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ABSTRACT 

Considering the importance of roads to a community, stakeholders (Governments,          

Motorists etc) need up-to-date information about the state of roads for decision making .              

This problem inspired Vorgbe’s (2014) work in implementing a machine learning           

classifier that could accurately classify roads as “good”, “fair” or “bad”. This            

information can then be visualised on Google Maps. However, with his algorithm            

failing to accurately classify some roads, this project seeks to evaluate five            

classification algorithms to determine which one is best for classifying road surface            

quality data. 

To do this, we collected x, y, z acceleration and location data, extracted the desired               

features from it, performed a 10-fold cross-validation training on the data to choose the              

best model and then tested on a new set of examples to determine the model that                

accurately classifies the data. From the data available, the decision tree model produced             

the best performance with true positives of 97% accuracy for bad roads, 81% accuracy              

for fair roads and 93% accuracy for good roads. The overall accuracy on the test set is                 

92% with a precision of 92% and recall of 90%. This means that, this model is more                 

likely to accurately predict a new data point as belonging to its true class. The other                

algorithms (Logistic Regression, Random Forests, Support Vector Machines and         

Nearest Neighbour) performed well when classifying the “good” and “bad” road data            

but instead classified the “fair” road data as “good” road.

 

 
iii 

 



 

TABLE OF CONTENTS 

Declaration............................................................................................................. iii 

Acknowledgement.................................................................................................. iv 

Abstract................................................................................................................... v 

1.0 Introduction and Background ........................................................................ 1 

2.0 Related Work ................................................................................................... 5 

2.1 Similar Projects …………………………………………………..…... 5 
2.2 Participatory Sensing ……………………………………………….... 9 

3.0 Approach ........................................................................................................ 12 

3.1 Data Collection …………………………………………………….....13 
3.2 Feature Extraction …………………………………………………….13 
3.3 Training ………………………………………………………….........15 

3.3.1 K Nearest Neighbours ………………………..…………......15 
3.3.2 Logistic Regression ………………………………………....16 
3.3.3 Support Vector Machines ………………………………….. 18 
3.3.4 Decision Tree …………………………………………….… 20 
3.3.5 Random Forest …………………………………………...….23 

4.0 Testing and Results ......................................................................................... 25 

4.1    Summary of Test Results ………………………………………..… 25 
4.2    Discussion ……………………………………...……..………….…30 

5.0 Conclusion and Recommendation ................................................................ 32 

5.1 Summary ………………………………………….………………..... 32 
5.2. Limitations ………………………………………………..……....… 32 
5.3 Future Work …………………………………………….………...…. 33 

6.0 References ....................................................................................................... 34 

 
 

 
 

iv   

 



 

LIST OF TABLES 

Table 3.1: The number of training and testing data points used …………………...15 

Table 3.2: Training accuracy scores for each model trained …………………...….24 

Summary of Test Results using Z-axis Features 

Table 5.1: Logistic Regression…....……………………………………...………...25 

Table 5.3: Decision Tree……………...…………………………………………....26 

Table 5.5: Random Forest………………………………...………………...……...27 

Table 5.7: K Nearest Neighbours…………………………….……………...…..…28 

Table 5.9: Support Vector Machine ……………………………………………..…29 

Summary of Test Results using Dot-product Features 

Table 5.2: Logistic Regression ……………………………………..…….……..…26 

Table 5.4: Decision Tree ………………………………………..……………….....27 

Table 5.6: Random Forest …………………………………………...…………..…28 

Table 5.8: K Nearest Neighbours …………………………………..…………..…..29 

Table 5.10: Support Vector Machine …………………………………………..…...30 

 

 

 

 
 

v 

 



 

LIST OF FIGURES 

Misclassification Error when choosing Parameters During Training 

Figure 3.1: number of neighbors of K Nearest Neighbours …………………...…...16 

Figure 3.2: penalty value for misclassification in Logistic Regression…………......18  

Figure 3.3: penalty value for misclassification in Support Vector Machine ……..…20 

Figure 3.4: tree structure for the Decision Tree model ……..…………...………......21 

Figure 3.5: minimum splits per node of Decision Tree ………………...………..….21 

Figure 3.6: depth of Decision Tree model ………………………………..……...….22 

Figure 3.7: number of Trees to build in Random Forest ……………………….…...23 

 

 

 

 

 

 

 

 

 
 

vi 

 



 

CHAPTER 1:  Introduction 

Roads are as important to a society as blood vessels are to the human circulatory               

system (Mednis, Strazdins, Zviedris, Kanonirs & Selavo, 2011). This is so because there is a               

need to transport human resources, goods and services from one place to another. The features               

of a road determines how well it is able to serve its purpose, and one important feature is the                   

surface quality of the road. Bad roads make transportation uncomfortable for motorists,            

damage vehicles, cause road accidents and negatively affect economic activities (Mednis et            

al., 2011). For example, if employees always arrive at work late or a delivery service fails to                 

meet delivery deadlines, revenue of the organization is affected negatively. Motorists will be             

able to use roads safely when they are well informed about the state of the roads. In addition,                  

maintenance of roads can be carried out frequently if the government has access to              

information about the current state of roads in the country when they need it (Vittorioa et al.,                 

2014). Having real time information about the state of roads requires that data be collected               

about the quality of the surface of roads (Mednis et. al., 2011). One approach is to ply the                  

roads while manually identifying the roads and attaching the appropriate surface quality label             

(e.g. “Good”, “Bad” etc). However, this approach is highly inefficient, slow and rather             

expensive. Hence, there is a need for a better approach: an automated approach such as               

participatory sensing. 

