

ASHESI UNIVERSITY COLLEGE

DEVELOPING A WEB-BASED SYSTEM FOR INFERENTIAL DATA

ANALYTICS

Applied Project

B.Sc. Computer Science

Abdul-Razak Adam

2018

Page | 1

Branding and Identity Guide
The Ashesi brand and logo are integral parts of our worldwide image and identity. We must be
careful of how and where the Ashesi is used to ensure we maintain the integrity of our
organization.

This guide has been developed to help you clearly understand our policies towards the use of
the Ashesi logo in a variety of mediums, as well as type faces and a color palate to help you
produce materials that maintain the brand’s integrity. We would request that you seek
approval from the Ashesi University College Marketing Committee before creating any media
that reproduces the Ashesi logo.

Contents
The Logo .. 2

Using the Logo .. 3

Clear Space and Logo Design .. 5

Unacceptable Logo Uses ... 6

The Ashesi Seal .. 7

Color Palette ... 8

Fonts.. 8

Mission Statement .. 9

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Ashesi Institutional Repository

https://core.ac.uk/display/197725955?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

ASHESI UNIVERSITY COLLEGE

Developing a Web-Based System for Inferential Data Analytics

APPLIED PROJECT

Applied Project submitted to the Department of Computer Science, Ashesi

University College in partial fulfilment of the requirements for the award of

Bachelor of Science degree in Computer Science

Abdul-Razak Adam

April 2018

i

Declaration

I hereby declare that this applied project is the result of my own original work and that no

part of it has been presented for another degree in this university or elsewhere.

Candidate’s Signature:

……………………………………………………………………………………………

Candidate’s Name:

……………………………………………………………………………………………

Date:

……………………………………………………………………………………………

I hereby declare that preparation and presentation of this applied project were supervised

in accordance with the guidelines on supervision of applied project laid down by Ashesi

University College.

Supervisor’s Signature:

……………………………………………………………………………………………

Supervisor’s Name:

……………………………………………………………………………………………

Date:

……………………………………………………………………………………………

ii

Acknowledgement

I would like to thank the Almighty Allah for seeing me through my four-year stay at

Ashesi and for giving me the strength to complete this project. I would like to express my

profound gratitude to everyone who supported me in my project especially my

supervisors, Dr. Ayorkor Korsah, Dr. Hene Aku Kwapong and Mr. Arrojah Adade-Boafo

for their feedback, critiques and time. My final thanks go to my family and friends for

their motivation and positive energy which inspired me to work hard towards the

completion of this project.

iii

Abstract

The rapid generation of data by businesses has created a unique and exciting opportunity

for management and employees to explore relationships in their data and make informed

decisions based on these insights. However, limited sets of tools exist for businesses with

no programming and data analysis skills for them to explore this opportunity. This paper

proposes a new and improved web-based platform based on a desktop application, INFER,

developed by Songhai Group. This application takes into consideration the features and

limitations of software tools for data analytics that are currently available. The proposed

solution is an end-to-end data analytics platform that enables users to build inferential

models from observed data.

iv

Table of Contents

Declaration ... i

Acknowledgement ... ii

Abstract .. iii

Table of Contents ...iv

List of Tables ... vii

List of Figures ... viii

Chapter 1: Introduction ... 1
1.1 Background ... 1

1.2 Problem ... 2

1.3 Objectives .. 2

1.4 Related Work ... 3

1.4.1 R ... 4

1.4.2 Orange .. 4

1.4.3 Weka ... 5

1.4.4 Datameer ... 5
1.5 Intended Solution ... 5

1.6 Benefits ... 6

Chapter 2: Requirement Specification ... 7

2.1 Project Scope ... 7

2.2 Project Perspective .. 7

2.3 System Functionality ... 8

2.4 Use-case .. 8

2.5 Use-case diagram ... 10

2.6 Operating Environment .. 10
2.7 Non-functional Requirements .. 11

2.7.1 Performance .. 11

2.7.2 Modularity .. 11

2.7.3 Scalability ... 11

2.7.4 Availability ... 11

2.7.5 Consistency ... 11

Chapter 3: Architecture ... 12

v

3.1 Architectural Considerations .. 12

3.2 Architectural Decisions .. 13

3.2.1 Client-Server Architecture ... 13

3.2.2 Model-View-Controller (MVC) ... 13

3.3 System Context diagram .. 14
3.4 System Overview ... 15

3.4.1 Data Loading Module .. 16

3.4.2 Pre-processing Module .. 16

3.4.3 Modelling Module ... 16

3.4.4 Prediction Module ... 16

3.4.5 Results Module ... 16

3.5 System Architecture... 17

Chapter 4: Implementation .. 18
4.1 Implementation Decisions .. 18

4.1.1 Choice of Programming Language .. 18

4.1.2 Decision on Framework .. 19

4.1.3 Choice of Framework .. 19

4.2 Project Setup ... 20

4.3 Technologies ... 20

4.3.1 Flask ... 20

4.3.2 SQLite... 21
4.3.3 Docker .. 21

4.4 Environment .. 21

4.5 Running the Application .. 22

4.6 Flask Extensions .. 22

4.7 User Interface (UI) Dependencies .. 22

4.8 Implementation Structure ... 23

4.8.1 Initialization .. 23

4.8.2 Templates .. 24

4.8.3 Views Route functions .. 24
4.9 New INFER System .. 24

4.10 Implementation Summary .. 27

4.10.1 Loading Data Module .. 27

4.10.2 Pre-process Data Module ... 27

4.10.3 Build Model Module ... 27

vi

4.10.4 Prediction Module ... 27

4.10.5 Result Module ... 28

Chapter 5: Testing and Results .. 29

5.1 Development Testing ... 31

5.1.1 Unit Testing .. 31
5.3 Component Testing .. 31

5.4 System Testing .. 32

Chapter 6: Conclusion ... 33

6.1 Recommendations and Future Work .. 33

6.2 Conclusion... 34

References .. 35

Appendix A .. 37

vii

List of Tables

TABLE 1.1: A SUMMARY OF RELATED TOOLS AND THEIR CHARACTERISTICS. 3

TABLE 3.1 : COMPARISON BETWEEN CLIENT-SERVER AND MODEL-VIEW-CONTROLLER

ARCHITECTURE... 14

TABLE 4.1 COMPARISON OF R, PYTHON AND JAVA.. 18
TABLE 4.2 COMPARISON BETWEEN DJANGO AND FLASK ... 20

viii

List of Figures

FIGURE 2.1 USE CASE DIAGRAM OF THE NEW SYSTEM .. 10

FIGURE 3.1 SYSTEM CONTEXT DIAGRAM ... 15
FIGURE 3.2 SYSTEM OVERVIEW .. 15
FIGURE 3.3 HIGH-LEVEL SYSTEM ARCHITECTURE .. 17

