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We define the notion of semicopula, a concept that has already appeared in the statistical 
literature and study the properties of semicopulas and the connexion of this notion with 
those of copula, quasi-copula, i-norm. 
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1. INTRODUCTION 

The object of the research here reported is the study of the notion of semicopula. 
To the best of our knowledge, this term was used for the first time by Bassan and 
Spizzichino ([3]) in a statistical context. The concept of semicopula was already 
known, in a different context, as conjunctor (a monotone extension of the Boolean 
conjunction with neutral element 1) or t-seminorm ([23]). However, it has never been 
studied in its own right at the same level of generality of the present note. As will 
be seen shortly, this notion is a generalization of that of quasi-copula and, hence, of 
that of copula. We recall that copulae were introduced by Sklar ([21, 22]) who proved 
the theorem that bears his name (for more details, see [16, 20}). The investigations 
on a class of operations on distribution functions that derive from corresponding 
operations on random variables defined on the same probability space ([2, 18]) lead 
to the introduction of the concept of quasi-copula ([11, 25]). 

Commutative semicopulae are also a "good" generalization of triangular norms 
(briefly t-norms), introduced by K. Menger in order to extend the triangle inequality 
from the setting of metric spaces to probabilistic metric spaces, and successfully used 
in probability theory, mathematical statistics and fuzzy logic, as generalization of 
classical logic connectives ([13, 20]). 

The paper is organized as follows: semicopulae are defined in Section 2, where their 
main properties are given. A compactness question is the subject of Section 3, while 
Section 4 is devoted to the natural order on semicopulas. The object of Section 5 
is the study of a special operation on semicopulas. Multivariate semicopulae are 
introduced and briefly studied in Section 6. 
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2. DEFINITION AND FIRST PROPERTIES 

Definition 2.1. A function S : [0, l ] 2 —• [0,1] is said to be a semicopula if, and 
only if, it satisfies the two following conditions: 

(a) S(x, 1) = 5(1, x) = x for all x in [0,1]; 

(b) S(x, y) is increasing in each place. 

The class of all semicopulas will be denoted by S. 

If S is a semicopula, then for all x G [0,1] 

0<S(x,0) < 5(1,0) = 0, 

namely S(x,0) = 0 = 5(0, x). 
The notion of semicopula generalizes other concepts which have received more 

attention in the literature: 
- a semicopula C that is 2-increasing, namely which, for all x, x', y, y' in [0,1] with 
x < x' and y <y', satisfies the inequality 

C(x', y') - C(x, y') - C(x', y) + C(x, y) > 0, (2.1) 

is a copula (see [16, 20]); 

- a semicopula Q that satisfies the 1-Lipschitz property, 

\Q(x, y) - Q(xf, y')\ <\x- x'\ + \y- y'\ (2.2) 

for all x, x', y, y' in [0,1], is a quasi-copula (see [11, 25]); 

- a semicopula T that is both commutative 

T(x,y) = T(y,x), for all x and y in [0,1], (2.3) 

and associative 

T(T(x, y),z) = T(x, T(y, z)), for all x, y, z in [0,1], (2.4) 

is a t-norm (see [13, 20]). 
Notice also that semicopulae are binary aggregation operators with neutral ele­

ment 1 (see, e.g., [4]). 
The class S of semicopulas strictly includes the class Q of quasi-copulas, which, 

in its turn, strictly includes the class C of copulas, C C Q C 5 . Moreover, SE 
will denote the set of commutative semicopulas; these correspond to exchangeable 
random variables. Of course, SE is a proper subset of S and it strictly includes the 
set T of t-norms. Finally, the family of continuous semicopulas will be denoted by 
Sc. 
Example 2 .1 . The following function Z is a semicopula, but it is not a quasi-
copula: 

z(x,y) = l°> (*>y)e[o,i[2, 
J min { x, y } , elsewhere. 
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Example 2.2. The following function S is a semicopula, but, because it is not 
associative, it is not a t-norm: 

S(x,y) = xy max{x,y}. 

Example 2.3. The following function S is an associative semicopula, but it is not 
commutative 

5 ( x > y ) = J° . (*,!/) e [0,1/2] x[0.1[, 

| min{:r, y } , elsewhere. 

Example 2.4. The function Se (0 > 1) defined by 

g /x \ .= lxyd> x - y* 
}xey, elsewhere, 

is a continuous semicopula, but not a quasi-copula, because if, for instance, 9 = 2, 
one has 

£2(8/10,9/10) - 52(8/10,8/10) = 136/1000 > 1/10; 

thus Ő2 is not 1-Lipschitz. 