Participatory sensing is a large-scale, distributed type of sensing that allows           

citizens to contribute sensed data about their environment using mobile devices           

equipped with sensors (Kanhere, 2011, p. 3).  
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Applying participatory sensing to the task of collecting data about road surface quality             

is ideal for a number of reasons. First, it is cheap since the tools needed (smartphones                

and cellular network services/WiFi) are available and are easy to use. Second,            

participants carry their smartphones around which allows for the collection of data in             

several locations. Third, the availability of software development kits (SDKs) for the            

Android and iOS mobile platforms as well as the mobile application stores such as              

Google Play allow rapid development and deployment of applications to users           

(Kanhere, 2011, p.3). In this work, we apply participatory sensing to determine road             

surface quality by allowing participants to record accelerometer readings in the x, y and              

z axes from their smartphones; this data is then used to train a machine learning               

classification algorithm to help classify the quality of roads. This information can then             

be visualized on Google Maps to help motorists and other stakeholders such as the              

government make appropriate decisions concerning the roads. 

There has been prior work by Vorgbe (2014), Doku (2014) and Boohene (2017)             

on the main components of this project. Vorgbe (2014) worked on collecting sensor             

information from smartphones and implemented and trained a logistic regression          

classifier to classify the quality of road surfaces. Doku (2014) investigated whether or             

not motorists will find it useful to have road surface quality information as part of               

Google Maps and Boohene’s (2017) work focused on automating the collection and            

visualization of road surface quality data to help motorists. In Vorgbe's (2014) work, he              

noted that vehicles experience varying levels of vibrations depending on the surface  
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quality of the road on which they are travelling and if data on the levels of vibrations                 

are recorded, a system can be developed to accurately classify the roads based on the               

surface quality. This was achieved by recording accelerometer and GPS data using a             

smartphone. This data was processed and used to train a logistic regression classifier.             

Boohene (2017) built on the work done by Vorgbe (2014) and Doku (2014) by building               

a mobile application to automate the collection of road surface quality data, using the              

classification algorithm developed by Vorgbe (2014) to process and classify the data.            

After classification, the data is transferred to a server to be displayed on Google Maps. 

From Vorgbe's (2014) work, he noted some limitations of the logistic regression            

classification algorithm. The algorithm failed at the following set of classification tasks:            

bad versus fair roads, fair roads versus good and bad roads and bad roads versus               

good and fair roads. Considering that the classification algorithm used is the most             

important part of the project, it is necessary that the algorithm is able to accurately               

classify roads based on their surface quality. Otherwise, the information visualized on            

Google Maps will be inaccurate and will further frustrate the users of the system. In               

addition, one limitation in collecting the data stemmed from the fact that the             

smartphone used had to be placed in a fixed orientation in the vehicle. This approach               

was needed to make the phone mirror the x, y and z axes of the vehicle so that the                   

sensor measurement of the phone in each axis will correspond to the axis of the car.                

This is limiting because, in trying to crowdsource data from users, it would not be ideal                

that users fix their phones on the dashboard. Hence it is necessary that an improved  
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method of collecting accelerometer data is used that does not require that the phone be               

in a particular orientation. To address these limitations, this work seeks to compare and              

evaluate various supervised machine learning classification algorithms to determine         

which one will provide the highest accuracy when classifying road surface quality data.             

After training, this model will be used as part of a road surface quality data               

crowdsourcing system.  

This paper is organized as follows: Chapter 2 discusses related work, Chapter 3             

discusses approach, Chapter 4 reviews results and Chapter 5 is on conclusions and             

recommendations. 
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CHAPTER 2: Related Work 

In recent times, there has been an increase in the amount of research aimed at automatically                

monitoring and reporting on road surface conditions using sensor data. Participatory sensing            

has helped in fueling this trend mainly because of the ubiquitousness of smartphones.             

Researchers have proposed and built systems that automate the collection, storage and            

processing of sensor information about road surface conditions in order to determine the state              

of such roads. This section seeks to draw attention to some relevant work done in this area.  

2.1 Similar Projects 

Mednis et. al. (2011) worked on automatically detecting potholes in real time as well              

as using smartphones for recording sensor data about the state of roads for later processing.               

