2,3,4}) such that (5.2) and (5.3) hold. Define the following two agops:
Aðx; yÞ :¼

0; if minfx; yg ¼ 0;

s1; if ðx; yÞ 2�0; 1=2���0; 1=2�;
s2; if ðx; yÞ 2�0; 1=2���1=2; 1�;
s3; if ðx; yÞ 2�1=2; 1���0; 1=2�;
s4; if ðx; yÞ 2�1=2; 1½��1=2; 1½;
1; if ðx; yÞ ¼ ð1; 1Þ;

8>>>>>>>>>><>>>>>>>>>>:

Bðx; yÞ :¼

0; if minfx; yg ¼ 0;

t1; if ðx; yÞ 2�0; 1=2���0; 1=2�;
t2; if ðx; yÞ 2�0; 1=2���1=2; 1�;
t3; if ðx; yÞ 2�1=2; 1���0; 1=2�;
t4; if ðx; yÞ 2�1=2; 1½��1=2; 1½;
1; if ðx; yÞ ¼ ð1; 1Þ:

8>>>>>>>>>><>>>>>>>>>>:

Let F(x,y) = H(A(x,y),B(x,y)) be the composition of A and B. Then A;B 2A2 and from F 2A2 we have
V F ð½1=3; 2=3�2Þ ¼ Hðs1; t1Þ þ Hðs4; t4Þ � Hðs2; t2Þ � Hðs3; t3ÞP 0;
viz. H is P-increasing. h
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Corollary 5.3. Let f :[0,1]! [0,1] be such that f(0) = 0 and f(1) = 1. The following statements are equivalent:

(a) f is convex and increasing;

(b) for every A 2A2, F(x,y) = f(A(x,y)) is a 2-increasing agop.
Proof. It suffices to apply the above theorem to the function H(x,y) = f(x), which is P-increasing because of
Theorem 5.1. h

Remark 5.4. Let A and B be 2-increasing agops and consider their product F(x,y) = A(x,y) Æ B(x,y). Then F is
2-increasing, because the function P(x,y) = xy is P-increasing and Theorem 5.2 holds. However, the minimum
M is not P-increasing: take, for example, the points (0,1/10), (1/2, 3/10), (1/2, 3/10) and (1,1/2), then
Mð0; 1=10Þ �Mð1=2; 3=10Þ �Mð1=2; 3=10Þ þMð1; 1=2Þ ¼ �1=10 < 0:
Therefore min{A(x,y),B(x,y)} need not be 2-increasing.

The composition of two copulas is still an open problem, even though some partial results can be found in
[8] (see also [7] for generalized composition). As in the general case, the notion of P-increasingness is here
essential and the two following results may, therefore, turn out to be useful.

Proposition 5.5. Let A be an agop such that A(x, x) P x for every x 2 [0,1]. Then A is P-increasing if, and only

if, there exists a 2 [0,1] such that A(x,y) = ax + (1 � a)y.

Proof. Let A be a P-increasing agop such that A(x,x) P x for every x 2 [0,1]. In particular, on account of
Theorem 5.1, A is 2-increasing and its horizontal and vertical sections are convex. Set a :¼ A(1,0) and
b :¼ A(0, 1) and notice that a + b 6 1.

In view of the 2-increasing property, for every y 2 [0, 1] one has
Að0; yÞ þ Aðy; 1ÞP Aðy; yÞ þ Að0; 1ÞP y þ b; ð5:4Þ

and, from the convexity of y # A(0, y),
Að0; yÞ 6 yAð0; 1Þ þ ð1� yÞAð0; 0Þ ¼ by:
Therefore, connecting the two inequalities above, one obtains A(y, 1) P y + (1 � y)b. On the other hand, from
the convexity of y # A(y, 1),
Aðy; 1Þ 6 yAð1; 1Þ þ ð1� yÞAð0; 1Þ ¼ y þ ð1� yÞb;

viz. A(y, 1) = y + (1 � y)b. Analogously A(1, y) = (1 � a)y + a.