Propi 
[0,1], 
Proposition 2.1. If S : [0,1] —* [0,1] is a semicopula, then for all x and y in 

Z(x, y) < S(x, y) < min{x, y} = M(x, y). (2.5) 

P r o o f . If 5 is a semicopula, then, for all x,y E [0,1[, one has 

0 = S(x,0) < S(x,y) < min{x,y}, 

and, if x = 1 (analogously y = 1), then 5(1, y) = y = mm{y, 1}. • 

In other words, S is a semicopula if, and only if, S is a binary aggregation operator 
satisfying (5). 

By introducing a condition stronger than 1-Lipschitz on semicopulas, we obtain 

Proposition 2.2. Let S be a semicopula. Then S satisfies the kernel property, 

viz. 

V x , x ' , y , y ' € [ 0 , l ] \S(x,y) - S(x',y')\ < max{|x - x'\, \y - y'\}, 
(2.6) 

if, and only if, S = M. 
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P r o o f . It is known that condition (6) on a semicopula S is equivalent to its 
sub-shift invariance (see, e.g., [5]), i.e., for all x,y,a G [0,1] such that x + a and 
y + a are in [0,1] 

S(x + a,y + a) <a + S(x, y). 

In particular, if x > y, S(x + (1 - x),y + (1 - x)) < 1 - x + S(x,y), so that 
S(x,y) >y = xAy, and analogously if x < y. In view of Proposition 2.1 the proof 
is complete. • 

A related concept is that of co-semicopula, which we introduce here in analogy 
with what is done in the case of t-conorms (see [13, 20]). 

Definition 2,2. A function S* : [0, l ] 2 —• [0,1] is called a co-semicopula if it is 
increasing in each place and satisfies the boundary condition 

S*(x,0) = S*(0,x) =x for all xe [0,1]. 

The co-semicopula is the dual operation of a semicopula, according to the follow­
ing result, which can be easily proved. 

Proposition 2.3. A function S* is a co-semicopula if, and only if, there exists a 
semicopula S such that, for all x and y in [0,1], 

S*(x,y) = l-S(l-x,l-y). (2.7) 

This latter proposition allows to study only the properties of semicopulas and to 
obtain the corresponding ones for co-semicopulas by (7). 

It must be noticed that no assumption on the (left- or right-) continuity of a 
semicopula has hitherto been made; but, in this case, the next result can be useful 
(the proof is the same as that of Lemma 3.1 in the authors' paper [8]). 

Proposition 2.4. For a semicopula S, the following statements are equivalent: 

(a) S is (left-)continuous in each place; 

(b) S is jointly (left-)continuous. 

Definition 2.3. A semicopula S is said to be convex if, for all x, y, u and v in 
[0,1] one has, for every a G [0,1], 

S (ax + (1 - a) u,ay + (1 - a) v) < aS(x,y) + (1 -a)S(u,v). 

It is said to be concave if —S is convex. 

The following proposition can be proved as in [1, Corollary 1]. 
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Proposition 2.5. The (semi-)copula M is the only concave semicopula. 

We recall that the Prechet-Hoeffding lower bound ([15]) for both copulas and 
quasi-copulas is the copula W defined by 

W(x,y) := max{0,x + y - 1}; 

this is called Lukasiewicz copula in [13]. 

Proposition 2.6. If a semicopula S is convex and symmetric, then S < W. 

P r o o f . Since S is convex and symmetric, it is Schur-convex; therefore, if x and 
y are in [0,1] with x + y < 1, then S(x,y) < S(x + y,0) = 0 = W(x,y), while, if 
x + y>l, then S(x, y) < S(l,x + y-l) = x + y-l = W(x, y). • 

By using Definition 2.1, one can easily prove that the functions of the following 
four examples are semicopulae. 

Example 2.5. (Weighted arithmetic mean) If So and S\ are semicopulae, then for 
all 9 E [0,1] both the weighted arithmetic mean (1 — 6)So + 0S\ and the weighted 
geometric mean SQ Sl~e are semicopulae. In other words, the set S of semicopulas 
is convex and log-convex. 

