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ABSTRACT 

  At the beginning of every semester, the registrar at Ashesi University goes 

through the laborious task of either manually or semi-automatically 

developing a course schedule. Very often, after the schedule has been 

developed, conflicts are realized in the various schedules. Conflicts are 

categorized into student, lecturer and room conflicts. An open source 

software, FET was recently used by the university to help develop schedules 

for the courses. This project is an attempt to review the ways in which the 

automation process can be enhanced in order to potentially reduce the 

conflicts faced.  

  At the heart of automated course scheduling is the algorithm being used. Any 

effort made at enhancing the scheduling process in Ashesi will require an 

efficient algorithm. This paper begins with a background on scheduling, an 

extensive research on existing approaches and algorithms follows. The 

algorithms reviewed include the Multi-Agent System approach, Sequential 

methods, Constraint Based Methods, Genetic Algorithms, Simulated 

Annealing, Particle Swarm optimization and Tabu Search. The algorithm used 

in the FET software is also reviewed. These techniques are compared based 

on their computational time, ease of implementation, solution quality and 

constraint handling. Based on the literature, it is realized that Particle Swarm 

Optimization is potentially the best algorithm with respect to the set criteria. 

A basic version of the Particle Swarm Algorithm is implemented and tested 

and the results compared with the results from testing the current FET 

software algorithm, recursive swapping. The outcome implies that recursive 

swapping, can produce good solutions but Particle Swarm Optimization is 

easier to implement.  
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Chapter 1 

1.1 Introduction 

Scheduling, in the broadest sense, means setting an order for planned events. It is 

the placement of an event, or set of events to occur at a particular time. The 

scheduling problem is referred to as an NP-complete problem, i.e. No efficient 

optimal solution has been found [1]. 

Course scheduling at a university level is concerned with groups or classes of 

students following a particular defined pathway or course which has associated 

events that require the allocation of time and resources. 

The development of a schedule involves a set of meeting times, a set of available 

resources (eg. staff, rooms and students), a set of available time slots and a set of 

constraints. The challenge is assigning resources and time slots to each given 

meeting, while ensuring that constraints are satisfied. 

1.2 Manual and Semi-Automated Course Scheduling 

Over the past years, the scheduling process at Ashesi University has been either 

manual or semi-automatic. The process is either done without any automation or 

with some level of automation using existing scheduling software systems. Below is 

a brief description of the manual used in the past and semi-automated process 

which is currently being used. 

Each semester, there are sets of courses to be taken by different groups of 

students and taught by different lecturers. The manual scheduling process is 

basically assigning a lecturer to a course by hand. Most of the attention is given to 
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lecturer preferences ( i.e. a preference could be that a lecturer prefers all his 

courses to be scheduled on Monday and Wednesday mornings). The process gets 

tedious as the number of courses to be assigned increases, lecturers are limited, 

less room space is available and student size keeps increasing. Due to this, 

software is applied to the process in order to automate it. The software is given 

information about the courses, students, lecturers and rooms in the University and 

it assigns each based on an algorithm.  

Although the software reduces the difficulty in the process, it does not absolutely 

automate the process. After the software is done, the registrar has to screen the 

output and make a few changes to the assignments in order to make the solution 

applicable and effective. 

Automation of the process has the potential to produce a great impact with respect 

to the time involved and the optimality of the final solution. With the right 

algorithm, the entire process could be simplified and the solution produced could be 

highly effective. 

The scheduling problem has been studied for years and has been referred to as an 

NP-complete problem i.e. the problem cannot be solved optimally in polynomial 

time [2]. Hence even though automated scheduling has the potential to solve the 

issues of manual scheduling, it is on its own a very complex subject. The key to 

automating any process however lies in the algorithm used. A great deal of 

research has been conducted in this area. This paper seeks to discuss the possible 

algorithms that exist and in effect, implement and test the best algorithm or 
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combination of algorithms which can potentially solve the scheduling needs in 

Ashesi University College.  
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Chapter 2 

Background and Existing Research 

This section briefly explains NP-complete problems and discusses distinct 

approaches that exist in theory and practice to solving the course scheduling 

problem. 

2.1 NP-Complete Problems 

NP complete problems (nondeterministic-polynomial complete problems) are 

problems that cannot be solved in a polynomial amount of time. In theory, as well 

as practice, there is no optimal solution to NP complete problems that can be 

computed in polynomial time. The timetabling problem is a classic example of an 

NP complete problem. For years, researchers have tried different means of tackling 

the problem but no polynomial-time optimal solution has yet been discovered. Most 

of the earlier approaches have been based on heuristic algorithms to the problem 

[2]. 

2.2 General Timetabling Concepts, Terms and Constraints  

University Course Scheduling is the process of assigning time slots, rooms, 

lecturers and students to courses under a set of constraints. The challenge is 

finding the optimal sequence for executing a finite set of operations under the 

defined set of constraints such that most, if not all the constraints are satisfied. 

With respect to course scheduling at Ashesi University, the problem is defined as 

the process of assigning a set of events (courses) to time periods and to rooms, 

subject to certain conditions. 

Resources include students, lecturers, rooms, courses and time. 
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2.3 Constraints 
Typical constraints for scheduling at Ashesi include the following: 

- Each full-credit course has two lecture sessions per week. Some full credit 

courses also have one discussion session per week but not all full credit courses 

have a discussion session. Half credit courses have only one lecture session each 

week. 

- Students are grouped into different cohorts 

- No student can be in more than one place (lecture) at a time 

- No lecturer or faculty intern can lecture more than one class of students at a 

time 

- Space is limited in Ashesi. We have 5 lecture halls, 2 laboratories and 1 

multipurpose room 

- Each session (lecture or discussion) has a duration of ninety minutes (e.g. 8:30-

10:00).  

In the subsequent sections, the paper will describe the Multi Agent System 

approach, Graph Coloring approach, Constraint Based approach, Genetic 

Algorithms, Simulated Annealing, Particle Swarm Optimization and Tabu Search 

technique. 

2.4 Multi Agent System Approach (MAS) 

This section discusses course scheduling using a Multi Agent System Approach. 

Scheduling problems are iterative and time consuming. People who are involved in 

timetable scheduling processes encounter numerous conflicting preferences that 

make the search for an optimal solution an NP-hard problem. 
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The Multi Agent System approach (MAS) involves creating connections between a 

collection of autonomous intelligent agents (e.g. software agents) that work in an 

environment. In other words, autonomous intelligent agents are responsible for 

connecting the behavior of one software with that of another software. 

A type of software agent that is commonly used in this approach is the expert 

assistant. The expert assistant is an intelligent software agent that performs certain 

tasks on behalf of humans. It helps automate certain manual tasks and works more 

efficiently. A physical example of an expert assistant is the daily organizer. The 

MAS approach is a highly complex system as compared to other software systems. 

Its success depends on a properly designed and well tested subsystem. [3] 

2.4.1 The MAS architecture 

The MAS process maps course timetabling in terms of autonomous intelligent 

agents. Each faculty1 in the system has its own scheduler Multi Agent System which 

has to allocate courses to that faculty. The Main Scheduler Agent (MSA) is 

responsible for room allocation. 

Because some lecturers teach courses to different faculty, every faculty agent has 

to communicate with the other scheduler agents in order to solve some critical 

situations that may arise. 