From (5.4), it follows also that:
Að0; yÞP y þ b� ð1� bÞy � b ¼ by
and, because A(0,y) 6 yA(0,1) = by, one has A(0, y) = by. In the same manner, A(x, 0) = ax.
Now, because A is 2-increasing, for every y P x, one has
Aðx; yÞP Aðx; 1Þ þ Aðy; yÞ � Aðy; 1ÞP ð1� bÞxþ by
and
Aðx; yÞ 6 Aðx; 1Þ þ Að0; yÞ � b ¼ ð1� bÞxþ by;
viz. A(x,y) = (1 � b)x + by. In the same manner, for every x P y, one obtains A(x,y) = ax + (1 � a)y.
Finally, notice that
Aðx; 1=2Þ ¼
ð1� bÞxþ b=2; if x 6 1=2;

axþ ð1� aÞ=2; if x > 1=2;

�

and, from the convexity of x # A(x, 1/2), one has
A
1

2
;
1

2

� �
6

1

2
A 0;

1

2

� �
þ 1

2
A 1;

1

2

� �
;
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which is equivalent to a + b P 1. Therefore a + b = 1 and, for every (x,y) 2 [0,1]2, A(x,y) = ax +
(1 � a)y. h

Corollary 5.6. Let A be a P-increasing agop. Then the following statements are equivalent:

(a) A is idempotent;

(b) there exists a 2 [0, 1] such that A(x,y) = ax + (1 � a)y.

Proposition 5.7. Let f and g be increasing and convex functions from [0,1] into [0,1] such that f(0) = g(0) = 0

and f(1) = g(1) = 1. Let A be a P-increasing agop. Then, the function defined by
Af ;gðx; yÞ :¼ Aðf ðxÞ; gðyÞÞ

is a P-increasing agop.

Proof. From Proposition 4.2, it follows that Af,g is a 2-increasing agop. Moreover, every horizontal (resp.,
vertical) section of Af,g is convex, because it is composition of the convex and increasing horizontal (resp., ver-
tical) section of A with f (resp. g). Now, the desired assertion follows from Theorem 5.1. h
6. Bounds on arbitrary subsets of 2-increasing agops

Given a (2-increasing) agop A, it is obvious that
ASðx; yÞ 6 Aðx; yÞ for every ðx; yÞ in ½0; 1�;

and AS is the best-possible lower bound in the set A2, because it is 2-increasing.

Moreover, the best-possible upper bound in A2 is the greatest agop
AGðx; yÞ ¼
0; if ðx; yÞ ¼ ð0; 0Þ;
1; otherwise:

�

Notice that AG is not 2-increasing, e.g. V AGð½0; 1�

2Þ ¼ �1, but it is the pointwise limit of the sequence {An} of 2-
increasing agops, defined by
Anðx; yÞ ¼
1; if ðx; yÞ 2 ½1=n; 1�2;
0; otherwise:

(

In particular, ðA2;6Þ is not a complete lattice.
But, the following result holds.

Proposition 6.1. Every agop is the supremum of a suitable subset of A2.

Proof. Let A be an agop; we may (and, in fact do) suppose that A 5 AG, since this case has already been con-
sidered, and that A is not 2-increasing, this case being trivial. For every (x0,y0) in [0, 1], let z0 = A(x0,y0) and
consider the following 2-increasing agop:
bAx0;y0
:¼

1; if ðx; yÞ ¼ ð1; 1Þ;
z0; if ðx; yÞ 2 ½x0; 1� � ½y0; 1� n fð1; 1Þg;
0; otherwise:

8><>:

Then one has
Aðx; yÞ ¼ supfbAx0;y0
: ðx0; y0Þ 2 ½0; 1�

2g: �
For the case of copulas, the lattice structure was considered in [19]. Here, other cases will be considered.
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Proposition 6.2. Let A be a 2-increasing agop with marginals h0, h1, v0 and v1. Let
A�ðx; yÞ :¼ maxfh0ðxÞ þ v0ðyÞ; h1ðxÞ þ v1ðyÞ � 1g ð6:1Þ

