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Abstract. Modern enterprise information systems often require to spec-
ify their functional and non-functional (e.g., Quality of Service) require-
ments using expressions that contain temporal constraints. Specification
approaches based on temporal logics demand a certain knowledge of
mathematical logic, which is difficult to find among practitioners; more-
over, tool support for temporal logics is limited. On the other hand,
a standard language such as the Object Constraint Language (OCL),
which benefits from the availability of several industrial-strength tools,
does not support temporal expressions.
In this paper we propose OCLR, an extension of OCL with support
for temporal constraints based on well-known property specification pat-
terns. With respect to previous extensions, we add support for referring
to a specific occurrence of an event as well as for indicating a time dis-
tance between events and/or from scope boundaries. The proposed ex-
tension defines a new syntax, very close to natural language, paving the
way for a rapid adoption by practitioners. We show the application of
the language in a case study in the domain of eGovernment, developed
in collaboration with a public service partner.

1 Introduction

Complex software systems, such as modern enterprise information systems, call
for the definition of requirements specifications that include both functional
and non-functional aspects (such as QoS, Quality of Service). In both cases,
the specifications might characterize (quantitative) aspects of the system that
involve temporal constraints. Examples of these constraints are bounds on the
sequence and/or number of occurrences of system events, possibly conjuncted
with constraints on the temporal distance of events.

These types of specifications have been catalogued in various collections of
property specification patterns, to help analysts and developers in expressing
typical, recurrent properties of a system, using a generalized yet structured and
precise form. The majority of property specification patterns have emerged in
the context of concurrent, real-time critical systems [7, 13, 10], though there have
been recent proposals of specification patterns for specific domains, like service-
based applications [1]. In all cases, the patterns have been formalized in terms
of some temporal logic, either the classic ones like LTL and CTL or a more spe-
cialized version like SOLOIST [2]. One problem in using a specification language
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based on a temporal logic is that it requires a strong theoretical background,
which is rarely found in practitioners. Moreover, tool support for the verification
of properties expressed in temporal logic is prototypal and limited, at least if
considered in the context of applying this kind of formal method at a scalable,
industrial-grade level.

One of the specification languages that has found a significant consensus
and adoption in industry is the Object Constraint Language (OCL) [11], used
to specify constraints on models, and now a standard in the context of model-
driven engineering practice. However, OCL does not support the specification
of temporal requirements. There have been several research proposals to extend
OCL with temporal constructs. Nevertheless, in the scope of a collaboration
with a public service partner active in the domain of eGovernment, we found
that the available temporal extensions of OCL do not meet the expressiveness
requirements as determined in our field study, based on realistic specifications
extracted from a collection of eGovernment business process descriptions.

In this paper we propose a new language, called OCLR, to fill the expressive-
ness gap that we found on the field. OCLR is an extension of OCL that supports
temporal constraints based on some of the well-known property specification pat-
terns. More specifically, we advance the state of the art by introducing support
for referring to a specific occurrence of an event in scope boundaries as well as for
indicating a time distance between events and/or from scope boundaries. Our
language extends OCL in a minimal fashion while maximizing the expressiveness
of temporal properties; moreover, the syntax is very close to natural language,
to encourage practitioners to use it. To show the feasibility of using OCLR in
realistic scenarios, we include a case study in the context of an eGovernment
application developed by our public service partner.

In the future, our intent is to adopt OCLR in the context of a larger project
on model-driven run-time verification1 of business processes. Since in this project
we plan to leverage existing industrial-strength OCL tools, such as constraint
verification engines, we decided to minimize, by design, the differences between
the models underlying OCLR and OCL. We believe that making OCLR a min-
imal extension of OCL will make the translation2 of OCLR expressions into
regular OCL ones much easier than performing the same translation starting
from expressions written in a language much more distant from OCL, such as a
temporal logic.

The rest of this paper is structured as follows. In Sect. 2 We discuss the
motivations for which and the context in which this work has been developed.
Section 3 introduces OCLR, its syntax and the (informal) semantics3. In Sect. 4
we show the application of OCLR in a case study in the domain of eGovernment.
We survey related work in Sect. 5. Section 6 concludes the paper, providing
directions for future work.

