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Abstract  

Ashesi University College recently acquired a TurtleBot1 robotic 

platform to experiment with service robotics on campus. This 

platform runs the Robotics Operating System (ROS)2 for developing 

robotics applications. This MOLAM project (Motion, Localization And 

Mapping) sought to build a fundamental framework that extends 

ROS functionalities on a TurtleBot to navigate autonomously around 

the Ashesi campus in Berekuso. 

The focus of this project was to extend the ROS enabled 

functionalities on the TurtleBot for mapping, localization and motion 

planning to create a customized navigation framework suited for the 

Ashesi University campus. Having such a foundation, other service 

applications, such as a waiter robotic system, a courier robotic 

system, a tour guide robotic system etc., can be built on this 

framework. 

This paper outlines the various tools and processes used in 

assembling and configuring this robotic system. It also delineates 

the challenges encountered in assembling and configuring this 

robotics system, as well as the “work-arounds” devised to solve 

these challenges. Finally, this paper proposes design concepts for 

future work in using the TurtleBot system as a Tour Guide Robotic 

System for Ashesi University College.  

                                                           
1
 http://turtlebot.com/ 

2
 http://ros.org/ 

http://turtlebot.com/
http://ros.org/
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Chapter 1: Introduction 

1.1 Introduction 

The MOLAM project is a robotics research project that is aimed at 

implementing a navigation framework for a TurtleBot (a research robot) 

that was acquired for this project. This framework will be built on ROS, a 

meta-operating system that “provides libraries and tools to help software 

developers create robot applications” (Foote, 2013). The first application 

of this framework will be to integrate it into a robotic tour guide system 

for Ashesi University College’s new campus at Berekuso. This robotic tour 

guide would relieve secretaries of the extra role they play in giving visitors 

a tour of the new campus. It would also give visitors a unique robotics 

experience.  

This project is therefore focused on configuring the TurtleBot and 

extending its navigation functionalities to suit the context of an Ashesi 

environment. The framework to be developed will result in a very robust 

robotic infrastructure that is capable of accurate mapping and path 

planning using higher level information such as the actual names of offices 

and building structures on the campus. Moreover, this infrastructure 

should be an independent module with easy integrability into future 

robotics projects that would require a locomotion and navigation system. 

The main focus areas of the project which will forge the core underlying 

functionalities of this framework would be MAPPING, LOCALIZATION and 

MOTION PLANNING; which are also the inspiration behind the name of the 

project MOLAM (MO-tion panning, L-ocalization A-nd M-apping).  
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It must be noted that a similar project was undertaken in 2012 by a 

student; Kwame Afram to build a tour guide system for Ashesi using the 

Lego NXT robot kit (Afram, 2012). However, due to the size, sensor 

limitation and limited navigation capabilities of the Lego NXT robot, the 

TurtleBot is more suited for campus-scale navigation.  

1.2 Objectives 

 This section describes the goals of this project in developing the context-

specific navigation framework. These goals were considered by relating 

the functionalities of the proposed navigation framework to the existing 

capabilities of the ROS-TurtleBot platform.  

1.2.1 Setting Up ROS-TurtleBot 

The robotics technologies (i.e. both the TurtleBot and the ROS platform) 

obtained for this project are entirely new to the university. The first focus 

of this project will be to configure these systems to a working level that 

will allow robotics application to be developed on it. A major part of this 

project will be to ensure that the ROS-TurtleBot is correctly setup for 

future robotics development. 

1.2.2 Mapping 

The fundamental concept of robotic mapping is that for a given 

environment, a robot should be able to use the available on board sensors 

it has to gather data about its environment and translate that data into a 

map model. The map model should accurately represent the environment 

with the necessary information to identify the various objects present. 

ROS has a mapping tool that is capable of a generating a map model of an 
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environment that represents obstacles and free space around the robot. 

This framework seeks to extend this map model by overlaying it with 

actual structural information of the campus to give users a human level 

interpretation of the map. With the university’s plans to extend the 

campus, the robot should be able to build a new map from scratch, modify 

an existing map to accommodate changes in the environment, and repair 

parts of the map if broken.  

1.2.3 Localization 

Localization is a concept that focuses on the ability of a robot to determine 

its current position in a given map, based on the information it has from 

its environment and the map. Localization can prove to be challenge in 

the sense that, if the robot has an ever changing map or environment, 

knowing exactly where it is at any point in time could be difficult. The 

concept of Simultaneous Localization and Mapping (SLAM) solves this 

challenge using various techniques. SLAM is the process of building a map 

of an unknown environment while simultaneously determining the location 

of the robot in the map. The localization challenge can also be addressed 

by having artificial landmarks help the robot determine where it is by 

embedding information in data technologies like RFID tags and QR-Codes 

in the environment (Rusu, Gerkey, & Beetz, 2008). This project will focus 

on using a SLAM GMapping3 technique implemented by ROS in its 

localization mechanism. Pinpointing the location of the robot will be done 

on two levels. The first level will be using the location coordinates as 

represented internally by the robot’s map model and the second level will 

                                                           
3
 http://www.openslam.org/gmapping.html 

http://www.openslam.org/gmapping.html
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be a high-level representation for a user to understand. For instance the 

coordinate point (123,432) may be interpreted and represented as a point 

in the Ashesi Library.  A translation interface will therefore be needed to 

convert between the two locations representations. 

1.2.4 Motion Planning 

Given a map and the current position of the robot; the robot should be 

able to generate a sequence of points (a path) in the map that will lead it 

to a desired destination point. The path should be feasible for the robot to 

traverse (if some parts of the environments have staircases the robot 

should avoid them) and optimal in terms of determining the shortest (or 

most cost effective) path to use. Consequently, the motion planning 

mechanism of this framework should allow a robot adequately 

acknowledge the presence of other objects in the robots environment and 

respond appropriately to them. That is, the robot should not collide with 

moving objects in its environment and if any object blocks the path of the 

robot, a new alternative path should be generated to get the robot to the 

destination location. Also, since the proposed navigation framework will be 

providing high-level information map, path planning will occur at both 

high-level locations on the information map and low-level coordinates on 

the robot’s internal map models.  

1.2.5 Developer API  

The project will provide technical documentation so that developers 

interested in building upon this framework, can easily interface it with 

their work. This documentation or Application Programming Interface 

(API) will be a software application interface of the navigational and 
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locomotion functionalities this framework provides, that can be used in 

building higher level robotics applications. The API will conceal the 

complexities entailed in implementing the functionalities and provide only 

the necessary interface to allow seamless integration. 

1.2.6 Visualization Tool 

Apart from the API, this project will also develop a friendly user interface 

to allow easy interaction with the framework itself. The data and modeling 

done internally in the robots are largely represented by several numeric 

values that seem to make no sense. The interface to be created will be 

more of a data visualization tool that will provide a graphical 

representation of the internal data processes. With this tool, higher level 

interpretation and analysis can be done concerning the functioning of the 

framework. 