FIGURE 4.1: HOMEPAGE OF THE NEW SYSTEM ... 25
FIGURE 4.2: STATISTICAL SUMMARY OF THE DATA. ... 25
FIGURE 4.3: PRE-PROCESSING OPTIONS AVAILABLE IN THE NEW SYSTEM. 26
FIGURE 4.4: LINEAR REGRESSION MODEL BUILD WITH THE NEW SYSTEM. 26

FIGURE 5.1 PERFORMANCE OF THE NEW SYSTEM BY LIGHTHOUSE 30
FIGURE 5.2 PERFORMANCE DETAIL BY LIGHTHOUSE ... 30

FIGURE A.1: DOCKER CONFIGURATION FILE. ... 37
FIGURE A.2: COMMAND TO BUILD DOCKER IMAGE. .. 37
FIGURE A.3: COMMAND TO RUN DOCKER CONTAINER. .. 37
FIGURE A.4: RUNTIME DETAIL OF DOCKER CONTAINER. .. 38
FIGURE A.5: LOGS OF DOCKER CONTAINER. ... 38
FIGURE A.6: INITIALIZATION FILE OF THE NEW SYSTEM. .. 39
FIGURE A.7: BASE TEMPLATE EXTENDED BY ALL OTHER TEMPLATES. 40
FIGURE A.8: ROUTE FUNCTION FOR UPLOADING DATA. ... 41
FIGURE A.9: SAMPLE UNIT TEST. .. 42
FIGURE A.10: HOMEPAGE OF OLD INFER DESKTOP APPLICATION 42
FIGURE A.11: SPECIFYING INPUT AND OUTPUT IN THE OLD INFER SYSTEM........................ 42
FIGURE A.12: LEAST SQUARE REGRESSION RESULTS OF THE OLD INFER SYSTEM. 43

1

Chapter 1: Introduction

Since the early 2000s, the amount of data generated by businesses has risen sharply

to several terabytes of data generated each day. Web applications, sensors, social media,

devices and many other sources generate several terabytes of data. Analysing this data is

crucial to management and employees in helping them make informed decisions, solve

complex business problems and ultimately serve their customers better. This creates the

need for tools to be developed to make it easy for non-experts in data science and

programming to gain insights from their data. Songhai group1 has developed INFER to

meet this need. INFER is an offline PC-based program for building empirical models from

a set of input variables and output variables. INFER was developed using C++ and

Fortran. Project DAX seeks to migrate the INFER tool to a web-based platform and

enhance its functionality. This current applied project is a subset of Project DAX that

creates a proof-of-concept prototype of an online data analytics platform based on INFER.

1.1 Background

With incredible interest in solving critical and complex business problems with

data, businesses all over the globe are using data analytics platforms to build and generate

business models. These platforms also help businesses to explore relationships in their

data and possibly make predictions from these models. An influencing factor has been the

creation of new products and services, and new ways of doing business using data and

machine learning, to learn trends, explore relationships on sales, cost and revenues.

Because of these developments, businesses in Ghana are also beginning to take the idea of

building out data analytics teams and platforms more seriously. This is aimed at managing

and leveraging the large amount of data they create while doing business.

1 http://songhai.com/

2

1.2 Problem

Though businesses in Ghana wish to leverage the potentials of such platforms to

help improve their business models, it turns out that there are very limited set of tools for

these businesses. The tools available are very complicated and require several hours of

learning. For example, R is the most popular statistical package for analysing data;

however, R requires users to know how to write code and have some data analysis skills.

Most managers and employees however, do not have these skills. Therefore, there is the

need for this project to explore the creation of an online data analytics platform for

businesses and business professionals. This platform will help users explore relationships

in their data, build empirical models from observed data and make predictions with the

models.

1.3 Objectives

The goal of the overall project, Project DAX, is to migrate the functionality of the

INFER to a web-based platform and enhance its functionality. However, the goal of the

current applied project is to detail the functional requirements and architecture of the new

system, and to implement a limited-functionality proof-of-concept prototype of the new

system. A summary of objectives that Project DAX hopes to achieve are as follows:

o Build an online version of INFER that brings together a set of tools in a much

more simplified form than it is usually found in tools like R, and with a business

focus to support decision analytics for businesses.

o Enhance the functionality of the new systems to include common features found in

current data analytics platforms.

o Based on the beta software from Songhai, Project DAX goal is to develop a full-

fledged online application using latest web technologies and programming

languages.

3

The current applied projects on the other hand hopes to achieve the following objectives:

• Develop a complete and modular system architecture. This includes: context

diagram, system activities diagram and system architecture.

• Detail the functional and non-functional requirements of the new system.

• Implement a limited-functionality proof-of-concept prototype of the new system.

1.4 Related Work

 In order to understand the current data analytics ecosystem, various tools for data

exploration and analytics were studied. Table 1.1 presents an overview of tools explored.

These tools were evaluated based on criteria such as platforms they run on, ease of usage,

programming and data science skills requirements and other criteria.

Table 1.1: A summary of related tools and their characteristics.

