

ii

ASHESI UNIVERSITY COLLEGE

THE MOLAM PROJECT: THE DESIGN OF A CONTEXT SPECIFIC

NAVIGATION FRAMEWORK FOR A MOBILE ROBOT

DANIEL NII TETTEY BOTCHWAY

Dissertation submitted to the Department of Computer Science,

Ashesi University College

In partial fulfillment of Science degree in Computer Science

APRIL 2013

CORE Metadata, citation and similar papers at core.ac.uk

Provided by Ashesi Institutional Repository

https://core.ac.uk/display/197725591?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

iii

Declaration

I hereby declare that this dissertation is the result of my own original

work and that no part of it has been presented for another degree in this

university or elsewhere.

Candidate’s Signature: …………………………………………………………………………………

Candidate’s Name : …………………………………………………………………………………

Date : …………………………………………………………………………………

I hereby declare that the preparation and presentation of the dissertation

were supervised in accordance with the guidelines on supervision of

dissertation laid down by Ashesi University College.

Supervisor’s Signature: …………………………………………………………………………………

Supervisor’s Name : …………………………………………………………………………………

Date : …………………………………………………………………………………

iv

Acknowledgements

This dissertation would not have been possible without the guidance

and the help of several individuals who in one way or another

contributed and extended their valuable assistance in the

preparation and completion of this project.

First and foremost, my utmost gratitude goes to my supervisor and

first robotics lecturer, Dr. G. Ayorkor Korsah whose insightful

directions and assistance made this project a rewarding journey.

I am truly grateful to Mr. Aelaf Dafla, Dr. Nathan Amanquah, Prof.

Edwin Kay, and basically all the lecturers in the Computer Science

Department for their immense contributions to shaping my mind.

I would also like to thank my colleagues and friends in the

Computer Science Class of 2013 for all their inspiration as we

overcame all obstacles during the last four years.

Last but not the least; I would like to thank my family and the one

above all of us, the omnipresent God. Thank you so much, dear

Lord, for answering my prayers and giving me the strength to plod

on despite my constitution wanting to give up and throw in the

towel.

v

Abstract

Ashesi University College recently acquired a TurtleBot1 robotic

platform to experiment with service robotics on campus. This

platform runs the Robotics Operating System (ROS)2 for developing

robotics applications. This MOLAM project (Motion, Localization And

Mapping) sought to build a fundamental framework that extends

ROS functionalities on a TurtleBot to navigate autonomously around

the Ashesi campus in Berekuso.

The focus of this project was to extend the ROS enabled

functionalities on the TurtleBot for mapping, localization and motion

planning to create a customized navigation framework suited for the

Ashesi University campus. Having such a foundation, other service

applications, such as a waiter robotic system, a courier robotic

system, a tour guide robotic system etc., can be built on this

framework.

This paper outlines the various tools and processes used in

assembling and configuring this robotic system. It also delineates

the challenges encountered in assembling and configuring this

robotics system, as well as the “work-arounds” devised to solve

these challenges. Finally, this paper proposes design concepts for

future work in using the TurtleBot system as a Tour Guide Robotic

System for Ashesi University College.

1
 http://turtlebot.com/

2
 http://ros.org/

http://turtlebot.com/
http://ros.org/

vi

Contents

Declaration .. iii

Acknowledgements ... iv

Abstract ... v

Contents ... vi

List of Figures ... viii

List of Abbreviations ... ix

Chapter 1: Introduction ... 1

1.1 Introduction ... 1

1.2 Objectives .. 2

1.2.1 Setting Up ROS-TurtleBot .. 2

1.2.2 Mapping .. 2

1.2.3 Localization .. 3

1.2.4 Motion Planning .. 4

1.2.5 Developer API .. 4

1.2.6 Visualization Tool .. 5

1.2.7 Additional Documentation .. 5

1.3 Scope .. 5

1.4 Motivation .. 6

Chapter 2: Background .. 8

2.1 Technology .. 8

2.1.1 TurtleBot ... 8

2.1.2 Robotic Operating System (ROS) .. 13

2.2 Related Work .. 14

2.2.1 NXT-Kinect-SLAM .. 14

2.2.2 Minerva ... 15

2.2.3 Relevance of the Related Work ... 17

Chapter 3: System Design .. 18

3.1 System Design Concept ... 18

3.2 Navigation Framework ... 21

3.2.1 Map Handlers and Storage ... 21

3.2.2 Localization and Navigation Tools .. 25

3.2.3 Emergency Control Block ... 27

Chapter 4: Implementation and Testing ... 30

4.1 Robot Setup ... 30

4.1.1 Components Used ... 31

vii

4.1.2 Ubuntu 12.04 (Precise) .. 31

4.1.3 Installation of ROS Groovy Galapagos 32

4.1.4 Physical Setup .. 34

4.2 Reconfiguration of ROS System Files ... 35

4.2.1 Minimal File .. 35

4.2.2 TurtleBot Dashboard File .. 35

4.2.3 TurtleBot Node File ... 35

4.2.4 Create Sensor Handler File ... 36

4.2.5 Python KDL Error Fix ... 36

4.3 Testing .. 37

4.3.1 Network Connection .. 37

4.3.2 System Recognition .. 37

4.3.3 Vision .. 38

4.3.4 Visualization ... 39

4.4 Challenges ... 41

Chapter 5: Conclusion and Future Work ... 42

References ... 44

Appendix .. 46

A. Robot Setup Design .. 46

A.1 Components Used .. 46

A.2 Downloading Ubuntu 12.04 (Precise) .. 46

A.3 Ubuntu Bootable Flash Drive ... 46

A.4 Installation of Ubuntu Precise .. 47

A.5 Installation of ROS Groovy Galapagos... 47

A.6 Physical Setup ... 50

B. Reconfiguration of ROS System Files .. 51

B.1 Minimal File ... 51

B.2 TurtleBot Dashboard File ... 52

B.3 TurtleBot Node File... 53

B.4 Create Sensor Handler File .. 54

B.5 Python KDL Error Fix .. 55

C. Network Bash Script ... 55

viii

List of Figures

Figure Description Page

Figure 2.1 iRobot Create Base 9

Figure 2.2 TurtleBot Mounting Structures 10

Figure 2.3 Microsoft Kinect Kit 11

Figure 2.4 TurtleBot Sensor/Power Board 11

Figure 2.5 NXT-Kinect Setup 15

Figure 2.6 Minerva 16

Figure 3.1 Systems Architectural Design 20

Figure 3.2 Example SLAM Map 23

Figure 3.3 SLAM Map with Information Overlay 23

Figure 3.4 Multiple SLAM Maps with Information Overlay 24

Figure 3.5 SLAM Map with Graph Abstraction 24

Figure 3.6 SLAM Graph Model 25

Figure 3.7 Localization and Navigation Block 27

Figure 3.8 Emergency Control Block 29

Figure 4.1 TurtleBot Setup over Android WIFI hotspot 31

Figure 4.2 Dashboard View of the TurtleBot System 38

Figure 4.3 Color Image of a Section of the Computer Lab 39

Figure 4.4 Monochrome Image of a Section of the Computer Lab 39

Figure 4.5 Color Depth Image of a Section of the Computer Lab 40

Figure 4.6 Monochrome Depth Image of a Section of the Computer Lab 40

Figure 4.7 3D Point Cloud Visualization of the Computer Lab 41

ix

List of Abbreviations

Abbreviation Meaning

API Application Programming Interface

DDR3 Double Data Rate 3

DIN Deutsches Institut für Normung

GB Gigabyte

HRI Human Robotics Interaction

IOS International Organization for Standards

IP Internet Protocol

KDL Kinematics And Dynamics Library

LIDAR Laser Detection And Ranging

MOLAM Motion Localization And Mapping

OS Operating System

PCL Point Cloud Library

PGM Portable Gray Map

QR Quick Response

RFID Radio Frequency Identification

RGB Red Green Blue

RGBD Red Green Blue Distance

ROS Robotics Operating System

SLAM Simultaneous Localization And Mapping

USB Universal Serial Bus

WIFI Wireless Fidelity

WLAN Wireless Local Area Network

x

1

Chapter 1: Introduction

1.1 Introduction

The MOLAM project is a robotics research project that is aimed at

implementing a navigation framework for a TurtleBot (a research robot)

that was acquired for this project. This framework will be built on ROS, a

meta-operating system that “provides libraries and tools to help software

developers create robot applications” (Foote, 2013). The first application

of this framework will be to integrate it into a robotic tour guide system

for Ashesi University College’s new campus at Berekuso. This robotic tour

guide would relieve secretaries of the extra role they play in giving visitors

a tour of the new campus. It would also give visitors a unique robotics

experience.