Each specialization (major or minor) has an expert assistant that does all the 

activities connected to that specialization (evidence of students, course curricula 

                                                           
1 A group of university departments concerned with a major division of knowledge. 
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preferred rooms, available lecturers, etc). This means the expert assistant 

maintains the data of each major or minor program. The main role of the expert 

assistant (or course assistant) is course timetabling (day and time scheduling). 

2.4.2 How constraints are satisfied 

All courses of a specialization must be taught for all groups of students. Conflicts 

are likely to arise when a particular course is supposed to be taught for more than 

one specialization. For example, at Ashesi, the Programming II course, although it 

is a computer science course, must be taught to management information systems 

students as well. 

The autonomous agents can act on the professors’ behalf. A best case scenario is 

when all preferences are accepted. However this is not usually the case. In reality, 

agents must quantify the professors’ preferences. The system handles such critical 

situations using a persuasion protocol. This process is based entirely on the 

rationality of agents. The autonomous agent must meet some criteria of rationality 

(e.g. maintaining logical consistency). 

The MAS approach uses four types of autonomous agents 

- The Main Scheduler Agent (M.S.A) 

- The Faculty Scheduler Agent (F.S.A) 

- The Expert Assistant Agent (E.A.A) 

- The Personal Agent (P.A) 

2.4.3 Roles of each agent 

M.S.A: The Main Scheduler Agent is the main scheduler at the university level. It is 

responsible for allocation of rooms and negotiation activities. 
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F.S.A: The Faculty Scheduler Agent is the scheduler at the faculty level. It handles 

the allocation of periods, integration of periods done at each faculty level and 

negotiation activities. 

E.A.A: The Expert Assistant Agent handles the scheduling at the specialization level. 

It allocates periods and if there are any conflicts, it handles the through a 

negotiation process. 

P.A: The Personal Assistant is the lecturers own scheduler. It handles the 

scheduling process for each professor, allocates periods and deals with conflicts 

through negotiations with the other agents. 

2.4.4 Possible Conflicts 

1. At the faculty level, day and time schedule may conflict (two or more professors 

may have identical options). 

Solution: A negotiation process is started between the expert assistant of that 

specialization and the professors involved (the personal agents). A message is 

sent by the expert assistant to all the professors involved in the conflict and it 

will wait for a solution. If it receives an answer, it will do a rescheduling, 

otherwise if no answer is received, it will start a persuasion process of 

negotiating and suggesting a solution. 

2. At the university level, a possible situation will be that no room is available for a 

particular course on a certain day and time. 

Solution: The Main Scheduler Agent starts a negotiation process between faculty 

agents involved in the conflict by giving some options. Each scheduler involved 

will pass the message to the corresponding expert assistant, or in some cases, 
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to the personal agents who will then negotiate directly. If no solution is found 

(e.g. some courses cannot be moved) the main scheduler will start a persuasion 

dialogue with faculty agents that are in conflict which will in turn transfer the 

problem to the lower level i.e. the expert assistants. 

Advantage 

The MAS approach uses several autonomous software agents to develop non-

conflicting schedules for each major (specialization), professor and room. The 

system handles conflicts using persuasion and negotiation protocols between 

agents which prove to be effective. 

Disadvantage 

A drawback of this method is that it expensive and time consuming to implement, 

considering the fact that each faculty and specialization needs to have its own 

specialization agent [3]. 

 

2.5 Sequential Methods. 
Sequential methods are absolutely different from the Multi Agent System approach 

explained earlier. Sequential methods order events2 using domain heuristics and 

then assign the events sequentially into valid time periods such that no events in 

the period are in conflict with each other [2]. They are based on the idea that one 

                                                           
2 Events are the courses to be scheduled. 
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stage will be implemented before the other with the aim that each stage will build 

on the previous one. 

In sequential methods, timetabling problems are usually represented as graphs 

where events are represented as vertices and conflicts between the events are 

represented by the edges. The construction of a conflict free timetable can 

therefore be modeled as a graph-coloring problem. 

2.5.1 Properties of Graph Coloring Methods 

All graph-coloring techniques have two basic properties. 

1. Each time period should correspond to a colour in the graph colouring problem. 

2. The vertices of the graph are coloured in such a way that no two adjacent 

vertices are the same colour [2]. 

2.5.2 Existing Graph Coloring Methods 

M.H Williams and K.T Milne compare several different graph-coloring algorithms in 

their paper “The performance of Algorithms for coloring Planar graphs” [4]. Below is 

a brief description of each algorithm. 

The first is the Welsh and Powell algorithm, which works by assigning the least 

possible color to the vertices in a given order. The vertices of the graph are 

presented in order of descending degree. The algorithm assigns a color x to the first 

uncolored vertex of the graph which can be found. After, it assigns a color x to each 

uncolored vertex which is not adjacent to a vertex that has been already colored. 

The process is repeated with each color in turn until no uncolored vertices remain 

[4]. 
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The Welsh and Powell algorithm was extended by Saaty and Kainen to sort the 

vertices of the graph on the basis of density calculations rather than simply by 

degree. The time taken to sort the vertices of the graph is considerably greater 

than the method used by Welsh and Powell due to the density calculations [4]. 

There is the Dsatur method which was based on the saturation degree of a vertex 

i.e. the number of different colors to which that vertex is adjacent at any point in 

the coloring process. The algorithm repeatedly chooses the vertex with the highest 

degree of saturation and assigns it the least possible color [4]. 

The Dsatur method was extended by the DSI method, which requires an 

interchange of colors whenever a new color must be introduced [4]. 

There is the Dutton and Brigham algorithm. This method is considerably slower 

than the other methods described but requires fewer colors. It attempts to merge 

non-adjacent vertices of a graph that can be colored with the same color until all 

the vertices are neighbors of each other [4]. 

The tree method is the simplest method which recursively tests partial solutions 

until an exact solution is found [4]. 

The second exact method is a modification of Randall Browns method, which starts 

by using the DSI method to produce an initial coloration of the map, and then by 

the use of cliques, seeks to reduce the number of colors needed [4]. 

There are reduction methods that operate by repeatedly selecting and removing 

one or more vertices of a graph until it is reduced to a size that can be colored with 
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only four colors. The vertices removed are then reinserted in reverse order and 

colored appropriately [4]. 

Based on the evaluation conducted by M.H Williams and K.T Milne, the performance 

of the different algorithms and concluded that exact methods such as the tree 

method and Randall Browns modified algorithm take a significantly long amount of 

time, but use fewer colors [4]. The other methods however manage larger graphs 

in less time, but have to deal with the trade-off of using more colors. 

Advantage 

 Graph colouring is simple to implement. 

Disadvantages 

 The method might be inefficient for a large set of students. 

2.6 Constraint Based Methods 

Constraint Satisfaction Problems are also known as CSP. They require a value, 

selected from a finite domain to be assigned to each variable in the problem, so 

that all the constraints are satisfied [5]. The timetabling problem is modeled as a 

set of variables (events) to which values (resources such as rooms and time 

periods) have to be assigned to satisfy a number of constraints [2]. 

