

ASHESI UNIVERSITY COLLEGE

EXPERT FINDING SOCIAL NETWORK FOR INFORMAL AND

SEMI-FORMAL EXPERTS

APPLIED PROJECT

B.Sc. Computer Science

David Haq Thorndollawende Inusah

2017

’

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Ashesi Institutional Repository

https://core.ac.uk/display/197725748?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

ASHESI UNIVERSITY COLLEGE

Expert Finding Social Network for Informal and Semi-Formal Experts

APPLIED PROJECT

Applied project submitted to the Department of Computer Science, Ashesi

University College in partial fulfillment of the requirements for the award of

Bachelor of Science degree in Computer Science

David Haq Thorndollawende Inusah

2017

i

DECLARATION

I hereby declare that this applied project is the result of my own original work and that no part

of it has been presented for another degree in this university or elsewhere.

Candidate’s Signature:

...………………………………………………

Candidate’s Name:

..………………………………………….........

Date:

…… ……………………………………………………………………………………………

I hereby declare that preparation and presentation of this applied project were supervised in

accordance with the guidelines on supervision of applied project laid down by Ashesi

University College.

Supervisor’s Signature:

…………………………………………………………………………………………………...

Supervisor’s Name:

……………………………..……………………………………………………………………

Date:

…………………………………………………………………………………………………

ii

Acknowledgement

I would like to thank God for the grace and presence of mind to complete this project. All the

glory goes to Him. I would also like thank my supervisor Mr Stephane Nwolley for his

patience and gentle direction in the progression of this project. He has been a great source of

encouragement for me. I would also like to thank my parents, Mr and Mrs Inusah for their

support in prayers and various efforts to encourage me to complete this project. I would also

like to thank Antoinette Doku for taking an interest in my project when it seemed that I was

progressing slowly in developing it. I would also like to thank Mr Aelaf Dafla for

encouraging me at some point in this project. Finally I would like to thank Dr Korsah, the

Head of the Computer Science Department for all her efforts in making sure that all of us

students undertaking Capstone projects this year kept on track during the development of our

projects. God bless you all.

iii

Abstract

Patatte is a simple social network that helps people to find and collaborate with informal and

semi-formal experts. This project’s aim is to solve the ‘expert finding+ problem’ which is the

problem of finding an unknown expert (for any purpose including hiring, working with or

questioning the expert) by searching through real world or online social networks with skill or

interest keywords.

The system is designed to be simple and intuitive to use. This is because some of the targeted

users (informal and semi-formal experts) are basically educated and may have limited

experience with the usage of web applications and social networks. The system is also

accessible by the most basic internet user requiring a computer, internet access and a basic

knowledge of how to use social networks.

Users can share projects they have worked on, follow other users, view those users’ projects,

like some of those projects, search for users with specific skills and collaborate with them in

an integrated media sharing and chat application.

iv

Table of Contents

DECLARATION .. i

Acknowledgement ... ii

Abstract ... iii

List of Abbreviations .. vi

Chapter 1: Introduction .. 1

1.1 Background .. 1

1.2 Project Solution ... 2

1.3 Related Work ... 3

1.3.1 Academic Papers... 3

1.3.2 Social Networks .. 7

Chapter 2: Requirements Gathering and Analysis ... 10

2.1 User Description .. 10

2.2 Requirement Gathering Techniques: ... 10

2.2.1 Brainstorming: .. 10

2.2.2 Use cases: .. 10

2.2.3 Prototyping: .. 10

2.3 System Requirements .. 11

2.3.1 Functional Requirements: ... 11

2.2.3: Non-functional Requirements .. 12

2.4 Scope of Requirements for this Project ... 13

2.5 Project Use Case .. 14

Chapter 3: High Level Architecture and Design ... 16

3.1 System Design ... 16

3.1.1 Prototype Screenshots ... 16

3.1.2 Activity Diagram .. 19

3.1.3 Class Diagram ... 20

3.1.4 Database Schema .. 21

Chapter 4: Implementation .. 22

4.1 Implementation Methodology.. 22

4.1.1 Tools ... 22

v

4.1.2 Development Model ... 22

4.2 Project Modules ... 23

4.2.1 Class component implementation and interaction .. 23

4.2.2 External Integrated Components: ... 27

Chapter 5: Testing and Results .. 30

5.1 Test Plan .. 30

5.1.1 Unit Test Plan ... 30

5.1.2 Integration Test Plan ... 32

5.1.3 System Test Plan ... 34

5.1.4 Acceptance Test Plan .. 36

5.2 Test Results .. 36

5.2.1 Unit Testing .. 36

5.2.2 Integration Testing .. 42

5.2.3 System Testing .. 45

5.2.4 Acceptance Testing ... 47

5.3 Testing Phase Summary. ... 49

Chapter 6: Conclusions and Recommendations .. 50

6.1 Conclusions.. 50

6.2 Recommendations .. 50

6.2.1 Limitations ... 50

6.2.2 Future Works .. 50

Appendices .. 51

References.. 52

vi

List of Abbreviations

Abbreviation Full meaning

API Application Program Interface

SQL Structured Query Language

HTML Hyper Text Mark-up Language

PHP Personal Home Page

CSS Cascading Style Sheets

1

Chapter 1: Introduction

1.1 Background

Collaboration has always existed in man’s history, being demonstrated in various

ways. There were barter traders that exchanged goods for services they could otherwise not

provide themselves. Even today, with currency, we still need to collaborate similarly. There

are fishermen that need carpenters to make them boats and carpenters that need fishermen to

sell them fish.

In recent times, collaboration is no longer localized. It is occurring on a global scale, with

intercontinental collaborations being common place thanks to the internet. The resulting data

generated as a result of this global connection is growing at an overwhelming rate. The users

that create this data are virtually represented as interconnecting nodes in a vast network. This

network mimics the real world network of people and how this real world network functions.

Though this advent has been great at connecting the world irrespective of boundaries, time

differences and geographical barriers, some of the real world network problems still persist in

this virtual network. One real world problem that has persisted and even become enlarged in

this virtual network is the “Expert Finding Problem”.

The “Expert Finding Problem” is the problem people face in finding an expert they do not

know but whose skills they desire. People often have to find such unknown experts with

desired skills from a large collection of people/users in a real world or virtual network. They

often do this by asking people they know if they in turn know any such experts. This problem

has become more complex or enlarged in the virtual network because a person’s virtual

network has the potential to be larger and is more interconnecting (because it overcomes

2

geographical challenges to connect users) than his/her real world network. Based on this sheer

size difference, it is more difficult to find an unknown expert on a given topic in the large

mass of interconnected users across the entire planet on the virtual network than it is for a

person to find a relevant expert to his problem by physically asking people he knows

(searching his real world network). That said, the searching user is more likely to find a

strongly qualified expert to collaborate with when he/she searches the virtual global network

because he/she is exposed to a larger sample size.