This project is therefore focused on configuring the TurtleBot and

extending its navigation functionalities to suit the context of an Ashesi

environment. The framework to be developed will result in a very robust

robotic infrastructure that is capable of accurate mapping and path

planning using higher level information such as the actual names of offices

and building structures on the campus. Moreover, this infrastructure

should be an independent module with easy integrability into future

robotics projects that would require a locomotion and navigation system.

The main focus areas of the project which will forge the core underlying

functionalities of this framework would be MAPPING, LOCALIZATION and

MOTION PLANNING; which are also the inspiration behind the name of the

project MOLAM (MO-tion panning, L-ocalization A-nd M-apping).

2

It must be noted that a similar project was undertaken in 2012 by a

student; Kwame Afram to build a tour guide system for Ashesi using the

Lego NXT robot kit (Afram, 2012). However, due to the size, sensor

limitation and limited navigation capabilities of the Lego NXT robot, the

TurtleBot is more suited for campus-scale navigation.

1.2 Objectives

 This section describes the goals of this project in developing the context-

specific navigation framework. These goals were considered by relating

the functionalities of the proposed navigation framework to the existing

capabilities of the ROS-TurtleBot platform.

1.2.1 Setting Up ROS-TurtleBot

The robotics technologies (i.e. both the TurtleBot and the ROS platform)

obtained for this project are entirely new to the university. The first focus

of this project will be to configure these systems to a working level that

will allow robotics application to be developed on it. A major part of this

project will be to ensure that the ROS-TurtleBot is correctly setup for

future robotics development.

1.2.2 Mapping

The fundamental concept of robotic mapping is that for a given

environment, a robot should be able to use the available on board sensors

it has to gather data about its environment and translate that data into a

map model. The map model should accurately represent the environment

with the necessary information to identify the various objects present.

ROS has a mapping tool that is capable of a generating a map model of an

3

environment that represents obstacles and free space around the robot.

This framework seeks to extend this map model by overlaying it with

actual structural information of the campus to give users a human level

interpretation of the map. With the university’s plans to extend the

campus, the robot should be able to build a new map from scratch, modify

an existing map to accommodate changes in the environment, and repair

parts of the map if broken.

1.2.3 Localization

Localization is a concept that focuses on the ability of a robot to determine

its current position in a given map, based on the information it has from

its environment and the map. Localization can prove to be challenge in

the sense that, if the robot has an ever changing map or environment,

knowing exactly where it is at any point in time could be difficult. The

concept of Simultaneous Localization and Mapping (SLAM) solves this

challenge using various techniques. SLAM is the process of building a map

of an unknown environment while simultaneously determining the location

of the robot in the map. The localization challenge can also be addressed

by having artificial landmarks help the robot determine where it is by

embedding information in data technologies like RFID tags and QR-Codes

in the environment (Rusu, Gerkey, & Beetz, 2008). This project will focus

on using a SLAM GMapping3 technique implemented by ROS in its

localization mechanism. Pinpointing the location of the robot will be done

on two levels. The first level will be using the location coordinates as

represented internally by the robot’s map model and the second level will

3
 http://www.openslam.org/gmapping.html

http://www.openslam.org/gmapping.html

4

be a high-level representation for a user to understand. For instance the

coordinate point (123,432) may be interpreted and represented as a point

in the Ashesi Library. A translation interface will therefore be needed to

convert between the two locations representations.

1.2.4 Motion Planning

Given a map and the current position of the robot; the robot should be

able to generate a sequence of points (a path) in the map that will lead it

to a desired destination point. The path should be feasible for the robot to

traverse (if some parts of the environments have staircases the robot

should avoid them) and optimal in terms of determining the shortest (or

most cost effective) path to use. Consequently, the motion planning

mechanism of this framework should allow a robot adequately

acknowledge the presence of other objects in the robots environment and

respond appropriately to them. That is, the robot should not collide with

moving objects in its environment and if any object blocks the path of the

robot, a new alternative path should be generated to get the robot to the

destination location. Also, since the proposed navigation framework will be

providing high-level information map, path planning will occur at both

high-level locations on the information map and low-level coordinates on

the robot’s internal map models.

1.2.5 Developer API

The project will provide technical documentation so that developers

interested in building upon this framework, can easily interface it with

their work. This documentation or Application Programming Interface

(API) will be a software application interface of the navigational and

5

locomotion functionalities this framework provides, that can be used in

building higher level robotics applications. The API will conceal the

complexities entailed in implementing the functionalities and provide only

the necessary interface to allow seamless integration.

1.2.6 Visualization Tool

Apart from the API, this project will also develop a friendly user interface

to allow easy interaction with the framework itself. The data and modeling

done internally in the robots are largely represented by several numeric

values that seem to make no sense. The interface to be created will be

more of a data visualization tool that will provide a graphical

representation of the internal data processes. With this tool, higher level

interpretation and analysis can be done concerning the functioning of the

framework.

1.2.7 Additional Documentation

This project will add to the knowledge base and the current reference

materials in the robotics field especially in the areas concerning navigation

using SLAM techniques. The project will make available the necessary

documentation on research procedures, solution concepts, challenges,

“work-round’s” and results of experimentations carried out throughout the

project to serve as guiding principles to any other interested researcher.

1.3 Scope

As outlined in the Objectives section above, the goal of this project is not

to build a robot from scratch. Rather the aim is to assemble and configure

the TurtleBot to use the ROS framework. Having done that, the project

6

will also utilize the functionalities provided by the ROS framework to

create a non technical user friendly interface which obscures the technical

details of the framework. Nonetheless, this interface should extend the

ROS functionality to be well suited for the Ashesi University College

campus in terms of the representation and interpretation of the various

map data models. This project will not concern itself with the Human

Robotic Interaction needed for a successful robotic tour guide system, but

will provide the interface and tools as permitted by the ROS framework to

develop application systems not limited to only a tour guide system.

1.4 Motivation

This project is inspired by the author’s interest in current trends in the

robotics industry which is shifting the traditional understanding and

implementation of robots to a more complex frontier. The first

generational understanding and usage of robots identified robots as

automated machines installed in well-defined and controlled environments

like factories where they had little or no interaction with dynamic objects

(like humans or other robots) in the environment. Currently, the field of

robotics is moving these machines from their own world into a more

complicated world, where it is necessary to appreciate and respond

appropriately to the interactive and dynamic nature of the environment

and the objects within it. In this liberating yet complex environment,

robotics research is pushing the limits to the kind and quality of assistance

a machine could offer to the human society. Having said that, the great

capabilities of new generational robots rely on an essential piece, which is

their ability to move around in a sufficiently autonomous, safe and

7

intelligent manner. This exciting yet computationally intense design

required to have such an intelligent system, stirred up passions to embark

on this project with the aim of having a sense of accomplishment and

satisfaction while making a little contribution to the robotics society.