1.2.7 Additional Documentation 

This project will add to the knowledge base and the current reference 

materials in the robotics field especially in the areas concerning navigation 

using SLAM techniques. The project will make available the necessary 

documentation on research procedures, solution concepts, challenges, 

“work-round’s” and results of experimentations carried out throughout the 

project to serve as guiding principles to any other interested researcher.  

1.3 Scope 

As outlined in the Objectives section above, the goal of this project is not 

to build a robot from scratch. Rather the aim is to assemble and configure 

the TurtleBot to use the ROS framework. Having done that, the project 
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will also utilize the functionalities provided by the ROS framework to 

create a non technical user friendly interface which obscures the technical 

details of the framework. Nonetheless, this interface should extend the 

ROS functionality to be well suited for the Ashesi University College 

campus in terms of the representation and interpretation of the various 

map data models. This project will not concern itself with the Human 

Robotic Interaction needed for a successful robotic tour guide system, but 

will provide the interface and tools as permitted by the ROS framework to 

develop application systems not limited to only a tour guide system. 

1.4 Motivation 

This project is inspired by the author’s interest in current trends in the 

robotics industry which is shifting the traditional understanding and 

implementation of robots to a more complex frontier. The first 

generational understanding and usage of robots identified robots as 

automated machines installed in well-defined and controlled environments 

like factories where they had little or no interaction with dynamic objects 

(like humans or other robots) in the environment. Currently, the field of 

robotics is moving these machines from their own world into a more 

complicated world, where it is necessary to appreciate and respond 

appropriately to the interactive and dynamic nature of the environment 

and the objects within it. In this liberating yet complex environment, 

robotics research is pushing the limits to the kind and quality of assistance 

a machine could offer to the human society. Having said that, the great 

capabilities of new generational robots rely on an essential piece, which is 

their ability to move around in a sufficiently autonomous, safe and 
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intelligent manner. This exciting yet computationally intense design 

required to have such an intelligent system, stirred up passions to embark 

on this project with the aim of having a sense of accomplishment and 

satisfaction while making a little contribution to the robotics society. 
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Chapter 2: Background 

This chapter describes the technology used in this project and summarizes 

other related works. The robotics projects looked at in this chapter were 

related to navigation using the Kinect sensor kit and to public area service 

robots specifically, a tour guide museum robot.  

2.1 Technology 

2.1.1 TurtleBot  

TurtleBot4 is a robot kit product from Willow Garage5 that is built from 

various hardware components for cheap personal robotic applications. This 

robotic kit offers a simple and easy-to-use system suited for robotic 

research projects. The TurtleBot is made up from off-the-shelve electronic 

hardware pieces which include: 

 iRobot Create  

 Mounting structure 

 Microsoft Kinect kit 

 Sensor board  

 Netbook computer 

2.1.1.1 iRobot Create  

iRobot Create is a robotic hardware platform manufactured by iRobot 

Corporation. This platform is modeled after the Roomba domestic vacuum 

                                                           
4
 http://turtlebot.com/ 

5
 http://www.willowgarage.com/ 

http://turtlebot.com/
http://www.willowgarage.com/
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cleaning robot (Figure 2.1).  The Create platform does not come with the 

vacuum cleaner hardware but rather an empty space to serve as a cargo 

bar with a serial pin port for digital and analog input and output devices. 

The Create was specifically designed to support various robotic hardware 

accessories needed in robotics research developments. 

The Create is a differential drive robot (that is a robot with two powered 

wheels) with a third point of contact and an optional fourth wheel for 

stability. The Create base has an Omni-directional Infrared receiver, a 

Mini-DIN port, a cargo bar for robot hardware accessories and a charging 

port. The Create also has cliff sensors to detect if the robot wheels are in 

contact with the ground or not and bumper sensors to detect collision with 

solid objects. The Create base also comes with a Mini-DIN connector cable 

to connect the hardware platform to a computer.  

 

Figure 2.1 - iRobot Create Base 

2.1.1.2 Mounting Structure 

The TurtleBot has a set of laser cut plates and set of custom made 

standoff kit frames (Figure 2.2). These are fitted together to form a 

shelve-like structure to hold the Kinect kit, the Netbook computer and 

other hardware accessories. 
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Figure 2.2 - TurtleBot Mounting Structures 

2.1.1.3 Microsoft Kinect Kit 

Microsoft in 2010 released a 3D motion sensor input device for the 

Microsoft Xbox 360 game console; the Kinect Kit (Figure 2.3). This kit has 

 A RGB color camera 

 An Infrared laser projector 

 An Infrared laser sensor 

 An array of microphones and 

 A motorized pivot base. 

This kit works by using an infrared projector to throw an infrared laser 

pattern on the objects in its view and the infrared laser “sensor picks up 

the laser to determine the distance of each pixel” (Ackerman, 2011). 

Overlaying the depth sensor values of the images from the RGB camera 

gives an RGBD (RGB-Distance) image that can “map out body gestures, 

positions, motions and generate 3D maps” (Ackerman, 2011). 

The Xbox peripheral has not only been embraced by the gaming 

community but by many robotics hobbyists, who have turned the device 

into a desirable robotics sensor kit. With the relatively cheap price and 
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great sensing capabilities, the Kinect has become the primary sensor kit 

for many TurtleBot robotics projects. 

 

Figure 2.3 – Microsoft Kinect Kit 

2.1.1.4 Sensor Board 

The TurtleBot’s main external electronic board is a power and sensor 

circuit board with a Gyro (Figure 2.4). This board fits into the Create 

base’s serial pin port to supply power to the Kinect and sensor information 

from the Gyro to a computer. The board provides a regulated 12V supply 

to power the Kinect Kit and a single axis gyro that can measure yaw rate 

up to 250 degrees/second. 

 

Figure 2.4 – TurtleBot Sensor/Power Board 

2.1.1.5 Netbook Computer 

The TurtleBot uses a computer to process most of the computational 

requirements of the robotic system. Though the Create base has a 
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processor, a computer provides higher and faster computational 

capabilities required in handling the various data sets from the sensors. 

The computers used by the TurtleBot are Netbook computer because they 

have a desirably small size. However, any laptop computer that is small 

enough to fit into the bottom shelf of the TurtleBot shelf structure can be 

used. For instance a Lenovo T240 ThinkPad laptop was used for this 

project. The minimum hardware specifications of the needed computer are 

listed as follows: 

 2GB DDR3 memory 

 Dual core processor (at least 1.8GHz) 

 WLAN 802.11b/g/n (@ 2.4GHz) 

 2 USB port (with at least a USB port 2.0 for the Kinect) 

 250GB storage  
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2.1.2 Robotic Operating System (ROS) 

The complexity of writing software for robots has led to the development 

of several robotics software frameworks of which ROS is an example. ROS 

implements the fundamental operations of an Operating System (OS) by 

managing hardware resources of a robotics system but it does not handle 

the scheduling and management of processes. Since ROS is installed and 

run on a host OS, the host OS handles the process management 

requirements. ROS was developed by Willow Garage to achieve certain 

design goals in a robotics framework which include supporting a peer-to-

peer network structure, allowing development using multi programming 

languages, being thin (i.e. having standalone libraries that are 

independent of ROS), having several tools to accomplish tasks, and being 

open source (Quigley, et al., 2009). 