 R Orange Weka RapidMiner KNIME Datameer

Developer R Core
Team

University of
Ljubljana

University of
Waikato

RapidMiner KNIME.com
AG

Datameer

Licence GNU GPL
v2

GPL 3.0 GNU AGPL GNU AGPL

Desktop / Web Desktop Desktop Desktop Desktop Desktop Desktop
Learning curve Steep Steep Steep Steep Steep Easy
Programming
language(s)

R Python Java Java Java Not
specified

GUI / command
line

GUI Both Both Both GUI GUI

Main purpose Scientific
and
Statistical
computation

Data analysis Data mining Data analysis Data
analysis

Data
analysis

Requires
programming
skills

Yes No No No No No

Requires data
science skills

Yes Yes Yes Yes Yes Yes

4

1.4.1 R2

R is a programming language for statistical computation and analysis. It is the most

popular statistical package among statisticians, students, researchers, data scientists and

data miners (RDevelopment CORE TEAM, 2008). R unites all of the standard statistical

tests, models, and analyses, as well as provides a full language for organizing and

manipulating data (RDevelopment CORE TEAM, 2008). R comes with many packages

for loading, cleaning, processing, analysing and visualizing data. R has packages that can

be used to achieve all the functionality of this project, including loading data, cleaning,

analysis and visualizing data. However, it has a very steep learning curve. As such, much

of employees’ time is focused on learning and getting immersed in the tool rather than

spending time building insights to help create data proposals for their businesses. Another

drawback for R is that it has many memory management issues (Ihaka & Gentleman,

1996). This issue is as a result of the core implementation of R that limits R to write all

data on memory not disk (Venables, 2013). In other words, all data loaded in R is stored in

the random-access memory of the computer therefore limiting the size of data that R can

manipulate and analyse.

1.4.2 Orange3

Orange is an open source machine learning, data mining and analytics tool written

mostly in Python and C++. Orange is developed for programmers, expert users, and

students to explore and visualize the relationships in their data (Demšar et al, 2013). It was

developed by the University of Ljubljana with the intention to be used for experimental

data mining and data analytics. Orange makes analytics easier; however, like INFER,

orange is a desktop application that currently runs on Windows, Mac OS and Linux.

2 https://www.r-project.org/
3 https://orange.biolab.si/

5

Orange can be used for both simple and complex analytics like INFER. However, Orange

has external functions that can be imported to extend its functionality.

1.4.3 Weka4

 Weka is a Java application for data mining. It contains a collection of data mining

and machine learning algorithms for general data mining tasks. Weka also provides a

visualization toolkit to explore and analyse data (Rangra & Bansal, 2014).

1.4.4 Datameer

Datameer is an end-to-end data analytics platform for businesses. Datameer is built

on top of Hadoop. Hadoop is an open source software utility by Apache Software

Foundation that facilitates the use of multiple computers over a network. Hadoop is

designed to solve problems involving massive amount of data.

1.5 Intended Solution

This project intends to research into latest web technologies including

programming languages, web frameworks, databases, architectures and techniques to

migrate the INFER tool to a web-based platform and enhance its functionality. The project

is designed to understand the available technologies in data analytics for the web and

generate a modular architecture for the new system. This proposed project combines the

strengths of the available tools and libraries. It also provides a step-by-step approach to

building inferential models. Moreover, it allows users to examine their data, screen the

data for possible outliers or bad data points, edit the data, build a model, evaluate the

model, and generate a predictive model for forecasts. The system will provide facilities to

build both linear and non-linear models using techniques not limited to: simple linear

4 https://www.cs.waikato.ac.nz/ml/weka/

6

regression, stepwise regression, partial least squares regression and neural networks. The

system will be modular on which other modules or components will be added.

1.6 Benefits

A prevalent problem with the current INFER system is that, it is a desktop

application hence customers of Songhai have to go to the office of Songhai to use the

application. This is inconvenient for both Songhai and its customers. For this reason, the

INFER system is not available for use world-wide. This project seeks to make the

functionality of the new INFER system available to all Songhai customers across the

globe. This modular implementation of the new INFER will make it easy for more

functionality to be added and maintained by other developers.

7

Chapter 2: Requirement Specification

The chapter provides a detailed description of the new INFER system. It covers

both the functional and non-functional requirements of the system.

2.1 Project Scope

The new INFER system is a full-fledged and extensible web application currently

consisting of five independent modules (data loading, pre-processing, modelling,

prediction and results modules). The requirements of the new system are based on the

requirements of the old system. The common features shared by the various tools

presented in section 1.4 have been considered. Below is a list of general features that are

common in most of the data analytics platforms studied in section 1.4:

• Most of these tools contain many machine learning algorithms for classification,

regression, clustering and neural networks.

• All of the tools support data visualization. They support graphics such as scatter

plots, histograms, box plots and 3D graphs.

• Each platform supports loading data from different sources including files (textual

files and excel spreadsheets) and databases.

• The platforms support various pre-processing and transformation techniques such

as normalization, discretization and principal component analysis.

2.2 Project Perspective

 The new INFER system is a web-based product intended for use on web browsers

of large screens such as laptops and tablets. It requires an internet connection to upload,

process and analyse data. The system will be responsible for managing its database and

8

synchronizing its services. The system will also be responsible for handling client

interactions, communicating data and displaying data requested by the client.

2.3 System Functionality

The new INFER provides a step-by-step approach to building inferential models.

Inference modelling is the process of analysing and inferring descriptions and properties

of data (Martin & Liu, 2013). The new system allows you to examine your data, screen the

data for possible outliers or bad data points, edit the data, build and evaluate the model as

well as make predictions based on the models generated. It provides an end-to-end data

analysis experience to users. The functionality of the system as detailed earlier is

influenced by the functionality of the old system and general features established among

popular data analytics platforms. Figure A.10, A.11 and A.12 in Appendix A contain

screenshots of the old INFER system.

2.4 Use-case

Use-case is a list of actions that defines the interaction of a user with the system.

Below is a description of the users of the system and list of actions they can perform with

the new system at each module.

Users of the system are called INFER clients. An INFER client will be responsible

for carrying out all the functionality of the system. Below is a list of activities that a client

can perform with the system.

• Upload data

Clients will be able to upload data in CSV or TRR format. TRR is the format for

the input file for the previous INFER desktop application. The client will also be

able to load data from databases and URLs.

9

• Pre-process / Clean data

Clients will be able to clean and pre-process the data they have uploaded to the

system. Clients can perform the following cleaning methods:

o handle outliers,

o handle empty cells, and

o handle duplicates.

