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Abstract

This paper presents a review of the original method recently developed by the authors with the Generalized Maximum Entropy

(GME) estimator for the simple linear Measurement Error Model (MEM) and the Structural Equation Model (SEM). In socio-

economic research, these two models often concern subjective or psychological variables (composite indicators), and represent

relations between latent variables. In this review, two applications to the statistical modelling of economic perception and job

satisfaction are presented.
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1. Prologue

The measurement error is a well-know problem encountered in many socio-economic statistical analyses (Wans-

beek and Meijer (2000)). In this research field, collected data are often based on questionnaires with Likert-type scales

administer to many subjects, used to obtain multiple indicators that are discrete variables; then, these variables are

averaged to compute composite indicators, that are estimates of the underlying latent variables.

In this paper we presents a short review of the original method recently developed with the Generalized Maximum

Entropy (GME) estimator for the simple linear Measurement Error Model (MEM) and the Structural Equation Model

(SEM). These two models often concern subjective or psychological variables (the composite indicators) and represent

relations between many latent variables. As well as to obtain an estimate of the parameters of these models considering

the measurement errors (reliabilities) of the composite indicators, the GME approach can adjust them, allows to obtain

estimates with higher correlation with the related latent variables. Hovewer, unresolved drawback of this approach

are the computational complexities for models with many parameters and errors, and its scalability for big data sets.

∗ Corresponding author.

E-mail address: carpita@eco.unibs.it

© 2014 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license 
(http://creativecommons.org/licenses/by-nc-nd/3.0/).
Selection and peer-review under responsibility of the Organizing Committee of IES 2013.

http://crossmark.crossref.org/dialog/?doi=10.1016/S2212-5671(14)00874-0&domain=pdf


21 Maurizio Carpita and Enrico Ciavolino  /  Procedia Economics and Finance   17  ( 2014 )  20 – 29 

This paper is organised as follows. In paragraph 2, the GME estimation approach for the simple linear regression

model is described. In paragraph 3 the GME estimation approach for the MEM with one composite indicator as

explanatory variable is presented, together with a simulation and an example of economic perception from the Euro-

barometer Survey. In paragraph 4 the GME estimator for the SEM with many composite indicators for many latent

variable is explained, together with a simulation and an example in the case of job satisfaction from a survey on the

workers of the Italian Social Cooperatives. Conclusions are given in paragraph 5.

2. Introducing the Generalized Maximum Entropy (GME) Estimator

The GME estimator was proposed by Golan et al. (1996) to estimate parameters in cases of ill-posed problems

(e.g., short and fat matrices, multi-collinearity, etc) or when some prior-knowledge on the parameters are known. The

formalization of the GME approach could be made by considering the following simple regression model for the ith

unit of a sample with n observations:

yi = α + xiβ + εi i = 1, . . . , n (1)

The idea underlying the GME estimator consists to rewrite the regression coefficients α and β as expected values

of two random variables Zα and Zβ:

α =

K∑

k=1

zαk pαk β =

K∑

k=1

zβk pβk

where zαk and zβk are the supports, symmetric around zero, while pαk and pβk are the probabilities associated (usually

2 ≤ K ≤ 7). The error terms εi can also be written in the same way, considering the random variables Zεi :

εi =

H∑

h=1

zεih pεih i = 1, . . . , n

where zεih are the supports, symmetric around zero, while pεih are the probabilities associated (usually 2 ≤ H ≤ 7). The

choice of the zαk , zβk and zεih have an important role in the probability estimation procedure. These vectors could be

shaped starting from particular prior information or rather could be chosen ad-hoc: for example, by considering zεih,

the choice could be the adoption of the three-sigma-rule (Pukelsheim (1994)). For the details, see the next paragraph.

The GME method, therefore, allows to estimate the regression coefficients and the error terms, by recovering the

probability distribution of a discrete random variables set. The parameter estimates are obtained by the maximization

of the following Shannon’s entropy function (Shannon et al. (1949)):

H(pα, pβ, pε) = −
K∑

k=1

pαk ln pαk −
K∑

k=1

pβk ln pβk −
n∑

i=1

H∑

h=1

pεih ln pεih

subject to the consistency constraints that represent the re-parametrization of the regression model (1):

yi =

K∑

k=1

zαk pαk + xi

K∑

k=1

zβk pβk +
H∑

h=1

zεih pεih i = 1, . . . , n

and the following normalization constraints:

K∑

k=1

pαk = 1

K∑

k=1

pβk = 1

H∑

h=1

pεih = 1 i = 1, . . . , n

The main advantages of using GME estimation method are its desirable properties, which can be briefly summa-

rized in the following points (Golan et al. (1996); Golan (2008)):
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• The GME approach uses all the data points and does not require restrictive moments or distributional error

assumptions;

• Thus, unlike other estimators, the GME is robust for a general class of error distributions;

• The GME estimator may be used when the sample is small, where there are many covariates, and when the

covariates are highly correlated;

• Moreover, using the GME method, it is easy to impose nonlinear and inequality constraints.