ROS connects robot hardware to software to create an advance 

programming environment by providing services for hardware abstraction, 

low-level device control, implementation of commonly-used functionality, 

message-passing between processes, and package management 

(Ruhland, 2012). With a framework like ROS, robotics researchers only 

need to focus on higher-level manipulation of robots and thus are able 

build complex systems faster.  
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2.2 Related Work  

2.2.1 NXT-Kinect-SLAM 

Recent work that is similar to the MOLAM project is an implementation of 

a navigation system for an indoor mobile robot using the NXT robotics kit 

and a Kinect. The paper An Investigation of the Use of Kinect Sensor for 

Indoor Navigation (Keat & Ming, 2012), describes the hardware and 

software architecture of the robot and discusses the results of using a low 

cost robotic setup. In the setup, a four-wheel robot was built using the 

NXT robotics kit with a Microsoft Xbox 360 Kinect sensor mounted on the 

robot (Figure 2.5). The depth images from the Kinect sensor are 

converted to a 2D laser scan output using a laptop running ROS. The laser 

scan and odometry readings from the robots base were used as input to 

build a map using SLAM GMapping technique6. The navigation stack plans 

and sends commands to autonomously navigate the robot after 

generating a map. For better performance, the robot uses A* algorithm 

(Fradj, 2011) to generate a high level global path in the global planner 

and the path is fine-tuned using a local planner that uses Dynamic 

Window Approach for collision avoidance (Foxy, Burgardy, & Thrun, 

1997).  

The researchers found out that the use of the NXT-Kinect setup was not 

affected by different lighting situations, which meant the robot worked 

well even in dark environments. Compared to expensive sensor equipment 

like LIDAR used by Google’s autonomous car and Hokuyo Laser sensor, 

the Kinect which is cheaper, has similar working range and similar 3D 

                                                           
6
 http://www.openslam.org/gmapping.html 

http://www.openslam.org/gmapping.html
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scanning capabilities. Moreover, optimizing the position of the Kinect 

sensor increased the accuracy of the SLAM mapping to about 99.6%, thus 

making the Kinect suitable for autonomous robot navigation (Keat & Ming, 

2012). 

 

Figure 2.5 – NXT-Kinect Setup 

2.2.2 Minerva 

There are older robotics research projects that have led to the deployment 

of exhibition robots and also permanent installation of robots in public 

spaces. Such robots include tour guide museum robots Rhino (Burgard, et 

al., 1999), Minerva (Thrun, et al., 1999), and Jinny (Kim, et al., 2004). 

Minerva, as described in the paper MINERVA: A Second-Generation 

Museum Tour-Guide Robot (Thrun, et al., 1999), is a robot developed by a 

robotics research team from Carnegie Mellon University that worked on its 

predecessor; Rhino. The robot was exhibited in the summer of 1998 for 

two-week at the Smithsonian's National Museum of American History.  

Minerva (Figure 2.6) builds two maps for better performance; an 

occupancy map by probabilistically determining consistent readings of 
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odometry values and a texture map by using of an upward facing camera 

at the museum’s ceiling to build a large-scale mosaic of the ceiling's 

texture. For the highly dynamic environment of the museum, Minerva 

uses an improved version of Markov localization (Dieter Fox, 1999) and 

Dynamic Window Approach (Foxy, Burgardy, & Thrun, 1997) collision 

avoidance method for localization and obstacle avoidance respectively. It 

also uses Coastal Navigation algorithm for path planning. Coastal 

Navigation is a path planning technique that minimizes path lengths but 

maximizes the content of information a robot will receive at different 

points along the path so that it does not get lost (Roy, Burgard, Fox, & 

Thrun, 1998). The software system used by Minerva was developed to 

address navigation in dynamic and unmodified environments, allow short-

term Human Robotic Interaction (HRI) with visitors and have a virtual 

tele-presence with tele-operation capabilities over the internet. 

 

Figure 2.6 - Minerva  
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2.2.3 Relevance of the Related Work 

The above mentioned robotics projects are similar to the MOLAM project 

on certain levels.  The MOLOAM project will be using the Kinect and the 

experimentation by Keat and Ming proves that, the Kinect is a capable 3D 

sensor kit. The Kinect which is the primary visual senor for the TurtleBot 

will therefore generate reliable maps for the proposed navigational 

framework.  Also, using the overall design of the robotics system for 

public space as exemplified in the Minerva project gives great insight on 

how the proposed navigational framework can be developed. These design 

outlines serve as guidelines to ensure that the proposed framework is well 

suited for public space and human interactions. 
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Chapter 3: System Design  

This section describes the systems architectural design of the proposed 

navigation framework. The fundamental design of the framework will be 

to extend the capabilities of the ROS platform to support the high-level 

functionality the framework will provide. The diverse capabilities provided 

by the ROS platform makes it imperative to identify the specific modules 

that this framework will interact with. 

3.1 System Design Concept 

The proposed system for the MOLAM project has a layered architectural 

design. The components of this system include the Environment, TurtleBot 

hardware (Kinect and the Create base), ROS framework, the proposed 

context-specific navigation module, Client programs and the user 

interface. As shown in Figure 3.1, the blocks in orange color form the core 

of the proposed navigation framework. The Environment component 

contains the wide set of objects that the robot would interact with. The 

Kinect Kit uses its motion and visual sensing capabilities to scan and 

create a 3D image (Point Cloud data set) of the objects captured in the 

environment. The ROS implemented PCL (Point Cloud Library) package 

will then convert the 3D image to a 2D image (laser scan data set). 

Values from the odometer and the laser scan will then be passed on for 

the GMapping functionality to create a SLAM map. GMapping is one of the 

different techniques that are used in solving a SLAM problem and this is 

already implemented in ROS. The Map Handler and Storage module will 

process the raw SLAM map into a high-level information map for 
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visualization on the user’s display and for the use by client program such 

as the tour guide functionality.   The robot can be tele-operated using the 

user’s input device (the keyboard) from the workstation to move the robot 

during the mapping phase. 