and
A�ðx; yÞ :¼ minfh1ðxÞ þ v0ðyÞ � Að0; 1Þ; h0ðxÞ þ v1ðyÞ � Að1; 0Þg: ð6:2Þ

Then, for every (x,y) in [0, 1]2, A* and A* have the same marginals of A and
A�ðx; yÞ 6 Aðx; yÞ 6 A�ðx; yÞ: ð6:3Þ
Proof. Let A be a 2-increasing agop. Let (x,y) be a point in ]0, 1[2. In view of inequality (2.3), we have
Aðx; yÞP Aðx; 0Þ þ Að0; yÞ ¼ h0ðxÞ þ v0ðyÞ;
Aðx; yÞP Aðx; 1Þ þ Að1; yÞ � 1 ¼ h1ðxÞ þ v1ðyÞ � 1;
which together yield the first of the inequalities (6.3). Analogously,
Aðx; yÞ 6 Að0; yÞ þ Aðx; 1Þ � Að0; 1Þ ¼ h1ðxÞ þ v0ðyÞ � Að0; 1Þ;
Aðx; yÞ 6 Aðx; 0Þ þ Að1; yÞ � Að1; 0Þ ¼ h0ðxÞ þ v1ðyÞ � Að1; 0Þ;
namely the second of the inequalities (6.3). h

It should be noticed that, in the special case of copulas, the bounds of (6.3) coincide with the usual Fréchet–
Hoeffding bounds (see [18]).

The subclasses of 2-increasing agops with prescribed marginals have the smallest and the greatest element
(in the pointwise ordering), as stated here.

Theorem 6.3. For every 2-increasing agop A with marginals h0, h1, v0 and v1, the bounds, A* and A* defined by

(6.1) and (6.2) are 2-increasing agops.

Proof. The functions A* and A* defined by (6.1) and (6.2), respectively, are obviously agops. Below we shall
prove that they are also 2-increasing. To this end let R = [x,x 0] · [y,y 0] be any rectangle contained in the unit
square.

Consider, first, the case of A*. Then
A�ðx0; y 0Þ :¼ minfh1ðx0Þ þ v0ðy 0Þ � Að0; 1Þ; h0ðx0Þ þ v1ðy0Þ � Að1; 0Þg;
A�ðx; yÞ :¼ minfh1ðxÞ þ v0ðyÞ � Að0; 1Þ; h0ðxÞ þ v1ðyÞ � Að1; 0Þg;
A�ðx0; yÞ :¼ minfh1ðx0Þ þ v0ðyÞ � Að0; 1Þ; h0ðx0Þ þ v1ðyÞ � Að1; 0Þg;
A�ðx; y 0Þ :¼ minfh1ðxÞ þ v0ðy0Þ � Að0; 1Þ; h0ðxÞ þ v1ðy0Þ � Að1; 0Þg:
There are four cases to be considered.

Case 1. If
A�ðx0; y0Þ ¼ h1ðx0Þ þ v0ðy 0Þ � Að0; 1Þ; A�ðx; yÞ ¼ h1ðxÞ þ v0ðyÞ � Að0; 1Þ;

then
A�ðx0; y0Þ þ A�ðx; yÞ ¼ h1ðx0Þ þ v0ðyÞ � Að0; 1Þ þ h1ðxÞ þ v0ðy 0Þ � Að0; 1ÞP A�ðx0; yÞ þ A�ðx; y0Þ:

Case 2. If
A�ðx0; y0Þ ¼ h0ðx0Þ þ v1ðy 0Þ � Að1; 0Þ; A�ðx; yÞ ¼ h0ðxÞ þ v1ðyÞ � Að1; 0Þ;

then
A�ðx0; y0Þ þ A�ðx0; y 0Þ ¼ h0ðx0Þ þ v1ðyÞ � Að1; 0Þ þ h0ðxÞ þ v1ðy0Þ � Að1; 0ÞP A�ðx0; yÞ þ A�ðx; y 0Þ:

Case 3. If
A�ðx0; y0Þ ¼ h1ðx0Þ þ v0ðy 0Þ � Að0; 1Þ; A�ðx; yÞ ¼ h0ðxÞ þ v1ðyÞ � Að1; 0Þ;
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then one has, since A is 2-increasing, h1(x 0) + h0(x) P h1(x) + h0(x 0), so that
A�ðx0; y 0Þ þ A�ðx; yÞ ¼ h1ðx0Þ þ h0ðxÞ � Að0; 1Þ þ v0ðy0Þ þ v1ðyÞ � Að1; 0Þ
P h1ðxÞ þ v0ðy 0Þ � Að0; 1Þ þ h0ðx0Þ þ v1ðyÞ � Að0; 1ÞP A�ðx0; yÞ þ A�ðx; y 0Þ:
Case 4. If
A�ðx0; y 0Þ ¼ h0ðx0Þ þ v1ðy0Þ � Að1; 0Þ; A�ðx; yÞ ¼ h1ðxÞ þ v0ðyÞ � Að0; 1Þ;