Example 2.6. (Ordinal sum) Let {Ji}i<zj denote a family (possibly infinite) of 
nonempty, pairwise disjoint open subintervals Ji := ]cii,bi[ of [0,1]. Let {Si} be a 
collection of semicopulas with the same index set {Ji}. The ordinal sum of {Si} 
with respect to {Ji} is the function S defined by 

S(x,y) := h + ^-Qi) Si ( S ' S ) • (*•») G Jh 
[M(x,y), elsewhere. 

It is easily shown that an ordinal sum of semicopulas is a semicopula, which will be ' 
denoted by S = ((a^, bi, 5»)) i € / . 

Example 2.7. (Transformed semicopulae) Let S be a semicopula and let (p be an 
increasing bijection of [0,1]. The function S^, defined, for all x and y in [0,1], by 

Sip(x,y)=ip-l(S(^p(x),iP(y))) 

is also a semicopula, called the transform of S. 
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Example 2.8. (Frame semicopulae) Let the points 

0 = t0 <h <•- < tn-i <tn = l 

partition the unit interval [0,1]; the frame semicopula Sf corresponding to the above 
partition is defined by 

| V i , ii(x,y)e[U-l,l[
2\[U,l[2, 

Sf(x, y) := I x A y, ifxVy = l, 

[0, iixAy = 0. 

Notice that a frame semicopula can always be modified by changing its value in any 
of the "frames" [U-i, J[2 \ [U,l[2 from U-i to any U-\ G )U-2,U-i[. Moreover, if 
continuity questions arise, one may choose as the value taken on the side of each 
frame one of the values taken on the two adjoining frames. 

Definition 2.4, Let S be a semicopula. The horizontal section of S at b G [0,1] is 
the function hb : [0,1] —> [0,1] defined by hb(t) := S(t,b); the vertical section of S at 
a G [0,1] is the function va : [0,1] —> [0,1] defined by va(t) := S(a,t); the diagonal 
section of S is the function 5s : [0,1] —> [0,1] defined by 5s(t) := S(t,t). 

Proposition 2.7. Let S be a semicopula and 5 its diagonal. Then 

(a) 5(0) = 0 and 5(1) = 1; 

(b) 5(t) <tior a lUG [0,1]; 

(c) 5 is increasing; 

(d) if 5(t) = t for all t G [0,1], then S = M; 

(e) if 5(t) = 0 for all t G [0,1[, then S = Z. 

P r o o f . The statements (a), (b) and (c) are direct consequences of Definition 2.1. 
Now, suppose that S(t) = t for all t in [0,1]. For all x, y G [0,1], if x > y, then 

S(y,y)=y<S(x,y)<S(l,y) = y; 

whereas if x < y, then 

S(x, x) = x < S(x, y) < S(x, 1) = x; 

that is S(x,y) = min{x,y}. The proof of statement (e) is analogous. • 

As in the case of copulas (see [9, 10, 17]), given a function 5 satisfying properties 
(a), (b) and (c), it is always possible to construct a semicopula whose diagonal section 
is 5; for instance: 

Sfx y=U(x)A5(y), i fx ,yG[0 , l [ , 
[xAy, elsewhere. 

S5 is a diagonal semicopula associated with 5. 
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Example 2 .9 . Consider the function 5 : [0,1] -+ [0,1], given for all t € [0,1] by 

'0, t e [ 0 , l / 2 [ ; 

*(*) = < 1/2, i G [ l / 2 , l [ ; 

kL t = l. 

The diagonal semicopula associated to 8 is the semicopula Ss given by 

a; Ay, zVj / = l, 

Ss(x,y) = I 1/2, ( x , y ) e [ l / 2 , l [ 2 ; 

0, elsewhere. 

Notice, however that a semicopula is not uniquely determined by its diagonal. 
For example, if 5(t) = t2 for all t G [0,1], there are two semicopulae, U(x,y) = xy 
and Ss(x, y) = x2 A y2, for (x, y) G [0,1[2, with diagonal section equal to 5. 

3. COMPACTNESS 

Let X denote the set of all functions from [0,1] to [0,1] equipped with the product 
topology (which corresponds to pointwise convergence). 

Theorem 3.1. The class S of semicopulas is a compact subset of X (under the 
topology of pointwise convergence). 