After the mapping phase, client programs can then request for a path to 

be planned; for instance, a path from the admissions office to the 

cafeteria. This command will be received and executed by the Localization 

and Navigation block. The Localization and Navigation block pulls maps 

from the Map handlers and Storage module and runs a translation routine 

to convert the high-level destination locations into appropriate SLAM 

coordinates. Afterwards, a global path between building structures, and 

local paths within a single building structure will be planned. These paths 

are then extracted for navigating the robot to the destination 

autonomously. During the autonomous navigation phase, the Emergency 

Control block uses 2D laser scan images and data from the bumper and 

cliff sensors for obstacle detection and avoidance. When there are no 

obstacles in a safe distance range the path points are interpreted as 

movement command for the actuator drivers provided by ROS.  These 

drivers in turn send the appropriate velocity and power values to the 

motors of the Create base to move the robot. 
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Figure 3.1 – Systems Architectural Design 
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3.2 Navigation Framework  

This section gives a detailed description of the core blocks that make up 

the navigation framework component of the entire robotic system. This 

component is made of three blocks; the Map Handlers and Storage, the 

Localization, and Navigation and the Emergency Control and a proposed 

design for each is given below. 

3.2.1 Map Handlers and Storage 

This module handles the SLAM maps created after the mapping stage. The 

SLAM map (refer to Figure 3.2) generated by the GMapping tool is a PGM 

(Portable Gray Map) image produced from an occupancy grid map. An 

occupancy grid map is a matrix that has numeric values indicating the 

probability of the absence or presence of an obstacle in a given cell. Based 

on a set probability threshold value, the various cells of the map 

containing the probabilistic values are labeled as either empty or 

occupied. This labeled grid map can then be interpreted as an image with 

different color allocation for empty or occupied cells. The Map Handler and 

Storage module will process the SLAM maps into an informative map 

representation that a user can understand. Also, client programs like the 

tour guide program can use the information map for high-level path 

planning. 

 Firstly, when a SLAM map is passed to this module it will be 

appropriately renamed and permanently stored. 

 This map will then be presented to an operator in a simple third party 

image editing software. The user will then use the editing tools to 
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augment the map by manually drawing the diagrams that represent 

actual building structure in the map. Alternatively, the operator can 

simply select and label regions of the SLAM map without worrying 

about the detailed architectural design of the campus. 

 The operator will have to tag the various building structures with 

necessary information that will correspond to pixel locations on the 

augmented map. The map as shown in to Figure 3.3 becomes an 

information layer over the actual SLAM map. Moreover, this becomes a 

user friendly information map that the user can understand and 

appreciate. 

 The global map of the campus is then built using various local SLAM 

maps of individual building structures (refer to Figure 3.4). This global 

map will also be captured in the information overlay of the campus. 

 The interconnection of the SLAM map in the global map creates a high-

level planning graph. As illustrated in Figure 3.5, the blue colored oval 

blocks represent nodes in the graph. These nodes are SLAM maps of 

the internal space of a given building structure on the campus. The 

orange colored round blocks are also nodes, but they represent point 

locations in the global map at which paths between structures 

intersect. 

 A complete SLAM graph map model as shown in Figure 3.6 will be the 

global map representation of the university’s campus as used and 

stored internally by the robot. 
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Figure 3.2 - Example SLAM Map 

 

Figure 3.3 – SLAM Map with Information Overlay 
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Figure 3.4 – Multiple SLAM Maps with Information Overlay 

 

Figure 3.5 – SLAM Map with Graph Abstraction 
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Figure 3.6 - SLAM Maps Graph Model 

3.2.2 Localization and Navigation Tools 

The Localization and Navigation block is responsible for localization, path 

planning, and extracting a path from a start point to a destination point 

for autonomous navigation (refer to Figure 3.7). Destination points are 

received from service application running on top of this framework with 

which a user may interact. 

 The destination points are simply locations present in the high-level 

information map of the campus. This navigation command could be for 

instance instructing the robot to move to the “Faculty Intern Office” 

assuming its current location is in the “Supervisor’s Office”. The high-

level destination points are therefore, the “Faculty Intern Office” and 

the “Supervisor’s Office”. 
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 The destination location will be interpreted from the natural language 

form to the corresponding SLAM map coordinates. The interpretation 

block will determine if the start and destination coordinates belong to 

different local SLAM maps. 

 Having identified that, the Global Path planning routine plans the 

optimal path between the different nodes of the global map graph. The 

global path is made up of a series of points that refer to local SLAM 

maps and coordinate points for the intersections. 

 Then for each of the local SLAM maps making up a segment in the 

global path, a local path is planned. 

 The full series of points making up the path from the start to the 

destination point will be extracted and a movement routine would be 

started. 
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Figure 3.7 – Localization and Navigation Block 

3.2.3 Emergency Control Block 

During path execution routines to move the robot, the Emergency Control 

block ensures that the robot does so in a safe manner (refer to Figure 

3.8). This block runs obstacle detection and avoidance routines to keep 

the robot from colliding into objects or moving in a way that would harm 

the robot. 

 The path execution block in this module steps through each of the 

points from the extracted planned path.  

 Before converting them to movement commands, the Emergency 

Control block runs the various checks to determine if the robot is 

safe to move. 



 
28 

 

 The emergency routines firsts check the battery state of the Create 

base and the laptop placed on the TurtleBot to determine if their 

power levels are not below a determined threshold valued.  

 If the robot passes the power level check, then the distant object 

detection check is run. This check uses values from the Kinect to 

identify objects in a defined distant range parameter around the 

robot. 

 If the distant object detection check is passed, then the close object 

detection check is run. This check uses values from the cliff and 

bumper sensors to determine if there are unnoticed objects that 

have gotten very close to the robot. The bumper sensor would 

determine contact with such object. The cliff sensor will on the 

other hand determine if the Create base wheels are no longer in 

contact with the ground. For instance if the robot is put in a place 

where it could fall from, such as a staircase. 

 If any of the emergency checks fails, the stop command module 

send signals to the actuator drivers to stop the motors of the robot. 

The stop command module will also send information to alert the 

user of the inability of the robot to continue moving in a safe 

manner, until all safety issues are addressed. 

 If the emergency checks are all passed, the move command 

module converts the next path point the robot needs to go to into a 

movement command for the actuator drivers. 

 The actuator drivers send the appropriate velocity and power values 

to the turn motors via the Create base’s microprocessor. 
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 The robot then localizes itself to know its relation to the objects 

around and its new position in the map. The ROS implementation of 

Adaptive Monte Carlo Localization (AMCL) will be used. AMCL is a 

technique “which uses particle filter to track the pose of the robot 

against a know map”. (Foote, 2013) 

 

Figure 3.8 – Emergency Control Block 
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Chapter 4: Implementation and Testing 

The precursor to building the proposed context-specific navigation 

framework is getting the TurtleBot-ROS platform up and running. Most of 

the time for this project therefore was spent in first understanding the 

ROS environment and designing the concepts for the system’s 

architecture. The features of the proposed system were not implemented 

as the TurtleBot was not already set up to a level where it could interact 

with the ROS platform. Setting up and determining the right packages 

including the list of dependencies from the ROS platform that were needed 

for this project was not trivial. 