8

Chapter 2: Background

This chapter describes the technology used in this project and summarizes

other related works. The robotics projects looked at in this chapter were

related to navigation using the Kinect sensor kit and to public area service

robots specifically, a tour guide museum robot.

2.1 Technology

2.1.1 TurtleBot

TurtleBot4 is a robot kit product from Willow Garage5 that is built from

various hardware components for cheap personal robotic applications. This

robotic kit offers a simple and easy-to-use system suited for robotic

research projects. The TurtleBot is made up from off-the-shelve electronic

hardware pieces which include:

 iRobot Create

 Mounting structure

 Microsoft Kinect kit

 Sensor board

 Netbook computer

2.1.1.1 iRobot Create

iRobot Create is a robotic hardware platform manufactured by iRobot

Corporation. This platform is modeled after the Roomba domestic vacuum

4
 http://turtlebot.com/

5
 http://www.willowgarage.com/

http://turtlebot.com/
http://www.willowgarage.com/

9

cleaning robot (Figure 2.1). The Create platform does not come with the

vacuum cleaner hardware but rather an empty space to serve as a cargo

bar with a serial pin port for digital and analog input and output devices.

The Create was specifically designed to support various robotic hardware

accessories needed in robotics research developments.

The Create is a differential drive robot (that is a robot with two powered

wheels) with a third point of contact and an optional fourth wheel for

stability. The Create base has an Omni-directional Infrared receiver, a

Mini-DIN port, a cargo bar for robot hardware accessories and a charging

port. The Create also has cliff sensors to detect if the robot wheels are in

contact with the ground or not and bumper sensors to detect collision with

solid objects. The Create base also comes with a Mini-DIN connector cable

to connect the hardware platform to a computer.

Figure 2.1 - iRobot Create Base

2.1.1.2 Mounting Structure

The TurtleBot has a set of laser cut plates and set of custom made

standoff kit frames (Figure 2.2). These are fitted together to form a

shelve-like structure to hold the Kinect kit, the Netbook computer and

other hardware accessories.

10

Figure 2.2 - TurtleBot Mounting Structures

2.1.1.3 Microsoft Kinect Kit

Microsoft in 2010 released a 3D motion sensor input device for the

Microsoft Xbox 360 game console; the Kinect Kit (Figure 2.3). This kit has

 A RGB color camera

 An Infrared laser projector

 An Infrared laser sensor

 An array of microphones and

 A motorized pivot base.

This kit works by using an infrared projector to throw an infrared laser

pattern on the objects in its view and the infrared laser “sensor picks up

the laser to determine the distance of each pixel” (Ackerman, 2011).

Overlaying the depth sensor values of the images from the RGB camera

gives an RGBD (RGB-Distance) image that can “map out body gestures,

positions, motions and generate 3D maps” (Ackerman, 2011).

The Xbox peripheral has not only been embraced by the gaming

community but by many robotics hobbyists, who have turned the device

into a desirable robotics sensor kit. With the relatively cheap price and

11

great sensing capabilities, the Kinect has become the primary sensor kit

for many TurtleBot robotics projects.

Figure 2.3 – Microsoft Kinect Kit

2.1.1.4 Sensor Board

The TurtleBot’s main external electronic board is a power and sensor

circuit board with a Gyro (Figure 2.4). This board fits into the Create

base’s serial pin port to supply power to the Kinect and sensor information

from the Gyro to a computer. The board provides a regulated 12V supply

to power the Kinect Kit and a single axis gyro that can measure yaw rate

up to 250 degrees/second.

Figure 2.4 – TurtleBot Sensor/Power Board

2.1.1.5 Netbook Computer

The TurtleBot uses a computer to process most of the computational

requirements of the robotic system. Though the Create base has a

12

processor, a computer provides higher and faster computational

capabilities required in handling the various data sets from the sensors.

The computers used by the TurtleBot are Netbook computer because they

have a desirably small size. However, any laptop computer that is small

enough to fit into the bottom shelf of the TurtleBot shelf structure can be

used. For instance a Lenovo T240 ThinkPad laptop was used for this

project. The minimum hardware specifications of the needed computer are

listed as follows:

 2GB DDR3 memory

 Dual core processor (at least 1.8GHz)

 WLAN 802.11b/g/n (@ 2.4GHz)

 2 USB port (with at least a USB port 2.0 for the Kinect)

 250GB storage

13

2.1.2 Robotic Operating System (ROS)

The complexity of writing software for robots has led to the development

of several robotics software frameworks of which ROS is an example. ROS

implements the fundamental operations of an Operating System (OS) by

managing hardware resources of a robotics system but it does not handle

the scheduling and management of processes. Since ROS is installed and

run on a host OS, the host OS handles the process management

requirements. ROS was developed by Willow Garage to achieve certain

design goals in a robotics framework which include supporting a peer-to-

peer network structure, allowing development using multi programming

languages, being thin (i.e. having standalone libraries that are

independent of ROS), having several tools to accomplish tasks, and being

open source (Quigley, et al., 2009).

ROS connects robot hardware to software to create an advance

programming environment by providing services for hardware abstraction,

low-level device control, implementation of commonly-used functionality,

message-passing between processes, and package management

(Ruhland, 2012). With a framework like ROS, robotics researchers only

need to focus on higher-level manipulation of robots and thus are able

build complex systems faster.

14

2.2 Related Work

2.2.1 NXT-Kinect-SLAM

Recent work that is similar to the MOLAM project is an implementation of

a navigation system for an indoor mobile robot using the NXT robotics kit

and a Kinect. The paper An Investigation of the Use of Kinect Sensor for

Indoor Navigation (Keat & Ming, 2012), describes the hardware and

software architecture of the robot and discusses the results of using a low

cost robotic setup. In the setup, a four-wheel robot was built using the

NXT robotics kit with a Microsoft Xbox 360 Kinect sensor mounted on the

robot (Figure 2.5). The depth images from the Kinect sensor are

converted to a 2D laser scan output using a laptop running ROS. The laser

scan and odometry readings from the robots base were used as input to

build a map using SLAM GMapping technique6. The navigation stack plans

and sends commands to autonomously navigate the robot after

generating a map. For better performance, the robot uses A* algorithm

(Fradj, 2011) to generate a high level global path in the global planner

and the path is fine-tuned using a local planner that uses Dynamic

Window Approach for collision avoidance (Foxy, Burgardy, & Thrun,

1997).

The researchers found out that the use of the NXT-Kinect setup was not

affected by different lighting situations, which meant the robot worked

well even in dark environments. Compared to expensive sensor equipment

like LIDAR used by Google’s autonomous car and Hokuyo Laser sensor,

the Kinect which is cheaper, has similar working range and similar 3D

6
 http://www.openslam.org/gmapping.html

http://www.openslam.org/gmapping.html

15

scanning capabilities. Moreover, optimizing the position of the Kinect

sensor increased the accuracy of the SLAM mapping to about 99.6%, thus

making the Kinect suitable for autonomous robot navigation (Keat & Ming,

2012).

Figure 2.5 – NXT-Kinect Setup

2.2.2 Minerva

There are older robotics research projects that have led to the deployment

of exhibition robots and also permanent installation of robots in public

spaces. Such robots include tour guide museum robots Rhino (Burgard, et

al., 1999), Minerva (Thrun, et al., 1999), and Jinny (Kim, et al., 2004).

Minerva, as described in the paper MINERVA: A Second-Generation

Museum Tour-Guide Robot (Thrun, et al., 1999), is a robot developed by a

robotics research team from Carnegie Mellon University that worked on its

predecessor; Rhino. The robot was exhibited in the summer of 1998 for

two-week at the Smithsonian's National Museum of American History.