A client can also pre-process data to help generate more accurate models by:

o Scaling features to normalize and standardize the range of features of the

data.

• Build models

For this version of the new system, clients will be able to build the following

models:

o simple linear regression models,

o partial least square regression models,

o stepwise regression models, and

o neural net models.

Client will be able to regularize feature values to prevent models from overfitting.

Overfitting arises when a model fits perfectly to the training dataset but performs

poorly on the test set.

• Make Predictions

Clients will be able to make predictions based on any of the models they have

built.

10

• Visualize and save the result of models

Clients will be able to visualize the results of models and the summaries of

models’ predictions on new sets of data. Clients will also be able to save these

models for future use.

2.5 Use-case diagram

Use-case diagrams shows a graphical interaction of users of a system and the list of

action users can perform on the system. Figure 2.1 is a use case diagram of the new system

identifying how a client engages with the various components of the system.

Figure 2.1 Use case diagram of the new system

2.6 Operating Environment

This section recommends the environment that supports the system. The system

will be graphics and data-intensive; hence, it will require modern browsers such as

Chrome build 56 or Firefox v56. Despite the fact that it will be responsive to various

11

screen sizes, larger screens are still recommended for clear visualizations and for full user

experiences. The application will also rely on several open sources extensions.

2.7 Non-functional Requirements

These types of requirements are not directly concerned with the specified services

that the system will provide to users (Sommerville, 2010). The following are the non-

functional requirements of the system that were considered: performance, modularity,

scalability, availability and consistency.

2.7.1 Performance: The new INFER system must be fast and must be able to produce the

same or similar results as the old INFER system.

2.7.2 Modularity: The system should be subdivided into smaller and independent

modules so that each module can be worked on, improved on and debugged separately. It

should be modular so that new features can be added as modules and older modules can be

updated and improved upon easily.

2.7.3 Scalability: The new system should be designed to scale easily. This means that the

system should be able to accommodate an increasing number of users and requests without

major impacts on its performance.

2.7.4 Availability: The system should be available to all customers of Songhai no matter

where they are on the globe. They should be able to access the system once they have an

internet connection.

2.7.5 Consistency: The new system should be consistent with the old system. The new

system should have enhanced functionality, but it should provide consistent results and

models as the old system.

12

Chapter 3: Architecture

This chapter discusses the high-level architecture of the new INFER system. It also

discusses the various reasons for those decisions and the limitations of the chosen design

paradigm.

3.1 Architectural Considerations

This section discusses the various considerations that influenced the design of the

architecture of the new system. These considerations also influence the tools and

technologies used.

• Platform: The new system will run on web browsers such as Google Chrome or

Mozilla Firefox. This implies that the system will have to consider the capabilities

and limitations of these browsers. With this, the project must be designed to cater

for these constraints.

• Scalability: The system should be able to handle growing requests and clients

without having very significant negative impact on its performance.

• Performance at Scale: Performance of the system must not reduce significantly as

the number of workload and amount of data increases.

• Security: The new system should be secure, and user data should be protected at all

cost. The system should employ the latest authentication and authorization

systems.

• Maintainability and Testability: The code base should be very easy to understand

and well-structured. Variables should be properly named to enhance debugging

and enhancement.

• Modularity: The system should be divided into several subsystems such that each

module is completely separable from other modules.

13

3.2 Architectural Decisions

In coming up with the architecture of the system, the various design considerations

listed in section 2.7 were studied. These considerations influence the choices of software

architecture considered. Software architecture shows a technical blueprint of how a

software system is structured. Client-server and model-view-controller were considered

because they are the recommended architectures for web applications (Sommerville,

2010). The following paragraphs discuss the two architectures.

3.2.1 Client-Server Architecture

In client-server architecture, functionality of the system is logically separated into

services. Each service is delivered by an isolated server and clients make requests to these

servers to use their services.

3.2.2 Model-View-Controller (MVC)

The MVC design pattern is a three-way factoring, in which the application is

divided into three logical components; models, views, and controllers (Krasner & Pope,

1988). Models simulate the application domain, views display aspects of the model and

controllers link user interactions from views with models. This design pattern increases

modularity for simultaneous development and code reuse. MVC improves the scalability

and maintainability of large applications by separating modules more intuitively (Krasner

& Pope, 1988). Table 3.1 compares the two architectures.

14

Table 3.1 : Comparison between client-server and model-view-controller architecture.

 Client-Server Architecture Model View Controller

Scalability The services of the server and client can be
easily enhanced since they are clearly
separated.

Each module can be improved upon without
affecting the other modules.

Maintainability Maintenance is easy since services of the
server and the clients are well separated.

Each module can easily be maintained because
modules are independent of each other.

Modular Client services are totally separated from
server services.

Software is logically divided into three
modules; models, views and controllers

Performance Performance is unpredictable because it
depends on the network connection.

MVC is generally fast since all interactions
happen within a single server.

Security The distribution of these services increases
susceptibility of client-server to security
threats.

All code is within one server making it easier to
secure

Complexity Client-server is logically easy to understand
and requires no extra code for interactions
between the server and the client.

MVC requires extra code for the interactions of
the various models. This extra code could
involve very complex relationships.

From the assessment in Table 3.1, both architectures meet the requirements of the

system. However, MVC provides a better option in terms of security and performance.

Therefore, the system architecture follows the MVC pattern.

3.3 System Context diagram

System context diagram defines the boundary of a system and its environment. It

shows how entities in the environment interact with the system. Figure 3.1 shows how

clients will interact with the new system.

15

Figure 3.1 System context diagram

3.4 System Overview

The new system is divided into five modules. Each module interacts with the other

modules. The diagram below shows the various modules that the INFER system is made

of.

Figure 3.2 System overview

As shown in Figure 3.2, the new system is divided into five modules. Clients

upload their data to the system through the data loading module, pre-process their data,

16

build models with this data and make predictions with models built. Client can then save

their models using the result module. Each module is explained below.

3.4.1 Data Loading Module

The user loads data into the system through the data loading module. The data

from this module serves as input to the pre-processing module.