Unfortunately, the tutorial offered by the official ROS.org page was 

constantly being edited and the page did not have an exhaustive set of 

instructions to follow in fully installing and configuring ROS. The latest 

release of ROS; Groovy Galapagos was used for this project. The Groovy 

installation was completed by using online help, advice from forums and 

wikis and by simply experimenting and learning in the process.7  

4.1 Robot Setup  

This section covers the procedures used in setting up and configuring the 

TurtleBot for the project. Appendix A provides a more technical version of 

the setup process. The final robotic setup was a ROS enabled TurtleBot 

connected to a workstation computer via an Android WIFI hotspot network 

as shown in Figure 4.1. 

                                                           
7
 For the official installation tutorial refer to ros.org/wiki/groovy/installation/Ubuntu 
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Figure 4.1 – TurtleBot Setup over Android WIFI hotspot 

4.1.1 Components Used 

The final robotic setup was completed using some key components which 

are listed below. 

 TurtleBot robot set (with a Create base, Kinect sensor, Sensor board 

with 250°/sec gyro sensor). 

 2 Lenovo T240 ThinkPad laptops (one to run on the TurtleBot and 

the other for the workstation). 

 An android device to create a WIFI hotspot for the network 

communication. A WIFI network using an android device was used 

because the wireless network on campus was not stable enough for 

constant communication to be maintained between the two laptops 

on different parts of the campus. 

 1 8GB USB flash drive to create a bootable Ubuntu version for 

installation. 

4.1.2 Ubuntu 12.04 (Precise) 

ROS is a meta-operating system that needs a host Operating System to 

run on. The latest version of ROS used for the project had its stable 
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version compatible with Ubuntu only. Thus, Ubuntu had to be downloaded 

and installed on the two laptops.  

 A ubuntu-12.04.2-desktop-i386.iso file was downloaded from the 

official Ubuntu release page (releases.ubuntu.com/precise/). 

 Using a “Make Startup Disk” tool on Linux-Ubuntu virtual machine, 

a USB bootable flash drive was created from the Ubuntu Precise OS 

IOS file.  

 On each of the laptop computers to be used in the setup, Ubuntu 

Precise was then installed. 

 For easy identification of the machine during network activities, the 

laptop to be placed on the TurtleBot setup was set to have its 

hostname (computer name) as ‘turtlebot’ and the laptop to be used 

in instructing the TurtleBot has the hostname ‘workstation’. 

 Both machines have the same password to reduce the overhead 

cost of constantly remembering and typing passwords for the many 

administrative oriented commands required on the two laptops. 

4.1.3 Installation of ROS Groovy Galapagos 

This section describes the steps used in installing the ROS platform 

 The first step was to configure Ubuntu to accept software from 

ROS.org by creating a file in the Ubuntu application sources folder 

with a reference to packages.ros.org software repository.  

 Then the keys used in establishing secure communication between 

the laptop and the ROS.org repository was set up. 
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 The Ubuntu repository was updated in order to get the newest 

versions of packages and their dependencies. 

 The full desktop Groovy package was downloaded and installed. 

 A ROS dependency tool was initialized to allow easy installation of 

ROS system dependencies. 

 The bash environment variables to recognize ROS commands 

automatically were setup. 

 A python based ROS command line tool was installed. 

 A network time protocol tool to synchronize network time for the 

wireless communication was downloaded and installed. 

 To allow remote access to the terminal of one computer from a 

different computer, openssh server was installed. 

 To establish a ROS Network, two environment variables are very 

important. The ROS_HOSTNAME that refers to the IP address of a 

current machine and the ROS_MASTER_URI which refers to the IP 

address of the machine acting as the master computer in the 

network setup which in this case is the laptop mounted on the 

TurtleBot; ‘turtlebot’. 

 On the android device a WIFI hotspot was setup and the two 

machines were connected to the WIFI network. The IP addresses of 

the machines were determined and recorded. 

 On the TurtleBot machine (‘turtlebot’), the ROS_HOSTNAME and 

ROS_MASTER_URI were set to point to the IP address of ‘turtlebot’. 

Setting up of the two variables can be very tedious especially when 

using a network that dynamically assigns IP addresses. Appendix C 

has a bash script that can be used to simplify the IP setup process.  



 
34 

 

 On the TurtleBot workstation (‘workstation’) also, the 

ROS_HOSTNAME was set to point to the IP address of the 

‘workstation’ and ROS_MASTER_URI to point to the IP address of 

‘turtlebot’.  

4.1.4 Physical Setup 

 The TurtleBot kit used for this project was already assembled. 

However, for assembly instructions refer to TurtleBot manual8. 

 On ‘turtlebot’ the power management option was set to prevent 

the computer from automatically going to sleep or hibernating. 

 The lid of the computer (‘turtlebot’) was closed and placed at the 

bottom shelf of the TurtleBot shelf structure. 

 The iRobot Create base was then connected to the ‘turtlebot’ 

computer using the mini-DIN connection cable.  

 The Kinect power cable was plugged to the sensor board power 

outlet using the Kinect’s MicroFit connection plug. 

 And finally the Kinect data USB cable is connected to ‘turtlebot’ 

computer on a USB 2.0 port. 

  

                                                           
8
 TurtleBot assembly instructions can also be found on makezine.com. 

http://blog.makezine.com/projects/assemble-a-turtlebot/ 

http://blog.makezine.com/projects/assemble-a-turtlebot/
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4.2 Reconfiguration of ROS System Files 

ROS is built in a generic way to support a variety of robot hardware and 

thus some files have pre-defined values for certain default hardware 

variables. These values needed to be changed to reflect the particular 

hardware types that were used in the project. Refer to Appendix B for a 

more technical document on how to reconfigure ROS system files. 

4.2.1 Minimal File 

There is a “minimal.launch” file belonging to the “turtlebot_bringup” 

package for ROS which contains details about all the hardware options 

that can be connected to a TurtleBot. It has parameters to specify the 

values for the TurtleBot base, the battery pack, 3D sensor etc. The default 

values of these parameters were changed to reflect the TurtleBot model 

being used. 

4.2.2 TurtleBot Dashboard File 

A “turtlebot_dashboard.launch” file belonging to the ROS visualization 

package tools; “turtlebot_viz” package was also edited. This file contains 

details about all the hardware components that are visualized from the 

“workstation” as the TurtleBot is up and running.  

4.2.3 TurtleBot Node File 

In the “turtlebot_node.py” file, the values of several parameters were 

changed to accommodate the stable and tested version of the 

“turtlebot_create” ROS Groovy packages. The default values that the 

variables had were from an integrated ROS package for various TurtleBot 
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bases that had not been fully tested and finally released at the time the 

system was being set up for this project. 

4.2.4 Create Sensor Handler File 

The “create_sensor_handler.py” file for “turtlebot_create” ROS Groovy 

packages has values of parameters that have been set to handle data 

output from the TurtleBot’s sensor pack. Some of these parameters were 

modified to refer to the appropriate sensor packs available on the 

TurtleBot kit available for this project.  