Minerva (Figure 2.6) builds two maps for better performance; an

occupancy map by probabilistically determining consistent readings of

16

odometry values and a texture map by using of an upward facing camera

at the museum’s ceiling to build a large-scale mosaic of the ceiling's

texture. For the highly dynamic environment of the museum, Minerva

uses an improved version of Markov localization (Dieter Fox, 1999) and

Dynamic Window Approach (Foxy, Burgardy, & Thrun, 1997) collision

avoidance method for localization and obstacle avoidance respectively. It

also uses Coastal Navigation algorithm for path planning. Coastal

Navigation is a path planning technique that minimizes path lengths but

maximizes the content of information a robot will receive at different

points along the path so that it does not get lost (Roy, Burgard, Fox, &

Thrun, 1998). The software system used by Minerva was developed to

address navigation in dynamic and unmodified environments, allow short-

term Human Robotic Interaction (HRI) with visitors and have a virtual

tele-presence with tele-operation capabilities over the internet.

Figure 2.6 - Minerva

17

2.2.3 Relevance of the Related Work

The above mentioned robotics projects are similar to the MOLAM project

on certain levels. The MOLOAM project will be using the Kinect and the

experimentation by Keat and Ming proves that, the Kinect is a capable 3D

sensor kit. The Kinect which is the primary visual senor for the TurtleBot

will therefore generate reliable maps for the proposed navigational

framework. Also, using the overall design of the robotics system for

public space as exemplified in the Minerva project gives great insight on

how the proposed navigational framework can be developed. These design

outlines serve as guidelines to ensure that the proposed framework is well

suited for public space and human interactions.

18

Chapter 3: System Design

This section describes the systems architectural design of the proposed

navigation framework. The fundamental design of the framework will be

to extend the capabilities of the ROS platform to support the high-level

functionality the framework will provide. The diverse capabilities provided

by the ROS platform makes it imperative to identify the specific modules

that this framework will interact with.

3.1 System Design Concept

The proposed system for the MOLAM project has a layered architectural

design. The components of this system include the Environment, TurtleBot

hardware (Kinect and the Create base), ROS framework, the proposed

context-specific navigation module, Client programs and the user

interface. As shown in Figure 3.1, the blocks in orange color form the core

of the proposed navigation framework. The Environment component

contains the wide set of objects that the robot would interact with. The

Kinect Kit uses its motion and visual sensing capabilities to scan and

create a 3D image (Point Cloud data set) of the objects captured in the

environment. The ROS implemented PCL (Point Cloud Library) package

will then convert the 3D image to a 2D image (laser scan data set).

Values from the odometer and the laser scan will then be passed on for

the GMapping functionality to create a SLAM map. GMapping is one of the

different techniques that are used in solving a SLAM problem and this is

already implemented in ROS. The Map Handler and Storage module will

process the raw SLAM map into a high-level information map for

19

visualization on the user’s display and for the use by client program such

as the tour guide functionality. The robot can be tele-operated using the

user’s input device (the keyboard) from the workstation to move the robot

during the mapping phase.

After the mapping phase, client programs can then request for a path to

be planned; for instance, a path from the admissions office to the

cafeteria. This command will be received and executed by the Localization

and Navigation block. The Localization and Navigation block pulls maps

from the Map handlers and Storage module and runs a translation routine

to convert the high-level destination locations into appropriate SLAM

coordinates. Afterwards, a global path between building structures, and

local paths within a single building structure will be planned. These paths

are then extracted for navigating the robot to the destination

autonomously. During the autonomous navigation phase, the Emergency

Control block uses 2D laser scan images and data from the bumper and

cliff sensors for obstacle detection and avoidance. When there are no

obstacles in a safe distance range the path points are interpreted as

movement command for the actuator drivers provided by ROS. These

drivers in turn send the appropriate velocity and power values to the

motors of the Create base to move the robot.

20

Figure 3.1 – Systems Architectural Design

21

3.2 Navigation Framework

This section gives a detailed description of the core blocks that make up

the navigation framework component of the entire robotic system. This

component is made of three blocks; the Map Handlers and Storage, the

Localization, and Navigation and the Emergency Control and a proposed

design for each is given below.

3.2.1 Map Handlers and Storage

This module handles the SLAM maps created after the mapping stage. The

SLAM map (refer to Figure 3.2) generated by the GMapping tool is a PGM

(Portable Gray Map) image produced from an occupancy grid map. An

occupancy grid map is a matrix that has numeric values indicating the

probability of the absence or presence of an obstacle in a given cell. Based

on a set probability threshold value, the various cells of the map

containing the probabilistic values are labeled as either empty or

occupied. This labeled grid map can then be interpreted as an image with

different color allocation for empty or occupied cells. The Map Handler and

Storage module will process the SLAM maps into an informative map

representation that a user can understand. Also, client programs like the

tour guide program can use the information map for high-level path

planning.

 Firstly, when a SLAM map is passed to this module it will be

appropriately renamed and permanently stored.

 This map will then be presented to an operator in a simple third party

image editing software. The user will then use the editing tools to

22

augment the map by manually drawing the diagrams that represent

actual building structure in the map. Alternatively, the operator can

simply select and label regions of the SLAM map without worrying

about the detailed architectural design of the campus.

 The operator will have to tag the various building structures with

necessary information that will correspond to pixel locations on the

augmented map. The map as shown in to Figure 3.3 becomes an

information layer over the actual SLAM map. Moreover, this becomes a

user friendly information map that the user can understand and

appreciate.

 The global map of the campus is then built using various local SLAM

maps of individual building structures (refer to Figure 3.4). This global

map will also be captured in the information overlay of the campus.

 The interconnection of the SLAM map in the global map creates a high-

level planning graph. As illustrated in Figure 3.5, the blue colored oval

blocks represent nodes in the graph. These nodes are SLAM maps of

the internal space of a given building structure on the campus. The

orange colored round blocks are also nodes, but they represent point

locations in the global map at which paths between structures

intersect.

 A complete SLAM graph map model as shown in Figure 3.6 will be the

global map representation of the university’s campus as used and

stored internally by the robot.

23

Figure 3.2 - Example SLAM Map

Figure 3.3 – SLAM Map with Information Overlay

24

Figure 3.4 – Multiple SLAM Maps with Information Overlay

Figure 3.5 – SLAM Map with Graph Abstraction

25

Figure 3.6 - SLAM Maps Graph Model

3.2.2 Localization and Navigation Tools

The Localization and Navigation block is responsible for localization, path

planning, and extracting a path from a start point to a destination point

for autonomous navigation (refer to Figure 3.7). Destination points are

received from service application running on top of this framework with

which a user may interact.

 The destination points are simply locations present in the high-level

information map of the campus. This navigation command could be for

instance instructing the robot to move to the “Faculty Intern Office”

assuming its current location is in the “Supervisor’s Office”. The high-

level destination points are therefore, the “Faculty Intern Office” and

the “Supervisor’s Office”.

26

 The destination location will be interpreted from the natural language

form to the corresponding SLAM map coordinates. The interpretation

block will determine if the start and destination coordinates belong to

different local SLAM maps.

 Having identified that, the Global Path planning routine plans the

optimal path between the different nodes of the global map graph. The

global path is made up of a series of points that refer to local SLAM

maps and coordinate points for the intersections.

 Then for each of the local SLAM maps making up a segment in the

global path, a local path is planned.

 The full series of points making up the path from the start to the

destination point will be extracted and a movement routine would be

started.

27

Figure 3.7 – Localization and Navigation Block

3.2.3 Emergency Control Block

During path execution routines to move the robot, the Emergency Control

block ensures that the robot does so in a safe manner (refer to Figure

3.8). This block runs obstacle detection and avoidance routines to keep

the robot from colliding into objects or moving in a way that would harm

the robot.

 The path execution block in this module steps through each of the

points from the extracted planned path.

 Before converting them to movement commands, the Emergency

Control block runs the various checks to determine if the robot is

safe to move.