Therefore the GME works well in case of ill-behaved data, where the estimators, like for instance the Maximum

Likelihood Estimation, cannot proceed. However, some drawbacks can be considered: in particular, the GME estima-

tor is cumbersome with many parameters and errors and it’s not very suitable for big data problems.

3. The GME estimator for the Measurement Error Model (MEM)

The measurement error that is present in subjective or psychological variables is one of the most frequent (some-

times ignored) problems in statistical analyses. Let consider the following linear deterministic structural relationship:

ηi = α + ξiβ i = 1, . . . , n (2)

where η and ξ are two latent random variables and α and β are unknown structural parameters. To estimate these

parameters it is possible to use multiple indicators, i.e. observe the realization of 1+ J random variables, with additive

errors ε and δ j respectively, that are uncorrelated between them and with the latent variable ξ:

yi = ηi + εi xi j = ξi + δi j j = 1, . . . , J i = 1, . . . , n (3)

These 1 + J reflective relations are represented in the figure 1. In the simpler case, the latent variable ξ can be

estimated with the average of X′s as follow:

ξ̂i =

J∑

j=1

xi j/J i = 1, . . . , n (4)

From the equation (3) on the right and the average (4), we can write:

ξi = ξ̂i − δi i = 1, . . . , n (5)

with δi =
∑

j δi j/J. Considering the ith unit of a sample with n observations and by replacing the equations (2) and (5)

in the equation (3) on the left, we can obtain the following specification of the MEM:

yi = ηi + εi = α + ξiβ + εi = α + (ξ̂i − δi)β + εi i = 1, . . . , n

A standard solution to the parameter estimation problem is the Ordinary Least Square Adjusted for attenuation

(OLSA) estimator (Fuller (1987)):

β̂OLS A = β̂OLS /κ̂ξ

where κ̂ξ is the estimated reliability index, defined as follow:

κ̂ξ =
Jr̄x

1 + (J − 1)r̄x

with r̄x the average correlation of X′s. The GME estimator is outlined by the reformulation of the intercept and slope

coefficients and the two error terms in form of expected values of the discrete random variables Zα, Zβ, Zδ, Zεi :

yi =

K∑

k=1

zαk pαk +

⎛⎜⎜⎜⎜⎜⎝ξ̂i −
H∑

h=1

zδh pδih

⎞⎟⎟⎟⎟⎟⎠
K∑

k=1

zβk pβk +
H∑

h=1

zεh pεih i = 1, . . . , n (6)
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Fig. 1. Path diagram of the Measurement Error Model (MEM)

The idea underling the GME method is to estimate the unknown parameters and the error terms, by maximizing

the following Shannon’s entropy function:

max{H(pα, pβ, pδ, pε)} = −
K∑

k=1

pαk ln pαk −
K∑

k=1

pβk ln pβk −
n∑

i=1

H∑

h=1

pδih ln pδih −
n∑

i=1

H∑

h=1

pεih ln pεih

subject to the consistency constraints, which are represented by the re-written model in equation (6), and adding up the

normalization constraints. Note that, with the MEM-GME approach we obtain an error estimate δ̂GME , and therefore

the estimate ξ̂GME = ξ̂ − δ̂GME of the latent variable ξ.

3.1. A simulation for the MEM-GME estimator in the case of four optimal discrete variables

Since the analysis of the perception or satisfaction are usually made by using questionnaire based on Likert-scale,

in this section we compare the performance of the estimator based on the GME, contrasted with OLSA, using different

levels of reliability for the composite indicator used as explanatory variable.

The method we have used to construct homogeneous data with a one-dimensional latent trait underlying J discrete

variables is based on the discretization of J continuous variables following a multivariate standard normal distribution

with equal correlations. The approach followed for the discretization procedure is called optimal discrete probability
distribution, which resembles the original Normal distribution, and it is indicated with the letter O. Following Carpita

and Manisera (2012), we chose k = 5 for each discrete variable with corresponding probabilities (0.11; 0.24; 0.30;

0.24; 0.11). The latent probability distribution and the discrete variable optimal O are represented in the figure 2.