The smartphone is equipped with a GPS and a 3-axis accelerometer with support for cellular               

and/or WiFi connectivity. The GPS sensor is used to record location and the accelerometer is               

used for recording x, y and z acceleration. The system utilizes the client-server architecture,              

where an Android smartphone running an application that records sensor data serves as the              

client. The server side consists of a Java web application and a MySQL database. When               

sensor data is recorded, it is processed and stored in a database which is occasionally synced                

with the main database. In addition, the Java web application uses the API to visualize pothole                

data. The authors collected data using Samsung Galaxy S, HTC Desire and Samsung i5700 at               

a frequency of 90 Hz, 53 Hz and 26 Hz respectively. After collecting the data, they proposed                 

four algorithms for data processing: ZTHRESH and Z-DIFF (for real-time pothole detection)            

and STDEV(Z) and G-ZERO(for offline post-processing of data). 
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Z-THRESH classifies the z-axis values into one category of pothole or another (small pothole,              

cluster of potholes, large potholes) depending on some threshold value of the z-axis             

acceleration. The next algorithm to be tested on the dataset was Z-DIFF. This algorithm  

performed “a search for two consecutive measurements with difference between the values            

above specific threshold level” (Mednis et. al. 2011). The algorithm detected fast changes in              

the Z-axis measurements. The STDEV(Z) algorithm computes the standard deviation of the            

z-axis acceleration of a fixed window and classifies the event by comparing the standard              

deviation to some threshold level. G-ZERO searches for the x, y, z values where the vehicle                

has zero gravity. This indicates that the vehicle is either entering or exiting a pothole and that                 

location is then marked as having a pothole. After analysing the results, the authors noted that                

the pothole detection algorithms produces true positive results as high as 90%. 

In a similar study, Vittorioa et. al. (2014) developed an automated sensing system for              

monitoring road surface conditions using smartphones. The system consisted of an Android            

application that recorded and processed accelerometer data from an Android device and a             

server that records and stores this data. Vittorioa et. al. (2014) used acceleration and GPS data                

from smartphones to classify and localize road surface anomalies. The accelerometer records            

the z-axis acceleration movements above some specified threshold (high-energy event). To           

accurately classify road surface conditions based on z-axis acceleration and location data, the             

researchers had to make some adjustments to the accelerometer and GPS readings. First, they              

wanted the accelerometer to record data at the the same frequency as the GPS sensor (1 Hz).                 

Hence they estimated the minimum, average and maximum z-axis acceleration values for five  
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readings per second since the lowest accelerometer frequency was 5 Hz. Second, Vittorioa et.              

al. (2014) ensured that the z-axis reading of the accelerometer corresponded to that of the               

vehicle. This will ensure an accurate measurement of the vertical axis acceleration even if the               

phone is randomly place in the car. This was achieved by computations utilizing Euler angles.               

Third, they filtered out low-impulse events that fell below a specified threshold value since              

they do not correspond to road anomalies. Essentially, Vittorioa et al.’s (2014) system works              

by collecting z-axis accelerometer readings, filtering out the low-impulse events and           

transferring the data to the server in real-time. If more than five high-impulse events are               

recorded at a particular location, the server marks that spot as having road anomalies and               

returns this new information to the users of the system. The authors carried out tests on their                 

system by fixing three Android smartphones on the dashboard of a car and driving 14km in                

the city of Rende, Italy while recording and processing Z-axis accelerometer readings. The             

results from the tests showed a proportional relationship between the amount of impulse and              

the depth of potholes.  

Huffman, Mock & May (2013) built a system that collects and classifies road surface              

conditions using smartphones mounted on bicycles. They collected acceleration and location           

data using the accelerometer and GPS sensors respectively. They adopted two strategies for             

classifying road surface quality as “smooth”, “rough” and “bumpy”. First they trained a             

supervised machine learning classification algorithm to classify road segments on a standard            

laptop and then transferred the model to the smartphone for classifying sensor data. They              

extracted the following features from the training data: <speed, inclination, acceleration           

mean, acceleration variance, acceleration standard deviation> and trained K-Nearest  
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Neighbour and Naive Bayes models using a 10-fold cross validation and features selection             

optimization. The Nearest Neighbor model performed slightly better than the Naive Bayes            

model. The best performance overall of the machine learning approach was 78%. The second              

approach involved training a binary classifier to detect bumps using some specified threshold             

z-axis values which led to an accuracy of 97%. If the z-axis value exceeds the threshold, it is                  

recorded as a bump and otherwise, not a bump. 

Eriksson et. al. (2011) studied the utilization of mobile sensing for automatically monitoring             

and reporting road surface conditions in Boston, USA. They set up embedded accelerometers             

and GPS sensors on seven taxis and used that for data gathering. Eriksson et al. collected                 

acceleration and location data stored in the following format: <time, location, speed, heading,             

3 axis acceleration>. Time, location, speed and heading were recorded using a GPS device              

and the acceleration data was recorded using an accelerometer. They collected data by             

repeatedly driving on several roads and having a passenger manually label each event             

encountered by pressing a key on the laptop that corresponds to the class the said event                

belongs to e.g smooth road, manhole, pothole, rail crossing, etc. Eriksson et. al. used speed               

filters to remove any high energy event that happens at low speeds such as door slams. They                 

then determine a threshold value for each class under consideration and classify each event              

based on the one of the specified threshold. 