4.2.5 Python KDL Error Fix 

Kinematics and Dynamics Library (KDL) is a library that contains a set of 

functions that provide an “independent framework for the modeling and 

computation of kinematic chains for robots, biomechanical human models, 

computer-animated figures, machine tools, etc.” (Kinematics and 

Dynamics Library). This library makes it easy to specify various kinematics 

chains, motions and interpolation of geometrical objects (Kinematics and 

Dynamics Library). Unfortunately, the ROS Groovy that was used in this 

project came with a bug in the Python edition of the KDL library. The ROS 

foundation however, provided a separate package as a fix to this issue. 

This was downloaded separately and installed to fix the bug. 
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4.3 Testing 

After setting up the ROS-TurtleBot system, tests were conducted to 

ensure that the system was correctly set up and that the ROS packages 

needed for the framework was functioning correctly. Basically, the tests 

entailed running the necessary ROS commands to start the ROS packages 

and assessing their values.  

4.3.1 Network Connection 

Ubuntu terminal ping tool was used to determine if a connection existed 

between the two machines over the network. The ROS_HOSTNAME and 

ROS_MASTER_URI were determined to be pointing to the right IP 

addresses by echoing them out in the terminal. And also, communication 

between the ROS environment was tested by using the ROS 

communication tool ROSTOPIC. 

4.3.2 System Recognition 

A ROS implemented dashboard tool was used to check if the ROS 

environment recognized the various hardware and software components 

in the setup, the dashboard tool was used. As illustrated in the screenshot 

below (Figure 4.2), the dashboard recorded “OK” for the various devices 

connected to the ROS platform. 
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Figure 4.2 – Dashboard View of the TurtleBot System 

4.3.3 Vision 

For vision, the Kinect kit was activated from ROS to view the data the 

motion sensor kit was dealing with. In order to verify the depth sensing 

capabilities of the kit, the TurtleBot was placed in front of a group of 

working benches and chairs in some part of the computer lab in the 

university. The first image (Figure 4.3) is a RGB color image of the section 

lab. Figure 4.4 represents a mono chromatic image of the same view of 

the lab.  
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Figure 4.3 – Color Image of Section of Computer Lab 

 

Figure 4.4 – Monochrome Image of Section of Computer Lab 

4.3.4 Visualization 

The Kinect kit depth sensing capabilities was also tested from the ROS 

environment. The first image (Figure 4.5) is a depth image of the same 

section of the lab, where different colors are used to represent objects at 

different distances from the camera. Color shades from Red to Orange are 

used to indicate objects in close proximity to the robot.  Color ranges from 

Yellow through Green to Blue and Violet represent objects in order of 

increasing distance to the robot. On the other hand, the depth image in 
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Figure 4.6 uses a different variation of gray to represent depth. The 

darker the shade of gray, the closer an object is while the lighter the 

shade, the further away an object is. 

Using a ROS visualization tool, the robot was viewed in a 3D space where 

the various depth images were visualized as a Point Cloud image. As 

shown in Figure 4.7, a model of the robot is placed in a 3D environment 

with the objects in the robots view represented as a 3D image. In the 

visualization tool, the 3D images (Point Cloud) can be interacted with in 

the 3D environment. 

 

Figure 4.5 – Color Depth Image of Section of Computer Lab 

 

Figure 4.6 - Monochrome Depth Image of Section of Computer Lab 
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Figure 4.7 – 3D Point Cloud Visualization Image of Section of Computer Lab 

4.4 Challenges 

Many challenges were encountered in this project but most of these 

challenges can be summed up into two main categories. These setbacks 

significantly increased the time used in setting up the robotic system and 

were quite frankly terribly frustrating.  

 Firstly, the project dealt with new technology that had never been 

used before at Ashesi prior to the project. The TurtleBot kit, the 

ROS and Ubuntu system were unfamiliar systems that needed a 

certain level of expertise to use. 

 Secondly, there was not sufficient documentation from the ROS 

website to use as reference. The ROS official page, as mentioned 

earlier had the information on the page constantly changing. And 

generally there was not enough information available online to refer 

to when faced with errors. Many questions also posted on various 

ROS forums rarely had helpful answers.  



 
42 

 

Chapter 5: Conclusion and Future Work 

This paper described the procedures used in successfully bringing up 

TurtleBot and ROS to a workable level where the implementation of the 

customized navigation framework modules can begin. Key ROS 

dependencies needed for the framework have been tested and found to be 

functioning properly. Also, concepts of the systems architecture have also 

being designed, with comprehensive descriptions detailing the 

functionalities of key modules and relationships existing between them. 

Detailed instructions on how to set up the TurtleBot ROS system have 

been documented.  

However, more work needs to be done to get this framework to its final 

state. Work to be done in the future includes; 

 Calibrating the gyro sensor for the TurtleBot. Calibration is a very 

important step to improve the performance of any navigation 

application by enhancing the quality of feedback given to the 

system. 

 Installing the newly released Java libraries to continue future 

development in Java which is a relatively simpler environment to 

work with, as compared to C++, Python, and Bash scripting. For 

instance, all the main components to be developed for this 

framework can be done in the Java language. 

 Developing the code for the three main components of the 

proposed navigation framework.  
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On a concluding note, this project has been a successful one with a great 

learning curve. Ashesi University College’s goal to experiment with service 

robotics is in its learning stages and has great prospects for the future. 
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Appendix 

A. Robot Setup Design 

Below are the procedures followed in the setting up, installing and 

configuring of TurtleBot. ROS version Groovy Galapagos as at 25th of 

March, 2013 was used to ROS-enable TurtleBot. 

A.1 Components Used 

 TurtleBot compatible robot set (with a Create base, Kinect sensor, 

sensor Board with 250°/sec gyro sensor) 

 2 Lenovo T240 ThinkPad laptop  computers 

 Each laptop with Intel Core i5 processor @ 2.40GHz  

 An android device to create a WIFI hotspot 

 1 8GB USB flash drive 

A.2 Downloading Ubuntu 12.04 (Precise) 

 On the official Ubuntu release page (releases.ubuntu.com/precise/) 

and at the bottom of the page there is a list of different 

Ubuntu12.04 release with release options for AMD/Intel processors 

and 32/64bit systems. 

 Click to download ubuntu-12.04.2-desktop-i386.iso file. 

A.3 Ubuntu Bootable Flash Drive 

 The flash drive is then connected to a Linux-Ubuntu virtual machine 

running on a Windows OS host.  

 The Ubuntu Precise OS is copied to the virtual machine and using 

the “Make Startup Disk” tool provided by Ubuntu, the Ubuntu 
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Precise OS IOS file is mounted unto the flash drive and a USB 

bootable flash drive is created.  