28

 The emergency routines firsts check the battery state of the Create

base and the laptop placed on the TurtleBot to determine if their

power levels are not below a determined threshold valued.

 If the robot passes the power level check, then the distant object

detection check is run. This check uses values from the Kinect to

identify objects in a defined distant range parameter around the

robot.

 If the distant object detection check is passed, then the close object

detection check is run. This check uses values from the cliff and

bumper sensors to determine if there are unnoticed objects that

have gotten very close to the robot. The bumper sensor would

determine contact with such object. The cliff sensor will on the

other hand determine if the Create base wheels are no longer in

contact with the ground. For instance if the robot is put in a place

where it could fall from, such as a staircase.

 If any of the emergency checks fails, the stop command module

send signals to the actuator drivers to stop the motors of the robot.

The stop command module will also send information to alert the

user of the inability of the robot to continue moving in a safe

manner, until all safety issues are addressed.

 If the emergency checks are all passed, the move command

module converts the next path point the robot needs to go to into a

movement command for the actuator drivers.

 The actuator drivers send the appropriate velocity and power values

to the turn motors via the Create base’s microprocessor.

29

 The robot then localizes itself to know its relation to the objects

around and its new position in the map. The ROS implementation of

Adaptive Monte Carlo Localization (AMCL) will be used. AMCL is a

technique “which uses particle filter to track the pose of the robot

against a know map”. (Foote, 2013)

Figure 3.8 – Emergency Control Block

30

Chapter 4: Implementation and Testing

The precursor to building the proposed context-specific navigation

framework is getting the TurtleBot-ROS platform up and running. Most of

the time for this project therefore was spent in first understanding the

ROS environment and designing the concepts for the system’s

architecture. The features of the proposed system were not implemented

as the TurtleBot was not already set up to a level where it could interact

with the ROS platform. Setting up and determining the right packages

including the list of dependencies from the ROS platform that were needed

for this project was not trivial.

Unfortunately, the tutorial offered by the official ROS.org page was

constantly being edited and the page did not have an exhaustive set of

instructions to follow in fully installing and configuring ROS. The latest

release of ROS; Groovy Galapagos was used for this project. The Groovy

installation was completed by using online help, advice from forums and

wikis and by simply experimenting and learning in the process.7

4.1 Robot Setup

This section covers the procedures used in setting up and configuring the

TurtleBot for the project. Appendix A provides a more technical version of

the setup process. The final robotic setup was a ROS enabled TurtleBot

connected to a workstation computer via an Android WIFI hotspot network

as shown in Figure 4.1.

7
 For the official installation tutorial refer to ros.org/wiki/groovy/installation/Ubuntu

31

Figure 4.1 – TurtleBot Setup over Android WIFI hotspot

4.1.1 Components Used

The final robotic setup was completed using some key components which

are listed below.

 TurtleBot robot set (with a Create base, Kinect sensor, Sensor board

with 250°/sec gyro sensor).

 2 Lenovo T240 ThinkPad laptops (one to run on the TurtleBot and

the other for the workstation).

 An android device to create a WIFI hotspot for the network

communication. A WIFI network using an android device was used

because the wireless network on campus was not stable enough for

constant communication to be maintained between the two laptops

on different parts of the campus.

 1 8GB USB flash drive to create a bootable Ubuntu version for

installation.

4.1.2 Ubuntu 12.04 (Precise)

ROS is a meta-operating system that needs a host Operating System to

run on. The latest version of ROS used for the project had its stable

32

version compatible with Ubuntu only. Thus, Ubuntu had to be downloaded

and installed on the two laptops.

 A ubuntu-12.04.2-desktop-i386.iso file was downloaded from the

official Ubuntu release page (releases.ubuntu.com/precise/).

 Using a “Make Startup Disk” tool on Linux-Ubuntu virtual machine,

a USB bootable flash drive was created from the Ubuntu Precise OS

IOS file.

 On each of the laptop computers to be used in the setup, Ubuntu

Precise was then installed.

 For easy identification of the machine during network activities, the

laptop to be placed on the TurtleBot setup was set to have its

hostname (computer name) as ‘turtlebot’ and the laptop to be used

in instructing the TurtleBot has the hostname ‘workstation’.

 Both machines have the same password to reduce the overhead

cost of constantly remembering and typing passwords for the many

administrative oriented commands required on the two laptops.

4.1.3 Installation of ROS Groovy Galapagos

This section describes the steps used in installing the ROS platform

 The first step was to configure Ubuntu to accept software from

ROS.org by creating a file in the Ubuntu application sources folder

with a reference to packages.ros.org software repository.

 Then the keys used in establishing secure communication between

the laptop and the ROS.org repository was set up.

33

 The Ubuntu repository was updated in order to get the newest

versions of packages and their dependencies.

 The full desktop Groovy package was downloaded and installed.

 A ROS dependency tool was initialized to allow easy installation of

ROS system dependencies.

 The bash environment variables to recognize ROS commands

automatically were setup.

 A python based ROS command line tool was installed.

 A network time protocol tool to synchronize network time for the

wireless communication was downloaded and installed.

 To allow remote access to the terminal of one computer from a

different computer, openssh server was installed.

 To establish a ROS Network, two environment variables are very

important. The ROS_HOSTNAME that refers to the IP address of a

current machine and the ROS_MASTER_URI which refers to the IP

address of the machine acting as the master computer in the

network setup which in this case is the laptop mounted on the

TurtleBot; ‘turtlebot’.

 On the android device a WIFI hotspot was setup and the two

machines were connected to the WIFI network. The IP addresses of

the machines were determined and recorded.

 On the TurtleBot machine (‘turtlebot’), the ROS_HOSTNAME and

ROS_MASTER_URI were set to point to the IP address of ‘turtlebot’.

Setting up of the two variables can be very tedious especially when

using a network that dynamically assigns IP addresses. Appendix C

has a bash script that can be used to simplify the IP setup process.

34

 On the TurtleBot workstation (‘workstation’) also, the

ROS_HOSTNAME was set to point to the IP address of the

‘workstation’ and ROS_MASTER_URI to point to the IP address of

‘turtlebot’.

4.1.4 Physical Setup

 The TurtleBot kit used for this project was already assembled.

However, for assembly instructions refer to TurtleBot manual8.

 On ‘turtlebot’ the power management option was set to prevent

the computer from automatically going to sleep or hibernating.

 The lid of the computer (‘turtlebot’) was closed and placed at the

bottom shelf of the TurtleBot shelf structure.

 The iRobot Create base was then connected to the ‘turtlebot’

computer using the mini-DIN connection cable.

 The Kinect power cable was plugged to the sensor board power

outlet using the Kinect’s MicroFit connection plug.

 And finally the Kinect data USB cable is connected to ‘turtlebot’

computer on a USB 2.0 port.

8
 TurtleBot assembly instructions can also be found on makezine.com.

http://blog.makezine.com/projects/assemble-a-turtlebot/

http://blog.makezine.com/projects/assemble-a-turtlebot/

35

4.2 Reconfiguration of ROS System Files

ROS is built in a generic way to support a variety of robot hardware and

thus some files have pre-defined values for certain default hardware

variables. These values needed to be changed to reflect the particular

hardware types that were used in the project. Refer to Appendix B for a

more technical document on how to reconfigure ROS system files.

4.2.1 Minimal File

There is a “minimal.launch” file belonging to the “turtlebot_bringup”

package for ROS which contains details about all the hardware options

that can be connected to a TurtleBot. It has parameters to specify the

values for the TurtleBot base, the battery pack, 3D sensor etc. The default

values of these parameters were changed to reflect the TurtleBot model

being used.

4.2.2 TurtleBot Dashboard File

A “turtlebot_dashboard.launch” file belonging to the ROS visualization

package tools; “turtlebot_viz” package was also edited. This file contains

details about all the hardware components that are visualized from the

“workstation” as the TurtleBot is up and running.