1.2 Project Solution

Imagine looking for a rare expert, say a griot, from among the network of people you

personally know or do not know, but physically have access to. You would have a large

variety of related and unrelated experts to search from in this network you are looking

through. Let us call this an unordered network. Searching for an expert you can only identify

by their skills from an unordered network is a very hectic search even with people’s

recommendations and help.

To solve this, I would first order the network so that finding a person within it would depend

on the category of people they fall into. This way, whole sections of people will be cut off

from the search and things would be made easier. To order the above narrated network, we

could create the following subcategories of networks: work, friends and market. In order to

search for a griot, it would be better to search the market.

Within the market, there should also be an ordering that allows a searching user to further

narrow down their search area. In addition, there could also be a market enquiry center that

provides searching users with individual profiles of people in the expert field that the user is

3

searching for. This cuts the chase down tremendously. The user can now select any griot

he/she wants from a known collection of available griots by any criteria he/she desires to use.

This is the solution my project proposes. Patatte is a specialized sub network of the entire

unordered internet. It is specialized in the sense that, it is meant only for interest/talent/skill

based project enthusiasts. Therefore people searching for friends with certain social skills

would not waste their time searching through Patatte. They would rather search Facebook or

Twitter.

Within Patatte, all users will be within categories to further order the network. Beyond this,

there will be a search feature that easily allows a cup cake maker to find the best web

designers the network has to offer at the click of a button. This has the potential to take away

a lot of the hustle, questioning around and unsatisfied workmanship that comes with a person

searching his/her entire real world network or even bigger virtual network for an expert. This

is the reason why vast general social interaction networks like Facebook and Twitter are not

ideal for solving the expert finding problem.

This project sets out to focus specifically on connecting people with informal experts

(including painters, carpenters, bakers etc) and semi-formal experts (including photographers,

graphic designers, web developers etc).

1.3 Related Work

1.3.1 Academic Papers

A research paper titled ‘Discovering Experts Across Multiple Domains’ by Aditya Pal,

an IBM researcher describes an expertise finding framework that analyses documents on a

variety of aspects including language, questions, topics and an indicator of expertise. The aim

4

is to extract key features that can help determine the expertise of an author through the

documents they share.

It is different from some of the other expert finding systems I have encountered in that

it searches for experts across domains as opposed to searching for experts within the same

domains like single social networks.

The paper presents an algorithm that accepts a user’s work (documents shared etc) and

computes an expertise score for the author. It also indicates that one of the rare related

computations for expertise across domains like the one it has explained is the Lucene based

model to index multi- domain documents and combined document relevance, and popularity

to compute user expertise.

This work is relevant to my project in that even though I am trying to find relevant

experts for users within one social network, it would be very helpful in creating a ranking for

user expert searches if my system could compute an objective expertise level of all the

system’s users (Pal, 2015).

Another related academic work to my project is a paper titled ‘A Model for Expert

Finding in Social Networks’ by Elena Smirnova. This paper develops a Bayesian hierarchical

model that also makes attempts to account for a social layer in expert finding where the

experts found will be linked to the searching user by one or more of the people in his social

circle.

The model in the paper is built closely on the AT model that extends the latent

Dirichlet allocation model by adding authorship information. This addition helps create an

expert finding system that not only finds relevant experts to a user’s search based on their

5

work shared on the network, it also makes sure that there is a high chance that the two users

can work together because they commonly know some other users.

This approach was built heavily on the assumption that people within a user’s current

social circle on the network have shared topical interests. Though that leads to a useful expert

finding solution, it is also an assumption that is not very true as some people add other people

to their social circles simply because they know them and may not have any similar topical

interests. In such cases, the results of the search using this system could be compromised

returning irrelevant experts to the user (Smirnova, 2011).

Another related academic work to my project is a paper titled ‘QuME: a mechanism to

support expertise finding in online help-seeking communities’ by Jun Zang, Mark Ackerman,

Lada Adamic and Kevin Nam. This paper describes a method of computing a user’s expert

level for a system called the QuME (question matching engine) by analyzing the information

they create on a social network. It considered a case in point; the Java Forum where behaviors

of users with high expert levels, intermediate expert levels and low expert levels were

observed. It was seen that questions have to be matched to specific users based on their expert

level because otherwise there is usually an imbalance in which experts answer questions more

quickly but get their questions answered much less quickly because experts are likely to ask

hard questions. Also, low expert users also get their questions answered more quickly because

they most likely ask basic questions. On the other hand, they may not understand the answers

given by high expert users because the answers may be complex. This imbalance has required

that questions are distributed more equitably on the Java Forum. Other considerations that

were also made in the paper were the motivations for which people helps strangers on such

social networks. From their research it was identified that some of these motivations include;

6

altruism, incentives to support one’s community, reputation-enhancement, expected

reciprocity, and direct learning.

The QuMe and the insights the paper explains are necessary to my project because it is

important that people that will be recommended to people looking for other people to

collaborate with on some projects must not be too far apart in expertise. It would be useful if

the system could recommend experts that have expert levels close to the user’s expert level

(Zhang, Ackerman, Adamic, Nam, 2007).

A final academic paper that related with my work is a paper titled ‘Exploiting Social

Context for Expertise Propagation’ by Greg Millete, Michael Schneider, Kathy Ryall and

Robert Hyland. This paper looks at an interesting idea of selecting only the most relevant

experts that are recommended so as not to overburden experts with too many requests for

help. The paper explains such functionality within a system called College Search which

provides summaries of recommended experts’ expertise, and a social context (e.g. job titles

and organizational chart location). This allows users self investigate more closely into who

they want to work with. They can even view the recommended users’ profiles and see their

work. This helps narrow the requests each expert searching user sends out hence reducing the

number of requests expert users receive.

This is a significant alternative approach I could apply to my project. It is especially much

simpler to achieve. (Milette, Schneider, Ryall, Hyland, 2009)

1.3.2 Social Networks

1.3.2.1 LinkedIn

LinkedIn is the world largest professional network recording an active monthly usage

of 106 million users as of November 2016 (LinkedIn Facts, 2016).

7

Advantage:

LinkedIn is a highly intelligent social network with an extensive use of machine

learning to predict user profile growth based on certain specific user connections. It is also

very broadly solves corporate HR needs like talent searches, C.V uploads, professional profile

access, and Job posts.

Disadvantage

LinkedIn is targeted at formal workers. The complexity of LinkedIn profile pages,

their heavy demand for user information and the networking skill that is needed to create a

vibrant LinkedIn profile may very easily turn off an average carpenter that wants to take

advantage of the global reach provided by the internet to market himself/herself. Informal

experts prefer simpler content sharing social networks like Fiverr that allows them to easily

share their work without so much etiquette.

1.3.2.2 Fiverr

Fiverr is an informal expert finding application that facilitates the sale of users’ services to

one another.

Advantage

Fiverr very conveniently and simply connects you to the services of semi formal experts like

graphic designers.

Disadvantage

Fiverr emphasizes mainly on selling user’s services to one another, when some users simply

want collaboration partners to work with on a project without having to pay any money.