 

2.6.1 About Constraint Based Methods 

The whole idea is to assign values to a set of variables without violating the given 

set of constraints. 
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For most categories of Constraint Satisfaction Problems, an efficient algorithm is 

unlikely to exist (the problems are NP Complete). Hence, an algorithm that 

guarantees to find a solution that satisfies all constraints is said to be enumerative 

and therefore has an exponential time requirement in the worst case. It may be 

possible to find a solution, at reasonable computational expense that satisfies most 

of the constraints, especially if the problem contains soft constraints. If all or a 

majority of the constraints are satisfied, the solution is called ‘exact’, otherwise it is 

termed ‘approximate’ [5]. 

Approaches used to tackle Constraint Satisfaction Problems include integer 

programming techniques (like branch or bound and cutting plane methods) for 

exact solutions, local search methods (like simulated annealing, threshold 

acceptance, tabu search and genetic annealing) and neural networks for 

approximate solutions. There are also methods that use tree search combined with 

backtracking and consistency checking [5]. 

A Constraint Satisfaction Problem consists of: 

 A set of variables X = {x1, x2, x3… xn} 

 A finite set of possible values Di (the domain) for each variable 

 A set of constraints to restrict the values that variables can simultaneously take. 

Expected solutions are either feasible or optimal. A feasible solution is an 

assignment of a value from its domain to every variable in such a way that every 

constraint is satisfied. In such a case, the problem is satisfiable. If however, 

assignments of values to variables from their respective domains do not satisfy all 

constraints, the problem is termed unsatisfiable [5]. 
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2.6.2 Search Algorithms 

Most algorithms for solving CSP’s search systematically through possible 

assignments of values to variables [5]. In other words, search algorithms are 

employed in the assignment of variables to values in an effort to handle possible 

conflicts. Three systematic search algorithms used for solving constraint satisfaction 

problems are back tracking, forward checking and MAC. 

2.6.2.1 Backtracking Algorithm 

The current variable is assigned a value from its domain. This assignment is 

checked against the current partial solution; if any of the constraints between this 

variable and the past variable is violated, the assignment is abandoned and another 

value for the current variable is chosen. If all values of the current variable have 

been tried, the algorithm backtracks to the previous variable and assigns it a new 

value. If a complete solution is found (a value has been assigned to every variable), 

and only one solution is required, the algorithm terminates. Otherwise, it continues 

to find new solutions. If there are no new solutions or all possible solutions have 

been considered, the algorithm terminates [5]. Backtracking is not used in practice 

because it is very inefficient. It only checks constraints between current variable 

and the past. 

2.6.2.2 Forward Checking Algorithm 

Forward-checking and MAC (Maintaining Arc Consistency) are lookahead 

algorithms, essentially more efficient than backtracking. They check constraints 

between current, past and future variables. 

When a value is assigned to the current variable, any value in the domain of a 

future variable which conflicts with this assignment is (temporarily) removed from 
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the domain. The advantage is that if the domain of a future variable becomes 

empty, it is known immediately that the current partial solution is inconsistent. 

Another value for the current variable is tried or the algorithm backtracks to a 

previous variable; the domains of the future variables are restored to what they 

were before the assignment which led to failure [5]. 

The difference between the forward and the backtracking algorithm is that the 

backtracking algorithm will not have been able to detect the failure until the future 

variable was considered, at which point none of the values will be consistent with 

the current partial solution. Forward checking therefore allows branches of the 

search tree that will lead to failure to be pruned earlier than with simple 

backtracking. 

2.6.2.3 Maintaining Arc Consistency Algorithm 

The MAC algorithm does more work in looking ahead when an assignment is made, 

and hence is considered more efficient than both forward and backtracking 

algorithms. Whenever a new subproblem consisting of future variables is created by 

a variable instantiation (assignment of a value to a variable), the subproblem is 

made arc consistent3. This means that as well as checking the values of future 

variables against the current assignment, MAC checks the future variables against 

each other. Hence for each future variable, every variable that is not supported in 

the domain of some other future variable is deleted, as well as those that are not 

supported by the current assignment. [5] 

                                                           
3 Local consistency conditions which are properties of constraint satisfaction problems 

related to the consistency of subsets of variables or constraints.  
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This removes further values from the domains of future variables in the hope that 

in doing additional work at the time of the assignment, overall computational time 

will be reduced. 

 

2.6.3 Variable and Value Ordering 

The order in which variables are considered for instantiation has a significant effect 

on the time taken to solve the CSP, as does the order in which each variable’s 

values are considered. The ordering of the variables may either be static or 

dynamic [5]. Static ordering specifies the order of variables before the search 

begins and the order is not changed afterwards. For dynamic ordering, the choice of 

the next variable to be considered depends on the current state of the search. 

2.6.4 Application Constraint Based Methods to Timetabling 

For timetabling problems, a feasible solution is often the main objective. The factors 

involved are qualitative (i.e. lecturer preferences or student preferences can have 

different weights showing their importance) and hence can easily be expressed as 

constraints. One approach could be to present each class as a variable whose 

domain is the set of available time periods. Another approach could be to block 

classes together and define the variables to be the starting time of each block. 

Though this approach uses fewer variables, it increases the complexity of the 

constraints [5]. 

Advantages 

 Constraint Based methods are easy to implement 
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 They are flexible with constraints; they have the ability to handle more 

constraints. 

2.7 Metaheuristic Techniques 

A Metaheuristic is an iterative generation process that guides a subordinate 

heuristic by combining intelligently different concepts for exploiting and exploring a 

search space. Metaheuristic approaches make use of an initial solution, or an initial 

set of solutions and initiate an improving search, guided by certain principles. All 

metaheuristic algorithms have some properties in common. 

This section outlines the common properties of metaheuristics, discusses different 

metaheuristic techniques and how they can be used in solving course scheduling 

problems 

General properties of metaheuristics techniques. 

- Metaheuristics are strategies that guide a search process. 

- The goal of any metaheuristic technique is to efficiently explore the search 

space in order to find close to optimal solutions. 

- Metaheuristic algorithms are approximate and usually non-deterministic. 

- The basic concept of any metaheuristic technique allows an abstract level of 

description. 

- They make use of domain specific knowledge in the form of heuristics that 

are controlled by an upper level strategy. 

All metaheuristic techniques have the same basic structure.  Given the population 

of a solution or set of solutions, a candidate solution or set of solutions is selected 

and evaluated. The evaluation involves estimating the performance of the candidate 
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solution and comparing it with that of the current or other solutions in the 

population. The candidate may either be accepted or rejected based on this 

evaluation [6]. Given this framework, it can thus be said that all metaheuristic 

algorithms share the elements of selecting a candidate from the population and 

deciding whether to accept or reject the candidate. This means one or more of the 

elements needs to be specified and the rest have to adapt. 

Below are different metaheuristic techniques that can be used in course scheduling. 

2.7.1 Genetic Algorithms 

Background 

The idea of genetic algorithms is purely biological. It is based on the genetic model 

of chromosomes and genes. Each chromosome is a representation of a complete 

solution the scheduling problem. The genes represent the individual components of 

a scheduling solution. The individual organisms in the genetic algorithm are made 

up of single chromosomes. The chromosomes are made up of genes. By 

manipulating the genes, new chromosomes with different traits can be created. 

These manipulations occur through techniques known as crossover and mutation. 