1 In fact OCLR stands for “OCL for Run-time verification”.
2 The translation from OCLR to OCL is out of the scope of this paper.
3 The complete definition of the formal semantics of OCLR is available in [6].
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2 Motivations

This work has been developed as part of an ongoing collaboration with CTIE
(Centre des technologies de l’information de l’Etat), the Luxembourg national
center for information technology. The main role of CTIE is to lead the devel-
opment of electronic government (eGovernment) initiatives within Luxembourg,
with the ultimate goal of delivering digital public services to citizens and enter-
prises, as well as improving the processes followed by the public administration.

The business processes designed for public administrations are usually highly
complex and require the interaction of different stakeholders. In particular, they
act as the “glue” to orchestrate different information systems, possibly by many
different organizations, in an effort to foster cooperation of various administra-
tions. Given the complexity and the many interactions foreseen for eGovernment
business processes, designing effective and efficient processes to drive e-service
delivery is one of the most challenging tasks for public administrations. For these
reasons, their development is gradually moving towards model-driven techniques.
This is the case for CTIE, which has developed in-house a model-driven method-
ology for designing eGovernment business processes.

Usually these processes are designed as compositions of services provided
by different organizations, administrations, or third-party suppliers. A service
integrator has to monitor the execution of the third-party services it uses to
check whether they fulfill their obligations (both in terms of functional and
non-functional properties), so that the business process itself can meet its re-
quirements. Furthermore, it is also important to verify at run time whether the
business process execution complies with the constraints specified during the
modeling phase, to detect when a failure occurs and to possibly determine cor-
rective actions. In this context, we are involved in a project on model-driven,
run-time verification of (eGovernment) business processes.

One of the first steps of this project consisted in identifying the type of
constraints to check at run time. We analyzed several applications developed
by CTIE and scrutinized the requirements specifications associated with all use
cases and business process descriptions. We were able to recast the majority of
specifications written in natural language using the system of property specifica-
tion patterns (and scopes) proposed by Dwyer et al. [7]. However, in some cases
the original definitions proposed in [7] had to be extended to match the system
specifications. For example, the definitions of property specification scopes, used
to refer to the extent of a program execution over which a pattern must hold,
had to be extended to support references to a specific occurrence of an event
(not only the first one as in [7]), as in the requirement “event A shall occur
before the second occurrence of event X”. Another variant of this type of scope
boundary that we found is the one with requirements on the distance between
events, such as “event A shall occur five time units before the second occurrence
of event X”. In some cases, the requirements specifications had to be expressed
in terms of some real-time specification patterns [13, 10], which quantitatively
define distance among events and durations of events.
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Based on the results of this phase, we pondered over the definition of a high-
level specification language for expressing this type of constraints. The intrinsic
temporal nature of the requirements specifications we found, including also real-
time constraints, could have suggested to follow the direction of building on some
temporal logic. However, specification languages based on temporal logic require
a certain mathematical knowledge that is not easy and common to find among
practitioners, such as business analysts or software engineers. Moreover, the ar-
ray of tools available for the verification of temporal logic is limited, especially
if one considers the additional requirement of applying them in realistic indus-
trial contexts. Based on these limitations, given the model-driven engineering
practice already in place at our public service partner, we decided to define our
specification language as an extension of OCL. In this way, we can build on a
language that is standardized, is known among practitioners, and has a wide set
of well-established, industrial-strength tools, like constraints verification engines.

3 OCLR

The design of OCLR is based on Dwyer et al.’s property specification patterns
system [7]. This system defines five scopes (globally, before, after, between-and,
and after-until) and eight patterns (universality, absence, existence, bounded ex-
istence, precedence, response, precedence chain, and response chain).

In the definition ofOCLR we decided to support all these scopes and patterns,
with the following extensions:

– The possibility, in the definition of a scope boundary, to refer to a specific
occurrence of an event, as in “before the second occurrence of event X. . . ”.
In the original definition of the pattern systems, boundaries of scopes refer
implicitly to the first occurrence of an event.

– The possibility to indicate a time distance with respect to a scope boundary,
as in “at least (at most) two time units before the n-th occurrence of event
X. . . ”.

– Support for expressing time distance between events occurrences, to express
properties like a bounded response, such as “event B should occur in response
to event A within 2 time units”.

These design choices have been motivated by the type of properties that we
have found while analyzing the requirement specifications of our public service
partner, as well as by the lack of support for them in the current temporal
extensions of OCL (see Sect. 5).