8

Chapter 2: Requirements Gathering and Analysis

This chapter introduces in detail the requirements that the system must meet in order

to be useful to the “Expert Finding Problem” discussed above. It also describes the processes

by which these requirements were gathered.

2.1 User Description

The intended users of this system are expected to be between the ages of 18 and 30.

The system is targeted towards college students and young adults that are developing interests

and talents they have developed earlier in their lives. Also, the young adults in this age group

of users are active in creating projects to help settle/stabilize themselves financially for a

better life or skillfully for better job prospects.

2.2 Requirement Gathering Techniques:

2.2.1 Brainstorming: The initial requirements of the system were developed by using the

brainstorming requirements gathering approach. By focusing the expert finding problem

identified I came up with a basic set of requirements that I wanted the system to fulfill.

2.2.2 Use cases: Another requirements gathering technique that was used was use case

analysis. By outlining the flow of use of the system by the identified users, more unseen

requirements were identified.

2.2.3 Prototyping: This is the final requirements gathering approach that was used in this

project. The requirements gathered this far were used to prototype a mockup of the site. Axure

wire framing software was used for this prototyping. I used the prototype to solicit user

responses on the project. From their responses and from simply developing the prototype,

some requirements were removed and others added in the final iteration that has been

developed in this project.

9

2.3 System Requirements

2.3.1 Functional Requirements:

 Signup for new users and Login for current user.

 Profile details: Users that log in for the first time should be able to input further details

about themselves to help setup their profile with. Expected information includes: first

name, last name, bio, skills, work shed location (location of their work shop)

 User profile page: There should be a page that profiles the user. Information expected to

be provided should be user bio, skills, work shed location, number of people following the

user, number of people the user follows, user profile picture and user projects portfolio.

 ‘Following’ and being ‘Followed’: A user, say A, should be able to follow another user,

say B. ‘A’ should also be able to be followed by any other user accounts including ‘B’.

That is, all accounts should be able to follow other accounts and be followed by those

accounts as well.

 ‘Unfollowing’ an account: A user should be able to unfollow the account of another user

they are already following. This disconnects their network linkage and so the

‘unfollowing’ user no longer sees posts from the ‘unfollowed’ user in his/her News Feed.

 User should be able to upload and share project work in video, audio and image formats.

 Users can delete projects in their portfolios.

 News Feed: A user should be able to see post/project updates of all users they are

following in his/her News Feed. Likewise, other following users of that user should see

the user’s post updates in their News Feeds.

 Users can comment on and like other users’ projects/posts.

10

 Notification system for prompting users about new likes, comments, mentions, follows

and collaboration requests.

 Users should be able to ‘Mention’ other users in their posts. A mention is the ability to

mention a user’s username (with a link behind it to that user’s profile page) in a post,

notifying the user of that mention in the process of sending the post.

 Internal search feature that finds and recommends existing users to new users as similar

interest users to start off following.

 Search feature for finding other users (experts) in the network by searching with user

name keywords.

 Search feature for finding other users (experts) in the network by searching with skill or

interest keywords. This feature should return a ranked list of users (experts) based on the

distance of their work sheds from the searching user’s work shed.

 Sending and receiving collaboration requests: a user should be able to send a request to

another user with some desired skills to seek collaboration with them. Similarly, that user

should be able to receive collaboration requests from other users seeking collaboration.

 Users should be able to accept or reject collaboration requests sent to them by other users.

 If a user accepts a collaboration request, a chat and media sharing work space should be

opened between that user and the requesting user for them to collaborate within.

2.2.3: Non-functional Requirements

 Security: The system should protect user accounts and information from being accessed

by attackers or unauthorized users.

11

 The system should be available for use at all times to every user that has a computer with

internet access.

 The system should be intuitively usable to the targeted users.

 The system should be useful in solving expert finding problems of targeted users

2.4 Scope of Requirements for this Project

This project will implement all stated functional requirements excluding

 Creating posts in video and audio formats.

 Returning a ranked search list of experts. Only returns a list of experts

 Username keyword search feature for finding users.

12

2.5 Project Use Case

The following is a use case rule for a any given system user:

Figure 2.1: Use case rules

Accept or reject collaboration request

Message and share media with accepted

collaborators

Follow other users

Request collaboration with other users

View Profile page.

Delete shared posts.

Search for users to collaborate with based on skills

and proximity

View News Feed (Posts displayed by followed users)

Like and comment on shared posts

Sign In /Login

Input account details for newly created user

accounts

Recommend users with similar interests to new

users

13

Figure 2.2: Use case diagram

14

Chapter 3: High Level Architecture and Design

This chapter provides a high level overview of the project, giving more detailed

insight into the system’s design. It also outlines the arrangement of the various components of

the system.

3.1 System Design

The system design is generated at a high level from a series of paper and wireframe

prototypes. The design of the flow of the various functionalities and their interaction with one

another was developed from these prototypes.

3.1.1 Prototype Screenshots

3.1.1.1 Hand Sketches

 The first step I took in the design of the system was to make a hand sketch of what I intended

to build. This sketch forms the first iteration of my prototype iterations.

 Figure 3.1: Initial hand sketch

15

3.1.1.2 Wireframe Prototype

These prototypes were generated by using Axure.

Figure 3.2: Profile Page

Figure 3.3: News Feed

16

Figure 3.4: Search Page

17

3.1.2 Activity Diagram

 Figure 3.5: Activity Diagram

18

3.1.3 Class Diagram

In the implementation of the various functionalities, various static classes were used.

They performed database queries, data returns and other tasks in the background to make to

functionalities and flow of the system happen.

Figure 3.6: Class Diagram

19

3.1.4 Database Schema

The following schema represents the arrangement of tables in the database and the

functional dependencies between the tables.

Figure 3.7: Database Schema

20

Chapter 4: Implementation

This chapter sets out in detail the project’s tools of implementation, constituent

modules and project implementation techniques.

4.1 Implementation Methodology

4.1.1 Tools

The system has been prototyped iteratively until a satisfying iteration is found. The

wire framing tool used is Axure. The system is built in PHP 7.0 and data is stored to a

MYSQL database. The user interface of the project is written in HTML5 and CSS3. The CSS

is adopted from Materialize’s CSS Framework. Some of the backend functionality was

implemented by following a social network building tutorial series on a YouTube channel

called ‘howCode’. The system was built locally on an APACHE web server.

4.1.2 Development Model

The project was developed on a prototyping model. This model allows for the

prototype of the system to be first built an incrementally tested and rebuilt till a final iteration

emerges.

21

Figure 4.1: Prototype Model flow

4.2 Project Modules

4.2.1 Class component implementation and interaction

DB: This class contains the:

 connect() method that connects the rest of the application to the database.

 query() method that queries the database.

Login :This class contains the:

 loginUser() function that logs in a valid user. This function achieves the user login

functional requirement. It returns an error message that will be an empty string if the

login action was successful and will return a relevant error message if the login was

not successful.

 isLoggedIn() function that returns a user’s id if the user is logged in or false if the

user is not logged in. This helps ensure system security by ensuring that a user that

wants to access the system is always authorized.