Crossover is essentially the biological process of mating and mutation is a way of 

introducing new information to an existing population [7]. 

For an effective solution, we must determine a way to break the problem into 

individual components or genes. 

Basic steps involved in creating a genetic algorithm 

1. Create an initial population of chromosomes 
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2. Evaluate the fitness or suitability of each chromosome that makes up the 

population 

3. Based on the fitness, select chromosomes that will mate 

4. Crossover the selected chromosomes and produce offspring 

5. Randomly mutate some of the genes of the chromosome 

6. Repeat steps three though to five until a new population is created 

7. The algorithm ends when a best solution has not changed for a preset  

number of generations 

2.7.1.1The Initial Population 

The initial population is the first thing the genetic algorithm must cater to. The 

entire population is made up of organisms and each organism is composed of a 

single chromosome. The genetic algorithm is responsible for creating the initial 

population that contains the possible solutions. After the generation of the initial 

population, each chromosome is evaluated for its fitness. The fitness is determined 

by a function and is usually problem specific [7]. 

2.7.1.2 Suitability to Mate 

Mating is the creation of a new improved population. Not all chromosomes are 

suitable for mating hence it must be determined which chromosomes have the 

privilege to mate. The selection of which chromosomes will mate is based on the 

individual chromosomes fitness. If the chromosome is fit, then it is selected from 

the old population and crossed to form a new chromosome to join the new 

population [7]. 
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2.7.1.3 How Mating Works 

Mating works by taking a splice from the gene sequence of two parents. The splice 

effectively divides the chromosome into three gene sequences. The new 

chromosomes are built based on genes from each of these three sections. The 

process of mating takes traits from each parent to form the new chromosome. The 

problem here is that no new trait is introduced. To introduce new genetic material, 

the process of mutation is used [7]. 

2.7.1.4 Mutation 

Mutation allows new genetic patterns to be introduced that were not already 

contained in the population. The mutation process introduces a new, random 

sequence of genes into the chromosome. As to whether the mutation will be 

desirable or not is completely unknown, but this does not affect the process in any 

way. As each chromosome is evaluated, the function checks if the fitness of the 

mutated chromosome is higher than the general population. If so, it is allowed to 

live and mate with other chromosomes. If not, then the algorithm ensures that the 

chromosome does not live to mate [7]. 

Advantage 

1. Genetic algorithms are easy to understand and implement. Its application 

does not require knowledge of advanced mathematics. 

2. They are good for exploring large solution spaces. 

 

Disadvantage 
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1. Genetic algorithms cannot ensure constant optimization response time. The 

difference between the shortest and the longest optimization response time 

is significantly large. 

 

 

2.7.2 Simulated Annealing 

2.7.2.1 Background 

Simulated annealing is a process that mimics the process of annealing. Annealing is 

the process of heating up a solid (usually a metal) and cooling it slowly until it 

crystalizes. Atoms have very high energies at very high temperatures. This gives 

them a large amount of freedom in their ability to restructure themselves. As the 

temperature goes down at a slower rate, the energy of the atoms decrease. This 

allows a more consistent crystalline structure form and enhanced durability. 

Simulated annealing emulates the process of annealing. It starts out at a very high 

temperature where the input values are allowed to assume a wide range of random 

values. As the training progresses, the temperature is allowed to fall, reducing the 

degree to which inputs may vary. This leads the algorithm to a better solution, just 

like the way a metal achieves a better crystal structure through the same process 

[7]. 
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2.7.2.2 Structure of the Simulated Annealing algorithm 
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As demonstrated in the figure above, the process starts out by randomizing the 

inputs according to the current temperature. If the randomized solution is better 

than the current solution, then the current solution is replaced with the randomized 

solution. For each temperature, the simulated annealing algorithm runs through a 

number of iterations. A maximum number of iterations is set by the programmer.  

Until the maximum number of iterations for the current temperature is reached, the 

algorithm continues to randomize inputs and generate randomized solutions. If the 

maximum number of iterations for the particular temperature is reached, the 

algorithm decreases the temperature by a specified rate. It keeps decreasing until 

the lowest temperature is reached. 

Once the number of iterations for each temperature has been completed, the 

algorithm checks if the lowest allowed temperature has been reached. If the 

temperature has not reached its minimum, then it is lowered and another iteration 

of randomizations will occur. If the algorithm is lower than the lowest minimum 

allowed, then the process is complete. 

As inferred from the description above, randomization of the input values is crucial 

to the process of simulated annealing. It is what causes the algorithm to alter the 

input values that it is seeking to minimize. 

2.7.2.3 How inputs are randomized 

There is no exact method on how to randomize the inputs. The exact nature 

depends on the problem being solved. The randomization process usually takes the 

previous values of inputs and the current temperature as inputs. The input values 
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are then randomized according to the temperature. A higher temperature will result 

in more randomization and a lower temperature will result in less randomization. 

2.7.2.4 Temperature Reduction 

There are two common methods used for temperature reduction. The first simply 

reduces the temperature by a fixed amount through each iteration. The second is to 

specify the beginning and ending temperature. In the second method, a ratio is 

calculated at each step in the annealing process. The equation used must guarantee 

that the step will cause the temperature to fall to the ending temperature in the 

number of cycles requested. 

Advantages 

1. Relatively easy to implement, even for complex problems 

2. Simulated annealing is an attractive option for optimization problems where 

heuristic methods are not available. 

Disadvantages 

1. The method cannot tell when an optimal solution has been found. It requires 

the help of another method such as the branch and bound. 

2. The method has potentially expensive computational cost. 

3. Simulated Annealing is not efficient in exploring large solution spaces. 

2.7.3 Particle Swarm Optimization 

2.7.3.1 Background 

Particle Swarm Optimization (PSO) is another optimization technique inspired by 

the flocking and schooling patterns of birds and fish. While searching for food, birds 

are either scattered or go together before they locate the place where they can find 
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food. While the birds are searching for food from one place to another, there is 

always the bird that can smell the food very well, i.e. the bird is perceptible of the 

place where the food can be found, hence has better food resource information. 

Because they are all transmitting information about where the food is (by chirping 

at each other), conducted by the information, birds will eventually flock to the place 

where food can be found [8]. 

Just like how birds swarm, the PSO algorithm works in the same manner. The 

solution swarm (the population containing possible schedules) is compared to the 

bird swarm, the movement of birds from one place to another is compared to the 

development of the solution swarm, good information is equivalent to the most 

optimistic solution before the search is over and the food resource is equivalent to 

the most optimistic solution obtained after searching through the entire swarm. 

As long as the individual particles in the swarm cooperate with each other, a 

feasible solution can be found. Over a number of iterations, a group of variables 

have their values adjusted closer to the member whose value is closest to the 

target at any given moment. The algorithm is fairly simple and easy to implement. 

The PSO algorithm keeps track of three global variables: 

- The target value which represents the best solution. 

- Global best (gBest) value indicating which particle’s data is currently closest 

to the target value or solution. 

- Stopping value indicating when the algorithm should stop if the target is not 

found. 
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Each particle in the swarm is made up of at least three items 

- The data representing a possible solution 

- A velocity value indicating how much data can be changed. 

- A personal best (pBest) value indicating the closest the particle’s data has 

ever come to the target. 