then one has, since A is 2-increasing, v1(y 0) + v0(y) P v1(y) + v0(y 0), so that
A�ðx0; y 0Þ þ A�ðx; yÞ ¼ h0ðx0Þ þ v1ðy0Þ � Að1; 0Þ þ h1ðxÞ þ v0ðyÞ � Að0; 1Þ
P h0ðx0Þ þ v1ðyÞ � Að1; 0Þ þ h1ðxÞ þ v0ðy 0Þ � Að0; 1ÞP A�ðx0; yÞ þ A�ðx; y 0Þ:
This proves that A* is 2-increasing. A similar proof holds for A*. Here, again, four cases will be considered.
A�ðx0; y0Þ :¼ maxfh0ðx0Þ þ v0ðy0Þ; h1ðx0Þ þ v1ðy0Þ � 1g;
A�ðx; yÞ :¼ maxfh0ðxÞ þ v0ðyÞ; h1ðxÞ þ v1ðyÞ � 1g;
A�ðx0; yÞ :¼ maxfh0ðx0Þ þ v0ðyÞ; h1ðx0Þ þ v1ðyÞ � 1g;
A�ðx; y0Þ :¼ maxfh0ðxÞ þ v0ðy 0Þ; h1ðxÞ þ v1ðy0Þ � 1g:
Case 1. If
A�ðx0; yÞ ¼ h0ðx0Þ þ v0ðyÞ; A�ðx; y0Þ ¼ h0ðxÞ þ v0ðy 0Þ;

then
A�ðx0; yÞ þ A�ðx; y 0Þ ¼ h0ðxÞ þ v0ðyÞ þ h0ðx0Þ þ v0ðy 0Þ 6 A�ðx0; y0Þ þ A�ðx; yÞ:

Case 2. If
A�ðx0; yÞ ¼ h0ðx0Þ þ v0ðyÞ; A�ðx; y0Þ ¼ h1ðxÞ þ v1ðy 0Þ � 1;
then one has, since A is 2-increasing, h0(x 0) + h1(x) 6 h1(x 0) + h0(x) so that
A�ðx0; yÞ þ A�ðx; y 0Þ ¼ h0ðx0Þ þ v0ðyÞ þ h1ðxÞ þ v1ðy 0Þ � 1 6 h1ðx0Þ þ v1ðy 0Þ � 1þ h0ðxÞ þ v0ðyÞ
6 A�ðx0; y 0Þ þ A�ðx; yÞ:
Case 3. If
A�ðx0; yÞ ¼ h1ðx0Þ þ v1ðyÞ � 1; A�ðx; y0Þ ¼ h0ðxÞ þ v0ðy 0Þ;

then one has, since A is 2-increasing, v1(y) + v0(y 0) 6 v1(y 0) + v0(y), so that
A�ðx0; yÞ þ A�ðx; y 0Þ ¼ h1ðx0Þ þ v1ðyÞ � 1þ h0ðxÞ þ v0ðy0Þ 6 h1ðx0Þ þ v1ðy 0Þ � 1þ h0ðxÞ þ v0ðyÞ
6 A�ðx0; y 0Þ þ A�ðx; yÞ:
Case 4. If
A�ðx0; yÞ ¼ h1ðx0Þ þ v1ðyÞ � 1; A�ðx; y0Þ ¼ h1ðxÞ þ v1ðy 0Þ � 1;
then
A�ðx0; yÞ þ A�ðx; y 0Þ ¼ h1ðx0Þ þ v1ðy0Þ � 1þ h1ðxÞ þ v1ðyÞ � 1 6 A�ðx0; y0Þ þ A�ðx; yÞ: �
Remark 6.4. Notice that, if A is a P-increasing agop, then A* is also P-increasing, as a consequence of
Theorem 5.1 and some properties of convex functions. Instead, A* may not be P-increasing: in fact, if A is
a copula, then A* = M is not P-increasing.