22

 firstLogin() function that determines whether a user is logged in for the first time or

not. This function helps the system to decide whether to display the profile_info page

(where new users fill in more account details) or not.

 Create_account() function that create a new user. Achieves the sign-up functional

requirement. It returns an error message that will be an empty string if the sign-up

action was successful and will return a relevant error message if the sign-up was not

successful.

 signupLogin() function that lets the user login right after they signup. Redirects the

page to the profile_info page where users fill in profile details. This prevents the user

from having to login in as an extra step.

Notify: Implements the following functions that achieves the notification system functional

requirement:

 newnotificationsCount() function that returns a count of all notifications of a given

user.

 createMentionsNotify() function that notifies a user of a mention by another user in

their post.

 createLikesNotify() function that notifies a user of a new like on one of their posts.

 createFollowNotify() function that notifies a user of a new follow on their account.

 createRequestNotify() function that notifies a user that they have received a

collaboration request.

 createRequestAcceptedNotify() function that notifies a user that their collaboration

request has been accepted.

23

 createRequestRejectedNotify() function that notifies a user that their collaboration

request has been rejected.

FollowUser: This class implements the following functions that achieves the ‘follow’ and

‘unfollow’ functional requirements:

 Follow() function that links a user to another user and his/her posts

 Unfollow() function that unlinks a user from another user and his/her posts

Image: This class implements the following functions that achieve the image posting

functional requirement:

 uploadImage() function that uploads an image to ‘Imgur’ and updates the post table

with the image link. Return a relevant error message to a particular fault if the upload

was not successful or returns ‘done’ if it was successful.

Post: This class implements the following functions that achieves the posting, liking and

deleting functional requirement:

 createPost() function that create an imageless post.

 createImgPost() function that uses the uploadImage function from the Image class to

create a post that contains an image.

 deletePost() function that allows a user to delete a post that he/she posted.

 likePost() function that allows a user to like all posts.

 link_add() function that allows a user to mention another user in a post by adding a

link to their name when they type it in a username with an ‘@’ sign. It is also used in

the news feed to add profile page link to a username with an ‘@’ sign.

 getProfilePagePosts() private function that posts published by a particular user.

24

 displayProfilePagePosts() function that takes posts returned by getProfilePagePosts()

and displays them.

 getNewsFeedPosts() function that gets all posts of the people a user is following and

returns them.

 displayNewsFeedPosts() function that displays posts returns by getNewsFeedPosts().

RequestCollaboration: Implements the following functions that achieves the sending,

accepting and rejection of collaboration request functional requirements:

 sendRequest() function that sends a collaboration request to a user whom a

collaboration is desired from.

 acceptRequest() function that accepts a received collaboration request.

 rejectRequest() function that rejects a received collaboration request.

Search: Implements the following functions that achieves the recommendation search and the

search by skill/interest keywords that returns a list of users and their proximity to the

searching user functional requirements:

 recoSearch() function that searches for users with similar interests and returns them as

recommendations to a new user that has not followed any users yet.

 getDistanceMatrix() function that sends a curl request of the searching user’s work

shed location and the found expert’s work shed location to the Google Maps Distance

Matrix API. The function returns the distance and duration elements of the json

formatted string returned by the Google’s Distance Matrix API.

25

Comment: Implements the comment post and comment display functionality.

 Comment() function that posts a comment to a particular post

 displayComments() function that displays all comments on a post.

4.2.2 External Integrated Components:

This section explains the integration process of the three APIs used in this project.

They are Imgur: an online image hosting and sharing community, SendBird: a cloud based

team collaboration tool and Google Distance Matrix API all of which connect to external

applications by the OAuth 2.0 authentication framework.

According to Mitchell Anicas a Former Senior Technical Writer and current Software

Engineer at Digital Ocean, “OAuth 2 is an authorization framework that enables applications

to obtain limited access to user accounts on an HTTP service, such as Facebook, GitHub, and

DigitalOcean. It works by delegating user authentication to the service that hosts the user

account, and authorizing third-party applications to access the user account. OAuth 2 provides

authorization flows for web and desktop applications, and mobile devices” (Anicas, 2014).

This is a diagrammatic representation of how both APIs were integrated using this

framework.

26

 Figure 4.2: O-Auth 2.0 flow

4.2.2.1 SendBird API

SendBird was integrated into the project to allow users that agree to collaborate to

share multimedia and interact privately. The project only allows users that agree to

collaborate to have access to this feature. To do this I registered my application with

SendBird.com and was provided a client secret, id and OAuth Tokens for every authorization

request. If the tokens are recognized for a request made, an access token is a passed back to

the Web app and the app sends that token to access the chat resources of SendBird.

27

4.2.2.2 Imgur API

This is an image hosting service that is integrated into the project to allow users to

share images and gifs of their projects on the network. To do this I created an account on

Imgur and registered my application on it. The registered application was provided a client

ID, a client_secret and an access token and a refresh token. The uploadImage function in the

Image class connects to the Imgur API and uploads the file to my imgur account. The

link of the uploaded file is returned and updated into my postimg column in my posts

table in the database.

4.2.2.3 GoogleMaps Distance Matrix API

 This is a Google Maps API from Google that provides distance and travel duration

information for any Google Maps known locations provided as ‘origin’ and ‘destination’. To

do this, my code sends out a ‘Curl’ request of a formatted URL to the Google Distance Matrix

API with the origin and destination parameters of the searching user and the found user. The

URL has a unique key attached to it that was generated when I registered the web app with

the Google API.

4.3 Project Implementation Screenshots

 Below are screenshots of the user interface of the actual project implementation.

28

Figure 4.3: Sign-up Page

Figure 4.4: Profile Details Page

29

Figure 4.5: Recommended Users Page

Figure 4.6: Login Page

30

Figure 4.7: News Feed Page

Figure 4.8: Profile Page

31

Figure 4.9: Search Page with Results for ‘Cooking’ Search

Figure 4.9: Settings Page

32

Figure 4.9: Settings Page

Figure 4.10: Chat Page

33

Chapter 5: Testing and Results

This chapter details the tests conducted on the project system to that it works in the

ways it is expected to work. The testing plan followed, test classes and cases used and the test

case results generated will be outlined and reported in this chapter.

5.1 Test Plan

This section outlines a blueprint for tests conducted on the system to identify faults

and errors. It includes a Unit Test Plan, an Integration Test Plan, System Test Plan and

Acceptance Test Plan.

5.1.1 Unit Test Plan

The various functions of every class will be tested using the black box testing method

using the Equivalence Class Technique of selecting test cases.

Table 5.1: Unit test plan

Class to test Unit to be tested Test case classes Description

DB

Connect()

Query()

Database select queries

Database count queries

Database update queries

Database insert queries

These queries test the

connection to the

database through the

connect() function and

tests the query() the

function by querying

the database for

results or responses

and returning those

responses.