OCLR has been inspired by the design of Temporal OCL [12], another
pattern-based temporal extension of OCL. As we will discuss in more detail
in Sect. 5, Temporal OCL lacks the language features described above. Never-
theless, we borrow from it the notion of event, i.e., a predicate that specifies a
set of instants within the time line; the specific types of events supported in the
language are described in the following subsection.
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3.1 Syntax

The syntax of OCLR (also inspired by the one of Temporal OCL [12]) is shown
in Fig. 1: non-terminals are enclosed in angle brackets, terminals are enclosed in
single quotes, and underlined italic words are non-terminals defined in the OCL
grammar [11]. An 〈OCLR block〉 comprises a set of conjuncted 〈TemporalClauses〉
beginning with the keyword ‘temporal’. Each temporal clause contains a tempo-
ral expression that consists of a 〈scope〉 and a 〈pattern〉; the scope specifies the
time slot(s) during which the property described by the pattern should hold.

〈OCLRBlock〉 ::= ‘temporal’ 〈TemporalClause〉+
〈TemporalClause〉 ::= [〈simpleNameCS〉] ‘:’ [〈Quantif 〉] 〈TemporalExp〉
〈Quantif 〉 ::= ‘let’ 〈VariableDeclarationCS〉 ‘in’
〈TemporalExp〉 ::= 〈Scope〉 〈Pattern〉
〈Scope〉 ::= ‘globally’

| ‘before’ 〈Boundary1 〉
| ‘after’ 〈Boundary1 〉
| ‘between’ 〈Boundary2 〉 ‘and’ 〈Boundary2 〉
| ‘after’ 〈Boundary2 〉 ‘until’ 〈Boundary2 〉

〈Pattern〉 ::= ‘always’ 〈Event〉
| ‘eventually’ 〈RepeatableEventExp〉
| ‘never’ [‘exactly’ 〈IntegerLiteratureExpCS〉] 〈Event〉
| 〈EventChainExp〉 ‘preceding’ [〈TimeDistanceExp〉]

〈EventChainExp〉
| 〈EventChainExp〉 ‘responding’ [〈TimeDistanceExp〉]

〈EventChainExp〉
〈Boundary1 〉 ::= [〈IntegerLiteratureExpCS〉] 〈SimpleEvent〉

[〈TimeDistanceExp〉]
〈Boundary2 〉 ::= [〈IntegerLiteratureExpCS〉] 〈SimpleEvent〉

[‘at least’ IntegerLiteratureExpCS ‘tu’]
〈EventChainExp〉 ::= 〈Event〉 (‘,’ [‘#’ 〈TimeDistanceExp〉] 〈Event〉)*
〈TimeDistanceExp〉 ::= 〈ComparingOp〉 〈IntegerLiteratureExpCS〉 ‘tu’
〈RepeatableEventExp〉 ::= [〈ComparingOp〉 〈IntegerLiteratureExpCS〉] 〈Event〉
〈ComparingOp〉 ::= ‘at least’ | ‘at most’ | ‘exactly’
〈Event〉 ::= (〈SimpleEvent〉 | 〈ComplexEvent〉) [‘|’ Event]
〈ComplexEvent〉 ::= ‘isCalled’ ‘(’ ‘anyOp’

[‘,’ ‘pre:’ 〈OCLExpressionCS〉]
[‘,’ ‘post:’ 〈OCLExpressionCS〉] ‘)’ [‘\’ 〈Event〉]

〈SimpleEvent〉 ::= 〈SimpleCallEvent〉 | 〈SimpleChangeEvent〉
〈SimpleChangeEvent〉 ::= ‘becomesTrue’ ‘(’ 〈OCLExpressionCS〉 ‘)’
〈SimpleCallEvent〉 ::= ‘isCalled’ ‘(’ 〈OperationCallExpCS〉

[‘,’ ‘pre:’ 〈OCLExpressionCS〉]
[‘,’ ‘post:’ 〈OCLExpressionCS〉] ‘)’

Fig. 1. Grammar of OCLR
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The definitions of 〈Event〉s that can be used in a temporal expression are
adapted from [12]. The keyword ‘isCalled’ represents a call event, which corre-
sponds to a call to an operation. Under the hypothesis of atomicity of operations,
we merge into a single call event, the events corresponding to the call, the start,
and the end of an operation. A call event has three parameters: the called opera-
tion; the precondition (optional, in the form of an OCL expression) that acts as
guard over the system pre-state and the operation parameters for the actual call
execution; the postcondition (optional, in the form of an OCL expression) that
acts as guard over the system post-state and the return value of the call invoca-
tion. Notice that a call event is raised only if the operation is invoked and both
the precondition and the postcondition are satisfied. The keyword ‘anyOp’ is used
if no operation is specified; in this case the call event becomes a state change
event, from the state determined by the precondition to the state determined
by the postcondition. The keyword ‘becomesTrue’ denotes a state change event
parameterized with the OCL expression provided as parameter: it corresponds
to the state in which the input expression becomes true (which implies that in
the previous state it evaluated to false). We also support the disjunction ‘|’ and
the exclusion ‘\’ operations on events.