The following result gives a necessary and sufficient condition that ensures A* = A* in the case of a
symmetric agop A.
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Proposition 6.5. For a symmetric and 2-increasing agop A, the following are equivalent:

(a) A* = A*;

(b) there exists an interval I :¼ [0,k] � [0,1] and a constant a 2 [0,1] such that
h1ðtÞ ¼
h0ðtÞ þ a; if t 2 I ;

h0ðtÞ þ ð1� aÞ; if t 2 ½0; 1� n I :

�
ð6:4Þ
Proof. If A is a symmetric agop, then h0 = v0 and h1 = v1. Set a :¼ A(0, 1) = A(1,0), a 6 1/2. Therefore
A�ðx; yÞ :¼ maxfh0ðxÞ þ h0ðyÞ; h1ðxÞ þ h1ðyÞ � 1g

and
A�ðx; yÞ :¼ minfh1ðxÞ þ h0ðyÞ � a; h0ðxÞ þ h1ðyÞ � ag:
If A = A*, then A(x,x) = h1(x) + h0(x) � a. Now, from A = A*, one obtains also that either A(x,x) = 2h0(x) or
A(x,x) = 2h1(x) � 1. Therefore, either
h1ðxÞ � h0ðxÞ ¼ a; ð6:5Þ

or
h1ðxÞ � h0ðxÞ ¼ 1� a: ð6:6Þ
If a = 1/2, then h1(x) = h0(x) + a on [0, 1]. Otherwise, note that (6.5) holds at the point x = 0 and (6.6) holds at
the point x = 1. Moreover, if (6.5) does not hold at a point x1, then (6.5) does not hold also for every x2 > x1.
In fact, for the 2-increasing property, one has
h1ðx2Þ � h0ðx2ÞP h1ðx1Þ � h0ðx1Þ ¼ 1� a P 1=2:
Thus h1 has the form of (6.4), where I is an interval. The converse is just a matter of straightforward
verification. h

Example 6.6. Consider the arithmetic mean A(x,y) :¼ (x + y)/2, which is obviously 2-increasing. Then, one
easily evaluates A* = A* = A.

Example 6.7. Consider the 2-increasing agop given by the geometric mean Gðx; yÞ :¼ ffiffiffiffiffi
xy
p

. Then
G�ðx; yÞ ¼ maxð0;
ffiffiffi
x
p
þ ffiffiffi

y
p � 1Þ and G�ðx; yÞ ¼ minð

ffiffiffi
x
p
;
ffiffiffi
y
p Þ
both of which are 2-increasing.

Remark 6.8. In the general case of a 2-increasing agop A such that A = A* = A*, as above it can be proved
that one among the following four equalities holds:

• h1(x) � h0(x) = A(0, 1);
• h1(x) � h0(x) = 1 � A(1,0);
• v1(y) � v0(y) = 1 � A(0,1);
• v1(y) � v0(y) = A(1, 0).

Unfortunately, one need not have explicit conditions as in the symmetric case for h1(x) � h0(x) and
v1(y) � v0(y).

Let h, v and d be increasing functions from [0, 1] into [0,1], d(0) = 0 and d(1) = 1. Denote by Ah, Av

and Ad, respectively, the subclasses of 2-increasing agops with horizontal section at b 2 [0,1] equal to h,
vertical section at a 2 [0,1] equal to v, diagonal section equal d. Notice that the sets Ah, Av and Ad are
not empty, because of Proposition 4.6. The following results give the best-possible bounds in these
subclasses.
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Proposition 6.9. Let h :[0,1]! [0,1] be an increasing function. For every A in Ah, A has the horizontal section

at b 2 ]0,1[ equal to h, one obtains
ðAhÞ� 6 Aðx; yÞ 6 ðAhÞ�; ð6:7Þ

where
ðAhÞ�ðx; yÞ :¼
1; if ðx; yÞ ¼ 1;

0; if 0 6 y < b;

hðxÞ; otherwise;

8<:
ðAhÞ�ðx; yÞ :¼

0; if ðx; yÞ ¼ ð0; 0Þ;
1; if b < y 6 1;

hðxÞ; otherwise:

8<:

Moreover,
ðAhÞ�ðx; yÞ ¼
^

A2Ah

Aðx; yÞ and ðAhÞ�ðx; yÞ ¼
_

A2Ah

Aðx; yÞ;
where (Ah)* is a 2-increasing agop and (Ah)*, while it is still an agop, is not necessarily 2-increasing.