Vorgbe’s (2014) study was aimed at monitoring and classifying entire segments of roads as              

“good”, “bad” or “fair”. The aim of the study was to classify road segments as “good”, “fair”                 

or “bad” using a logistic regression classifier. They collected acceleration and location data  
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using accelerometer and GPS sensors in smartphones. Vorgbe (2014) observed that, vehicles            

experience alternating levels of vibrations depending on the surface on which they are             

travelling. Vehicles on an uneven surface may experience an exceptional amount of vibrations             

as compared to vehicles on a smooth road. In addition, if data on the levels of vibrations are                  

recorded, Vorgbe (2014) noted that a system can be developed to accurately classify the roads               

based on the surface quality. This was achieved by fitting a smartphone to the dashboard of a                 

moving vehicle. The accelerometer and GPS sensors recorded the acceleration and location            

data respectively. The accelerometer data was recorded at a frequency of 4 Hz while the GPS                

data was recorded at 1 Hz.  

Vorgbe (2014) implemented and trained a LR classifier using the data they collected. The              

process involved extracting features from the data, generating parameters and testing the            

accuracy using test data. Since logistic regression is a binary classifier and with three classes               

under consideration (good, bad, fair), Vorgbe (2014) used the one-vs-rest approach to classify             

the roads. After testing, the good vs bad/fair classifier produced 87% accuracy, Bad vs.              

Good/Fair was 52% accurate and Fair vs. Bad/Good’s accuracy was under 50%. In addition,              

he noted some limitations of the logistic regression classification algorithm. The algorithm            

was unable to accurately differentiate between bad and fair roads. In addition, the algorithm              

failed to clearly separate fair roads versus good/bad roads and also failed to differentiate bad               

roads from good/fair roads. 

2.2 Participatory Sensing 

It is worth noting that, in order to gather sensor data in a way that is scalable,  
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researchers have resorted to participatory sensing. This is a more efficient and inexpensive             

way of gathering data from smartphone users as compared to collecting data as an individual.               

Kanhere (2011) and Tilak (2013) provided a comprehensive overview of participatory           

sensing, especially as used in crowd-sourcing data from mobile smartphones. Traditional           

sensing mechanisms that involve deploying static wireless sensors in urban areas is not only              

expensive, it is also not scalable as not many sensor devices that can be deployed as compared                 

to the case of participatory sensing. It is from this perspective that Kanhere (2011) considers               

the possibility of crowdsourcing sensor information using smartphones. Though not          

specifically designed to be used as sensors, smartphones come with a wide array of sensors:               

camera for images and videos; accelerometer for movement and direction of the phone; GPS              

for location etc. In addition, the pervasiveness of smartphones and the spatiotemporal            

coverage they provide make them an excellent tool for crowdsourcing sensor data. This, along              

with it numerous benefits, is fueling the adoption of participatory sensing (Tilak, 2013).             

Kanhere (2011) noted that, in participatory sensing, sensor data recorded by participants is             

transferred to a central server via cellular or wireless networks for processing. On the server,               

the data is analysed and made available to users by being visualized on navigation systems               

such as Google Maps.  

The proliferation of participatory sensing has led to several applications which can be             

categorized under two broad categories: people-centric and environment-centric sensing.         

People-centric sensing focuses on collecting sensor data to help understand human behaviors            

and activities. It gathers sensor data about the user and can be applied in areas such as  
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personal health monitoring, monitoring and documenting sport experiences, enriching social          

media content etc. In environment-centric sensing, data is recorded about the surroundings of             

the user. This type of sensing requires exploiting data at a community scale and it monitors                

environmental factors such as air, noise, road and traffic conditions. Some challenges of             

participatory sensing include dealing with incomplete data, preserving user privacy and           

ensuring that the application is energy efficient and does not consume the participants’ battery              

(Kanhere, 2011). Tilak (2013) discussed the various steps involved in building a participatory             

sensing application and the categories under which these applications fall. They defined three             

types of participatory sensing:  

1) collective design and investigation: where the participants are involved in all stages of the               

projects from defining research objectives to deploying the application.  

2) Public contribution: where participants are only responsible for data collection.  

3) Personal use and reflection: where the users are in complete control of the project usually                

for their personal benefit. Tilak identified the process of building a participatory sensing             

application. He also discussed the architecture of such an application as consisting of a sensor               

network and a backend system and identified some of the categories of participatory sensing              

applications. These include environmental monitoring, health and fitness monitoring,         

transportation and civil infrastructure monitoring, and urban sensing. 