The particle’s data could be anything. If the data is a pattern or sequence, the 

velocity would describe how different the pattern is from the targets’ and how much 

it needs to be changed to match. 

Note that the pBest value is only an indicator of the closest the data has ever come 

to the target since the algorithm started. The gBest value will change when the 

pBest value comes closer to the target than the current gBest. 

Advantages 

- PSO is simple to understand and easy to implement 

- It requires less computational time and less iterations as compared with 

genetic algorithms. 

2.7.4 Tabu Search 

2.7.4.1 Background 

Tabu search is an algorithm under the meta-heuristic family of algorithms. The 

fundamental approach is to avoid movement into bad solutions by penalizing or 

forbidding moves which take that solution in the next iteration to points in the 

solution space previously visited. This method is partly based on human behavior. 

Human beings operate with a random element that lead to inconsistent behavior in 
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particular situations. The tendency to deviate from a chartered course might be 

regretted as a source of error but might also prove to be a source of gain. The tabu 

method operates in this way with the exception of the use of random operations. 

2.7.4.2 How the Algorithm Works 

The algorithm begins with the assumption that there is no point in accepting a poor 

solution unless it is to avoid a path that has already been investigated. This ensures 

that new regions of the solution space will be investigated with the desired goal of 

obtaining an optimal solution. 

The search makes use of one or more tabu lists to record moves it makes in order 

to avoid repeating moves. This is done using some form of memory structure to 

hold the data. The role of the memory can change as the algorithm proceeds. When 

the algorithm starts, the goal is to examine the solution space, this stage is known 

as diversification. As the search progresses, candidate solutions are identified and 

the focus is geared towards achieving local optimal solutions. The second phase is 

known as intensification. 

2.7.4.3 Basic tenets of Tabu Search Algorithm 

- The search is a local search strategy with a flexible memory structure 

- The search has two prominent features; an adaptive memory and responsive 

exploration strategies 

- The main feature is to always move to the best available neighbourhood 

solution point, even if it is worse than the current solution point. 

- Maintains a tabu list. A tabu list is a list of solution points that must be 

avoided or a list of move that are not allowed. This list is updated based on 

some memory structure 
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- Aspiration criteria; this represent exceptions from the tabu list if such moves 

lead to promising solutions. 

- Diversification and intensification 

As previously stated, tabus are stored in short term memory and only a fixed 

amount of information is recorded. The most common used tabus involve recording 

the last few transformations performed on the current solution and prohibiting 

reverse transformations 

2.7.4.4 Aspiration Criteria 

The aspiration criteria allows the algorithm to explore attractive solutions that are 

prohibited i.e. on the tabu list. The simplest and most commonly used aspiration 

criterion, which is found in almost all 

TS implementations, consists in allowing a move, even if it is tabu, if it results in a 

solution with an objective value better than that of the current best-known solution 

(since the new solution has obviously not been previously visited) [9]. 

 

2.7.4.5 Termination Criteria 

Theoretically, any tabu search algorithm could go on forever. In practice however, 

the search must be terminated at some point. The most commonly used criteria for 

terminating a tabu search algorithm include 

- Including a fixed number of iterations after which the function should stop 

- After a given number of iterations, if there is no improvement in the 

objective function, the process will terminate 

- When the objective function reaches a specified threshold value 
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2.8 Evaluation of Approaches 

The goal of this project is to develop a software to handle the course scheduling 

process in Ashesi University College. The scheduling algorithms described above 

have been used in numerous Universities for the same goal however, each 

university may have its unique constraints and requirements hence one particular 

algorithm may not work for every situation. For this reason, the evaluation criteria 

for each algorithm is based on the following criteria: 

- Ease of implementation 

- Flexibility to handle constraints 

- Computation time 

- Solution quality 

2.8.1 MAS 

The first algorithm described was the multi agent system approach (MAS). The MAS 

approach makes use of numerous autonomous agents representing different 

departments of the university to automatically generate non-conflicting course 

schedules. Although an optimal solution is most likely guaranteed with the MAS 

approach, the resources and time required to implement it is significantly high. 

Each department and lecturer will have an autonomous agent to handle the 

scheduling process. The development and implementation of these autonomous 

agents, if not outsourced, will be very expensive with respect to time, skill and 

money. This makes the MAS approach difficult to implement and time consuming. 

The literature does not state how much computational time is involved in 

generating the schedule, but it is clear that a lot of overhead will be incurred during 

the process. 
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The system handles conflicts through a series of back and forth negotiations 

amongst the autonomous agents. Communication between the agents induce a 

heavy load on the system. One way to handle this issue could be the use of high 

speed drives (hardware). 

Essentially, although the MAS approach may be able to handle constraints and 

conflicts efficiently to produce good solutions, the cost of implementation and 

computation time potentially outweigh the benefits the system provides. 

2.8.2 Sequential Methods 

After the MAS approach, sequential methods were described next. Sequential 

methods make use of domain heuristics to assign events sequentially into valid 

time periods such that no events in the period are in conflict with each other. As 

stated above, sequential methods tend to be represented by graph coloring 

techniques hence are sometimes referred to as graph coloring methods. The basic 

properties of sequential methods are that each time period should correspond to a 

color in the graph coloring problem and secondly, the vertices of the graph should 

be colored in a way that no two adjacent vertices should have the same color. 

Based on the existing literature, sequential methods are easy to understand and 

implement however the solution quality is largely dependent on the problem being 

solved i.e. they tend to not work well with problems that have large solution 

spaces. One of the basic properties of this method (coloring of vertices should be 

done in a way that no two adjacent vertices have the same color) will most likely 

not work well for certain courses that have to be scheduled next to each other. 
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Basically, although sequential methods are easy to implement, they do not pose the 

potential to handle constraints effectively, solve problems with large solution space 

in less computation time or produce good solutions under tight constraints. 

2.8.3 Constraint Based Methods 

Constraint based methods assign values to variables based on a set of constraints. 

With these methods, the time table is created with focus on the constraints. 

Scheduling is done in a way that constraints are not violated.  Compared to the 

other methods under review, constraint based methods are not as easy to 

implement. They require some level of advanced mathematical knowledge to 

facilitate their implementation. Their performance with respect to solution quality 

and computation time is dependent on the problem being solved. Constraint based 

methods perform better when there is a significant amount of constraint 

propagation i.e. the instantiation of each variable should allow a reduction in the 

domain of other variables, reducing the search space eventually. This means that 

with large solution spaces, if the constraint propagation technique being used is not 

enhanced, large regions of the solution space will be left unexplored. 

Although constraint based methods are not good for exploring large solution 

spaces, they can be combined with other metaheuristics to prune search trees to 

help search large neighborhoods in local search methods. If they are however to be 

used alone, they will be more efficient for exam scheduling. 

2.8.4 Genetic Algorithms 

Genetic algorithms belong to the metaheuristic family of algorithms. They emulate 

the biological process of genes and chromosomes. With respect to the criteria listed 
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and the analysis done, it is safe to say they are easy to understand and implement. 

They do not require significant knowledge of advanced mathematics. They are also 

good for exploring large solution spaces. Although genetic algorithms seem good, 

they are drawn back by their response time. This means that they may take either 

a significantly large amount of time or significantly small amount of time to 

compute the solution. They do not have a constant response time. Theoretically, 

they use a large amount of time to search large solution spaces. 