 Alternatively, Universal USB Installer for Windows from 

pendrivelinex.com can be downloaded and used in creating the 

bootable flash drive. 

 The download link is http://www.pendrivelinux.com/downloads/ 

Universal-USB-Installer/Universal-USB-Installer-1.9.0.1.exe 

A.4 Installation of Ubuntu Precise 

 On each of the laptop computers to be used in the setup, Ubuntu 

Precise is then installed. 

 The laptop to be placed on the TurtleBot setup has the hostname 

(computer name) as ‘turtlebot’ and the laptop to be used in 

instructing the TurtleBot has the hostname ‘workstation’. 

 Both machines have the same password to reduce the overhead 

cost of constantly remembering and typing passwords for the many 

administrative oriented commands required on the two laptops. 

A.5 Installation of ROS Groovy Galapagos 

Below is the procedure follow to install and configure ROS . For the official 

installation tutorial refer to ros.org/wiki/groovy/installation/Ubuntu 

 First setup Ubuntu to accept software from ROS.org by creating a 

file in the Ubuntu application sources folder with a reference to 

packages.ros.org software repository. This can be done with the 

command below in the Ubuntu terminal. 

http://www.pendrivelinux.com/downloads/
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o sudo sh –c ‘echo “deb http://packages.ros.org/ros/ubuntu 

precise main” > /etc/apt/sources.list.d/ros-latest.list’ 

 Set up the keys used in establishing secure communication between 

the laptop and the ROS.org repository. 

o wget http://packages.ros.org/ros.key -O - | sudo apt-key add 

– 

 Update the Ubuntu repository and update to get the newest 

versions of packages and their dependencies. 

o sudo apt-get update 

 Download and install the full desktop Groovy package. 

o sudo apt-get install ros-groovy-desktop-full 

 Initialize a tool to allow easy installation of ROS system 

dependencies. 

o sudo rosdep init 

o rosdep update 

 Setup the bash environment variables to recognize ROS commands 

automatically. 

o echo “source /opt/ros/groovy/setup.bash” >> ~/.bashrc 

o source ~/.bashrc 

 Install a python based ROS command line tool. 

o sudo apt-get install python-rosinstall 

 Install network time protocol tool to synchronize network time for 

the wireless communication. 

o sudo apt-get install chrony 

o sudo ntpdate ntp.ubuntu.com 

http://packages.ros.org/ros/ubuntu
http://packages.ros.org/ros.key
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 Install openssh server to allow remote access to the terminal of one 

computer from a different computer. 

o sudo apt-get install openssh-server 

 To establish a ROS Network, two environment variables are very 

important; the ROS_HOSTNAME that refers to the IP address of a 

current machine and the ROS_MASTER_URI which refers to the IP 

address of the machine acting as the master computer. In this 

network setup the laptop mounted on the TurtleBot; ‘turtlebot’ is 

the master. 

 On the android device set up WIFI hotspot and connect the two 

machines to the network. 

 The IP addresses of the two machines need to be determined and 

recorded. 

o ifconfig 

 On the TurtleBot machine ‘turtlebot’, set up the ROS_HOSTNAME 

and ROS_MASTER_URI to point to the IP address of the computer. 

o sed -i '/ROS_MASTER_URI=/ d' ~/.bashrc 

o sed -i '/ROS_HOSTNAME=/ d' ~/.bashrc 

o echo export ROS_MASTER_URI=http://IP_OF_TURTLEBOT:11311 >> 

~/.bashrc 

o echo export ROS_HOSTNAME=IP_OF_TURTLEBOT >> ~/.bashrc 

o source ~/.bashrc 

 On the ‘workstation’ machine, setup ROS_HOSTNAME to point to 

the IP address of the computer and ROS_MASTER_URI to point to 

the IP address of ‘turtlebot’. 

o sed -i '/ROS_MASTER_URI=/ d' ~/.bashrc 
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o sed -i '/ROS_HOSTNAME=/ d' ~/.bashrc 

o echo export ROS_MASTER_URI=http://IP_OF_TURTLEBOT:11311 >> 

~/.bashrc 

o echo export ROS_HOSTNAME=IP_OF_WORKSTATION >> ~/.bashrc 

o sed -i '/ROS_MASTER_URI=/ d'/opt/ros/groovy/setup.sh 

o sudo sed -i '/ROS_HOSTNAME=/ d'/opt/ros/groovy/ setup.sh 

o sudo echo "export 

ROS_MASTER_URI=http://IP_OF_WORKSTATION:11311" >> 

/opt/ros/groovy/setup.sh 

o sudo echo "export ROS_HOSTNAME=IP_OF_TURTLEBOT" >> 

/opt/ros/groovy/setup.sh 

o source ~/.bashrc 

 Refer to Appendix C for simple bash script that can be used to 

simplify that assignment of values to the ROS_MASTER_URI and 

ROS_HOSTNAME variables.  

 Verify that the values of the environment variables of the two 

machines have the correct IP addresses assigned to them. 

o echo $ROS_HOSTNAME 

o echo $ROS__MASTER_URI 

A.6 Physical Setup 

 Assemble the TurtleBot kit if it isn’t already assembled. Refer to 

TurtleBot manual for assembly instructions9. 

 On ‘turtlebot’ set the power management option to prevent the 

computer from automatically going to sleep or hibernating. 

                                                           
9
 TurtleBot assembly instructions can also be found on makezine.com. 

http://blog.makezine.com/projects/assemble-a-turtlebot/ 

http://blog.makezine.com/projects/assemble-a-turtlebot/
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 Close the lid of the computer and place it at the bottom shelve of 

the TurtleBot robot stack of shelves. 

 Connect the iRobot create base to the ‘turtlebot’ computer using 

the mini-DIN connection cable.  

 Plug the Kinect power cable to the sensor board power MicroFit 

connection. 

 Plug the Kinect data USB cable to ‘turtlebot’ computer on a USB 

2.0 port. 

B. Reconfiguration of ROS System Files 

ROS is built in a generic way to support a variety of robot hardware and 

thus some files have pre-defined values for certain default hardware 

variables. These values were changed to reflect the particular hardware 

types that are was used in the project. 

B.1 Minimal File 

There is a “minimal.launch” file belonging to the “turtlebot_bringup” 

package for ROS in this path: “/opt/ros/groovy/stacks/turtlebot/turtlebot 

_bringup/launch”. This file contains details about all the hardware options 

that can be connected to a TurtleBot. It has parameters to specify the 

values for the TurtleBot base, the battery pack, 3D sensor etc.  