P r o o f . Since X is a product of compact spaces, it is well known from Tychonoff 
Theorem (see, e.g., [12]) that X is compact. The proof is completed by showing 
that S is a closed subset of X, namely, that, given a sequence {S^jnGN in S, if Sn 

converges pointwise to S, then S belongs to S. In fact, for all x,xf,y G [0,1] and 
n G N, one has 

Sn(x, 1) = x —> x = S(x,l) = S(l,x), 
n—>+oo 

and, if x < xf, Sn(x,y) < Sn(x
f,y) implies.S(x,y) < S(xf,y), which is the desired 

conclusion. • 

A sequence {Sn : n G N} of semicopulas is a Cauchy sequence with respect to 
pointwise convergence if, for every e > 0 and for every point (x,y) in [0,1] , there 
exists a natural number no = no(e,x,y) such that 

\Sn(x,y) - Sm(x,y)\ < e, 

whenever n,m > no. As an immediate consequence, each Cauchy sequence of semi­
copulas converges pointwise to some semicopula; in other words S is complete. We 
note that there are Cauchy sequences of (continuous) t-norms whose pointwise limit 
is not a t-norm (see [13]); therefore T is neither a complete nor a compact subset of 
S. 

By connecting Example 2.5 and Theorem 3.1, it follows that S is a compact and 
convex subset of X; therefore, in view of the Krein-Millman Theorem (see, e.g., 
[7]), one has 
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Corollary 3.1. The class S of semicopulas is the convex hull of the set formed by 
extremal points of S, where a semicopula A is said to be extremal if, for all B and 
C in S, and for all A G ]0,1[, A = A B + (1 - A) C implies A -= B = C. 

Next we show that the semicopulae Z and M are extremal. 
Given the semicopula Z, suppose that there exist B and C in S and A G ]0,1[ 

such that Z(x,y) = \B(x,y) + (1 - \)C(x,y) on [0,1]2. For all x,y G [0,1[, the 
equality 

Z(x, y)=0 = \ B(x, y) + (1 - A) C(x, y) 

implies 
B(x,y)=0 = C(x,y), 

so that one has B = Z = C on [0,1] . 
Using the same notations, we consider the semicopula M and suppose 

M(x, y) = \ B(x, y) + (1 - A) C(x, y) 

on [0,1] . In particular, for every x G [0,1]; then the equality 

M(x, x) = x = A B(x, x) + (1 - A) C(x, x) 

implies 

5B(x) = Sc(x) = x, 

which, in view of Proposition 2.7, yields B = C = M. 

4. ORDER 

Proposition 2.1 suggests a partial order on the set of semicopulas. 

Definition 4.1. If Si and 52 are semicopulae, 5i is said to be smaller than 52, 
and one writes 5i -< 52, if S\(x,y) < S2(x,y) for all x,y in [0,1]. 

This is a partial ordering, because not every pair of semicopulas is comparable: it 
is sufficient to consider the copulas of Example 2.18 in [16] or the following example. 

Example 4.1. Let Si and 52 be, respectively, the two ordinal sums given by 

s, y) = «0,l/2.Z» = 1°' {X,V) € [0'1/2[2' 
1 min{x,y}, elsewhere; 

and by 

Q , v m / 9 , 7Sv J l A ( x , y ) € [ l / 2 , l [ 2 , 
s2(x,2/) = ( ( l / 2 , l ,Z ) ) = | m . n { a ; ] y } i e l s e w h e r e 

Then Si(l/4,l/4) < 52(l/4,l/4), but si(3/4,3/4) > s2(3/4,3/4). 

Let A be a nonempty subset of S. We denote by V.4 and A.4, respectively, the 
pointwise supremum and infimum of A, that is, for each (x, y) G [0,1] , 

V ^ ( x , y ) : = s u p { s ( a r , y ) , s G ^ } , AA(x,y) := ini{S(x,y),S e A}. 
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Proposition 4.1. S is a complete lattice, that is, for every A C S, A ^ 0, VA 
and f\A are in S. 

P r o o f . Let A be a nonempty subset of S. For all x,x',y e [0,1] such that 
x < x1, one has 

vA(x, 1) = sup{5(x, l) , S eA} = sup{>, S e A} = x, 

that is VA satisfies the condition (i) of Definition 2.1; moreover, 

VA(x, y) = sup{S(x, y), S e A} < sup{S{x', y), S e A} = VA{x',y), 

that is \/A satisfies the condition (ii) of Definition 2.1, and hence V 4̂ is a semicopula. 
Analogously one can prove that A.4 is a semicopula. • 

In particular, the minimum (and the maximum) of two semicopulas is a semi­
copula. This result holds for quasi-copulas, but neither for copulas ([19]) nor for 
t-norms, as the following example shows. 