4.2.3 TurtleBot Node File

In the “turtlebot_node.py” file, the values of several parameters were

changed to accommodate the stable and tested version of the

“turtlebot_create” ROS Groovy packages. The default values that the

variables had were from an integrated ROS package for various TurtleBot

36

bases that had not been fully tested and finally released at the time the

system was being set up for this project.

4.2.4 Create Sensor Handler File

The “create_sensor_handler.py” file for “turtlebot_create” ROS Groovy

packages has values of parameters that have been set to handle data

output from the TurtleBot’s sensor pack. Some of these parameters were

modified to refer to the appropriate sensor packs available on the

TurtleBot kit available for this project.

4.2.5 Python KDL Error Fix

Kinematics and Dynamics Library (KDL) is a library that contains a set of

functions that provide an “independent framework for the modeling and

computation of kinematic chains for robots, biomechanical human models,

computer-animated figures, machine tools, etc.” (Kinematics and

Dynamics Library). This library makes it easy to specify various kinematics

chains, motions and interpolation of geometrical objects (Kinematics and

Dynamics Library). Unfortunately, the ROS Groovy that was used in this

project came with a bug in the Python edition of the KDL library. The ROS

foundation however, provided a separate package as a fix to this issue.

This was downloaded separately and installed to fix the bug.

37

4.3 Testing

After setting up the ROS-TurtleBot system, tests were conducted to

ensure that the system was correctly set up and that the ROS packages

needed for the framework was functioning correctly. Basically, the tests

entailed running the necessary ROS commands to start the ROS packages

and assessing their values.

4.3.1 Network Connection

Ubuntu terminal ping tool was used to determine if a connection existed

between the two machines over the network. The ROS_HOSTNAME and

ROS_MASTER_URI were determined to be pointing to the right IP

addresses by echoing them out in the terminal. And also, communication

between the ROS environment was tested by using the ROS

communication tool ROSTOPIC.

4.3.2 System Recognition

A ROS implemented dashboard tool was used to check if the ROS

environment recognized the various hardware and software components

in the setup, the dashboard tool was used. As illustrated in the screenshot

below (Figure 4.2), the dashboard recorded “OK” for the various devices

connected to the ROS platform.

38

Figure 4.2 – Dashboard View of the TurtleBot System

4.3.3 Vision

For vision, the Kinect kit was activated from ROS to view the data the

motion sensor kit was dealing with. In order to verify the depth sensing

capabilities of the kit, the TurtleBot was placed in front of a group of

working benches and chairs in some part of the computer lab in the

university. The first image (Figure 4.3) is a RGB color image of the section

lab. Figure 4.4 represents a mono chromatic image of the same view of

the lab.

39

Figure 4.3 – Color Image of Section of Computer Lab

Figure 4.4 – Monochrome Image of Section of Computer Lab

4.3.4 Visualization

The Kinect kit depth sensing capabilities was also tested from the ROS

environment. The first image (Figure 4.5) is a depth image of the same

section of the lab, where different colors are used to represent objects at

different distances from the camera. Color shades from Red to Orange are

used to indicate objects in close proximity to the robot. Color ranges from

Yellow through Green to Blue and Violet represent objects in order of

increasing distance to the robot. On the other hand, the depth image in

40

Figure 4.6 uses a different variation of gray to represent depth. The

darker the shade of gray, the closer an object is while the lighter the

shade, the further away an object is.

Using a ROS visualization tool, the robot was viewed in a 3D space where

the various depth images were visualized as a Point Cloud image. As

shown in Figure 4.7, a model of the robot is placed in a 3D environment

with the objects in the robots view represented as a 3D image. In the

visualization tool, the 3D images (Point Cloud) can be interacted with in

the 3D environment.

Figure 4.5 – Color Depth Image of Section of Computer Lab

Figure 4.6 - Monochrome Depth Image of Section of Computer Lab

41

Figure 4.7 – 3D Point Cloud Visualization Image of Section of Computer Lab

4.4 Challenges

Many challenges were encountered in this project but most of these

challenges can be summed up into two main categories. These setbacks

significantly increased the time used in setting up the robotic system and

were quite frankly terribly frustrating.

 Firstly, the project dealt with new technology that had never been

used before at Ashesi prior to the project. The TurtleBot kit, the

ROS and Ubuntu system were unfamiliar systems that needed a

certain level of expertise to use.

 Secondly, there was not sufficient documentation from the ROS

website to use as reference. The ROS official page, as mentioned

earlier had the information on the page constantly changing. And

generally there was not enough information available online to refer

to when faced with errors. Many questions also posted on various

ROS forums rarely had helpful answers.

42

Chapter 5: Conclusion and Future Work

This paper described the procedures used in successfully bringing up

TurtleBot and ROS to a workable level where the implementation of the

customized navigation framework modules can begin. Key ROS

dependencies needed for the framework have been tested and found to be

functioning properly. Also, concepts of the systems architecture have also

being designed, with comprehensive descriptions detailing the

functionalities of key modules and relationships existing between them.

Detailed instructions on how to set up the TurtleBot ROS system have

been documented.

However, more work needs to be done to get this framework to its final

state. Work to be done in the future includes;

 Calibrating the gyro sensor for the TurtleBot. Calibration is a very

important step to improve the performance of any navigation

application by enhancing the quality of feedback given to the

system.

 Installing the newly released Java libraries to continue future

development in Java which is a relatively simpler environment to

work with, as compared to C++, Python, and Bash scripting. For

instance, all the main components to be developed for this

framework can be done in the Java language.

 Developing the code for the three main components of the

proposed navigation framework.

43

On a concluding note, this project has been a successful one with a great

learning curve. Ashesi University College’s goal to experiment with service

robotics is in its learning stages and has great prospects for the future.

44

References

Ackerman, E. (2011,March 07). Top 10 Robotic Kinect Hacks. Retrieved

March 14, 2013 from IEEE Spectrum Automaton:

http://spectrum.ieee.org/automaton/robotics/diy/top-10-robotic-

kinect-hacks

Afram, K. A. (2012). Prototyping An Autonomous Mobile Robot Capable of

Giving A Tour of Parts of the Ashesi Campus. Applied Project, 1-40.

Burgard, W., Cremers, A. B., Fox, D., Hähnel, D., Lakemeyer, G., Schulz,

D., . . . Thrun, S. (1999). Experiences With An Interactive Museum

Tour-Guide Robot. Artificial Intelligence, 3-55.

Dieter Fox, W. B. (1999). Markov Localization for Mobile Robots in

Dynamic Environments. Journal of Artificial Intelligence Research,

242-246.

Foote, T. (2013, February 22). ROS.org. Retrieved January 17, 2013 from

http://www.ros.org

Foxy, D., Burgardy, W., & Thrun, S. (1997). The Dynamic Window

Approach to Collision Avoidance. Robotics & Automation Magazine,

IEEE, 23-33.

Fradj, J. (2011, September 29). Introduction to A* Pathfinding. Retrieved

from raywenderlich.com:

http://www.raywenderlich.com/4946/introduction-to-a-pathfinding

Keat, H. W., & Ming, L. S. (2012). An Investigation of The Use of Kinect

Sensor For Indoor Navigation. TENCON 2012 - 2012 IEEE Region 10

Conference, 1-5.

Kim, G., Chung, W., Kim, K. R., Kim, M., Han, S., & Shinn, R. (2004). The

Autonomous Tour-Guide Robot Jinny. Intelligent Robots and

Systems, 3450-3455.

Kinematics and Dynamics Library. (n.d.). Retrieved March 27, 2013 from

Open Robot Control Software Project: http://www.orocos.org/kdl

Quigley, M., Conley, K., Gerkey, B. P., Faust, J., Foote, T., Leibs, J., . . .