3.2 OCLR at Work

We now present some examples of properties that can be expressed with OCLR,
in order to provide the reader with a high-level, intuitive understanding of the
language. We consider the history trace shown in Fig. 2 and for each property
indicate whether it is violated or not by the trace. First, we define the properties
in English:

1. “Event C shall happen 8 time units after the second occurrence of event X.”
(satisfied)

2. “Event A shall happen within 30 time units after the first occurrence of event
X.” (satisfied)

3. “Event C shall eventually happen after at least 3 time units since the first
occurrence of event X; and it shall happen before event Y if the latter
happens.” (violated)

4. “After the second occurrence of event X, event C shall eventually happen
exactly twice.” (satisfied)

5. “Event C shall happen at least once between every first occurrence of event
X and the next event Y ; the time interval between event X and the first
occurrence of event C shall be at least 5 time units.” (violated)

X A B Y Y X X C C Y X

4 tu 4 tu 6 tu 8 tu

Fig. 2. Sample events traces
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6. “Event B shall happen at least 3 time units before the first occurrence of
event Y .” (satisfied)

7. “Before the first occurrence of event Y , once event X occurs, event A shall
happen followed by event B; the time interval between X and A shall be at
least 3 time units.” (satisfied)

The corresponding OCLR expressions are shown below:

1. temporal: after 2 X exactly 8 tu eventually C
2. temporal: after X at most 30 tu eventually A
3. temporal: after 1 X at least 3 tu until Y eventually C
4. temporal: after 2 X eventually exactly 2 C
5. temporal: between X at least 5 tu and Y eventually at least 1 C
6. temporal: before Y at least 3 tu eventually B
7. temporal: before Y A, B responding at least 3 tu X

3.3 Informal Semantics

In this section we present the informal semantics of the scopes and the patterns
supported in OCLR expressions; they correspond to non-terminals 〈Scope〉 and
〈Pattern〉, respectively. The full definition of the formal semantics is available in
the extended version of this paper [6].

Scopes. For the description of scopes, we refer to the trace of events depicted
in Fig. 3. We use symbols X and Y as shorthands for events that can be derived
from the non-terminal 〈SimpleEvent〉.

X Y Y X X Y X

Fig. 3. A sample trace for the description of scopes

Before. This scope identifies a portion of a trace up to a certain boundary.
The general template for this scope in OCLR is “before [m] X [〈ComparingOp〉
n tu]”, where elements between brackets are optional, ‘m’ and ‘n’ are integers de-
rived from the non-terminal 〈IntegerLiteratureExpCS〉, and ‘tu’ stands for “time
unit(s)”. This template can be expanded in four forms: 1) “before X”, 2) “be-
fore X 〈ComparingOp〉 n tu”, 3) “before m X”, 4) “before m X 〈ComparingOp〉
n tu”. The first two forms are convenient shorthands for the third and fourth
ones, respectively, with m = 1. The form “before m X” selects the portion of the
trace up to the m-th occurrence of event X; see, for example, the top row in
Fig. 4, where the interval from the origin of the trace up to the third occurrence
of X is highlighted with a thick line. The form “before m X 〈ComparingOp〉
n tu” has three variants, depending on the possible expansions of non-terminal
〈ComparingOp〉:
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– “before m X at least n tu” identifies the scope from the origin of the trace
up to n time units before the m-th occurrence of X;

– “before m X at most n tu” identifies the scope starting at n time units be-
fore the m-th occurrence of X and bounded to the right by the m-th occur-
rence of X;

– “before m X exactly n tu” pinpoints the time instant at n time units before
the m-th occurrence of X.

Examples of these three variants of scopes are shown with thick segments in
Fig. 4, with m = 3 and with n = 2.

After. This scope identifies a portion of a trace starting from a certain
boundary. It has a dual semantics with respect to the before scope. We provide
an intuition of its semantics using Fig. 5, where the possible variants of this
scope are represented as thick segments.