Proof. For all (x,y) 2 [0,1]2 and A 2Ah, one has A(x,y) P 0 for every y 2 [0, b[ and A(x,y) P h(x) for every
y 2 [b, 1], viz. A(x,y) P (Ah)*(x,y) on [0, 1]2. Analogously, A(x,y) 6 h(x) for every y 2 [0,b] and A(x,y) 6 1 for
every y 2 ]b, 1], viz. A(x,y) 6 (Ah)*(x,y) on [0, 1]2. Both (Ah)* and (Ah)* are agops, as is immediately seen; it is
also immediate to check that (Ah)* is 2-increasing and, therefore, that ðAhÞ� ¼

V
A2Ah

A. Now, suppose that B is
any agop greater than, or at least equal to,

W
A2Ah

A. Then B(x,y) P A1(x,y), where A1 is the 2-increasing agop
given by
A1ðx; yÞ :¼
0; if y ¼ 0;

hðxÞ; if 0 < y 6 b;

1; if b < y 6 1;

8<:

and B(x,y) P A2(x,y), where A2 is the 2-increasing agop given by
A2ðx; yÞ :¼
0; if x ¼ 0;

hðxÞ; if x 6¼ 0 and 0 < y 6 b;

1; if x 6¼ 0 and b < y 6 1;

8<:

therefore B(x,y) P max{A1(x,y), A2(x,y)} = (Ah)*(x,y) on [0,1]2 and one obtains ðAhÞ� ¼

W
A2Ah

A. However
(Ah)* need not be 2-increasing; in fact,
V ðAhÞ� ð½0; b=2�2Þ ¼ �hðb=2Þ;

which need not be strictly less than 0. h

Analogously, one proves the following result for the class Av.

Proposition 6.10. Let v :[0,1]! [0,1] be an increasing function. For every A in Av, A has the vertical section at

a 2 ]0,1[ equal to v, one obtains
ðAvÞ� 6 Aðx; yÞ 6 ðAvÞ�; ð6:8Þ

where
ðAvÞ�ðx; yÞ :¼
1; if ðx; yÞ ¼ 1;

0; if 0 6 x < a;

vðyÞ; otherwise;

8><>:
ðAvÞ�ðx; yÞ :¼

0; if ðx; yÞ ¼ ð0; 0Þ;
1; if a < x 6 1;

vðyÞ; otherwise:

8><>:
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Moreover,
ðAvÞ�ðx; yÞ ¼
^

A2Av

Aðx; yÞ and ðAvÞ�ðx; yÞ ¼
_

A2Av

Aðx; yÞ;
where (Av)* is a 2-increasing agop and (Av)*, while it is still an agop, is not necessarily 2-increasing.

Proposition 6.11. Let d be an increasing function with d(0) = 0 and d(1) = 1. For every A in Ad, one obtains
ðAdÞ� :¼ minfdðxÞ; dðyÞg 6 Aðx; yÞ 6 ðAdÞ� :¼ maxfdðxÞ; dðyÞg: ð6:9Þ
Moreover, (Ad)* and (Ad)* are the best-possible bounds, in the sense that
ðAdÞ�ðx; yÞ ¼
^

A2Ad

Aðx; yÞ and ðAdÞ�ðx; yÞ ¼
_

A2Ad

Aðx; yÞ;
where (Ad)* is a 2-increasing agop and (Ad)*, while it is still an agop, is not necessarily 2-increasing.

Proof. For all (x,y) 2 [0,1]2 and A 2Ad, one has
Aðx; yÞP Aðx ^ y; x ^ yÞ ¼ minfdðxÞ; dðyÞg

and
Aðx; yÞ 6 Aðx _ y; x _ yÞ ¼ maxfdðxÞ; dðyÞg:
This proves (6.9). Both (Ad)* and (Ad)* are agops, as is immediately seen; it is also immediate to check that
(Ad)* is 2-increasing and, therefore, that ðAdÞ� ¼

V
A2Ad

A. Now, suppose that B is any agop greater than, or
at least equal to,

W
A2Ad

A. Then B(x,y) P A1(x,y) :¼ d(x) and B(x,y) P A2(x,y) :¼ d(y), with A1 and A2 2-
increasing agops. Thus, B(x,y) P (Ad)* so that ðAdÞ� ¼

W
A2Ad

A. This proves that (Ad)* is the best possible
upper bound for the set Ad. However (Ad)* need not be 2-increasing; in fact,
V ðAdÞ� ð½0; 1�
2Þ ¼ dð0Þ � dð1Þ ¼ �1 < 0: �
Corollary 6.12. Let d be an increasing function with d(0) = 0 and d(1) = 1. For every symmetric agop A in Ad,

one obtains
ðAdÞ� :¼ minfdðxÞ; dðyÞg 6 Aðx; yÞ 6 dðxÞ þ dðyÞ
2

;

where the lower and upper bounds are best-possible and (d(x) + d(y))/2 is the maximal element in the class of sym-

metric agops.