The paper seeks to build upon Vorgbe’s (2014) work by evaluating and choosing a              

classification algorithm that can accurately classify roads based on accelerometer and GPS  

readings from smartphones. 
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`CHAPTER 3: Approach 

Machine learning algorithms perform better in some domains than others. An algorithm tends             

to perform much better when applied to its “favorite” domain. An example is the common use                

of the Naive Bayes algorithm in text classification problems. It is important to choose the               

algorithm that performs best in the domain one is operating in and given the data available. In                 

addition, different performance metrics are used for different domains. Like in the case of              

choosing an algorithm, it is equally important to choose an appropriate metric for measuring              

the performance of an algorithms for the domain under consideration. Examples of            

performance metrics and the areas in which they are used include Precision/Recall for             

information retrieval, area under Receiver Operating Characteristics (ROC) curve for          

Medicine and Lift for marketing tasks (Caruana & Niculescu-Mizil, 2006). In this paper, the              

performance metric employed is accuracy score and standard deviation. The algorithms           

evaluated include Support Vector Machines (SVM), Nearest Neighbor (kNN), Logistic          

Regression (LR), Decision Tree (DT) and Random Forests (RF). For each algorithm, we             

performed a k-fold cross-validation where k = 10 and found the mean accuracy score of the                

10 “folds” along with the standard deviation. In addition, certain parameters and            

hyperparameters were tuned to help determine the ones that produces the best accuracy.             

Before the performance of each algorithm can be evaluated, we collected data, extracted the              

desired features and trained the algorithms. 
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3.1  Data Collection 

The data collection strategy used here is the same as the one employed by Vorgbe               

(2014). The data units of interest for this project were the acceleration and gravity value along                

the x, y and z axes, longitude and latitude corresponding to the location where the               

accelerometer data was recorded. The device used to record the data units is a Google Nexus                

7 tablet equipped with accelerometer and GPS sensors. The tablet was running an Android              

application that recorded acceleration and GPS. The tablet was fixed to the armrest of a               

vehicle with the tablet screen facing upwards. This was to allow the axes of the tablet to be                  

aligned with that of the vehicle so that the values recorded by the sensors can be attributed to                  

the movement of the vehicle. The vehicle was then driven on roads of varying quality while                

the application recorded accelerometer and GPS data at a frequency of 4 Hz. During this               

process, a human was responsible for manually labelling the data as “good”, “fair” or “bad”               

road depending of the nature of the road. The data recorded was in the following format:                

<timestamp, x, y, and z-axial acceleration, x, y, z-axial gravity, latitude, longitude>. The road              

segments chosen for data collection contained stretches that qualify as “good”, “bad” and             

“fair”. The road circuit used starts from Kitase junction in the Eastern Region of Ghana               

through the Accra-Aburi road to the Achimota overpass. From the Achimota overpass, the             

route joined the Nsawam-Kumasi highway, turning at the ACP junction at Pokuase to join the               

Kwabenya-Berekuso road then back to Ashesi University. 

3.2   Feature Extraction 

In addition to others, the features used for the work were the same features used by  
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Vorgbe (2014) . Good roads will have lower z-axis values as the vehicle would not experience                

severe vibrations whiles the bad roads will have higher z-axis values. With this in mind,               

Vorgbe (2014) wrote a program that divides the raw data collected into windows (40 data               

points each) and computed the mean, minimum value, maximum value, standard           

deviation and variance for each window. The program then extracts the values for the z-axis               

and writes them to a file as the features for each class of road. Each data point of the features                    

has the following format: <z-axis mean, z-axis variance, z-axis standard deviation, z-axis            

minimum value, z-axis maximum value>. From here on, these features will be referred to as               

z-axis features to differentiate them from another set of features we used for training and               

testing. For the new features, we found the dot product of the x, y, z linear acceleration and                  

gravity for each data point. The goal with this approach is to measure the vehicle’s               

acceleration in the direction of gravity as this addresses the problem of fixing the orientation               

of the phone to match that of the vehicle. We then split the dot products into windows (40                  

data points per window). For each window we compute the mean, maximum and minimum              

values, 25th, 50th, 75th percentiles and the standard deviation as features. These set of              

features will be referred to as dot-product features in the rest of this paper. Each data point is                  

in the following format: <mean, maximum, minimum, 25th percentile, 50th percentile, 75th            

percentile, standard deviation>. Then for each class, the corresponding features are split into             

two sets: 70% for training and 30% for testing. This produced the following number of               

training and test data points: 
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Table 3.1 : Number of data points used for training and testing  

 TRAINING  TEST 

GOOD ROAD 1255 538 

FAIR ROAD 477 204 

BAD ROAD 702 303 

 

3.3   Training  

This subsection explores what each algorithm does and the parameter(s) that produced            

the lowest misclassification error. The training was achieved using Scikit-learn, a python            

machine learning library that has implementation of the algorithms under consideration.  