Fig. 2. From the Standard Normal probability distribution to the discrete variable optimal O

To compare the performance of GME and OLSA estimators for the model (2)-(3), we fixed the structural parameters

to α = 0 and β = 0.5, J=4, n=30, σ2
ε=0.2 and κξ = (0.7, 0.8, 0.9).
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Table 1. Simulation results (average of 2,000 replications) of the three estimators (MEM: α = 0, β = 0.5, J=4, n = 30, σ2
ε=0.2)

κξ = 0.7 κξ = 0.8 κξ = 0.9

β̂GME 0.452 0.442 0.446

β̂OLS A 0.465 0.444 0.440

β̂OLS 0.291 0.332 0.379

S EGME 0.104 0.075 0.057

S EOLS A 0.134 0.083 0.060

S EOLS 0.052 0.053 0.049

RMS EGME 0.114 0.095 0.079

RMS EOLS A 0.138 0.100 0.085

RMS EOLS 0.215 0.177 0.131

Table 2. Simulation results (average of 2,000 replications) for the correlation of ξ̂GME and ξ̂ with ξ (MEM: α = 0, β = 0.5, J=4, n = 30, σ2
ε=0.2)

κξ = 0.7 κξ = 0.8 κξ = 0.9

Corr(ξ̂GME , ξ) 0.884 0.899 0.922

SE 0.033 0.027 0.016

Corr(ξ̂, ξ) 0.790 0.845 0.901

SE 0.060 0.042 0.022

Considering the summary in table 1 (bootstrap estimates, standard errors - SE and root mean square errors - RMSE

of the estimators of β), the simulation shows that, on the contrary to the classic OLS estimator which has a bias very

high (between 22% and 40%, increasing with the measurement error), the bias of the GME estimator is relatively low

and constant (about 5%) similar to the OLSA estimator. The RMSE of the estimators GME and OLSA are practically

the same. Table 2 shows that the estimated ξ̂GME is more correlated with the latent variable ξ with respect to the simple

average ξ̂. Because the GME correction, the value of the correlation coefficient increases from 2.4% (with an error of

rate of 10%) to 12.7% (with a measurement error of 30%).

3.2. An application for the MEM-GME estimator in the case of the Eurobarometer perception

The empirical evidence proposed in this section concerns the study of the public opinion in the European Union

on four socio-economic aspects and how these perceptions could be related to the future Gross Domestic Product.

The data refers to 27 European Union (EU) Countries on four socio-economic questions (the X′s of the survey Eu-

robarometer Standard (2012)), and sample of Gross domestic product per capita for the year 2013 (the Y provided

by European Commission (2013)). The respondents judge the current situation in each of his/her Country, for the

following aspects:

• X1 - The situation of the (NATIONALITY) economy

• X2 - The situation of the European economy

• X3 - The situation of the economy in the world

• X4 - Your personal job situation

The response scale is: 1=very bad, 2=rather bad, 3=rather good, 4=very good, so that, for each of 27 Countries,

there is a frequency distribution on four categories. To obtain four optimal discrete variables as in figure 2, for each

variable X we sorted the country means, and discretized them on 1-5 points using the absolute frequency bins (3; 6;

9; 6; 3) that close resemble the optimal relative frequencies (0.11; 0.24; 0.30; 0.24; 0.11). Finally, with these four

indicators we have compute the composite indicator (4).
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Fig. 3. The Eurobarometer perception results obtained with the MEM

Figure 3 sums up the estimation results, obtained after the standardization of the dependent and indipendent vari-

able of the MEM. In the first part is reported the correlation matrix of the X′s variables and also the correlation with

the Gross Domestic Product. The mean of the correlation is 0.654 with a corresponding Cronbach’s Alfa equal to

0.777, so that the measurement error is 22.3%. The regression coefficient β and the standard errors are obtained via

bootstrap with 2000 replications and samples size equal to 27. The regression coefficients estimated with the two

methods show there is no difference between the GME and OLSA, but in terms of standard errors, GME has smaller

standard error. OLS and GME regression lines are reported in the figure respectively in black and in grey colors.