Between-And. This scope identifies portion(s) of a trace delimited by two
boundaries. The general template for this scope in OCLR is “between [m1] X
[at least n1 tu] and [m2] Y [at least n2 tu]”, where elements between brack-
ets are optional, ‘m1’, ‘m2’, ‘n1’, ‘n2’ are integers derived from the non-terminal
〈IntegerLiteratureExpCS〉, and ‘tu’ stands for “time unit(s)”. This template can
be expanded in four forms:
– “between m1 X [at least n1 tu] and m2 Y [at least n2 tu]”;
– “between X [at least n1 tu] and m2 Y [at least n2 tu]”;
– “between m1 X [at least n1 tu] and Y [at least n2 tu]”;
– “between X [at least n1 tu] and Y [at least n2 tu]”.

The first form is the most general: it selects the single segment of the trace
delimited by the m1-th occurrence of event X and the m2-th occurrence of
event Y happening after the m1-th occurrence of X. The second and third forms
are shorthands for the first one, with m1 = 1 and m2 = 1, respectively. The
fourth form is the closest to the original definition in [7], since it selects all the
segments in the trace delimited by the boundaries. In this regard, notice the
difference with respect to the expression “between 1 X and 1 Y ”, which selects
the segment delimited by the first occurrence of X and the first occurrence of
Y after X. In all forms it is possible to use the expression at least n tu when
defining boundaries, with the same meaning described for the scope before. Four
examples of the Between-and scope are shown in Fig. 6.

After-Until. This scope is similar to Between-and, with the difference that
each identified segment extends to the right in case the event defined by the
second boundary does not occur; this peculiarity can be noticed in the first two
rows of Fig. 7, and compared with those in Fig. 6.

Globally. This scope corresponds to the entire trace shown in Fig. 3.
Note that all scopes but those using the ‘exactly’ keyword do not include the
events occurring at the boundaries of the scope itself.

Patterns. OCLR supports the eight patterns defined in [7].
Universality. It states that a certain event should always happen within

the given scope.
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X Y Y X X Y X

before 3 X

before 3 X at least 2 tu
before 3 X at most 2 tu
before 3 X exactly 2 tu

2 tu

Fig. 4. Scope: before

X Y Y X X Y X

after 3 X

after 3 X at least 2 tu
after 3 X at most 2 tu
after 3 X exactly 2 tu

2 tu

Fig. 5. Scope: after

Existence. It indicates that the given scope contains some occurrence(s) of
a certain event. This pattern comes in four forms:
– “eventually A” means that the event A happens at least once;
– “eventually at least m A” means that A happens at least m times;
– “eventually at most m A” means that A happens at most m times;.
– “eventually exactly m A” means that A happens exactly m times.

The last three forms are variants of the bounded existence pattern, a subclass of
the existence one.

Absence. It states that a certain event never occurs in the given scope. It is
also possible to specify that a specific number of occurrences of the same event
should not happen, as in “never exactly 2 X”, which says that X should never
occur exactly twice.

Precedence. This pattern (also available in the variant called precedence
chain) indicates the precondition relationship between a pair of events (respec-
tively, the two blocks of a chain) in which the occurrence of the second event

X Y Y X X Y X

between X and Y

between X and Y at least
2 tu
between 1 X at least 2 tu
and 2 Y

between 2 X at least 2 tu
and 1 Y at least 2 tu

2 tu 2 tu

2 tu

2 tu

Fig. 6. Scope: between-and
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X Y Y X X Y X

after X until Y

after X until Y at
least 2 tu
after 1 X at least 2 tu
until 2 Y

after 2 X at least 2 tu
until 1 Y at least 2 tu

2 tu 2 tu

2 tu

2 tu

Fig. 7. Scope: after-until

(respectively, block) depends on the occurrence of the first event (respectively,
block). Based on this original definition, we added support for timing informa-
tion to enable expressing the time distance between two adjacent events. The
semantics can be explained using the following example and the event trace in
Fig. 8; the expression “A preceding at most 10 tu B, #at least 5 tu C” in-
dicates that the event A is the precondition of the block “B followed by C”,
that the time distance between A and B is at most 10 time units, and the time
distance (expressed using the # operator) between events B and C is at least 5
time units. Here, A (at the left of ‘preceding’) represents the first block of the
chain, while the expression “B, #at least 5 tu C” represents the second block
(at the right of ‘preceding’).