Ng, A. Y. (2009). ROS: An Open-Source Robot Operating System.

ICRA Workshop on Open Source Software.

Roy, N., Burgard, W., Fox, D., & Thrun, S. (1998). Coastal Navigation -

Robot Motion with Uncertainty. In AAAI Fall Symposium: Planning

with POMDPs (pp. 135-140). AAAI.

45

Ruhland, R. (2012, June 19). Getting Started with ROS (Robotic

Operating System). Retrieved March 09, 2013, from Instructable:

http://www.instructables.com/id/Getting-Started-with-ROS-

Robotic-Operating-Syste/?ALLSTEPS

Rusu, R. B., Gerkey, B., & Beetz, M. (2008, July 03). Robots In The

Kitchen: Exploiting Ubiquitous Sensing And Actuation. Robotics and

Autonomous Systems, pp. 844–856.

Thrun, S., Bennewitz, M., Burgard, W., Cremers, A., Dellaert, F., Fox, D., .

. . Schulz, D. (1999). MINERVA: A Second-Generation Museum

Tour-Guide Robot. Robotics and Automation, 1999-2005.

46

Appendix

A. Robot Setup Design

Below are the procedures followed in the setting up, installing and

configuring of TurtleBot. ROS version Groovy Galapagos as at 25th of

March, 2013 was used to ROS-enable TurtleBot.

A.1 Components Used

 TurtleBot compatible robot set (with a Create base, Kinect sensor,

sensor Board with 250°/sec gyro sensor)

 2 Lenovo T240 ThinkPad laptop computers

 Each laptop with Intel Core i5 processor @ 2.40GHz

 An android device to create a WIFI hotspot

 1 8GB USB flash drive

A.2 Downloading Ubuntu 12.04 (Precise)

 On the official Ubuntu release page (releases.ubuntu.com/precise/)

and at the bottom of the page there is a list of different

Ubuntu12.04 release with release options for AMD/Intel processors

and 32/64bit systems.

 Click to download ubuntu-12.04.2-desktop-i386.iso file.

A.3 Ubuntu Bootable Flash Drive

 The flash drive is then connected to a Linux-Ubuntu virtual machine

running on a Windows OS host.

 The Ubuntu Precise OS is copied to the virtual machine and using

the “Make Startup Disk” tool provided by Ubuntu, the Ubuntu

47

Precise OS IOS file is mounted unto the flash drive and a USB

bootable flash drive is created.

 Alternatively, Universal USB Installer for Windows from

pendrivelinex.com can be downloaded and used in creating the

bootable flash drive.

 The download link is http://www.pendrivelinux.com/downloads/

Universal-USB-Installer/Universal-USB-Installer-1.9.0.1.exe

A.4 Installation of Ubuntu Precise

 On each of the laptop computers to be used in the setup, Ubuntu

Precise is then installed.

 The laptop to be placed on the TurtleBot setup has the hostname

(computer name) as ‘turtlebot’ and the laptop to be used in

instructing the TurtleBot has the hostname ‘workstation’.

 Both machines have the same password to reduce the overhead

cost of constantly remembering and typing passwords for the many

administrative oriented commands required on the two laptops.

A.5 Installation of ROS Groovy Galapagos

Below is the procedure follow to install and configure ROS . For the official

installation tutorial refer to ros.org/wiki/groovy/installation/Ubuntu

 First setup Ubuntu to accept software from ROS.org by creating a

file in the Ubuntu application sources folder with a reference to

packages.ros.org software repository. This can be done with the

command below in the Ubuntu terminal.

http://www.pendrivelinux.com/downloads/

48

o sudo sh –c ‘echo “deb http://packages.ros.org/ros/ubuntu

precise main” > /etc/apt/sources.list.d/ros-latest.list’

 Set up the keys used in establishing secure communication between

the laptop and the ROS.org repository.

o wget http://packages.ros.org/ros.key -O - | sudo apt-key add

–

 Update the Ubuntu repository and update to get the newest

versions of packages and their dependencies.

o sudo apt-get update

 Download and install the full desktop Groovy package.

o sudo apt-get install ros-groovy-desktop-full

 Initialize a tool to allow easy installation of ROS system

dependencies.

o sudo rosdep init

o rosdep update

 Setup the bash environment variables to recognize ROS commands

automatically.

o echo “source /opt/ros/groovy/setup.bash” >> ~/.bashrc

o source ~/.bashrc

 Install a python based ROS command line tool.

o sudo apt-get install python-rosinstall

 Install network time protocol tool to synchronize network time for

the wireless communication.

o sudo apt-get install chrony

o sudo ntpdate ntp.ubuntu.com

http://packages.ros.org/ros/ubuntu
http://packages.ros.org/ros.key

49

 Install openssh server to allow remote access to the terminal of one

computer from a different computer.

o sudo apt-get install openssh-server

 To establish a ROS Network, two environment variables are very

important; the ROS_HOSTNAME that refers to the IP address of a

current machine and the ROS_MASTER_URI which refers to the IP

address of the machine acting as the master computer. In this

network setup the laptop mounted on the TurtleBot; ‘turtlebot’ is

the master.

 On the android device set up WIFI hotspot and connect the two

machines to the network.

 The IP addresses of the two machines need to be determined and

recorded.

o ifconfig

 On the TurtleBot machine ‘turtlebot’, set up the ROS_HOSTNAME

and ROS_MASTER_URI to point to the IP address of the computer.

o sed -i '/ROS_MASTER_URI=/ d' ~/.bashrc

o sed -i '/ROS_HOSTNAME=/ d' ~/.bashrc

o echo export ROS_MASTER_URI=http://IP_OF_TURTLEBOT:11311 >>

~/.bashrc

o echo export ROS_HOSTNAME=IP_OF_TURTLEBOT >> ~/.bashrc

o source ~/.bashrc

 On the ‘workstation’ machine, setup ROS_HOSTNAME to point to

the IP address of the computer and ROS_MASTER_URI to point to

the IP address of ‘turtlebot’.

o sed -i '/ROS_MASTER_URI=/ d' ~/.bashrc

50

o sed -i '/ROS_HOSTNAME=/ d' ~/.bashrc

o echo export ROS_MASTER_URI=http://IP_OF_TURTLEBOT:11311 >>

~/.bashrc

o echo export ROS_HOSTNAME=IP_OF_WORKSTATION >> ~/.bashrc

o sed -i '/ROS_MASTER_URI=/ d'/opt/ros/groovy/setup.sh

o sudo sed -i '/ROS_HOSTNAME=/ d'/opt/ros/groovy/ setup.sh

o sudo echo "export

ROS_MASTER_URI=http://IP_OF_WORKSTATION:11311" >>

/opt/ros/groovy/setup.sh

o sudo echo "export ROS_HOSTNAME=IP_OF_TURTLEBOT" >>

/opt/ros/groovy/setup.sh

o source ~/.bashrc

 Refer to Appendix C for simple bash script that can be used to

simplify that assignment of values to the ROS_MASTER_URI and

ROS_HOSTNAME variables.

 Verify that the values of the environment variables of the two

machines have the correct IP addresses assigned to them.

o echo $ROS_HOSTNAME

o echo $ROS__MASTER_URI

A.6 Physical Setup

 Assemble the TurtleBot kit if it isn’t already assembled. Refer to

TurtleBot manual for assembly instructions9.

 On ‘turtlebot’ set the power management option to prevent the

computer from automatically going to sleep or hibernating.

9
 TurtleBot assembly instructions can also be found on makezine.com.

http://blog.makezine.com/projects/assemble-a-turtlebot/

http://blog.makezine.com/projects/assemble-a-turtlebot/

51

 Close the lid of the computer and place it at the bottom shelve of

the TurtleBot robot stack of shelves.