Example 4.2. Consider the two £-norms II and T, defined for all x,y E [0,1] by 
H(x, y) = xy and 

T(x,y)= { 

0, (x,y)e [0,1/2] x [0,1/2] 

x, (x ,y)є [0,1/2] x] l/2, l ] 

У, (x,y) Є ] l / 2 , l ] x [0,1/2] 

{2xy-x-y + l, (x,y) Є ]l/2,1] x ]l/2,1]. 

Let S be the pointwise minimum of n and T. Then 

S (5(5/10,6/10), 8/10) = 24/100, 

while 
S (5/10, 5(6/10,8/10)) = 0, 

i. e. S is not associative, and hence it is not a £-norm. 

In [19], it was proved that the class Q of quasi-copulas is the Dedekind-MacNeille 
extension (the DM-extension, for short) of the set C of copulas, that is Q contains 
lower and upper bounds (i. e. pointwise infima and suprema) of all subsets of C, in the 
same way as the real numbers are the extension of the set of rationals by Dedekind's 
cuts (for more details on lattice theory, see, e.g., [24]). In view of Proposition 4.1, 
S is a extension of class T of £-norms and S strictly includes the DM-extension of 
T, because the supremum (infimum) of a subset of £-norms is commutative. This 
suggests the following 

Conjecture. The DM-extension of T is the set of commutative semicopulas, or, 
equivalently, S is a commutative semicopula if, and only if, S is the supremum of a 
subset of t-norms. 
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5. POINTWISE INDUCED SEMICOPUL/E 

Let A and B be semicopulae and let <p be a mapping from [0,1] into [0,1], Then a 
new mapping ip(A, B) : [0, l ] 2 —* [0,1] is also defined via 

ф(A, B)(x, y) := y (A(x,y), B(x, y)) (5.1) 

We shall investigate under which conditions the mapping I/J(A,B) just introduced is 
a semicopula, for every choice of A and B in S; in other words, when does (8) induce 
a map i/J : S x «S —> S? When this occurs, we shall say that tp induces pointwise the 
binary operation ip on <S. The following Lemma will be needed. 

L e m m a 5.1. Let si, s 2 and t be points in [0,1[ with si < s2. Then there exist 
two semicopulae A and B and two points (x\,y\) and (x2, T/2) in [0,1] , with x\ < x 2 

and y\ < 2/2 such that 

A(xuyi) = si and A(x2,y2) = s2, 

B(xi,yi) =t = JB(x2,y2). 

P r o o f . Three cases will be considered. 

Case 1: t < s\ < s 2. Let A be the ordinal sum given by 

A = ( ( 5 i , s i + i , Z ) ) i G / , 

with I = {0,1,2,3} and so = 0, S3 = 1, so that 

Ґ0, (x,y) Є [0,si[ , 

si, (x,y) Є [ s ь s 2 [ , 

82, (X,У) Є [S 2 , l [ , 
A(x,y)= ( 

( x A y , elsewhere, 

and let B be the ordinal sum given by 

B = ((ti,ti+i,Z))ieI, 

with to = 0, t\ = t, t2 = 1, so that 

B(x,y)= { 

(x,y)€[0,t[2, 

(x,y)€[t,l[2, 

0, 

t, 

x Ay, elsewhere. 

Then 

A(si,si) = su A(s2,s2) = s2, B(si,si) = t = B(s2,s2). 
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Case 2: s\ < t < s2. Choose B as in the previous case and let A be the frame 
semicopula defined by 

' 0 , ( x , y ) G [ 0 , l [ 2 \ [ S l , l [ 2 , 

A{x,y) := 
si, {x,v)£[si,l[ \)t,l[ , 
t, {x,y)e]t,l[2\[s2,l[\ 

*a, (x,y) € [s2 , l [2 , 
xAy, xVy = l. 

Then 

A(t,t) = s\, A(s2,s2) = s2 and B(t,t) = B(s2,s2) =t. 

Case 3: s\ < s2 < t. Choose B as in two previous cases and define A to be the 
frame semicopula 

(x,y)€[0,l{2\[t,l[2, 

A(x,y):={- (^eMfU^ll2, 
(x,y) G [x\,l[ , 
x V y = 1. 

where we have chosen the point x\ subject to the only condition t < x\ < 1. Then 

A(t,t) = s\, A(x\,x\) = s2, B(x\,x\) = B(t,t) = t, 

which proves the assertion. • 

Theorem 5.1. The following statements are equivalent: 

(a) for all semicopulas A and B, ijj(A,B) is a semicopula; 

(b) for every s G [0,1[ the functions 11—> ip(t, s) and 11—> tp(s, t) are increasing and 
ip(x, x) = x for every x G [0,1]. 