 If the “turtlebot_bringup” package directory does not exist, 

download from packages.ros.org. 

o sudo apt-get install ros-groovy-turtlebot-bringup 

 Using administrative privileges the “minimal.launch” file on the 

“turtlebot” machine can be opened in the gedit text editor.  
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o sudo gedit /opt/ros/groovy/stacks/turtle/turtlebot_ 

bringup/launch/minimal.launch 

 For this project the value of the following arguments in the 

minimal.launch file need to be changed to the values below. 

o <arg name=”base”    value=”$(optenv TURTLEBOT_BASE 

create)”/> 

o <arg name=”battery”   value=”$(optenv TURTLEBOT_ 

BATTERY /proc/acpi/battery/BAT0)”/> 

o <arg name=”stacks”    value=”$(optenv TURTLEBOT_ 

STACKS circles)”/> 

o <arg name=”3d_sensor” value=”$(optenv TURTLEBOT_ 

3D_SENSOR kinect)”/> 

o <arg name=”simulation” value=”$(optenv TURTLEBOT_ 

SIMULATION false)”/> 

B.2 TurtleBot Dashboard File 

There is a “turtlebot_dashboard.launch” belonging to the TurtleBot 

visualization package tools; “turtlebot_viz” package in this path: 

“/opt/ros/groovy/stacks/turtlebot_viz/turtlebot_dashboard_launchers/ 

launch”. This file contains details about all the hardware components that 

are visualized from the “workstation” as the TurtleBot is up and running.  

 If the “turtlebot_viz” package directory does not exist, download 

from packages.ros.org. 

o sudo apt-get install ros-groovy-turtlebot-viz 
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 Using administrative privileges the “turtlebot_dashboard.launch” 

files on both the “turtlebot” and “workstation” machine can be 

opened in the gedit text editor. 

o sudo gedit /opt/ros/groovy/stacks/turtlebot_viz/turt 

lebot_dashboard_launchers/turtlebot_dashboard.launch 

 Then the TurtleBot base argument value is changed to “create”. 

o <arg name=”base”    value=”$(optenv TURTLEBOT_BASE 

create)”/> 

B.3 TurtleBot Node File 

In the “turtlebot_node.py” file under “/opt/ros/groovy/turtlebot_create/ 

create_node/nodes/” directory, the values of several parameter should 

changed to accommodate the stable and tested version of the 

“turtlebot_create” ROS Groovy packages. The default values that the 

variables had, were from an integrated ROS package for various TurtleBot 

bases that had not been fully tested and finally released at the time of the 

project. 

 If the “turtlebot_create” package directory does not exist, download 

from packages.ros.org. 

o sudo apt-get install ros-groovy-turtlebot-create 

 Using administrative privileges the “turtlebot_dashboard.launch” 

files on both the “turtlebot” and “workstation” machine can opened 

in the gedit text editor. 

o sudo gedit /opt/ros/groovy/stacks/turtlebot_create 

/create_node/nodes/turtlebot_node.py 
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 Line 56 of the file should be changed by replacing “roslib.rosenv” 

with “rospkg” so that it reads the following below. 

o import rospkg 

 Line 65 of the file should also be changed by replacing 

“turtlebot_driver” with “create_driver” so that it reads the following 

below. 

o from create_driver import TurtleBot,MAX_WHEEL_SPEED, 

DriverError 

 Line 509 of the file is also changed by replacing “roslib.rosenv” to 

“rospkg” so that it reads the following below. 

o def connected_file(): return os.path.join(rospkg.get 

_ros_home(), ‘turtlebot-connected’) 

B.4 Create Sensor Handler File 

The “create_sensor_handler.py” file under “/opt/ros/groovy/turtlebot_ 

create/create_node/src/create_node/” directory has values of several 

parameter that have been set to handle data output from the TurtleBot’s 

sensor pack.  

 If the “turtlebot_create” package directory does not exist, download 

from packages.ros.org 

o sudo apt-get install ros-groovy-turtlebot-create 

 Using administrative privileges the “turtlebot_dashboard.launch” 

files on both the “turtlebot” and “workstation” machine can be 

opened in the gedit text editor.  

o sudo gedit /opt/ros/groovy/stacks/turtlebot_create/ 

create_node/src/create_node/create_sensor_handler.py 
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 Line 40 of the file is changed by replacing “turtlebot_driver” with 

“create_driver” so that it reads the following below. 

o from create_driver import SENSOR_GROUP_PACKET _LENGTHS 

B.5 Python KDL Error Fix 

Kinematics and Dynamics Library (KDL) contains a set of functions that 

provide an “independent framework for the modeling and computation of 

kinematic chains, for robots, biomechanical human models, computer-

animated figures, machine tools, etc” (Kinematics and Dynamics Library). 

This library makes it easy to specify various kinematics chains, motions 

and interpolation of geometrical objects (Kinematics and Dynamics 

Library). Unfortunately, the ROS Groovy that was used in this project 

came with a bug in the Python edition of the KDL library. The ROS 

foundation however, provided a separate package as a fix to this issue. 

 The Python version of the KDL library was downloaded from 

packages.ros.org 

o sudo apt-get install ros-groovy-python-orocos-kdl 

C. Network Bash Script 

This section has the code for a simply script that could be run to simply 

the procedure for changing the IP address values for ROS_MASTER_URI 

and ROS_HOSTNAME of two the laptops used in this project with the 

hostname ‘turtle’ and ‘workstation’. The code can be copied and saved 

into a text file with the extension “.sh”. The file should then be converted 

to an executable using the CHMOD terminal command before using. 
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#!/bin/bash 

hosttype=`hostname` 

echo "Hostname of this machine is $hosttype" 

if [ $hosttype = turtlebot ] 

   then  

 read -p "Enter the ip-address of the turtlebot CLIENT 

machine : " master_uri 

 sed -i '/ROS_MASTER_URI=/ d' ~/.bashrc 

 echo "export ROS_MASTER_URI=http://$master_uri:11311" >> 

~/.bashrc 

 sed -i '/ROS_HOSTNAME=/ d' ~/.bashrc 

 echo "export ROS_HOSTNAME=$master_uri" >> ~/.bashrc 

 else 

 read -p "Enter the ip-address of the turtlebot CLIENT 

machine : " master_uri 

 sed -i '/ROS_MASTER_URI=/ d' ~/.bashrc 

 echo "export ROS_MASTER_URI=http://$master_uri:11311" >> 

~/.bashrc 

 read -p "Enter the ipaddress of the turtlebot WORKSTATION 

machine : " theHostname 

 sed -i '/ROS_HOSTNAME=/ d' ~/.bashrc 
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 echo "export ROS_HOSTNAME=$theHostname" >> ~/.bashrc 

 sudo sed -i '/ROS_MASTER_URI=/ d'/opt/ros/groovy/setup.sh 

 sudo sh -c 'echo "export ROS_MASTER_URI=http://'$master 

_uri:11311'" >> /opt/ros/groovy/setup.sh' 

 sudo sed -i '/ROS_HOSTNAME=/ d' /opt/ros/groovy/setup.sh 

 sudo sh -c 'echo "export ROS_HOSTNAME='$theHostname'" >> 

/opt/ros/groovy/setup.sh' 

fi 

echo "Done" 