3.3.1   K Nearest Neighbor 

The idea behind nearest neighbor algorithms is that for some new test data point to be  

classified, find a set of k training points that are closest to the new point (neighbours). The                 

new point is assigned the label of the most frequent class of its neighbours. The number                

neighbors can be specified by an integer value or can be based on the number of examples                 

that fall within a specified radius from the new point. The distance between the points can be                 

any standard measure of distance such as Euclidean (Scikit-learn, 2011).  
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Figure 3.1: Misclassification errors for different values of K 
 

After performing the cross-validation training for k = [1, 50], the value of k that minimizes                

the misclassification error is 19 as shown in figure 3.1. In addition, Euclidean distance was               

used as a distance metric as opposed to the radius from the new test point. This produced a                  

mean accuracy score of 0.82 and standard deviation of 0.12.  

3.3.2   Logistic Regression 

Logistic regression is a linear classification algorithm that utilizes a sigmoid function            

to squash the value generated by the model into the range [0, 1]. A large positive value passed  
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to the sigmoid function will produce an output that is very close to a binary one and a large                   

negative value will produce an output close to binary zero. A test example can then be                

classified as belonging to class 0 or 1. In the case of multi-label classification, the algorithm                

uses the one-vs-rest approach (Scikit-learn, 2011). In one-vs-rest, a model is trained to predict              

a data point as belonging to one class as opposed to the other classes. In the scikit-learn                 

implementation, the LogisticRegression class can fit a binary, one-vs-rest or multinomial           

regression with L1 or L2 regularization. This work utilized L1 regularization linear regression             

which minimizes the following optimization cost function: 

||w||  C og(exp(− (X w c)) 1)minw, c 1 ∑
n

i=1
l yi

T
i +  +   

For logistic regression, our parameter of interest is the penalty value the model suffers for               

making a wrong prediction, which in the case of the scikit-learn library, is indicated by C. 
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Fig.3.2: Misclassification error for different “model misclassification penalty values” 
 

After performing 10-fold cross-validation for C = [0.001, 0.01, 0.1, 1, 10, 100], the value of C                 

that produces the smallest misclassification error is 1 as shown in fig. 2 above. This produced                

an accuracy of 0.83 with a standard deviation of +/- 0.09. 

3.3.3   Support Vector Machines 

Support vector machines (SVM) are linear classifiers that accomplish classification by           

creating a hyperplane in a higher dimensional space that efficiently separates the data into              

categories (Adankon & Cheriet, 2009). The optimal separation of data is achieved by the              

hyperplane that maximizes the distance to the nearest training examples of the classes. That is               

the functional margin (Scikit-learn, 2011).  
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Scikit-learn’s implementation solves the following dual formulation problem: 

( α α ) Q(α α ) εe (α α ) y (α α )minα, α* 2
1

 −  * T −  * +  T +  * −  T −  *   
  

  
 

 

Subject to:   (α α ) 0e T −  *  =   
 , , i 1, .., n0 ≤ αi α*

i ≤ C  =  .   
 

where  is the vector of all ones,  is the upper bound,  is an  by  positive e 0  C >   Q  n  n  

semidefinite matrix,  is the kernel.(x , x ) ϕ(x ) ϕ(x )Qij ≡ K i  j =  i
T

j   

The decision function is  (Scikit-learn, 2011).(α  )K(x , x) ∑
n

i=1
i − α*

i i  + ρ  

SVM performs multiclass classification using the one-vs-one (where a model is trained for             

each pair of class labels) or one-vs-rest (where a model is trained for each class versus the                 

other classes) approaches. In scikit-learn, the choice between one-vs-one and one-vs-rest is            

specified using the “decision_function_shape” parameter of the SVM class. Other parameters           

scikit-learn’s SVM accept include the degree of the polynomial kernel function used and the              

penalty for misclassifying a data point, C (Scikit-learn, 2011). With C=10, we get the              

minimum classification error. This produces an accuracy of 0.83 with a standard deviation of              

+/- 0.12. 
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Fig. 3.3:  Misclassification error for different “model misclassification penalty value” 

3.3.4   Decision Tree 

Decision trees (DT) are non-parametric supervised learning algorithms (Scikit-learn,         

2011). The algorithm creates a tree structure where the features serve as the nodes and               

decision making on which branch to take happens on the nodes (figure. 3.4). For this review                

of DT, we considered maximum depth of the tree and minimum number of splits for each                

node as parameters. As per figure. 3.5 and 3.6, maximum depth of 3 and minimum splits per                 

node of value 3, produces the highest accuracy score of 0.78 and a standard deviation of +/-                 

0.1 
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Fig 3.4. Decision tree of height,  3 

 

Fig. 3.5: Misclassification error for different value of number of splits per node. 
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Fig 3.6: Misclassification error for different value of maximum depth of tree. 