But despite these draw backs, they are still useful for implementing automated 

schedules. 

2.8.5 Simulated Annealing 

Another algorithm under the metaheuristic set is the simulated annealing algorithm. 

Unlike genetic algorithm that mimics the biological process of genes, simulated 

annealing algorithms emulate the process of annealing metals. The entire process is 

explained in detail in the previous section. It is worthy to note that the process is 

relatively easy to implement, even for complex problems (difficult constraints) 

however it is not efficient in exploring large solutions spaces because of the 

randomization technique it employs in generating possible solutions. It also tends 

to be computationally expensive. 

Though this method may not be suitable for course scheduling, it could potentially 

work best for exam scheduling. 

2.8.6 Tabu Search Algorithms 

The tabu search algorithm makes use of a tabu list in ensuring that the algorithm 

avoids movement into bad solutions by penalizing or forbidding moves which take 
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that solution in the next iteration of the algorithm. Tabu search, like simulated 

annealing is best suited for exam scheduling problems. When presented with large 

solution spaces, it fails to explore the entire search area due to its nature. It is 

however easy to implement and can handle constraints fairly well, but its solution 

quality and computation time will not perform well with the large solution spaces 

course scheduling problems deal with. 

2.8.7 Particle Swarm Optimization (PSO) 

Particle swarm optimization is based on the flocking patterns of birds when 

searching for food. PSO is potentially the best algorithm yet, to be used for course 

scheduling. PSO techniques, like genetic algorithms, are easy to implement and 

understand. They produce feasible solutions with less iterations and computation 

time as compared to genetic algorithms. 

All the other algorithms, with the exception of Genetic Algorithms and Particle 

Swarm Optimization have been ruled out based on the evaluation criteria. An 

extensive comparison of genetic algorithms and Particle Swarm Optimization would 

prove useful here but that is beyond the scope of this project. Limiting the selection 

criteria to the four categories listed above, the best algorithm to implement this 

project, based on literature is the Particle Swarm Optimization algorithm [10]. 

Below is a table summarizing the evaluation of the algorithms. The checked boxes 

indicate the presence of a particular quality for the algorithm in question. 
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Table 1 

 Ease of 

implementation 

Solution 

Quality 

Constraint 

Handling 

Computation 

time 

MAS       

Sequential      

Constraint 

Based 

      

Genetic        

Simulated       

Tabu Search       

P.S.O         

 

2.9 FET Scheduling Software 

2.9.1 What is FET? 

FET is a free scheduling software that is available on the internet for download. It is 

a generic software meant to handle High School, Secondary and University 

scheduling. It deals with all possible distinct constraints, such as lack of rooms or 
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limited time, faced by each institution [11]. The software was recently used by 

Ashesi in scheduling the courses for all classes of students for the 2014 fall 

semester and proved itself to be very efficient. The following sections explain the 

software in further detail. 

The first version of the FET software made use of a genetic algorithm. It was slow 

and had difficulty in solving difficult data sets which could be solved by other similar 

software’s. This made it very inefficient since most timetabling problems have 

difficult data sets [11]. 

The genetic algorithm used was later revised and a much more heuristic approach, 

which the author called “recursive swapping” was used.  This algorithm was faster 

and highly efficient as compared to the previous genetic algorithm used. 

2.9.2 How FET works 

The first thing to do is to download and install the FET file. After setting up, enter 

the necessary data. Information entered must include the institution information, 

days and hours or periods per day, subjects, lecturers’ names, student years, 

student groups and available spaces or rooms. 

After entering the necessary data, you will have to construct lessons by assigning 

the different student groups to lecturers. After the assignment process, click on the 

generate button to allow the software automatically generate the timetable. The 

time required in generation a solution is highly dependent on the data set entered. 

Difficult datasets will typically take a longer time than simple datasets. After the 

timetable is generated, FET allows you to either print the results or export to some 

other format such as a csv or HTML file. 



36 
 

That is the basic idea of how the software works. 

2.9.3 The FET Algorithm 

The program was written in C++ and makes use of a heuristic algorithm known as 

recursive swapping. The full algorithm is provided below. 

1) Sort activities, most difficult first. Not critical step, but speeds up the algorithm 

maybe 10 times or more. 

2) Try to place each activity (A_i) in an allowed time slot, following the above 

order, one at a time. 

Search for an available slot (T_j) for A_i, in which this activity can be placed 

respecting the constraints. 

If more slots are available, choose a random one. If none is available, do recursive 

swapping: 

2 a) For each time slot T_j, consider what happens if you put A_i into T_j. There 

will be a list of other activities which don't agree with this move (for instance, 

activity A_k is on the same slot T_j and has the same teacher or same students as 

A_i). Keep a list of conflicting activities for each time slot T_j. 

2 b) Choose a slot (T_j) with lowest number of conflicting activities. Say the list of 

activities in this slot contains 3 activities: A_p, A_q, A_r. 

2 c) Place A_i at T_j and make A_p, A_q, A_r unallocated. 



37 
 

2 d) Recursively try to place A_p, A_q, A_r (if the level of recursion is not too large, 

say 14, and if the total number of recursive calls counted since step 2) on A_i 

began is not too large, say 2*n), as in step 2). 

2 e) If successfully placed A_p, A_q, A_r, return with success, otherwise try other 

time slots (go to step 2 b) and choose the next best time slot). 

2 f) If all (or a reasonable number of) time slots were tried unsuccessfully, return 

without success. 

2 g) If we are at level 0, and we had no success in placing A_i, place it like in steps 

2 b) and 2 c), but without recursion. We have now 3 - 1 = 2 more activities to 

place. Go to step 2) (some methods to avoid cycling are used here). 

The software was made to solve general scheduling problems, not tailored to a 

particular institution. It includes several features such as availability of buildings in 

different cities and break times which are not relevant for an institution such as 

Ashesi. In an effort to enhance the scheduling process at Ashesi, the rest of this 

project makes an effort to eliminate the irrelevant features and develop a software 

similar to FET tailored specifically to suit the scheduling needs of Ashesi. 
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Chapter 3 Implementation 

This section describes how the PSO algorithm was used to implement a simple 

course schedule. 

3.1 Background of Implementation and Model used  

The foundation of this implementation was derived from James McCaffery’s article 

on Particle Swarm Optimization. It describes the implementation of a very simple 

PSO algorithm [12]. The fundamental idea is to find approximate solutions to 

numeric maximization or minimization problems, otherwise known as objective 

functions. 

 

 

In Ashesi, courses are preferred to occur at the same time, every other day. This 

means if a course e.g. Pre-calculus, occurs on Monday at 8:30, it will be preferred 

for the same Pre-calculus course to occur on Wednesday at 8:30. Given that there 

are only 5 time periods in a day and each course will be preferred to occur every 

other day, it will be best to schedule courses for the first two days of the week, i.e. 

Mondays and Tuesdays, and copy the results for Wednesdays and Thursdays. For 

this reason, 10 time slots are used in the entire process. The 10 time slots 

represent the 5 time periods for courses taken on each day (Mondays and 

Tuesdays) and each time slot represented by an array index. 