Response. This pattern (also available in the variant called response chain)
specifies the cause-effect relationship between a pair of events (respectively, the
two blocks of a chain) in which the occurrence of the first event (respectively, first
block) leads to the occurrence of the second event (respectively, second block).
The property “C, D responding at most 10 tu A, #at least 5 tu B” specifies
that two successive events A and B stimulate the sequential occurrence of C and
D, and the time interval between A and B should be at least 5 time units; the
time interval between B (second element of the first block) and C (first element
of the second block) should be at most 10 time units. This property is violated
by the example in Fig. 8, because the time distance between A and B is only 4
time units.

A B C D

4 tu 6 tu 4 tu

Fig. 8. Example trace for illustrating the precedence and response patterns
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4 Applying OCLR in an eGovernment scenario

In this section we present a case study where we show the use of OCLR in the
context of an eGovernment application developed by our public service partner.
We illustrate some properties (selected from the 47 we analyzed) of a business
process model related to three use cases. The goal is to investigate whetherOCLR
can precisely capture all temporal and timed properties of a real eGovernment
system. The case study description has been sanitized for the purpose of not
disclosing confidential information and also to obtain a model at the minimum
level of detail required to illustrate and express the properties.

The scenario describes the Identity Card Management (ICM) business pro-
cess, which is in charge of issuing and managing the ID cards of the diplomatic
personnel of the country. A sanitized version of the conceptual model correspond-
ing to this scenario is shown in Fig. 9. The ICM business process deals with the
card requests, the production of the cards, and the returns of the cards once
expired. The ICM process also keeps track of the state of a card (CardState),
which can be, for example, InCirculation or Expired. A card Request can be in
different states, such as Approved, Denied, and InProgress. Once a request for a
card is submitted to the ICM system, it is evaluated and then either approved
or denied. After the approval, the ICM system asks the production system to
issue a physical card. The card will then be delivered to the applicant. The ICM
also deals with events such as the damage, loss, or expiration of cards.

Sample properties. We now list the requirements specifications associated
with three uses cases of the ICM system, and show how the corresponding
properties can be expressed in OCLR.

Card Request. The following requirements are associated with the use case
related to the card request:
R1 Once a card request is approved, the applicant is notified within three days;

this notification has to occur before the production of the card is started.
R2 The applicant has to show up within five days from the notification to get

her personal data collected.

request

1

card 1 card1

cardHolder1

1
*

cards

1

*

requests

1

letters
*

«enumeration»
CardState

InProduction
InCirculation
Lost
Expired
Returned

Card

state : CardState

isFound()

ICM

notifyApproved()
notifyRefused()
registerPhysicalInfo()
deliverTempCard()
deliverNewCard()
cancelCardDelivery()
notifyReturnCard()
notifyPolice()
notifyReturnedCard()

Request

state : RequestState

CardHolder

«enumeration»
RequestState

Approved
Denied
InProgress

Letter

tempCard
0..1

newCard
0..1

Fig. 9. Conceptual model of the ICM process
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R3 If the applicant does not show up within five days after the second notifica-
tion, the request will be denied and the applicant notified about the refusal.

1 context ICM
2 temporal R1: let r : Request in
3 before becomesTrue(r.card.state = CardState::InProduction)
4 isCalled(notifyApproved(r.applicant)) responding at most 3*24*3600 tu
5 becomesTrue(r.state = RequestState::Approved)
6 temporal R2: let r : Request in
7 after isCalled(notifyApproved(r.applicant)) at most 5*24*3600 tu
8 eventually isCalled(registerPhysicalInfo(r.applicant))
9 temporal R3: let r : Request in

10 after 2 isCalled(notifyApproved(r.applicant)) at least 5*24*3600 tu
11 eventually isCalled(notifyRefused(r.applicant))

Property R1 is expressed in lines 2–5. The before scope is delimited by the event
that corresponds to a change in the state of the card (c.state=CardState::InPro-
duction). The response pattern is bounded (time units are expressed in seconds)
and requires the notification to the applicant (notifyApproved) to happen in re-
sponse to a change in the state of the request (r.state=RequestCard::Approved).
Property R2 (lines 6–8) combines an after scope with an existence pattern. A
similar structure is used in R3 (lines 9–11), where the after scope uses the second
occurrence of notifyApproved as the boundary.

Card Loss. The following requirements are associated with the use case
related to the loss of a card:
L1 If a card is reported as lost to the ICM and has not been found yet, a

temporary card will be sent to the card holder within 1 day.
L2 If the card has not been found yet, a new card will be delivered to the holder

within five days after the report of the loss.
L3 After the card loss is reported, if the card is found, within at most three days

the delivery of the new card will be canceled and a notification to return the
temporary card will be sent.