3.4.2 Pre-processing Module

This module cleans the data uploaded by the user by handling duplicate rows,

outliers, and empty cells. It also enables users to scale and regularize features for training

to assist them build more accurate models. The cleaned data from this module serves as

input to the modelling module.

3.4.3 Modelling Module

The user is given the option to build models including simple linear regression

model, stepwise regression model, partial least squared regression or neural net models.

This involves training the selected model and learning the right parameters to be used by

the prediction module.

3.4.4 Prediction Module

This module allows a user to use parameters learned in the previous model to make

projections on new data provided by the user.

3.4.5 Results Module

This module provides users options to save models generated in the form of an

image, text file or excel spreadsheet. User can also extract pieces of code used in building

these models.

17

3.5 System Architecture

Figure 3.3 shows the full architecture of the new INFER system. The architecture

is divided into two sections. The external section and the internal section. The external

section is made up of entities, systems, and technologies that are outside the INFER

system such as users of the system, external service providers and web browsers.

Figure 3.3 High-level system architecture

The internal section contains all the code, extensions, libraries, storage

technologies that the system will use directly. The internal system is made up of models,

views, and controllers. All modules of the system exist in the controller. The views of the

system contain all user interfaces (UI) including HTML, CSS and all JavaScript files. The

models contain the database objects of the system. The controllers initialize, set

configurations for the application and defines routes. Controllers also render pages to users

and map users’ interactions with the models.

18

Chapter 4: Implementation

This chapter discusses the various implementation considerations that were taken

into account and how they influenced the technologies used and the overall

implementation of the system.

4.1 Implementation Decisions

In implementing the new system, several factors were taken into consideration

such as the programming language and the framework within the programming language.

4.1.1 Choice of Programming Language

Three programming languages including R, Python and Java where considered

because of their popularities in the field of data science and machine learning (Jovic, Brkic

& Bogunovic, 2014). Table 4.1 shows the comparison of the three programming

languages.

Table 4.1 Comparison of R, Python and Java

 Python Java R

Library for
machine
learning, data
science and
visualizations

Python has very matured libraries
for machine learning, data analytics
and visualization including numpy,
pandas, scikit, SciPy, scikit-learn,
TensorFlow and pyspark

 Java has relatively smaller set
of packages for data analytics
and visualizations including
Deeplearning4j, Weka and
Java-ML.

R comes with very
extensive packages for
visualization, data analytics
and machine learning
including e1071, rpart and
h2o.

Ease of usage Python is very easy to learn and use. Java requires more learning
time and lots of code

R has a very steep learning
curve

Syntax Simple syntax Complex and many syntaxes
to get things done

Complex and compact
syntax

Large Teams Good for smaller teams and startups Excellent for very large teams Not good for large teams or
projects since it lacks
structure

Debugging Easy to debug Easy to debug Easy to debug

Size of
Codebase

Relatively smaller codebase Relatively large code base
due to the syntactic structure
of Java

Relatively smaller codebase

Execution
Time

Slower than Java Faster execution of code Slower than Java

Typing Dynamic typing Static typing Dynamic typing

19

Verboseness Simple and compact Very verbose Compact

Scalability Scales easily Scales easily Very difficult to scale
because it lacks structure.

From the comparison of the three programming languages, Python was selected

because of its flexibility and its ability to scale easily. Python is also simple to learn, and it

contains many packages for data science, machine learning and visualizations. However,

Python is relatively slower than Java but many Python data analytics packages such as

NumPy and TensorFlow are written in C and C++ which are equally as fast as Java.

4.1.2 Decision on Framework

The next decision after choosing the programming language, was to use a

framework or to write vanilla code. A framework was considered because of the following

benefits of web frameworks:

• Ease of development

• Increase speed of development

• Provide patterns for building scalable, maintainable and reliable applications.

4.1.3 Choice of Framework

The choice of framework was based on the following characteristics including

flexibility, security, performance, extensions and scalability. Two of the most used python

frameworks; Django and Flask were considered.

20

Table 4.2 Comparison between Django and Flask

 Django Flask
Flexibility Django is a large framework with

many inbuilt extensions. This makes
Django very rigid.

Flask is a microframework that gives
users total control over the extensions
they wish to include in their projects.

Security It is reassuringly secure with several
security measures in place such as
SQL Injection and cross-site
scripting.

Has a module to enable simple user
authentication with similar security
measures as found in Django

Performance Very powerful Very Powerful
Extensions Similar extensions as Flask’s Similar extensions
Community Large community support Large community support
Ease of usage Steep learning curve Simple and easy to learn

Both frameworks are good candidates for implementing the system. However,

Flask meets the needs of the system better because of its flexibility and simplicity. The

rest of the chapter is influenced by the structure of Flask.

4.2 Project Setup

The new system is a Flask application that runs in a Docker container. The system

makes use of various Flask extensions and UI dependencies.

4.3 Technologies

This section gives an overview of the various technologies used in developing the

system. Each technology is briefly described and reasons for selecting these technologies

are highlighted.

4.3.1 Flask 5

Flask is a python micro framework. It is a minimalistic framework for developing

web applications. Rather than imposing development guidelines, Flask gives 100%

flexibility to developers to add on any extension to their applications. This makes Flask

applications scale easily and efficiently. Flask provides simplicity, flexibility, light-

weighted and fine-grained control making maintenance, testing and scaling very easy

5 http://flask.pocoo.org/

21

(Grinberg, 2018). Flask also supports powerful and mature machine learning and data

analysis libraries such as numpy, pandas, scipy, matplotlib, and scikit-learn.

4.3.2 SQLite6

The decision on the database to use was based on the needs of the platform. Speed

and number of transactions were crucial features that were used to measure the various

databases. Embedded databases are generally faster than any other types of databases since

they do not make database transactions over a network. SQLite is currently the most

mature and stable embedded database available (Owens & Allen, 2010).

SQLite is an embedded SQL database engine that implements a self-contained,

serverless, zero-configuration, transactional SQL database engine. SQLite requires no

network or administration configuration (Owens & Allen, 2010). SQLite reduces overhead

in terms of network calls and makes deployment of applications very easy.