3.3.5   Random Forest 

Random Forest (RF) builds k decision tree classifiers from the training dataset by             

training each classifier on a sample subset of the data. During prediction, each classifier votes               

and the majority class becomes the class of the new data point we want to classify. However,                 

in the scikit-learn implementation, the average of the probabilistic predictions of all the             

classifiers is used to determine the class label of the new data point (Scikit-learn, 2011). The                

value of k is specified as number of estimators in the RandomForestClassifier class from              

scikit-learn and is set manually. After training, a value of 20 for the number of estimators                

produces the least misclassification error on the training set. 
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Fig. 3.7: Misclassification  error for different values of number of trees in the forest 

 

The table below gives a summary of the performance of each algorithm. Among other things,               

the table defines the mean score and standard deviation for each algorithm.  

From the data, LR has the highest performance with a 0.83 score and +/- 0.09 standard                

deviation. 
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Table 3.2: 10 fold cross-validation training scores 

ALGORITHM PARAMETERS MEAN SCORE STD DEV BEST PARAM VALS 

kNN num of neighbours 
weights 

0.82  +/- 0.12 N_neighbors :19 
weights: distance 

Logistic Regression C 0.83 +/- 0.09 C : 1 
Decision Trees max_depth, 

criterion,min_samples_split 
0.78  +/- 0.11 Max_depth: 3  

criterion: entropy 
Min_samples_split : 3 

SVM C,  
decision_function,  
degree 

0.83 +/- 0.12 C : 2  
Decision_function_shape: ovo 
Degree : 2 

Random Forest n_estimators 0.80 +/- 0.10 n_estimators: 20 
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CHAPTER 4: Testing And Results 

After training, the algorithms were tested to evaluate how well each will perform on new               

examples. For each algorithm, the parameter values that yielded the best accuracy score were              

used when evaluating performance on the new examples. The tables below gives a summary              

of the performance of the various algorithms on the new test examples. For each algorithm,               

we provide its confusion matrix, the overall accuracy score, precision and recall when the              

z-axis features were used and when the dot-product features were used. 

4.1   Summary of Test Results For Z-axis and Dot-Product Features 

Logistic Regression (C = 1) 
Table 5.1: Z-AXIS  

 Predicted 

 Bad Fair Good 

Bad 0.696 0.1287 0.175 

Fair 0.176 0.014 0.8080 

Good 0.078 0.0018 0.92 

 

Accuracy Precision Recall 

0.6583 0.4991 0.5280 
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Table 5.2: DOT PRODUCT 

 Predicted 

 Bad Fair Good 

Bad 0.6490 0 0.3509 

Fair 0.1365 0.0097 0.8536 

Good 0.0296 0.0148 0.9554 

 

Accuracy Precision Recall 

0.6816 0.5545 0.5380 

 
Decision Trees (max depth=3, minimum sample split=3) 
Table 5.3: Z-AXIS 

 Predicted 

 Bad Fair Good 

Bad 0.9702  0  0.0297 

Fair 0.0784  0.8186  0.1029 

Good 0.0613  0.0074 0.9312 

 

Accuracy Precision Recall 

0.9205 0.9257 0.9067 
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Table 5.4: DOT PRODUCT 

 Predicted 

 Bad Fair Good 

Bad 0.8112 0.0463 0.1423 

Fair 0.3073 0.0195 0.6731 

Good 0.1243 0.0333 0.8423 

 

Accuracy Precision Recall 

0.6567 0.4425 0.5228 

 
Random Forests (number of estimators = 20) 
Table 5.5: Z-AXIS 

 Predicted 

 Bad Fair Good 

Bad 0.6435 0.  0.3311 

Fair 0.0343  0.6127  0.3529  

Good 0.0204 0.0037  0.9758 

 

Accuracy Precision Recall 

0.8086 0.7834 0.7440 
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Table 5.6: DOT PRODUCT 

 Predicted 

 Bad Fair Good 

Bad 0.8940  0.0430  0.0629 

Fair 0.2195   0.0829  0.6975 

Good 0.0983  0.0278  0.8738 

 

Accuracy Precision Recall 

0.7246 0.6185 0.6169 

 
kNN (k = 19, weights = distance) 
Table 5.7: Z-AXIS 

 Predicted 

 Bad Fair Good 

Bad 0.6468 0.2376 0.1155 

Fair 0.2549 0.1078 0.6372 

Good 0.1078 0.0334 0.8587 

 

Accuracy Precision Recall 

0.6507 0.5245 0.5378 
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Table 5.8: DOT PRODUCT 

 Predicted 

 Bad Fair Good 

Bad 0.8013 0.0496 0.1490 

Fair 0.2731 0.0243 0.7024 

Good 0.0927 0.0185 0.8886 

 

Accuracy Precision Recall 

0.694072657744 0.571465831013 0.571465831013 

 
SVM (C=2, degree = 2, decision function = one-vs-one) 
Table 5.9: Z-AXIS 

 Predicted 

 Bad Fair Good 

Bad 0.795 0.059 0.145 

Fair 0.23 0 0.769 

Good 0.083 0 0.91 

 