Login loginUser()

create_account()

isLoggedIn()

firstLogin()

signupLogin()

1. Logging in with wrong

passwords and wrong

usernames.

2. Logging in with an

authorized usernames

and passwords.

3. Signing up with non-

unique usernames

4. Signing up with valid

usernames, passwords

These tests verify the

Login class’
implementation of the

login and signup

functional

requirements.

34

and email addresses.

5. Return id of the logged

in users.

6. Check if a logged in user

is logging in for the first

time.

Notify newnotificationsCount(

)

createMentionsNotify()

createLikesNotify()

createFollowNotify()

createRequestNotify()

createRequestAccepted

Notify()

createRequestRejected

Notify()

1. Valid user ids and

expected parameters.

These tests verify the

Notify class’
implementation of the

notifications

functional

requirement.

FollowUser Follow()

Unfollow()

1. Invalid user ids.

2. valid user ids and

expected parameters.

These tests verify the

FollowUser class’
implementation of the

follow and unfollow

user functional

requirements.

Image uploadImage() 1. Uploading images larger

than 10MB.

2. Uploading images with

right size and accurate

parameters

These tests verify the

Image class’
implementation of the

image post upload

functionality.

Post createPost()

createImgPost()

deletePost()

likePost()

link_add()

getProfilePagePosts()

displayProfilePagePosts

()

getNewsFeedPosts()

displayNewsFeedPosts(

)

getNewsFeedPosts()

1. Invalid user ids.

2. valid user ids and

expected parameters.

These tests verify the

Post class’
implementation of the

post creation, liking,

deleting and

displaying functional

requirements.

RequestColl

aboration

sendRequest()

acceptRequest()

rejectRequest()

1. Invalid user ids.

2. valid user ids and

expected parameters.

These tests verify the

RequestCollaboration

class’ implementation
of the requesting,

accepting and

rejecting collaboration

35

requests functional

requirements.

Search recoSearch()

userSearch()

expertSearch()

getDistanceMatrix()

1. Invalid user ids or

usernames.

2. Invalid locations.

3. valid user ids, usernames

and locations and

expected parameters.

These tests verify the

Search class’
implementation of the

user recommendation,

username keyword

search and skill

keyword search

functional

requirements.

5.1.2 Integration Test Plan

Integration testing will be carried out on the various PHP pages that utilize the class

functions to archive the functional requirements of the project. The black box testing

approach will be used. The type of black box testing technique that will be used is the State-

based testing approach as the changes in state of the system will be observed against the input

provided.

Table 5.2: Integration test plan

Pages Functionality to test Test case/state

changes

Description

login.php login functionality Logging in and being

directed to the news

feed/index.php page

Tests the login page

component interactions to

login only registered users.

create-

account.php

Sign-up

functionality

Signing up and being

directed to the

account

details/profile_info.ph

p page

Tests the component

interaction of the create-

account page to register

and setup user accounts.

profile_info.php Adding account

details functionality

Adding account

details and being

redirected to

recommended_users.p

hp or the user

Tests the component

interaction on the

profile_info page to update

user profile information.

36

recommendations

pages.

Recommended_u

sers.php

Recommending

users with similar

interests to newly

signed up users.

Display found users

within the system

with new users’ skills.

Tests the component

interaction on the

recommended_users page

to recommend similar

interest/skill users to new

users

Index.php displaying posts of

all followed users

Displaying posts Tests the component

interaction on the index

page to display posts of all

followed users.

profile.php Central page for

displaying users’
project portfolios

and account

information.

Display user

information and

portfolio

Tests the component

interaction on the profile

page to display a user’s
profile information and

project portfolio.

Collaboration_se

arch.php

Finds other users for

purposes of

collaboration by

searching with skill

keywords.

Display users with

skills being searched

for

Tests the component

interaction on the

collaboration_search page

to find and display users

for collaboration.

notify.php Displays all new

notifications of a

user

User can accept or

reject all

collaboration

request

notifications.

Notify users of

interactions with

account on the social

network

Accept and redirect to

sendbird chat

application or reject

collaboration requests

Tests the component

interaction on the notify

page to display all user

notifications

collaborate.php Message and share

media with

collaborating users

Sendbird chat API for

sharing media and

messaging

Tests the component

interaction on the

collaborate page to send

and receive media and

messages

37

profileimgupload.

php

Upload profile

picture

Upload and display a

profile image to a user

account

Tests the component

interaction on the

profileimageupload page

to upload a user’s profile
image to the user’s profile
page.

change-

password.php

Changes a user’s
password

User password

updated in database

Tests the component

interaction on the change-

password page to change a

users password.

logout.php Logs out a user Logged out user. No

access to system and

account information

and posts

Test the log page

functionality.

5.1.3 System Test Plan

The whole system will be tested by reviewing the use cases of the user and comparing

to see if all of them have been achieved. This will be done by following the expected flow of

the system diagrammatically represented in earlier chapters. This testing phase verifies that

the project has achieved the functional requirements of the system.

Table 5.3: System test plan

Test case Work flow to test Description

Registered user login 1. Login Test the login functionality

for existing users.

Unregistered user sign-up 1. Sign-up

2. Profile details

3. Recommended users

Tests the account setting

up flow for new users

Logged in user system

usage

1. Posting an image and text

project.

2. Liking posts.

Tests the various

functionalities of the

system available to the user

once their accounts have

38

3. Commenting on posts.

4. Deleting owned posts.

5. following/unfollowing users.

6. Requesting collaborations.

7. Viewing followed users

posted projects.

8. Accepting/rejecting

collaboration requests.

9. Searching for users by

username keywords.

10. Searching for users by skill

keywords.

11. Changing user profile

picture.

12. Changing user account

password.

13. Messaging and sharing

media with accepted

collaborators.

been setup or they have

logged in.

System log out by logged

in users.

1. Log out Tests whether user is able

to log out of system.

39

5.1.4 Acceptance Test Plan

This last testing phase is meant to find out whether the project will be accepted by the

end user or not. It validates the project software. For this phase, only Beta testing with real

world end users will be carried out.

Table 5.4: Acceptance test plan

User profile Feedback and insights

This section will profile users based on their

gender, exposure to social network usage,

technical knowledge of computers and user

skills/interests/talents.

This section will draws insights from how

the user goes about using the system with as

little assistance as possible. Also document

explicit user feedback

5.2 Test Results

This section provides a detailed description of all test case results.

5.2.1 Unit Testing

These are the actual test samples and results for unit testing.

 Table 5.5: Unit testing results

Class and functions Test case based on test plan

equivalence classes

Expected result Observed result

DB

Connect()

query($query,
$params=array())

DB::connect()

DB::query(‘SELECT *
FROM notifications
WHERE
receiver=:userid
ORDER BY id DESC’,’
array(':userid'=>2)’)

DB::query(‘Select
count(*) from users’)

Successfully

connects to

database.

Returns rows of

selected

queries.

Returns count

result

Successfully

connects to

database.

Returns rows of

selected

queries.

Returns count

result.