Proof. If A is symmetric and 2-increasing, one has, for every x, y in [0,1],
dðxÞ þ dðyÞ ¼ Aðx; xÞ þ Aðy; yÞP 2Aðx; yÞ: �
7. A construction method for copulas

The construction of copulas is one of the most important problem in statistics, because, in view of Sklar’s
theorem, it is directly connected with the construction of classes of multivariate probability distribution func-
tions that can be used in the simulation and in the interpretation of real data (see [18]). The main result of this
section gives a simple method of constructing a copula from a 2-increasing and 1-Lipschitz agop.

Theorem 7.1. For every 2-increasing and 1-Lipschitz agop A, the function
Cðx; yÞ :¼ minfx; y;Aðx; yÞg ð7:1Þ

is a copula.
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Proof. First, in order to prove that C is a copula, one notes that C has neutral element 1 and annihilator 0; in
fact, for every x 2 [0, 1], one has
Cðx; 1Þ ¼ minfAðx; 1Þ; xg ¼ x ¼ Cð1; xÞ;
Cðx; 0Þ ¼ minfAðx; 0Þ; 0g ¼ 0 ¼ Cð0; xÞ:
Then, one proves that C is 2-increasing by using Proposition 2.3.

For every rectangle R :¼ [s, t] · [s, t] on [0, 1]2, set
V CðRÞ ¼ minfAðs; sÞ; sg þminfAðt; tÞ; tg �minfAðs; tÞ; sg �minfAðt; sÞ; sg:

One has to prove that VC(R) P 0 and several cases are considered.

If A(s, s) P s, then also A(s, t), A(t, s) and A(t, t) are greater than s, because A is increasing in each variable,
and thus
V CðRÞ ¼ minfAðt; tÞ; tg � s P 0:
If A(s, s) < s, then one distinguishes:

• if A(t, t) < t, since A is 2-increasing, one has
Aðs; sÞ þ Aðt; tÞP Aðs; tÞ þ Aðt; sÞP minfAðs; tÞ; sg þminfAðt; sÞ; sg;
viz. VC(R) P 0;

• if A(t, t) P t, since A is 1-Lipschitz, one has
minfAðt; sÞ; sg �minfAðs; sÞ; sg 6 t � s 6 t �minfAðt; sÞ; sg;
and thus VC(R) P 0.

Now, let R = [x1,x2] · [y1,y2] be a rectangle contained in D+. Then VC(R) is given by
V CðRÞ ¼ minfAðx1; y1Þ; y1g þminfAðx2; y2Þ; y2g �minfAðx2; y1Þ; y1g �minfAðx1; y2Þ; y2g:

If A(x1,y1) P y1, then also A(x2,y1), A(x1,y2) and A(x2,y2) are greater than y1, because A is increasing in each
variable, and thus
V CðRÞ ¼ minfAðx2; y2Þ; y2g � y1 P 0:
If A(x1,y1) < y1, then one distinguishes:

• if A(x2,y2) < y2, since A is 2-increasing, one has
Aðx2; y2Þ þ Aðx1; y1ÞP Aðx2; y1Þ þ Aðx1; y2ÞP minfAðx2; y1Þ; y1g þminfAðx1; y2Þ; y2g;
viz. VC(R) P 0;

• if A(x2,y2) P y2, one has
V CðRÞ ¼ Aðx1; y1Þ þ y2 � Aðx1; y2Þ �minfAðx2; y1Þ; y1g;

because A is 1-Lipschitz and, hence,

Aðx1; y2Þ 6 y2 � y1 þ Aðx1; y1Þ 6 y2;

moreover, from the fact that

Aðx1; y2Þ � Aðx1; y1Þ � y2 � y1 6 y2 �minfAðx2; y1Þ; y1g;
it follows that VC(R) P 0.