4.3.3 Docker7

Docker is a container for bundling applications along with all of their

dependencies. Dockers enables the applications to run in different development, test and

production environments without the need to set up a new environment (Merkel, 2014).

Docker is used in this project to provide similar environments for development, testing,

and production across teams.

4.4 Environment

A Docker container is set up to contain the environment of the project. For Docker

to identify the application as a Docker application, the main directory of the application

6 https://www.sqlite.org/index.html
7 https://www.docker.com/

22

should contain a Docker file. The Docker file contains the configuration and command to

run the application in the Docker container. Refer to Figure A.1 in Appendix A to view the

Docker file of the project.

4.5 Running the Application

Appendix A contains information for setting up and running the new system in a

Docker container. If set up successfully, the application can be accessed at the address

http://localhost:5000/

4.6 Flask Extensions

Flask extensions are python modules that are added to a Flask application to

extend the functionality of the application. Below is a list of flask extensions that are

currently integrated in the system:

• Flask-SQLAlchemy8

This extension adds support of SQLAlchemy to the application. SQLAlchemy is

an Object Relational Mapper (ORM) that provides an interface to interact with

databases without the need to write SQL statements.

• Flask-Marshmallow9

Flask-Marshmallow is an object serialization/deserialization extension that protects

the system from wrong and malicious inputs from users or attackers.

4.7 User Interface (UI) Dependencies

Various UI libraries have been integrated to enhance the usability and

responsiveness of the system. The various UI dependences used in the system include:

1. Bootstrap10 version 4

8 http://flask-sqlalchemy.pocoo.org/2.3/
9 https://flask-marshmallow.readthedocs.io/en/latest/

23

Bootstrap is a modern web UI framework for developing responsive and mobile-

first applications.

2. JQuery11 version 3.2.1

JQuery is a JavaScript library that is required by Bootstrap. It helps with HTML

elements manipulation.

3. Popper12 version 1

It is a JavaScript tooltip required by Bootstrap for handling pop-ups.

4. DataTables13 version 1.10.16

DataTables is a JavaScript library that enables advanced interactive control on

HTML table including searching, pagination, and design.

5. Shards14

It is a free modern UI toolkit built on top of Bootstrap version 4.

6. Awesome fonts15 version v5.0.8

It is a collection of beautiful icons for web and mobile applications.

4.8 Implementation Structure

This section gives an overview of the structure of the Flask project. It explains the

various components of a Flask application.

4.8.1 Initialization

All Flask application must have an application instance. This application instance

handles all requests between the client and the server using a Web Server Gateway

10 https://getbootstrap.com
11 https://jquery.com/
12 https://popper.js.org/
13 https://datatables.net/
14 https://designrevision.com/downloads/shards/
15 https://fontawesome.com/

24

Interface (WSGI) (Grinberg, 2018). WSGI is a python webserver for forwarding request to

web applications. Figure A.6 in Appendix A contains the initialization file of the system.

4.8.2 Templates

Flask by default searches for HTML template in templates folder. Templates folder

makes it easier for view functions to locate and render templates. Flask uses a Jinja216

templating engine. A templating engine allows web developers to automate the generation

of web pages. Jinja2 templates contain a combination of HTML code and Jinja2 code.

Figure A.7 in Appendix A is the base template extended by other templates in the system.

4.8.3 Views Route functions

The application instance receives requests from the web browser hence it keeps

URLs mapping functions called routes and handle each logic within that route function.

The route view function showed in Figure A.8 of Appendix A handles the upload of data

by a user to the system. If upload is successful, it redirects user to screen_data.html

template. Otherwise, displays an error to the user.

4.9 New INFER System

This section describes the current state of implementation with supporting

screenshots of the current system. Each screenshot is briefly described to aid

understanding of the new system.

Figure 4.1 shows the first page that is displayed to the user. This page lists the data

that the current user has worked with recently. The items in this list are ordered in terms of

the last date accessed. In the screenshot shown, the user has worked with three data files

and the last accessed file is the ‘input_modified’ file.

16 http://jinja.pocoo.org/docs/2.10/

25

Figure 4.1: Homepage of the new system

One view in the system, shown in Figure 4.2, enables the user to view a statistical

summary of the data. It shows the count, mean, standard deviation, minimum value,

quartiles and maximum value of each column of the data.

Figure 4.2: Statistical summary of the data.

26

Figure 4.3 illustrates how the user can select various options to enhance the

accuracy of their models from Figure 4.3. Three options are currently available to users,

but more options will be added in the next iteration of development.

Figure 4.3: Pre-processing options available in the new system.

Figure 4.4 shows an example of a linear regression model that a user can build

using the new system. Models built with the new system can be saved locally and loaded

back into the system.

Figure 4.4: Linear regression model build with the new system.

27

4.10 Implementation Summary

The system is implemented in five modules. Each module can scale horizontally

and vertically. Vertical scaling means that more features can be added to modules and

horizontal scaling means that previous features in each module can be updated without

breaking the system. Each module contains its templates and view route functions.

4.10.1 Loading Data Module

This module currently supports uploading TRR and CSV files.

4.10.2 Pre-process Data Module

This module currently allows users to accomplish the following:

• Filling missing values by any of these three approaches

o Filling missing values with zeros

o Filling with the last value in that column or the next value in that column

o Filling with the average of the column values

• Remove duplicates rows of the dataset

• Regularizing feature values to suppress less useful features and improve the

accuracy of models.

4.10.3 Build Model Module

Training and testing of models are done in this module. The module currently

supports building linear regression models.

4.10.4 Prediction Module

After parameters are learned, this module allows users to make predictions of their

data with the models generated by the modelling module. Predictions for simple linear

regression model is currently implemented.

28

4.10.5 Results Module

This module allows the user to save their models. Users can currently save their

model as a file and read it in later.

29

Chapter 5: Testing and Results

Testing of the platform is intended to show that the system is doing what it is

planned to do. Testing is also to ascertain defects and possibly correct these defects before

the system is shared with customers of Songhai.