40

DB::query(‘Update
users set
username=:username
where
username=’David’’,’
array(':username'=>’D
anielson’)’)

DB::query(‘Insert
into posts values
(\'\', :postbody,
NOW(), :userid, 0,
\'\', \'\')',
array(':postbody'=>’h
i there’,
':userid'=>2));

Returns true

Returns true

Returns true

Returns true

Login

loginUser($username
,$password)

create_account($use
rname,$password1,$p
assword2,$email)

isLoggedIn()

firstLogin($userid)

Login::loginUser(‘non
-existent user’,
‘wrong password’)

//existing user with
correct password.
Login::loginUser(‘Dav
id’, ‘rootroot’)

//creating account
with an existing
username
Login::create_account
(‘David’,happyboy,’ha
ppyboy’,’mail@mail.co
m’)

//creating an account
with a non-existing
username
Login::create_account
(‘Joe233,happyboy,’ha
ppyboy’,’mail@mail.co
m’)

Login::isLoggedIn()

//userid of new user
Joe233
Login::firstLogin(15)

//userid of David, an

echo Invalid

user

log user in and

directs user to

index.php page

echo username

already in use.

Create new

user account

for Joe233

Returns id of

logged in user

Returns true

echoes invalid

user

logs user in and

directs user to

index.php page

echo username

already in use.

Creates new

user account for

Joe233

Returns id of

logged in user

Returns true

41

signupLogin($userna
me, $password)

existing user
Login::firstLogin(2)

Login:: signupLogin
(‘Joe233’,’happyboy’)

Returns false

Logs Joe233 in

and directs him

to

profile_info.ph

p page.

Returns false

Logs Joe233 in

and directs him

to

profile_info.ph

p page.
FollowUser

Follow($userid,
$followerid)

Unfollow($userid,
$followerid)

//valid
userid,followerid
FollowUser::follow(15
,2)

//invalid
userid,followerid
FollowUser::follow(0,
-1)

//valid
userid,followerid
FollowUser::unfollow(
15,2)

//invalid
userid,followerid
FollowUser::unfollow(
0,-1)

Echo ‘user
followed’

Echo ‘unable to
follow user’

Echo ‘user
unfollowed’

Echo ‘unable to
unfollow user’

Echo ‘user
followed’

Echo ‘unable to
follow user’

Echo ‘user
unfollowed’

Echo ‘unable to
unfollow user’

Image

uploadImage($formna
me, $query,
$params)

Image::uploadImage('p
ostimg', "UPDATE
posts SET
postimg=:postimg
WHERE id=:postid",
array(':postid'=>1))

Upload the

image to Imgur

and updates the

post table with

the link

returned from

Imgur

Uploads the

image to Imgur

and updates the

post table with

the link

returned from

Imgur
Post

createPost($postbod
y, $loggedInUserId,
$profileUserId)

//logged in userid
equals profileid
Post::createPost(‘new
job’, 15, 15);

//logged in userid
does not equal
profileid
Post::createPost(‘new
job’, 2, 15);

Insert a new

post record into

the posts table

Echo ‘incorrect
user’

Inserts a new

post record into

the posts table

Echoes

‘incorrect user’

42

createImgPost($post
body,
$loggedInUserId,
$profileUserId)

deletePost($postid,
$followerid)

likePost($postId,
$likerId)

link_add($text)

getProfilePagePosts
($userid)

displayProfilePageP
osts($userid,
$username,
$loggedInUserId)

getNewsFeedPosts($u
serid)

displayNewsFeedPost
s($username,
$loggedInUserId)

Post::createImgPost(‘
new job’, Login::15,
15);

//valid postid and
userid
Post::deletePost(1,
15)

//invalid posted and
userid
Post::deletePost(0, -
1)

Post::likePost(1, 2)

Post::link_add(‘anoth
er job @David’)

getProfilePagePosts(1
5)

//valid parameters
displayProfilePagePos
ts(15, ‘Joe233’,15)

//invalid parameters
displayProfilePagePos
ts(0, ‘43dsd’,-1)

getNewsFeedPosts(15)

//valid parameters
displayNewsFeedPosts(
‘Joe233’,15)

//invalid parameters

Insert new post

into post table

with an imgur

link to image

Return true

Return false

Update ‘like’
record in likes

table.

Return text

with link to

David’s profile
on @David

Fetch all user

posts from

database

Return a view

of all user

posts.

Return an

empty view.

Fetch all

followed users’
posts from

database

Return a view

of all followed

users’ posts.

Inserts new

post into post

table with an

imgur link to

image.

Returns true

Returns false

Update ‘like’
record in likes

table.

Returns text

with link to

David’s profile
on @David

Fetches all user

posts from

database

Returns a view

of all user

posts.

Returns an

empty view.

Fetches all

followed users’
posts from

database

Returns a view

of all followed

users’ posts.

43

displayProfilePagePos
ts(0, ‘43dsd’,-1)

Return an

empty view.

Returns an

empty view.

RequestCollaboratio

n

sendRequest($userid
, $followerid)

acceptRequest($requ
estid)

rejectRequest($requ
estid)

//valid sender and
receiver ids
RequestCollaboration:
:sendRequest(2, 15)

//invalid sender and
receiver ids
RequestCollaboration:
:sendRequest(-1, -2)

//for an existing
request of id=2
RequestCollaboration:
:acceptRequest(2)

//for an existing
request of id=2
RequestCollaboration:
:rejectRequest(2)

Insert new

request record

into

collaboration_r

equests table

Echo ‘unable to
send request’

Update

‘accepted’
column from 0

to 1 in

collaboration_r

equest table

where id=2

Update

‘rejected’
column from 0

to 1 in

collaboration_r

equest table

where id=2

Inserts new

request record

into

collaboration_r

equests table

Echoes ‘unable
to send request’

Updates

‘accepted’
column from 0

to 1 in

collaboration_r

equest table

where id=2

Updates

‘rejected’
column from 0

to 1 in

collaboration_r

equest table

where id=2
Notify

newnotificationsCou
nt($userid)

createMentionsNotif
y(text = "")

Notify::newnotificati
onsCount(2)

Notify::createMention
sNotify(‘new job
@David’)

Return the

number of all

notifications

where ‘seen’=0

Insert a new

notifications

table record of

type 1.

Returns the

number of all

notifications

where ‘seen’=0

Inserts a new

notifications

table record of

type 1.

44

createLikesNotify($
postid = 0)

createCommentsNotif
y($comment=0)

createFollowNotify(
$followerid,
$userid)

createRequestNotify
($sender,
$receiver,$requesti
d)

createRequestAccept
edNotify($sender,
$receiver)

createRequestReject
edNotify($sender,
$receiver)

Notify::createLikesNo
tify(1)

Notify::createComment
sNotify(‘nice work’)

Notify::createFollowN
otify(15,2)

Notify::createRequest
Notify(‘Joe233’,’Davi
d’,1)

Notify::createRequest
AcceptedNotify(‘Joe23
3’,’David’)

Notify::createRequest
RejectedNotify(‘Joe23
3’,’David’)

Insert a new

notifications

table record of

type 2.