1 context ICM
2 temporal L1: let c: Card in
3 after becomeTrue(c.state = CardState::Lost) at most 24*3600 tu
4 eventually isCalled(deliverTempCard(c.tempCard,
5 pre: c.state=CardState::Lost))
6 temporal L2: let c : Card in
7 after becomeTrue(c.state = CardState::Lost) at most 5*24*3600 tu
8 eventually isCalled(deliverNewCard(c.newCard),
9 pre: c.state=CardState::Lost)

10 temporal L3: let c: Card in
11 after becomeTrue(c.state = CardState::Lost)
12 isCalled(c.isFound(), pre: c.state=CardState::Lost)
13 preceding at most 3*24*3600 tu
14 isCalled(cancelCardDelivery(c.newCard),
15 pre: c.newCard.state <> CardState::InCirculation),
16 isCalled(notifyReturnCard(c.cardHolder))
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Both properties L1 and L2 use an after scope combined with an existence pat-
tern. Notice that in both cases the additional condition “card not found yet” is
expressed as a precondition of the operation which is the argument of isCalled
in the existence pattern (deliverTempCard and deliverNewCard). Property L3
combines an after scope with a precedence chain pattern, where the first block
corresponds to finding the card (isFound) and the second block is the chain of
cancelCardDelivery and notifyReturnCard.

Card Expiration. The following requirements are associated with the use
case related to the expiration of a card:
E1 Once a card expires, the holder is notified to return the card at most twice.
E2 After five days from the second notification to the holder about the expiration

of the card, if the card has not been returned yet, the police is notified.
E3 Once a card is returned, the holder will receive a confirmation within one

day.

1 context ICM
2 temporal E1: let c:Card in
3 after becomesTrue(c.state = CardState::Expired)
4 until becomesTrue(c.state = CardState::Returned)
5 eventually at most 2 isCalled(notifyReturnCard(c.cardHolder),
6 pre:c.state <> CardState::Returned)
7 temporal E2: let c:Card in
8 after 2 isCalled(notifyReturnCard(c.cardHolder),
9 pre: c.state <> CardState::Returned)

10 exactly 5*24*3600 tu
11 eventually isCalled(notifyPolice(c.cardHolder),
12 pre: c.state <> CardState::Returned)
13 temporal E3: let c:Card in
14 globally isCalled(notifyCardReturned(c.cardHolder),
15 pre: c.state = CardState::Returned)
16 responding at most 24*3600 tu
17 becomesTrue(c.state = CardState::Returned)

Property E1 uses an after-until scope, delimited by the events corresponding
to the expiration of the card (c.state=CardState::Expired) and the return of
the card (c.state=CardState::Returned). A bounded existence pattern is used to
specify the maximum amount of notifications (notifyReturnCard) that can hap-
pen. In property E2 we use an after scope combined with the keyword ‘exactly’
to pinpoint the exact time instant in which the police is notified (notifyPolice).
Property E3 states an invariant of the system (using the globally scope) for the re-
sponse pattern correlating the return of the card (c.state=CardState::Returned)
to the notification to the holder (notifyCardReturned).

5 Related Work

There have been several proposals for extending OCL with support for temporal
constraints. In the rest of this section we summarize them and discuss their
differences and limitations with respect to OCLR.
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One of the first proposals is OCL/RT [4], which extends OCL with the notion
of timestamped events (based on the original UML abstract meta-class Event)
and two temporal modalities, “always” and “sometimes”. Events are associated
with instances of classifiers and, by means of a special satisfaction operator, it
is possible to evaluate an expression at the time instant when a certain event
occurred. The OCL/RT extension allows for expressing real-time deadline and
timeout constraints but requires to reason explicitly at the lowest-level of ab-
straction, in terms of time instants.

Cabot et al. [3] extend UML to use UML/OCL as a temporal conceptual
modeling language, introducing the concepts of durability and frequency for the
definition of temporal features of UML classifiers and associations. They define
temporal operations in OCL through which it is possible to refer to any past
state of the system. These operations are mapped into standard OCL by relying
on the mapping of the temporally-extended conceptual schema into a conven-
tional UML one, which explicitly instantiates the concepts of time interval and
instant. However, the temporal operations are geared to express temporal in-
tegrity constraints on the model, rather than temporal properties correlating
events of the system.