Each course is randomly assigned a position in an array called course position. The 

size of the course position array is the number of courses times the number of time 
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slots. Hence if there are 5 courses, the course position array will be of size five 

times ten i.e. fifty. This gives each course a chance to occur at any time in the 

defined time slot. 

 

3.2 Particle Definition 

 

The particle class is made up of five fields. A course position array of type int, which 

represents the position of each course of a particle; a fitness value of type double 

which holds a value for how good or fit the particular schedule is; a velocity value 

to help search for, and update the best position found so far; a best course position 

array of type int to keep track of the best course position; and a best fitness value 

which represents the associated fitness of the best course position. 

 



40 
 

 

The particle class has a constructor that accepts the five parameters that 

correspond to each of the particles defined above. The purpose of the constructor is 

simply to copy each parameter value into its corresponding data field. 

3.3 PSO Algorithm Explanation 
The PSO algorithm is fairly simple but it needs to be well understood in order to 

successfully implement it. After initializing each particle, in the main processing 

loop, the algorithm is used to update each particle’s current velocity based on the 

particles current velocity, its local information and global swarm information. After, 

the particle’s position is updated using the particles new velocity. A mathematical 

representation of the algorithm is as follows: 

V (t+1) = (w * v (t)) + (c1 * r1 * (p (t) – x (t)) + (c2 * r2 * (g (t) – x (t)) 

X (t+1) = x (t) + v (t+1) 

The first equation updates a particle’s velocity. The term v (t+1) means the velocity 

at time t+1. The v indicates that velocity is a vector value and has multiple 

components such as {1.55, -0.33}, rather than being a single scalar value. The 

new velocity depends on three terms. The first term is w * v (t). The w factor is 
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called the inertia weight and is simply a constant like 0.73; v (t) is the current 

velocity at time t. The second term is c1 * r1 * (p (t) – x (t)). The c1 factor is a 

constant called the cognitive (or personal or local) weight. The r1 factor is a random 

variable in the range (0, 1), which is greater than or equal to 0 and strictly less 

than 1. The p (t) vector value is the particle’s best position found so far. The x (t) 

vector value is the particle’s current position. The third term in the velocity update 

equation is (c2 * r2 * (g (t) – x (t)). The c2 factor is a constant called the social—or 

global—weight. The r2factor is a random variable in the range (0, 1). The g (t) 

vector value is the best known position found by any particle in the swarm so far. 

Once the new velocity, v (t+1), has been determined, it’s used to compute the new 

particle position x (t+1) where x (t) represents the particles current position and v 

(t+1) represents the new velocity [12]. As shown in the equation above, the new 

position is simply the sum of the current position and the new velocity. 

For this project, each particles position is made up of numbers that correspond to a 

particular timeslot for each course. The idea is that the timeslot with the largest 

number is the one that will be chosen for the particular course. This simply means 

that when the particles position is being updated, the timeslot for the given course 

is being changed. In this manner, the PSO algorithm is able to explore various 

possible schedules in the solution space. 
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3.4 Declaring and Initialization Variables 
In the algorithm class, a random object is used to generate the cognitive and social 

random numbers, as well as the initial velocities and positions of each particle. 

   

After instantiating the random object, key PSO variables are declared and assigned. 

As an initial test of the program, 5 lecturers, 1 student cohort, 5 rooms and 5 

courses are used in the process. 10 particles are used for 1000 iterations of the 

processing loop. The Dim variable represents the number of time slots in an 

array/schedule. The size of each array is the number of elements in the array times 

the number of factors being scheduled. The result of this multiplication is held in an 

integer variable which would later be assigned to an array as its size. The minX and 
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maxX values are used to limit the range within which random numbers are assigned 

as positions. 

A swarm array of particle objects is created with its size as the number of particles. 

An array to hold the best global position of any particle is declared along with the 

associated best global fitness. The global fitness holds the value of the highest 

possible double. The minV and maxV values are set to -0.5 and 0.5 respectively. 

This helps to ensure that the velocity is not arbitrarily huge. 

 

3.6 Initialization 

3.6.1 Particle Position Initialization 

 

The initialization stage begins with assigning random values to the timeslot 

windows for every course. An array called random course position is used to hold 

the random values of all the courses given. 

The random course array of size fifty is split up into smaller blocks of size ten which 

represent the course schedule for each course, also known as a course particle. 

Each course can be identified with its course code. After the initialization stage, the 
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time slot with the highest number for a given course is selected as the time slot for 

that course. The corresponding timeslot must be blocked out for the lecturer and 

the student cohort and a room must be selected for that course to be held in at that 

time slot. In the lecturer array, the lecturer teaching a particular course, identified 

by the particular course code is selected. If the particular lecturer’s time slot is 

empty at the time selected for the course to occur, the lecturer’s time slot (the 

particular index) is filled with the course code for that course. If the time slot 

already has a value, meaning the lecturer has already been booked for that period, 

the next empty slot is selected. If that slot is also booked then the next empty slot 

after the previously selected slot is checked. The process of checking for the next 

slot iterates in a while loop until the end of the course length (the tenth index) is 

reached. If it finds an empty slot, it assigns it the value otherwise, a conflict is 

assumed and the conflict array is updated with a defined number representing a 

conflict in the lecturer schedule. The same process is repeated for the student 

cohort and room schedules.  

3.6.2 Fitness  

After initializing the schedules for the lecturer, courses, rooms, and student 

cohorts, the fitness value is computed. The fitness value is based on the number of 

conflicts that occur in assigning courses to a particular schedule. The objective 

function for computing the fitness values sums up the number of conflicts that 

occur in each schedule and assigns the value as a fitness for the schedule. The 

ultimate goal is to find the schedule with the least fitness. 
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Each conflict in each schedule is assigned a particular value. If a conflict occurs in 

any of the schedules, the arbitrary value for that schedule is placed in the conflict 

array. The objective function simply searches through the array for the number of 

times a particular conflict occurs. At the end, it sums up the number of times each 

conflict happened and returns an integer value as the fitness of the particle in 

question. 

After initializing the fitness, a random velocity is assigned to each particle in the nth 

dimension. This means each course particle will be assigned a random velocity of 

some value. 

The initialized particles are added to the swarm and the global best position is set 

to the current position. It is worth noting that at the initialization stage, the current 

position and fitness are equal to the global best position and best fitness. 
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3.7 Updating 
The updating process makes use of local and global constants in determining the 

new velocity and position. The figures used in the diagram below were 

recommended by a research paper that investigated the effects of various PSO 

parameter values on a set of benchmark minimization problems [13]. The update 

loop iterates a thousand times and on each iteration, new values are generated. 
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3.7.1 Updating Velocity 

 

At the beginning of the iteration, a new array is created to hold the value of each 

new velocity. For each particle object in the velocity array, random number 

variables are generated and the velocity is then updated for each particle in the 

array. As seen from the image above, the velocity is updated using the update 

formula and assigned to the new velocity array. After computing the velocity, a 

check is made to ensure that the new velocity is within the range of the maximum 

and minimum velocity. This check is done to prevent the position from spinning out 

of bounds. The current particle objects velocity is updated using Java’s array copy 

method. 



48 
 

3.7.2 Updating Positions 

The updating of positions requires that the new velocity be added to the current 

position to generate a new position. For the purpose of the project and the 

definition of the objective function, this step has been slightly amended. 