Finally, let R = [x1,x2] · [y1,y2] be a rectangle contained in D�. Then VC(R) is given by
V CðRÞ ¼ minfAðx1; y1Þ; x1g þminfAðx2; y2Þ; x2g �minfAðx2; y1Þ; x2g �minfAðx1; y2Þ; x1g:



128 F. Durante et al. / Information Sciences 177 (2007) 111–129
If A(x1,y1) P x1, then, because A is increasing in each variable,
V CðRÞ ¼ minfAðx2; y2Þ; x2g �minfAðx2; y1Þ; x2gP 0:
If A(x1,y1) < x1, then one distinguishes:

• if A(x2,y2) < x2, since A is 2-increasing, one has
Aðx2; y2Þ þ Aðx1; y1ÞP Aðx2; y1Þ þ Aðx1; y2ÞP minfAðx2; y1Þ; x1g þminfAðx1; y2Þ; x2g;
viz. VC(R) P 0;

• if A(x2,y2) P x2, one has
V CðRÞ ¼ Aðx1; y1Þ þ x2 �minfAðx1; y2Þ; x1g �minfAðx2; y1Þ; x2g;
moreover, from the inequality

minfAðx2; y1Þ; x2g � Aðx1; y1Þ 6 Aðx2; y1Þ � Aðx1; y1Þ 6 x2 � x1 6 x2 �minfAðx1; y2Þ; x1g;
it follows that VC(R) P 0. h

Notice that agops satisfying the assumptions of Theorem 7.1 are stable under convex combinations. Thus,
many examples can be provided: it suffices to consider, for examples, copulas, quasi-arithmetic means
bounded from above by the arithmetic mean, and their convex combinations.

Example 7.2. Let A be the modular agop A(x,y) = (d(x) + d(y))/2, where d : [0, 1]! [0, 1] is an increasing and
2-Lipschitz function with d(0) = 0 and d(1) = 1. Then A satisfies the assumptions of Theorem 7.1 and it
generates the following copula:
Cdðx; yÞ ¼ min x; y;
dðxÞ þ dðyÞ

2

� �
:

Copulas of this type were introduced in [9] and are called diagonal copulas.

Example 7.3. Let us consider the following 2-increasing and 1-Lipschitz agop
Aðx; yÞ ¼ kBðx; yÞ þ ð1� kÞ xþ y
2

;

defined for every k 2 [0,1] and for every copula B. This A satisfies the assumptions of Theorem 7.1 and, there-
fore, the following class of copulas is obtained:
Ckðx; yÞ :¼ min x; y; kBðx; yÞ þ ð1� kÞ xþ y
2

n o
:

Example 7.4. Let A be a 2-increasing agop of the form A(x,y) = f(x) Æ g(y) (see Example 4.3). If A is 1-Lips-
chitz, then A satisfies the assumptions of Theorem 7.1. Consider, for instance, f(x) = x and g(y) = (y + 1)/2, or
f(x) = (x + 1)/2 and g(y) = y, which yield, respectively, the following copulas:
C1ðx; yÞ ¼ min y;
xðy þ 1Þ

2

� �
; C2ðx; yÞ ¼ min x;

yðxþ 1Þ
2

� �
:

Remark 7.5. If A is a copula, it is obvious that the copula C defined by (7.1) is equal to A. But, in general,
when A is greater than min{x,y}, the copula C has a singular component and, therefore, does not have full
support (see [18] for these notions).

Remark 7.6. If A is a 1-Lipschitz agop, then C(x,y) :¼ min{x,y,A(x,y)} is a 1-Lipschitz agop. In fact, the
minimum of two 1-Lipschitz agops is 1-Lipschitz (see [14,15]) and, in this case, C is the minimum between
the 1-Lipschitz agop M(x,y) = min{x,y} and A. In particular, because C has neutral element 1, it follows that
C is a quasi-copula (see [10]).
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8. Conclusions

We have investigated the class of binary aggregation operators satisfying the 2-increasing property. These
operators play a relevant rôle, for example, in statistics, fuzzy measures and in the treatment of vague infor-
mation. We have also characterized some agops having other special properties, like quasi-arithmetic mean,
Choquet-integral based, modularity, and presented some construction methods, including transformations via
bijective functions and the classical composition method. To this end, we have used the new notion of P-
increasing function and studied it in detail. The lattice structure (with respect to the pointwise order) of some
subclasses of 2-increasing agops has been presented. Finally, we have given a method for constructing copulas
starting from a 2-increasing and 1-Lipschitz agop.
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