Accuracy Precision Recall 

0.7023 0.4780 0.5705 
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Table 5.10: DOT PRODUCT 

 Predicted 

 Bad Fair Good 

Bad 0.8112 0 0.1887 

Fair 0.1902 0 0.8097 

Good 0.0834 0 0.9165 

 

Accuracy Precision Recall 

0.7065 0.4778 0.5759 

 
 
4.2   Discussion 

From the results above, decision trees, with a tree depth of 3 and minimum node split                

of 3 is the best performing model overall with true positives of 97% accuracy for bad roads,                 

81% accuracy for fair roads and 93% accuracy for good roads. The overall accuracy on the                

test set is 92% with a precision of 92% and recall of 90%. This means that, this model is more                    

likely to accurately predict a new data point as belonging to its true class. These results apply                 

for the z-axis features. In the instance where the dot-product features were used, the model               

produced true positives of 81% for bad roads, 0.02% for fair roads and 84% for good roads.                 

From the table, the model mostly predicts fair roads as good roads while it is more likely to                  

predict bad and good roads accurately. The other models (LR, SVM, RF, kNN) produced a               

pattern for both the z-axis and dot-product features where they had high true positives for bad                

and good roads, but were more likely to predict the fair roads as good roads. For example, the  
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SVM model had high true positives for bad (80%) and good (91%) roads but is more likely                 

(76%) to classify fair roads as good roads when using the z-axis features. It has a accuracy of                  

70% with only 47% precision and 57% recall. In the case of the dot-product features, we have                 

true positives of 81% bad road and 91% good road and 0% for fair roads. The model is more                   

likely to predict fair roads as good road (80%) and then bad road (20%). 

For the kNN model, z-axis features produces true positives of 64%, 10% and 85% for bad,                

fair and good roads respectively. Again this model is mostly classifying fair roads as good               

63% of the time. It has 65% accuracy with 52% precision and 53% recall. For the dot-product                 

features, this model produces true positives of 80%, 0.02% and 88% for bad, fair and good                

roads respectively. The model has an accuracy of 69% with 57% precision and recall while               

also more likely to predict fair roads as good 70% of the time. The RF model (z-axis features)                  

performs with an accuracy of 83%, 81% precision and 77% recall. It however, fails to               

accurately predict any of the fair road instances and rather predicts them as good roads. We                

see similar result for the dot-product features as well. 

From the analysis, we see the decision tree model is more likely to accurately classify each                

type of road with high precision whereas the other fail to classify fair roads based on the                 

current data. 
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CHAPTER 5 : Conclusion And Recommendations 

 
5.1   Summary 

In evaluating the performance of and choosing an algorithm that will produce the             

highest accuracy score on test examples, we used 10-fold cross-validation training while            

tuning some parameters of the models. The algorithms yielded various performance results for             

different parameters as shown in the “10 fold cross-validation training scores” table above.             

After training and testing, decision tree had the highest accuracy for classifying data belong to               

“good”, “bad” and “fair” roads. All the other algorithms (LR, kNN, RF and SVM) had similar                

performance. They are more likely to accurately classify data belonging to “good” and “bad”              

roads but fail to accurately classify data from “fair” roads. Instead data from “fair” roads are                

more likely to be classified as belonging to “good” road. A summary of the performance of all                 

the algorithms and further discussion can be seen the in section 4 above. Looking at this,                

Decision Tree is the clearcut winner based on the data available as it is more likely to                 

accurately classify data belong to each class of road.  

5.2   Limitations 

The similarity among the other models (classifying “fair” road data as “good”) is due              

to a lack of a clear distinction between the data especially the fair and good road data. One                  

way to improve performance will be to precisely define what differentiates a “fair” road from               

a “good” one as this could help distinguish the classes. Another problem this project could not                

address is the issue of participants having to place their phone in fixed positions as was done  
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for data collection. As mentioned earlier, this will be inconvenient for participants and it will               

be more appropriate if a model can be trained that can accurately classify data gathered in                

instances where the phone is not fixed to the dashboard or armrest of the vehicle. 

5.3   Future Work 

There is a need to evaluate the performance of other algorithms not captured in this               

work. A good example will be Artificial Neural Networks (ANN). ANN can learn features              

from the raw data that best describe the data instead of the manual feature extraction utilized                

in the work. This will however require having a good understanding of how to set up the                 

ANN’s architecture and what parameters to tweak for improved performance. In addition, if             

the classes of interest are distinct enough, then applying a clustering algorithm such as              

K-means to the raw data could yield a better performance since the we would expect that data                 

points belonging to the same class will be much closer to each other than data points                

belonging to different classes. Another options for improving performance could be to try out              

various performance metrics with data that is clearly separable to identify the metric that is               

ideal for this particular situation. In addition, trying out a different set of features that define                

the data properly could also improve performance. An option could also be to create more               

features by generating quadratic features from the existing data.  
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