In order to calculate the performance, responsiveness, accessibility and best

practices of the new system, Lighthouse17 by Google was used. Lighthouse audits the

performance, accessibility, progressive web and many other pointers. Lighthouse can be

accessed from the command line in chrome DevTools18. Chrome DevTools are

developers’ tools integrated in the chrome browser. DevTools can be accessed by right-

clicking on any page in the chrome browser and by clicking on inspect.

The Lighthouse testing matrix include performance, accessibility, best practises

and Search Engine Optimization (SEO). Performance is measured by how quickly

contents of pages are visible and are usable to users. Accessibility measures how available

the contents of the system are. Best practises measure how well the system follows

guidelines of modern web development. SEO shows how well the system is optimized for

search engines. Each matric is rated out of 100. Figure 5.1 shows the performance of the

new system in Lighthouse.

17 https://developers.google.com/web/tools/lighthouse/
18 https://developers.google.com/web/tools/chrome-devtools/

30

Figure 5.1 Performance of the new system by Lighthouse

Performance is currently 68% but there are lots of opportunities for performance to

be increased. Figure 5.2 shows a list of these opportunities to improve the performance of

the system.

Figure 5.2 Performance detail by Lighthouse

31

Render blocking stylesheets and scripts are the highest performance issues that the

system currently faces as suggested in Figure 5.2. This indicates that the browser is

loading many CSS stylesheets and JavaScript scripts. A recommendation is to combine all

stylesheets in a single file and all scripts into another file.

5.1 Development Testing

This type of testing is done by the developers of the system. Development testing

consist of three levels including unit testing, component testing and system testing

(Sommerville, 2010).

5.1.1 Unit Testing

Unit testing involves testing individual functions and classes. All functions within

the system have been tested. The following functions were tested: index, screen_data,

upload_file, edit_data, specify_input_output and linear_regression_model. Figure A.9 in

Appendix A contains the unit test code for the upload_file function.

The unit test class in Flask sets up the application in testing mode. Individual unit

test functions then assert contents or response of pages.

Ran 2 tests in 0.063s
OK
Process finished with exit code 0

Figure 5.2: Test result for sample unit test.

5.3 Component Testing

Component testing test involves testing each component or module of the system

independently (Sommerville, 2010). Each of the five modules in the system including data

loading, cleaning, building model and results modules have been tested individually and

all work as expected.

32

5.4 System Testing

System testing involves testing the entire system by integrating the various

components (Sommerville, 2010). All components of the system have been integrated

successfully with each of the implemented components.

33

Chapter 6: Conclusion

This chapter gives an overview of the system in terms of implementation

milestones and recommendations for further development.

6.1 Recommendations and Future Work

The new system can be made better and more usable by.

• Introducing a frontend framework or a library such as Angular 19 or React20 as the

system becomes more complex. This will make the code base of the system

simpler to maintain and scale. It will also make the system more responsive.

• Adding support for loading in other files including Excel files, JSON and XML

files. The system should also support loading data from external sources such as

Microsoft Azure and Google clouds.

• Adding options to allow user to scale, regularize and normalize their data; this will

help build more accurate models from user data.

• Handling duplicated row or columns and catering for missing values in data, these

steps will ultimately help the system to build better and more accurate models from

user data.

• Showing the distributions of each column of the data, and the scatter plot of all

pair of columns in the data, this will help the user to better understand the

distribution and relationships of their data, and hence help the user make better

choices of models to build.

• Adding an option for user to specify the proportion of data to use as training and

testing. This will give a better sense of control to users.

19 https://angular.io/
20 https://reactjs.org/

34

• Making the system more user friendly; this initial stage of development did not

concentrate much on the design and usability.

• Updating the menu titles to be more appropriate and more user-friendly titles.

• Implementing other linear and non-linear modelling methods such as partial least

squares, step-wise regression and neural network modelling.

• Showing graphically the performance of models to both training and testing data.

This will provide more insight to users and also make it easier for users to

understand their models.

6.2 Conclusion

The new system provides an entire end-to-end data analytics work flow. It meets

all the non-functional requirements and part of the functional requirements discussed in

chapter 2. This project serves as a good start for other developers and designers to

contribute and enhance the functionality of the system.

35

References

Demšar, J., Curk, T., Erjavec, A., Gorup, Č., Hočevar, T., Milutinovič, M., & Štajdohar,

M. (2013). Orange: data mining toolbox in Python. The Journal of Machine

Learning Research, 14(1), 2349-2353.

Grinberg, M. (2018). Flask web development: developing web applications with python. "

O'Reilly Media, Inc.".

Ihaka, R., & Gentleman, R. (1996). R: a language for data analysis and graphics. Journal

of computational and graphical statistics, 5(3), 299-314.

Jovic, A., Brkic, K., & Bogunovic, N. (2014). An overview of free software tools for

general data mining. In Information and Communication Technology, Electronics

and Microelectronics (MIPRO), 2014 37th International Convention on (pp. 1112-

1117). IEEE.

Krasner, G. E., & Pope, S. T. (1988). A description of the model-view-controller user

interface paradigm in the smalltalk-80 system. Journal of object-oriented

programming, 1(3), 26-49.

Martin, R., & Liu, C. (2013). Inferential models: A framework for prior-free posterior

probabilistic inference. Journal of the American Statistical Association, 108(501),

301-313.

Merkel, D. (2014). Docker: lightweight linux containers for consistent development and

deployment. Linux Journal, 2014(239), 2.

Owens, M., & Allen, G. (2010). SQLite. Apress LP.

Rangra, K., & Bansal, K. L. (2014). Comparative study of data mining tools. International

journal of advanced research in computer science and software engineering, 4(6).

RDevelopment CORE TEAM, R. (2008). R: A language and environment for statistical

computing.

36

Sommerville, I. (2010). Software engineering. New York: Addison-Wesley.

Venables, B. (2013). Stored Object Caches for R.

37

Appendix A

Docker configuration file

this is an official Python runtime, used as the parent image
FROM python:3.6.4-slim

set the working directory in the container to /app
WORKDIR /app

add the current directory to the container as /app
ADD . /app

pip command, pip install -r
RUN pip install --trusted-host pypi.python.org -r requirements.txt

unblock port 5000 for the Flask app to run on
EXPOSE 5000

execute the Flask app
CMD ["python", "run.py"]

Figure A.1: Docker configuration file.