Insert a new

notifications

table record of

type 3.

Insert a new

notifications

table record of

type 4.

Insert a new

notifications

table record of

type 5.

Insert a new

notifications

table record of

type 6.

Insert a new

notifications

table record of

type 7.

Inserts a new

notifications

table record of

type 1.

Inserts a new

notifications

table record of

type 1.

Inserts a new

notifications

table record of

type 4.

Inserts a new

notifications

table record of

type 5.

Inserts a new

notifications

table record of

type 6.

Inserts a new

notifications

table record of

type 7.

Search

recoSearch($usernam
e)

userSearch($tosearc
h)

Search::recoSearch(‘J
oe233’)

//valid username
Search::userSearch(‘D
avid’)

//invalid username
Search::userSearch(‘s

Return an array

of users that

have similar

skills with the

provided user

Return a user

with the same

or inputted

username

Return an

empty array

Returns an

array of users

that have

similar skills

with the

provided user

Returns a user

with the same

or inputted

username

Returns an

empty array

45

expertSearch($keywo
rd,$userid)

getDistanceMatrix($
expert, $origin,
$destination)

as899’)

//valid skill keyword
and userid
Search::expertSearch(
‘design’,’15’)

//invalid skill
keyword
Search::expertSearch(
‘sadadas’,’15’)

//valid parameters
Search::getDistanceMa
trix(‘David’, ‘Tema,
Ghana’, Accra, Ghana)

//invalid parameters
Search::getDistanceMa
trix(‘rerr, ‘4e66’,
Accra, Ghana)

Return all users

with the

specified skill

keyword.

Return an

empty array().

Return distance

and duration

json string

between origin

and destination.

Return an

empty json

string

Returns all

users with the

specified skill

keyword.

Returns an

empty array().

Returns

distance and

duration json

string between

origin and

destination.

Returns an

empty json

string

5.2.2 Integration Testing

This section shows the test results for integration testing.

Table 5.6: Integration testing results

Integration page Test case Expected result Observed result

login.php Logging in User should be logged

in directed to

index.php.

User is directed to

index.php.

create-account.php Signing up User account should be

created and user

directed to

profile_info.php

User account is created

and user is directed to

profile_info.php

46

profile_info.php Adding user

profile

details.

User adds profile

details which are stored

in database and is

redirected to

recommended_users.ph

p

User adds profile

details successfully and

is redirected to

recommended_users.ph

p

Recommended_users.ph

p

Find and

display

users with

new users

skills.

If there are existing

users with some or all

of the new users skills

they are displayed as

recommended users to

follow. User can view

their profile and chose

to follow them. On

clicking done, they are

directed to the profile

page.

Users with similar

skills are successfully

displayed. User can

follow them or view

their profiles first

before following them.

User is directed to the

profile page when they

click done

Index.php Display

posts

Users should see only

posts of users they are

following and like and

comment on posts

displayed.

Users see posts of only

users they are

following and are able

to like and comment on

posts displayed..

profile.php Display user

information

and

portfolio

Users should see their

profile info and their

collection of shared

posts. They should also

be able to like,

comment and delete

their posts.

User profile

information is

displayed and their

shared posts are

displayed too. They are

also be able to like,

comment and delete

their posts.

Collaboration_search.ph

p

Display

users with

skills being

Users with skills

similar to the skill

keyword in the search

Users with skills

similar to the skill

keyword in the search

47

searched for should be returned,

with a link to their

profile page, their skill,

the distance between

the searching user and

the found user and the

duration it would take

to drive to them.

are displayed with a

link to the found users’
profile page, desired

skill, distance between

the searching user and

the found user and the

duration it would take

to drive to them.

notify.php Notify users

of new

likes,

comments,

follows,

collaboratio

n and

requests.

User should be able to

see new notifications.

They should also be

able to accept or reject

collaboration requests.

Accepting or rejecting

requests also should

notify the requesting

user.

Notifications are

displayed on the page

with an array to string

conversion error.

Collaboration requests

when accepted /

rejected update the

response to the

database and notify the

requesting user.

my-account.php Account

settings

page for

uploading

new profile

picture or

changing

password.

User should be able to

upload new profile

picture or change

password or both.

User is able to change

password and upload

profile picture. User is

also able to return to

profile page.

logout.php User logged

out.

User should be logged

out with no access to

system and account

information and posts

User is be logged out

with no access to

system and account

information and posts

48

5.2.3 System Testing

This section shows the test results for integration testing.

Table 7: System testing results

Test case Expected workflow Observed workflow

Registered user login 1. Login 2. A registered user is

logged-in in one step.

Unregistered user sign-up 1. Sign-up

2. Profile details

3. Recommended users

1. An unregistered user’s
account is created in one

step.

2. They are logged in

automatically after this

but have to provide

profile details

mandatorily in another

step.

3. After which similar

skilled users are

recommended to them.

User is able to finish this

step with or without

‘following’ any of the
recommended users.

Logged in user system usage 1. Posting an image and text

project.

2. Liking posts.

3. Commenting on posts.

4. Deleting owned posts.

1. User is directed to the

index.php/news feed

page on complete system

entry successfully.

2. User views displayed

posts successfully.

49

5. following/unfollowing

users.

6. Requesting

collaborations.

7. Viewing followed users

posted projects.

8. Accepting/rejecting

collaboration requests.

9. Searching for users by

username keywords.

10. Searching for users by

skill keywords.

11. Changing user profile

picture.

12. Changing user account

password.

13. Messaging and sharing

media with accepted

collaborators.

3. User likes posts

successfully.

4. User comments on posts

successfully.

5. User views their profile

page successfully.

6. User posts a new project

with an image

successfully.

7. User deletes an earlier

posted project

successfully.

8. User searches for another

user by typing in their

username successfully.

9. User follows found user

successfully.

10. User searches for another

user by typing a desired

skill.

11. User finds a collection of

users and makes a choice

about who to collaborate

with.

12. User views selected

user’s profile and sends
him/her a collaboration

request.

13. Users views his/her

50

notifications and see a

new like, follow and

collaboration request.

14. User accepts

collaboration request.

15. Slack channel is open

between both user to

facilitate their

collaboration.

16. User changed profile

picture

17. User changes password.

System log out by logged in

users.

1. Log out 1. User logs out in one step.

5.2.4 Acceptance Testing

This section shows the test results for integration testing.

Table 8: Acceptance testing results

User profile Feedback

Male user.

Technical computer knowledge.

Programming skills.

This user generally found his way around the

application without assistance. However he

responded to the hoverable feature of post by

clicking on the post. He expected the post to

pop up and present more project detail. This

feature is absent from the application.

His feedback was that the application is

simple and he felt he had navigated about it

well for his first usage. He said it would also

be great if the application showed a user

where he is on the application by coloring

51

the tabs in the navbar.

Male user.

Technical computer knowledge.

Photography skills.

This user was able to easily navigate through

the system on his own.