4. The GME estimator for the Structural Equation Model (SEM)

The SEM can be seen as a generalization of the MEM by obtaining a more complex system of relation among the

variables and relative measurement errors. The SEM consists of two main parts (Bollen (1998)):

η = Bη + Γξ + τ
y = Λyη + ε

x = Λxξ + δ

The first part is the Structural Model and represents the linear relationships among the latent variables, where η
is the vector of the m endogenous latent variables, ξ is the vector of the n exogenous latent variables, x and y, are

respectively the vectors of the q and p manifest exogenous and endogenous variables; the coefficient matrices B and Γ

contain the path coefficients respectively of the effects of the endogenous on the endogenous variables and the effects

of exogenous on the endogenous variables. The second part is the Measurement Model and represents the relationships

between the manifest and latent variables, endogenous and exogenous; the coefficient matrices Λy and Λx measure

the causal relationships of the manifest from the latent variables, both endogenous and exogenous, respectively. The

vectors τ, ε and δ are the structural and measurement error vectors. As showed for the MEM, the GME estimator is

defined by the re-parameterization of the unknown parameters and the disturbance terms as a convex combination of

expected values of discrete random variables as follow (Ciavolino and Al-Nasser (2009)):

B = ZBPB,Γ = ZΓPΓ,Λy = ZΛy PΛy ,Λx = ZΛx PΛx , τ = ZτPτ, ε = ZεPε , δ = ZδPδ

The parameters and the error terms estimation is obtained by the maximization of the following entropy function:

max{H(p, pe)} = −p′ ln p − p′e ln pe

where p′ = [p′B, p
′
Γ
, p′
Λy
, p′
Λx

] and p′e = [p′τ, p′ε , p′δ] are vectors containing the vec operations of the coefficients and

error terms matrices. The maximization is subjected to the consistency constraint, obtained as unique SEM function:
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Fig. 4. Path diagram for the SEM simulation study

y = Λy (I − B)−s [ΓΛ−1
x (x − δ) + τ] + ε (7)

Adding up normalization constraints which guarantee the sum of each coefficient and the error terms probability

vector equal to 1. A problem for the GME estimation is to define the support point of the SEM errors.

4.1. A simulation for the SEM-GME estimator in the case of five latent variables

Several simulation studies have been conducted to evaluate the performance of the GME estimator for SEM,

on different experimental conditions (Ciavolino and Al-Nasser (2009)), or as extension to the spatio-temporal case

(Papalia and Ciavolino (2011)), for the simultaneous equation model (Ciavolino and Dahlgaard (2009)) and for fuzzy

measures models (Ciavolino and Calcagnı̀ (2013)). The simulation reported in this section is presented in detail on

(Ciavolino and Al-Nasser (2009)) and the structural model is defined by the path diagram of Figure 4, where there

are three endogenous variables (Perceived Value, Customer Satisfaction and Loyalty), only two exogenous variables

(Hardware and Software) and the relationships among the latent variables are shown with arrows.

The simulation study is conducted under the following assumptions:

1. Generate 500 random samples each of size 10, 20 and 40 from the given model;

2. For the random variable X ∼ N(2, 2), and Y is computed based on re-formulation Equation (7);

3. The error terms are generated from symmetric distributions, τ ∼ N(0, 1); δ ∼ U(0, 1) and ε ∼ Beta(6, 6),

the observed values are then scaled such that the error terms have expectation value zero. The parameters are

initialised as follow: β1 = 0.8; β2 = 0.7, γ1 = 0.35, γ2 = 0.25, γ3 = 0.6, γ4 = 0.45 λy=all are set to 0.3 and

λx=all are set to 0.6;

4. The support values of the parameters (β, γ, λy and λx) in GME formulations are initialised by three data points

in the interval [100, 0, 100];

5. The support values of the residual terms are initialised by three data points according to the three sigma rule.

The results of the simulations are showed in the table 3, where the rows show the MSE of the estimated coefficients

and the columns the sample sizes, with the GME and the Partial Least Squares (PLS). The Monte Carlo results are

obtained under the above assumptions by the generation of 500 random samples each of size 10, 20 and 40. For this

case. Based on the simulation assumptions, the results indicate that the GME outperforms the PLS in estimating the

parameters of the given model, with small sample size (n = 10) for all parameters estimated. Improvements with PLS

appear with some coefficients for moderate (n = 20) or large sample sizes (n = 40). In general, the GME method has

better performance than the PLS in terms of MSE.
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Sample size 10 20 40