For the position update, a new velocity is computed. This velocity is added to the 

current position to get a new position. After the new position is obtained, the 

lecturer and student cohort schedules are updated to reflect the change. If there is 

no value in the new position that has been selected, the schedules are updated 

without any issues. If there is a value already in the particular position, meaning a 

conflict occurs while trying to update the lecturer and student cohort schedules 

(probably because that position is occupied), the conflict array is updated. A new 

position is searched for again and the process is repeated. 

The new position is then copied to the current particle’s position and the objective 

function is called to assess the fitness of the schedule. The current particle’s best 

fitness and the best global fitness are then sought for by comparing their values to 

the new fitness obtained. If they are found, their values are then copied to the 

current particles best fitness and best global position. 
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Chapter 4 Results 

4.1 Initialization of Particles 

This section explains the results obtained from the program using ten particles and 

an iteration limit of 1000. This example assumes that there are five time slots in 

which lectures can occur in a day and the time for a lecture is preferred to be the 

same for any other day on which the lecture must occur. It also assumes that a 

lecture is preferred to happen every other day. This means that if Pre-calculus is 

taught at 8:30 on Mondays, it will be preferred that it is taught at the same time on 

Wednesdays.  

The database used has 5 courses, 5 lecturers and 5 rooms and 1 student cohort. 

The diagrams below show the initialization of each particle. 

Figure 4.1 The Schedule corresponding to the initial random particle position 0 

 

It can be observed from the diagram that the first particle has statistics occurring 

at time 1 (10:10-11:40 on Mondays), pre-calculus at time 17 (10:10-11:40 on 

Tuesdays), Written and Oral at time 20 (8:30-10:10 on Mondays), Text and 

Meaning at time 30 (8:30-10:10 on Mondays) and calculus at time 40 (8:30-10:10 

on Mondays). 
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Figure 4.2 The Schedule corresponding to the initial random particle position 1 

 

 

 

 

Figure 4.3 The Schedule corresponding to the initial random particle position 2

 

 

 

 

 

 

4.2 Fitness and Velocity 

As the particles are being assigned positions, they are given initial velocities 

because the algorithm assumes that the particles are moving in the solution space 

in search for the best solution. A fitness value is also computed for each particle 
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based on the number of conflicts that occur in assigning time slots to the lecturers, 

courses and rooms. The fitness tells how good a particular solution is. Since the 

idea is to minimize the number of conflicts that occur, the solution with the least 

fitness value represents the best solution. 

After the initialization stage is complete, the best fitness of each particle is 

computed to get the best initial position. 

The initial fitness computed has a value of 30. Each particle is assigned the best 

schedule in the swarm to get the initial best solution. Figure 4.11 shows the best 

initial schedule assigned to each particle in the swarm. 

 

Figure 4.11 The Schedule corresponding to the initial best particle position 

 

4.3 Updating  

After the best initial solution is found, the program enters the main Particle Swarm 

Optimization loop where each particles current position is updated based on its 

current position, a computed velocity, local and global swarm information.   

4.3.1 Updating Velocity 

Figure 4.12 The Velocity Update Computation 
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As discussed in the previous section, updating the position requires the 

computation of a new velocity. Figure 4.12 shows how the new velocity is computed 

to facilitate the position update in the program. The weights w, c1 and c2 are 

constants that represent the velocity, local and global weights respectively. R1 and 

r2 are random numbers used to represent local and global randomizations.  

Figure 4.13 shows the best final schedule for each particle. The detailed definition 

of this computation has been explained in chapter 3.  

4.3.2 Updating Positions 

Figure 4.13 The Position Update Computation 

 

The new position of each particle is simply the sum of the new velocity and the 

current position of the particle. This is what causes particles to move around in 

search of the best position or schedule. 

After each particle has been updated with a new position and fitness, the best 

fitness is sought for by comparing the different fitness values in the swarm to each 

other. 

When the best fitness is found, its position is copied to a best Global Position array 

and the schedule at that fitness is returned as the best schedule. Figure 4.14 shows 

the best schedule in the swarm. 
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Figure 4.14 The Schedule corresponding to the final best particle position 

 

4.3.3. Second Test of PSO Algorithm 

Another example was conducted to test the programs potential to handle complex 

situations. The database used had 2 student cohorts, 5 rooms, 5 lecturers and 10 

courses. The diagrams below show the initial and final solutions computed by the 

program. Each course has 10 time slots, hence if there are 5 courses, there will be 

a total of 50 timeslots (i.e. 5 times 10) divided into 5 groups of 10 slots per group. 

This simply means that the first course will have timeslots 0 to 9, the second 10 to 

19, the third 20 to 29, the fourth 30 to 39 and the fifth 40 to 49. For each course, 

the first five timeslots represent courses happening on the first day of the week, 

from 8:30 through to 4:40. The second five represent courses happening on the 

second day from 8:30 through to 4:40. On a typical day in Ashesi, the first time 

slot is from 8:30 to 10:00. The second is from 10:10 to 11:40. The third is from 

11:50 to 1:20. The fourth is from 1:30 to 3:00 and the fifth is from 3:00 to 4:40. 
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Figure 4.15 The Schedule corresponding to the initial best particle position 

 

Figure 4.15 shows the initial best solution computed by the program. It can be 

observed that for cohort 2017a, there are a few conflicts in the schedule. For 

Written and Oral-a (Particle 9 with course id 2), Pre-calculus –b (Particle 9 with 

course id 6) and Text and Meaning –b (Particle 9 with course id 8) taken by 2017a, 

they happen at the same time. One of the fundamental constraints this projects 

works with is that no student or lecturer can be in the more than one places at the 

same time. This problem is solved in the final best solution shown figure 4.16. 

Figure 4.16 The schedule corresponding to the final best particle position 
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As observed, the conflicting times have been resolved. The new schedule solves the 

conflicts that occurred in the previous schedule.  
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Chapter 5 

Conclusion 

The FET software recently used by the Ashesi in the scheduling of courses utilizes a 

genetic and heuristic method known as recursive swapping. The algorithm 

efficiently solves for the most difficult timetabling cases since it was made to 

accommodate the general scheduling needs of faced by universities and high 

schools. 

It is observable from the implementation that the algorithm was simple to 

understand. It did not involve any complex mathematical equations like most of the 

other existing scheduling algorithms. The velocity and position calculation can 

potentially solve more complex optimization problems. The implementation of 

Particle Swarm Optimization does not involve any mutation or overlapping 

calculations like that of genetic algorithm. The search for the optimal solution is 

carried out by the speed of the particle and only particles with good information 

(fitness values) are allowed to transmit information to other particles. 

The parameters used to test the PSO algorithm were applied to the FET software to 

compare both algorithms based on the solution quality, ease of implementation, 

constraint handling and computation time. It was realized that FET performs better 

with respect to the solution quality. The PSO algorithm on the other hand is easier 

to implement as compared to the recursive swapping algorithm used in FET. The 

recursive swapping technique is fundamentally a combination of a genetic and 

heuristic algorithm which requires advanced mathematical computations. Both 

approaches however handle constraints well.  
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In conclusion, although FET produces a much better solution, the implementation is 

more complex than PSO. For a small institution such as Ashesi, the PSO algorithm 

will work just fine. 
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