 Connect the iRobot create base to the ‘turtlebot’ computer using

the mini-DIN connection cable.

 Plug the Kinect power cable to the sensor board power MicroFit

connection.

 Plug the Kinect data USB cable to ‘turtlebot’ computer on a USB

2.0 port.

B. Reconfiguration of ROS System Files

ROS is built in a generic way to support a variety of robot hardware and

thus some files have pre-defined values for certain default hardware

variables. These values were changed to reflect the particular hardware

types that are was used in the project.

B.1 Minimal File

There is a “minimal.launch” file belonging to the “turtlebot_bringup”

package for ROS in this path: “/opt/ros/groovy/stacks/turtlebot/turtlebot

_bringup/launch”. This file contains details about all the hardware options

that can be connected to a TurtleBot. It has parameters to specify the

values for the TurtleBot base, the battery pack, 3D sensor etc.

 If the “turtlebot_bringup” package directory does not exist,

download from packages.ros.org.

o sudo apt-get install ros-groovy-turtlebot-bringup

 Using administrative privileges the “minimal.launch” file on the

“turtlebot” machine can be opened in the gedit text editor.

52

o sudo gedit /opt/ros/groovy/stacks/turtle/turtlebot_

bringup/launch/minimal.launch

 For this project the value of the following arguments in the

minimal.launch file need to be changed to the values below.

o <arg name=”base” value=”$(optenv TURTLEBOT_BASE

create)”/>

o <arg name=”battery” value=”$(optenv TURTLEBOT_

BATTERY /proc/acpi/battery/BAT0)”/>

o <arg name=”stacks” value=”$(optenv TURTLEBOT_

STACKS circles)”/>

o <arg name=”3d_sensor” value=”$(optenv TURTLEBOT_

3D_SENSOR kinect)”/>

o <arg name=”simulation” value=”$(optenv TURTLEBOT_

SIMULATION false)”/>

B.2 TurtleBot Dashboard File

There is a “turtlebot_dashboard.launch” belonging to the TurtleBot

visualization package tools; “turtlebot_viz” package in this path:

“/opt/ros/groovy/stacks/turtlebot_viz/turtlebot_dashboard_launchers/

launch”. This file contains details about all the hardware components that

are visualized from the “workstation” as the TurtleBot is up and running.

 If the “turtlebot_viz” package directory does not exist, download

from packages.ros.org.

o sudo apt-get install ros-groovy-turtlebot-viz

53

 Using administrative privileges the “turtlebot_dashboard.launch”

files on both the “turtlebot” and “workstation” machine can be

opened in the gedit text editor.

o sudo gedit /opt/ros/groovy/stacks/turtlebot_viz/turt

lebot_dashboard_launchers/turtlebot_dashboard.launch

 Then the TurtleBot base argument value is changed to “create”.

o <arg name=”base” value=”$(optenv TURTLEBOT_BASE

create)”/>

B.3 TurtleBot Node File

In the “turtlebot_node.py” file under “/opt/ros/groovy/turtlebot_create/

create_node/nodes/” directory, the values of several parameter should

changed to accommodate the stable and tested version of the

“turtlebot_create” ROS Groovy packages. The default values that the

variables had, were from an integrated ROS package for various TurtleBot

bases that had not been fully tested and finally released at the time of the

project.

 If the “turtlebot_create” package directory does not exist, download

from packages.ros.org.

o sudo apt-get install ros-groovy-turtlebot-create

 Using administrative privileges the “turtlebot_dashboard.launch”

files on both the “turtlebot” and “workstation” machine can opened

in the gedit text editor.

o sudo gedit /opt/ros/groovy/stacks/turtlebot_create

/create_node/nodes/turtlebot_node.py

54

 Line 56 of the file should be changed by replacing “roslib.rosenv”

with “rospkg” so that it reads the following below.

o import rospkg

 Line 65 of the file should also be changed by replacing

“turtlebot_driver” with “create_driver” so that it reads the following

below.

o from create_driver import TurtleBot,MAX_WHEEL_SPEED,

DriverError

 Line 509 of the file is also changed by replacing “roslib.rosenv” to

“rospkg” so that it reads the following below.

o def connected_file(): return os.path.join(rospkg.get

_ros_home(), ‘turtlebot-connected’)

B.4 Create Sensor Handler File

The “create_sensor_handler.py” file under “/opt/ros/groovy/turtlebot_

create/create_node/src/create_node/” directory has values of several

parameter that have been set to handle data output from the TurtleBot’s

sensor pack.

 If the “turtlebot_create” package directory does not exist, download

from packages.ros.org

o sudo apt-get install ros-groovy-turtlebot-create

 Using administrative privileges the “turtlebot_dashboard.launch”

files on both the “turtlebot” and “workstation” machine can be

opened in the gedit text editor.

o sudo gedit /opt/ros/groovy/stacks/turtlebot_create/

create_node/src/create_node/create_sensor_handler.py

55

 Line 40 of the file is changed by replacing “turtlebot_driver” with

“create_driver” so that it reads the following below.

o from create_driver import SENSOR_GROUP_PACKET _LENGTHS

B.5 Python KDL Error Fix

Kinematics and Dynamics Library (KDL) contains a set of functions that

provide an “independent framework for the modeling and computation of

kinematic chains, for robots, biomechanical human models, computer-

animated figures, machine tools, etc” (Kinematics and Dynamics Library).

This library makes it easy to specify various kinematics chains, motions

and interpolation of geometrical objects (Kinematics and Dynamics

Library). Unfortunately, the ROS Groovy that was used in this project

came with a bug in the Python edition of the KDL library. The ROS

foundation however, provided a separate package as a fix to this issue.

 The Python version of the KDL library was downloaded from

packages.ros.org

o sudo apt-get install ros-groovy-python-orocos-kdl

C. Network Bash Script

This section has the code for a simply script that could be run to simply

the procedure for changing the IP address values for ROS_MASTER_URI

and ROS_HOSTNAME of two the laptops used in this project with the

hostname ‘turtle’ and ‘workstation’. The code can be copied and saved

into a text file with the extension “.sh”. The file should then be converted

to an executable using the CHMOD terminal command before using.

56

#!/bin/bash

hosttype=`hostname`

echo "Hostname of this machine is $hosttype"

if [$hosttype = turtlebot]

 then

 read -p "Enter the ip-address of the turtlebot CLIENT

machine : " master_uri

 sed -i '/ROS_MASTER_URI=/ d' ~/.bashrc

 echo "export ROS_MASTER_URI=http://$master_uri:11311" >>

~/.bashrc

 sed -i '/ROS_HOSTNAME=/ d' ~/.bashrc

 echo "export ROS_HOSTNAME=$master_uri" >> ~/.bashrc

 else

 read -p "Enter the ip-address of the turtlebot CLIENT

machine : " master_uri

 sed -i '/ROS_MASTER_URI=/ d' ~/.bashrc

 echo "export ROS_MASTER_URI=http://$master_uri:11311" >>

~/.bashrc

 read -p "Enter the ipaddress of the turtlebot WORKSTATION

machine : " theHostname

 sed -i '/ROS_HOSTNAME=/ d' ~/.bashrc

57

 echo "export ROS_HOSTNAME=$theHostname" >> ~/.bashrc

 sudo sed -i '/ROS_MASTER_URI=/ d'/opt/ros/groovy/setup.sh

 sudo sh -c 'echo "export ROS_MASTER_URI=http://'$master

_uri:11311'" >> /opt/ros/groovy/setup.sh'

 sudo sed -i '/ROS_HOSTNAME=/ d' /opt/ros/groovy/setup.sh

 sudo sh -c 'echo "export ROS_HOSTNAME='$theHostname'" >>

/opt/ros/groovy/setup.sh'

fi

echo "Done"