GME PLS GME PLS GME PLS

MSE(β̂1) 0.0639 0.4231 0.09001 0.2549 0.0489 0.0925

MSE(β̂2) 0.0400 0.3764 0.04399 0.3542 0.0338 0.1678

MSE(γ̂11) 0.2887 0.5492 0.10630 0.4872 0.3998 0.2154

MSE(γ̂12) 0.3607 0.5204 0.20336 0.4279 0.3670 0.2235

MSE(γ̂22) 0.0639 0.1623 0.49070 0.1257 0.0553 0.0882

MSE(γ̂32) 0.6114 0.7612 0.43407 0.5531 0.0226 0.3940

MSE(λ̂y) 0.1026 0.3214 0.02783 0.2167 0.0142 0.1764

MSE(γ̂x) 0.2916 0.3546 0.25493 0.2843 0.1516 0.1877

Table 3. MSE comparisons between GME and PLS estimators

4.2. An application for the SEM-GME estimator in the case of the job satisfaction

The job satisfaction is the degree to which workers like their work, and its importance in socio-economic sciences

has been recognized, as high levels of it are related to well-being, extra work effort and performance (Spector (1997);

Taylor (2006); Millán et al. (2013)). Using data from a survey on the Italian Social Cooperatives carried out on about

4,000 workers over more than 300 social cooperatives (known as ICS I2007; Carpita and Golia (2012)), we have study

with the SEM-GME approach the links between two dimension of the job satisfaction (intrinsic and extrinsic) with

others work quality latent factors as fairness (distributive and procedural) and motivation, that together constitute the

psychological contract signed between employees and their organization (Borzaga and Depedri (2005); Borzaga and

Tortia (2006)). For the estimation of the parameters of this complex model with items, we have adopting a two steps

procedure (Oberski and Satorra (2013)):

1. In the first step a reliability study is conduct to obtain multidimensional measures of the subjective quality of

work, starting with Nonlinear Principal Component Analysis and then using the Rating Scale Model (NPCA-

RSM; Carpita and Vezzoli (2012)).

2. In the second step a substantive research is develop for the SEM with 9 composite indicators, considering their

reliabilities via the GME estimator (Ciavolino et al. (2012)).

Figure 5 shows the ICS I2007 Model with the estimates and standard errors of the path coefficients obtained using

the SEM-GME approach with a random sample of n = 360 workers: fairness (in particular procedural fairness) has

the most significant effect on both the dimensions of the job satisfaction considered, whereas motivations are not so

important, especially for intrinsic job satisfaction (see Ciavolino et al. (2012) for other details).

Also in this application, to define the supports for the error terms we adopt the three-sigma-rule of Pukelsheim

(1994). In particular, we use the estimate the variances of the measurement errors ε and δ obtained in the first step

of the procedure from the reliability indices of the 9 composite indicators: table 4 shows that the estimates of these

variances in the two analyses are not so different, but generally with the SEM-GME we have lower estimates of those

with the NPCA-RSM.

Table 4. Estimates of the measurement error variances obtained with NPCA-RSM and SEM-GME approaches

Measurement error variances of δ1 δ2 δ3 δ4 δ5 δ6 δ7 ε1 ε2
NPCA-RSM 0.38 0.34 0.52 0.11 0.26 0.20 0.21 0.26 0.13

SEM-GME 0.33 0.28 0.45 0.13 0.25 0.22 0.20 0.21 0.12

In this study we appreciate the flexibility and more thoughtful analysis offered by the combined use of two different

statistical approaches as NPCA-RSM and SEM-GME.
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Fig. 5. The ICS I2007 path model with the structural parameter estimates obtained with the SEM-GME approach

5. Epilogue

In this paper we have presented a synthesis of some simulation and application results about our methodological

proposal, recently developed with the Generalized Maximum Entropy (GME) estimator for the simple linear Measure-

ment Error Model (MEM) and the Structural Equation Model (SEM). In socio-economic research, these two models

represent relations between latent variables and make often use of composite indicators, obtained from subjective or

psychological (discrete) data sets.

The simulation point out that the GME estimator: (1) for the MEM performs as well as the standard OLSA

estimator with relatively small samples and allows a more accurate estimate of the latent variable of interest; (2) for

the SEM has some advantages with respect to Partial Least Squares (PLS) estimator with small samples.

The two applications (one with economic perception data from the Eurobarometer survey, and one with job satis-

faction data from the ICS I2007 survey) confirm the simulation results: (1) the GME estimator for MEM and relatively

small dataset has a lower RMSE of the OLSA estimator; (2) the GME estimator for SEM with complex structure

allows to separate the preliminary reliability analysis of the composite indicators from more substantive research.

As any other estimator, also the GME estimator has some drawbacks. In particular, computational problems arise

with big data sets, and for models with many parameters and errors. Our actual research on the GME estimator, as

well as to extend the simulation scenario, is facing with these important application issues.
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