His feedback was that the system is simple to

use and suites the target users. However, he

said it would be great if the system had a

credibility system that prevents users from

having to sift through every returned user in

the collaboration search.

Female user.

Technical computer knowledge.

Interested in volunteering.

This user was able to use the application

intuitively.

Her feedback was that the system should not

only recommend users for new users but for

existing users as well because that would

continuously help people expand their

connection base. She gave the system an

intuitiveness rating of 4/5.

Male user.

Basic computer knowledge.

Basic social network usage knowledge.

This user found some difficulty using the

system and asked for help using the web

application twice. He said that very

uneducated informal experts may not be able

to use the system because of some of the web

icons used. However, he gave the system an

intuitiveness rating of 4/5.

Female user.

Basic computer knowledge.

Not very conversant with using social

networks

This user managed to use the application

well without much assistance. She asked for

help understanding some of the icons used,

but was able to figure out the rest of the

system.

She said she would like to use the application

because it seemed like a convenient way to

reach other experts she does not know

personally.

52

5.3 Testing Phase Summary.

Except for the error on the notify.php page, the project passed all its tests, performing

the expected functional requirements. The project was also accepted favorably by all 5 users

that it was tested with. By these result, the project meets it requirements both functionally and

non-functionally. Non-functionally it has achieved requirements of being simple and very

intuitive to use. It has also been secure to use since passwords have been hashed, inputs have

been sanitized.

53

Chapter 6: Conclusions and Recommendations

6.1 Conclusions

The project addresses the main problem of a difficulty in finding informal experts like

carpenters, painters etc… and semi-formal experts like graphic designers, web developers etc.

Tested users have also expressed an interest in the project because they believe it is a

necessary tool that will help them find experts to collaborate with easily.

By leveraging the geographical defying nature of the internet, the project will connect

numerous informal experts in a simple way that will allow them to collaborate.

6.2 Recommendations

6.2.1 Limitations

The project was not developed with any particular architecture which could leave loop

holes for security exploitations. Also the project does not verify user accounts against their

email addresses which could be a big security concern. Finally, the project has no way of

assuring users of a certain level of quality of the experts it recommends.

6.2.2 Future Works

To boost security, Laravel will be used to re-implement the project. Current

functionalities will be integrated into Laravel’s MVC architecture protecting the model from

the view through the controller’s encapsulation.

Also, a user rating system will be introduced to help searching users decide on returned

experts more quickly. This is to prevent them from having to sift through numerous returned

profiles before they can choose to collaborate with a given user.

Finally, there will be recommendations of who to follow for all users and not just new users.

54

Appendix

Table A: Classes and the functional requirements they have implemented

Class Functional requirement implemented

DB Connects to the database and queries it.

Login Logs in a current user, creates an account for a new user. Connects to the

database through the DB class

Notify Notifies user of mentions, likes, requests for collaboration and follows.

Connects to the database through the DB class

FollowUser Helps the user ‘follow’ or ‘unfollow’ another user’s account. Connects to
the database through the DB class. Also ‘followed’ users are notified
through the Notify class

Image Uploads an image to imgur through the imgur API and stores the link to

the image in the database. Connects to the database through the DB

class.

Post Uploads posts to a user’s profile and other user’s newsfeeds. Uses the
Image class to upload image posts. Also provides methods to like and

display user posts. Connects to the database through the DB class.

RequestCollaboration Deals with the sending and receiving, acceptance or rejection of

collaboration requests between users. Uses the Notify class to notify

users of received collaboration requests. Connects to the database using

the DB class.

Search Finds users with similar interests and recommends them to new users.

Also finds users by searching with username keywords.

SearchRank Returns a ranked list of users (based on their proximity from the user)

based on searching with skill/interest keywords.

55

References

Anicas, Mitchell. "An Introduction To Oauth-2". Digital Ocean. N.p., 2017. Web. 17 Apr.

2017.

Facts, LinkedIn. "Topic: Linkedin". www.statista.com. N.p., 2017. Web. 16 Apr. 2017.

Milette, G., Schneider, M., Ryall, K., & Hyland, R. (2009). Exploiting social context for

expertise propagation. Proceedings Of The 32Nd International ACM SIGIR

Conference On Research And Development In Information Retrieval - SIGIR '09, 835-

835. http://dx.doi.org/10.1145/1571941.1572155

Pal, A. (2015). Discovering Experts across Multiple Domains. Proceedings Of The 38Th

 International ACM SIGIR Conference On Research And Development In Information

 Retrieval - SIGIR '15, 923-926. http://dx.doi.org/10.1145/2766462.2767774

Smirnova, E. (2011). A model for expert finding in social networks. Proceedings Of The 34Th

International ACM SIGIR Conference On Research And Development In Information -

SIGIR '11, 1191-1192. http://dx.doi.org/10.1145/2009916.2010114

Zhang, J., Ackerman, M., Adamic, L., & Nam, K. (2007). QuME. Proceedings Of The 20Th

Annual ACM Symposium On User Interface Software And Technology - UIST '07,

111-114. http://dx.doi.org/10.1145/1294211.1294230

	DECLARATION
	Acknowledgement
	Abstract
	List of Abbreviations
	Chapter 1: Introduction
	1.1 Background
	1.2 Project Solution
	1.3 Related Work
	1.3.1 Academic Papers
	1.3.2 Social Networks
	1.3.2.1 LinkedIn
	1.3.2.2 Fiverr

	Chapter 2: Requirements Gathering and Analysis
	2.1 User Description
	2.2 Requirement Gathering Techniques:
	2.3 System Requirements
	2.3.1 Functional Requirements:
	2.2.3: Non-functional Requirements
	2.4 Scope of Requirements for this Project
	2.5 Project Use Case

	Chapter 3: High Level Architecture and Design
	3.1 System Design
	3.1.1 Prototype Screenshots
	3.1.1.1 Hand Sketches
	3.1.1.2 Wireframe Prototype

	3.1.2 Activity Diagram
	3.1.3 Class Diagram
	3.1.4 Database Schema

	Chapter 4: Implementation
	4.1 Implementation Methodology
	4.1.1 Tools
	4.1.2 Development Model

	4.2 Project Modules
	4.2.1 Class component implementation and interaction
	4.2.2 External Integrated Components:
	4.2.2.1 SendBird API
	4.2.2.2 Imgur API
	4.2.2.3 GoogleMaps Distance Matrix API

	4.3 Project Implementation Screenshots

	Chapter 5: Testing and Results
	5.1 Test Plan
	5.1.1 Unit Test Plan
	5.1.2 Integration Test Plan
	5.1.3 System Test Plan
	5.1.4 Acceptance Test Plan

	5.2 Test Results
	5.2.1 Unit Testing
	5.2.2 Integration Testing
	5.2.3 System Testing
	5.2.4 Acceptance Testing

	5.3 Testing Phase Summary.

	Chapter 6: Conclusions and Recommendations
	6.1 Conclusions
	6.2 Recommendations
	6.2.1 Limitations
	6.2.2 Future Works

	Appendix
	References