Figure A.1 instructs Docker to create a container with python version 3.6.4. Copy

the application directory to WORKDIR used by Docker, then install the dependencies of

the application and expose port 5000 for the application to run on. Finally, run the run.py

file.

Building Docker image

$ docker build -t infer . #infer is the name of the container
to build

Figure A.2: Command to build Docker image.

Running the container

$ docker run -d -p 5000:5000 infer

Figure A.3: Command to run Docker container.

This will start the application on port 5000

38

Runtime details of the container

$ docker ps
CONTAINER ID IMAGE COMMAND
CREATED STATUS PORTS
NAMES
e1db3bcb1513 infer "python run.py" About
a minute ago Up About a minute 0.0.0.0:5000->5000/tcp
heuristic_hopper

Figure A.4: Runtime detail of Docker container.

View logs of container

$ docker logs e1db3bcb1513
 * Running on http://0.0.0.0:5000/ (Press CTRL+C to quit)
 * Restarting with stat
 * Debugger is active!
 * Debugger PIN: 268-732-459

Figure A.5: Logs of Docker container.

Initialization file

This sets the initial configuration of the application.

'''
This file initializes the application and connects the app
instance to all views, models and controllers

'''
from flask_sqlalchemy import SQLAlchemy
from flask_marshmallow import Marshmallow
from flask import Flask

file extensions to allow to be uploaded
#Add extension to allow in the list after csv
ALLOWED_EXTENSIONS = set(['csv',’trr’])

Initialize the app
app = Flask(__name__)

load config from config.py
app.config.from_object('config')

initialize db
db = SQLAlchemy(app)

initialize serializer
ma = Marshmallow(app)

load views
from app import controllers

39

load_filters
from app import custom_filters

Figure A.6: Initialization file of the new system.

Base Template

This is a sample flask template that displays error messages to user.

<!doctype html>
<html lang="en">

<head>
 {% block head %}
 {# title of the page specified by template
extending this template #}
 <title>{% block title %}{% endblock %}</title>
 <meta charset="utf-8">
 <base href="/">
 <meta name="viewport" content="width=device-width,
initial-scale=1">
 <link rel="icon" type="image/x-icon"
href="../static/img/logo_edit.png">
 <link rel="stylesheet"
href="../static/css/bootstrap.min.css">
 <link rel="stylesheet"
href="../static/css/dataTables.bootstrap4.min.css">
 <link href="../static/css/awesome-font.css"
rel="stylesheet">
 <link rel="stylesheet"
href="../static/css/shards.min.css?version=2.0.1">
 <link rel="stylesheet" href="../static/css/shards-
extras.min.css?version=2.0.1">

 <script src="../static/js/jquery-
3.2.1.slim.min.js"></script>
 <script src="../static/js/popper.min.js"></script>
 <script src="../static/js/bootstrap.min.js"></script>
 {# <script src="../static/js/jquery-
1.12.4.js"></script>#}
 <script
src="../static/js/jquery.dataTables.min.js"></script>
 <script
src="../static/js/dataTables.bootstrap4.min.js"></script>

 {% endblock %}
</head>

<body>

{# message block for Flask to display global messages #}
{% with messages = get_flashed_messages(with_categories=true) %}
 {% if messages %}

40

 {# print all error message in the global
get_flashed_messages object #}
 {% for category, message in messages %}
 <div class="alert alert-{{ category }}">{{ message
}}</div>
 {% endfor %}
 {% endif %}
{% endwith %}

<div class="container">
 {# this is where content from any template extending this
class fits #}
 {% block content %}{% endblock %}
</div>
</body>

</html>

Figure A.7: Base template extended by all other templates.

Views Route functions

This route function allows user to upload data into the system.

@app.route('/open', methods=['GET', 'POST'])
def upload_file():
 '''
 this view basically handle the upload of data to the server.
 it protects from the upload of malicious files and save safe
files to the upload folder defined in config.py
 :return: flask template of load_data.html
 '''
 if request.method == 'POST':
 # check if the post request has the file part
 if 'file' not in request.files:
 flash(u'No file part', alert_types['danger'])
 return redirect(request.url)
 file = request.files['file']
 # if user does not select file, browser also
 # submit a empty part without filename
 if file.filename == '':
 flash(u'No selected file', alert_types['danger'])
 # redirect to current url with an error message
 return redirect(request.url)
 if file and allowed_file(file.filename):

 # check if current file type is allowed
 filename = secure_filename(file.filename)

 # generate directory to store file
 directory = os.path.join(app.config['UPLOAD_FOLDER'],
filename)

41

 try:
 # check if file already in directory
 f = open(directory)
 f.close()
 except IOError:
 # if file not already in directory
 file.save(directory)

 # set global flask variable for working directory for
other views
 session['directory'] = directory

 flash(u'File uploaded successfully',
alert_types['success'])
 return redirect(url_for('screen_data',
directory=directory))
 else:
 error = 'File type not supported yet'
 flash(error, alert_types['danger'])
 return redirect(request.url)
 return render_template('load_data.html')

Figure A.8: Route function for uploading data.

Sample Unit test

Below is a sample unit test that was performed on the new system.

import unittest
from app_folder import app

class BasicTest(unittest.TestCase):

 def setUp(self):
 app.config['TESTING'] = True
 app.config['DEBUG'] = False
 self.app = app.test_client()
 # Disable sending emails during unit testing
 self.assertEqual(app.debug, False)

 def test_main_page(self):
 response = self.app.get('/', follow_redirects=True)
 self.assertEqual(response.status_code, 200)

 def test_home_data(self):
 # sends HTTP GET request to the application
 # on the specified path
 result = self.app.get('/open')
 # assert the response data
 self.assertIn(b'Select you data file', result.data)
 #self.assertEqual(result.data, "Select you data file")

if __name__ == "__main__":

42

 unittest.main()

Figure A.9: Sample unit test.

Figure A.10: Homepage of old INFER desktop application

Figure A.11: Specifying input and output in the old INFER system

43

Figure A.12: Least square regression results of the old INFER system.