The majority of the proposals regarding temporal extensions of OCL are re-
alized by extending the language with temporal operators/modalities borrowed
from standard temporal logic, such as “always”, “until”, “eventually”, “next”. A
preliminary work in this direction appeared in [5]. Lavazza et al. [14] define the
Object Temporal Logic (OTL), which allows users to write temporal constraints
on Real-time UML (UML-RT) models. In particular, it supports the concepts
Time, Duration and Interval to specify the time distance between events. Nev-
ertheless, the language is modeled after the TRIO temporal logic [15], and the
properties are written using a low level of abstraction. Ziemann and Gogolla [18]
proposes TOCL, an extension of OCL with elements of a linear temporal logic,
to specify constraints on the temporal evolution of the system states. Being
based on linear temporal logic, TOCL does not support real-time constraints.
The work on Flake and Mueller [8] goes in a similar direction, proposing an
extension of OCL that allows for the specification of past- and future-oriented
time-bounded constraints. They do not support event-based specifications; more-
over, the proposed mapping into Clocked LTL does not allow to rely on standard
OCL tools. Kuester-Filipe and Anderson propose a liveness template for future-
oriented time-bounded constraints, as those than can be captured with a response
or existence pattern. This template is defined in terms of the real-time temporal
logic of knowledge, interpreted over timed automata, to allow for formal reason-
ing. The expressiveness of this extension is very limited, since it supports only
one template. Soden and Eichler [17] propose Linear Temporal OCL (LT-OCL)
for languages defined over MOF meta-models in conjunction with operational
semantics. LT-OCL contains the standard modalities of Linear Temporal Logic.
The interpretation of LT-OCL formulae is defined in the context of a MOF
meta-model and its dynamic behavior specified by action semantics using the
M3Actions framework.
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The approaches that are most similar to OCLR are those that extend OCL
with support for Dwyer et al.’s property specification patterns [7]. Flake and
Mueller [9] propose a state-oriented temporal extension of OCL for user-defined
classes that have an associated Statechart. The pattern-based temporal expres-
sions refer to configurations of Statecharts. With respect to OCLR, they do not
support the specification in terms of events. Moreover, the expressions corre-
sponding to the patterns are not first-class entities of the language, hence they
are more verbose and less close to natural language. Robinson [16] presents a tem-
poral extension of OCL called OCLTM, developed in the context of a framework
for monitoring of requirements expressed using a goal model. OCLTM includes
all the operators corresponding to standard LTL modalities, and supports Dwyer
et al.’s patterns and timeouts in patterns. In this regard, it is very close to the
expressiveness of OCLR, though it supports neither the reference to a specific
occurrence of an event in scope boundaries nor the association of time shifts to
boundaries (as OCLR does with the keywords ‘at least’, ‘at most’, ‘exactly’).
Kanso and Taha [12] introduce Temporal OCL, a pattern-based temporal ex-
tension of OCL. As discussed in Sect. 3, OCLR borrows some language entities
from Temporal OCL. Although the support for temporal patterns is very sim-
ilar between the two languages, Temporal OCL does not allow references to
specific event occurrences in scope boundaries and it lacks support for timing
information, such as the distance between events and the distance from a scope
boundary.

6 Conclusion and Future Work

A broad class of requirements for modern complex software systems involves
temporal constraints, possibly enriched with timing information. Current ap-
proaches for specifying requirements either lack the expressiveness (as in the
case of OCL) required for this new class of properties or require mathematical
expertise (e.g., temporal logic). In this paper we presented OCLR, a novel tem-
poral extension of OCL based on common property specification patterns, and
extended with support for referring to a specific occurrence of an event in scope
boundaries, and for specifying the distance between events and/or from bound-
aries of the scope of a pattern. We presented the semantics of the language and
its application to a case study in the domain of eGovernment.

This work has been developed as part of a broader collaboration with our
public service partner CTIE, the Luxembourg state center for information tech-
nology, in the context of a project on model-based run-time verification of eGov-
ernment business processes. We are currently working on defining the mapping
between OCLR and OCL, in order to take advantage of the industrial-strength
tools available to check OCL constraints. Our next steps will focus on defining a
model-based run-time verification technique for properties written with OCLR,
and integrating it in the business process run-time platform of our partner. We
also plan to conduct an empirical study to assess the improvements provided
by OCLR when adopted as specification language in the development life cy-
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cle of our partner, and also to improve the language, integrating feedback from
practitioners and adding support for other specification patterns [1].
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