P roo f , (a) = > (b) If ijj(A,B) is a semicopula, then 

x = ^(A, B)(x, l) = tp (A(x, 1), B(x, 1)) = <p(x, x). 

Let 5i, 82 and t be in [0,1[ with si < 82- Then, because of Lemma 5.1, there 
are two points (x\,y\) and (x2,y2) in [0, l ] 2 with x\ < x2 and y\ < y2 such that 
A(x\,y\) = s\, A(x2,y2) = s2 and B(x\,y\) = B(x2,y2) = t. Therefore 

ip(s\,t) = <p(A(x\,y\),B(x\,y\)) = ^(A,B)(x\,y\) < ^(A,B)(x2,y2) 

= ip (A(x2, y2), B(x2, y2)) = ip(s2,t). 

In an analogous manner, one proves that, for all s G [0,1[, the function t i-> <p(s,t) 
is increasing. 
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The converse implication, (b) ===--> (a), is just a matter of a straightforward veri­
fication. • 

As a consequence of the preceding theorem, every idempotent aggregation opera­
tor induces pointwise a binary operation on S. Examples of idempotent aggregation 
operators are given, for instance, by the geometric and harmonic means and, in 
general, the quasi-arithmetic mean, defined by 

for every stricly increasing bijection / of [0,1]. 
It is known from [14] that the, kernel property completely characterizes the func­

tions that induce pointwise a binary operation on the class Q of quasi-copulas. In 
the case of copulas, instead, this problem is still open. 

6. MULTIVARIATE SEMICOPULlG 

The notion of semicopula can be extended in a natural way to the n-dimensional 
case (n > 3). 

Definition 6.1. A function S : [0, l ] n —> [0,1] is said to be an n-semicopula if it 
satisfies the two following conditions 

(a) S(x\,X2,... ,xn) = Xi for Xi in [0,1] and Xj = 1 for all j =̂  i\ 

(b) 5(xi , X2, • . . , xn) is increasing in each place. 

As a convention, the identity on [0,1], id[o,i], is the only 1-semicopula. 
Given a family of n-semicopulas {Sn}neN. the corresponding aggregation oper­

ator A : UnGN [0, l ] n —> [0,1], where An = Sn for all n G N, has neutral element 1 
and annihilator element 0. 

Higher dimensional semicopulae are easily constructed from lower dimensional 
ones, in view of the following results, the easy proof of which will not be reproduced 
here. 

Proposition 6 .1 . Let H be a 2-semicopula and let Sm and Sn be, respectively, an 
m-semicopula and an n-semicopula (m,n G N); then the function S : [0, l ] m " —> 
[0,1] defined by 

5 ( x i , . . . ,Xm+n) '= H ( 5 m ( x i , . . . , X m ) , Sn(xm+1, • • • , Xrn+n)) (6.1) 

is an (m + n)-semicopula. 

Aggregation operators of type (9) are called double aggregation operators; they 
allow to combine two input lists of information coming from different sources into a 
single output (see [6] for more details). 
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P r o p o s i t i o n 6 .2 . Let S\, S2y . . . , Sn be bivariate semicopulae; then the function 
S : [0, l ] n + 1 - • [0,1] denned by 

S , ( x i , x 2 , . . . , x n + i ) 

:= Sn ( S n - i ( 5 n _ 2 ( . . . S3 (S2 {Si(xi, x 2 ) , £3) ^ 4 ) , • • •, x n ) , x n + i ) ) 

is an (n + l)-semicopula. 

In the opposite direction we can construct lower dimensional semicopulas from 
higher dimensional ones. 

P r o p o s i t i o n 6 . 3 . Any m-marginal, m > 2, of an ?z-semicopula Sn, m < n is an 
m-semicopula, viz., if Sn is an n-semicopula, then the function Sm : [0, l ] m —* [0,1] 
defined by 

' - ' m l ^ h %2i • • • j Xfxx) -= un(X\, X2, • • • , -Cm. 1? 1? • • • 1 IJ 

is an m-semicopula, and so is any function obtained from it by permuting its argu­
ments. 

Propositions 6.1, 6.2 and 6.3 can be analogously proved also in the case of quasi-
copulas. 
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