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Abstract

This paper studies methodologically robust options for giving logical contents
to nodes in abstract argumentation networks. It defines a variety of notions of
attack in terms of the logical contents of the nodes in a network. General properties
of logics are refined both in the object level and in the metalevel to suit the needs
of the application. The network-based system improves uponsome of the attempts
in the literature to define attacks in terms of defeasible proofs, the so-called rule-
based systems. We also provide a number of examples and consider a rigorous case
study, which indicate that our system does not suffer from anomalies. We define
consequence relations based on a notion of defeat, considerrationality postulates,
and prove that one such consequence relation is consistent.

1 Introduction

An abstract argumentation network has the form (S,R), whereS is a nonempty set of
arguments andR⊆ S × S is an attack relation. When (x, y) ∈ R, we sayx attacksy.

The elements ofS are atomic arguments and the model does not give any informa-
tion on what structure they have and how they manage to attackeach other.

The abstract theory is concerned with extracting information from the network in
the form of a set of arguments which are winning (or ‘in’), a set of arguments which
are defeated (or are ‘out’) and the rest are undecided. Thereare several possibilities for
such sets and they are systematically studied and classified. See Figure 1 for a typical
situation.x→ y in the figure represents (x, y) ∈ R.

A good way to see what is going on is to consider a Caminada labelling. This is
a functionλ on S distributing valuesλ(x), x ∈ S in the set{in, out, ?} satisfying the
following conditions.

1. If x is not attacked by anyy thenλ(x) = 1
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Figure 1:

2. If (y, x) ∈ Randλ(y) = 1 thenλ(x) = 0

3. If all y which attackx haveλ(y) = 0 thenλ(x) = 1.

4. If oney which attackx hasλ(y) =? and all othery haveλ(y) ∈ {0, ?} thenλ(x) =?.

Suchλ exist wheneverS is finite and for any suchλ, the setS+
λ
= {x | λ(x) = 1} is

the set of winning arguments,S−
λ
= {x | λ(x) = 0} is the set of defeated arguments and

S?
λ
= {x | λ(x) =?} is the set of undecided arguments.

The features of this abstract model are as follows:

1. Arguments are atomic, have no structure.

2. Attacks are stipulated by the relationR; we have no information on how and why
they occur.

3. Arguments are either ‘in’ in which case all their attacks are active or are ‘out’ in
which case all their attacks are inactive. There is no in between state (partially
active, can do some attacks, etc.). Arguments can be undecided.

4. Attacks have a single strength, no degrees of strength or degree of transmission
of attack along the arrow, etc.

5. There are no counter attacks, no defensive actions allowed or any other responses
or counter measures.

6. The attacks fromx are uniform on ally such that (x, y) ∈ R. There are no
directional attacks or coordinated attacks.1 In Figure 1,a1, . . . , an attackb indi-
vidually and not in coordination. For example,a1 does not attackb with a view
of stoppingb from attackinge1 but without regard toe1, . . . , en.

1There is some controversy on whether arguments accrue. While Pollock denies the existence of cumu-
lative argumentation[15], Verheij defends that arguments can be combined either by subordination or by
coordination, and may accrue in stages[16]. The debate is by no means over or out of date, see e.g. also
[13]. Relatedly, in neural networks, the accrual of arguments bycoordination appears to be a natural property
of the network models[6]. The accrual of arguments can also be learned naturally by argumentation neural
networks.
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7. The view of the network is static. We have a graph here and a relationR on it.
So Figure 1 is static. We use the words ‘there is no progression in the network’
to indicate this; the network is static. We seek aλ labelling on it and we may
find several. In the case of Figure 1 there is only one suchλ. λ(ai) = 1, λ(b) =
0, λ(ej) = 1, i, j = 1, . . . , n.
We advocate a dynamic view, like firstai attackb andb then (if it is not out dead)
tries to attackei . Or better still, at the same time each node launches an attack on
whoever it can. Soai attackb andb attacksei and the result is thatai are alive
(not being attacked) whileb andej are all dead.

Points 4 and 7 above have been addressed in[2], and points 6 and 7 in[6], but
points 1–3 and 5 remain untreated by us. It is our aim in this paper to give theoretical
answers to these questions.

There are several authors who have already addressed some ofthese questions. See
[3; 4]. We shall build upon their work, especially[4].

Obviously, to answer the above questions we must give contents to the nodes. We
can do this in two ways. We can do this in the metalevel, by putting predicates and
labels on the nodes and by writing axioms about them or we can do it in the object
level, giving internal structure to the atomic arguments and/or saying what they are and
defining the other concepts, e.g. the notion of attack in terms of the contents.

Example 1.1 (Metalevel connects to nodes)Figure 2 is an example of a metalevel
extension.

η

γ : c

β : bα : a

δ

ω

ε

Figure 2:

The node a is labelled byα. It attacks the node b with transmission factorε.
This transmission factoris an important feature of our approach. In fact, it will prove
crucial in answering some of the questions. The idea stems from our research on
neural-symbolic computation[8] , where the weights of neural networks are always
labelled by real numbers which are learnable (i.e. can be adapted through the use of a
learning algorithm to account for a new situation).

Node b is labelled byβ. The attack arrow itself constitutes anattack on the attack
arrow from b to c. This attack is itself attacked by node b. Each attack has its own
transmission factor. We denote attacks on arrows by double arrows. Allowing attacks
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on arrows is another new idea in argumentation, first proposed in the context of neural
computation in[7] . It can be associated with the above-mentioned learning process,
where an agent identifies the changes that are required in thesystem. This concept
turns out to be quite general and yet useful in a computational setting. In the case of a
recurrent network, for example, attacks on arrows can be used to control infinite loops,
as discussed in[2] and exemplified through the use of learning algorithms in[6] . In
other words, we see loops as a trigger for learning.

Formally, we have a set S of nodes, here

S = {a, b, c}.

The relation R is more complex. It has the usual arrows{(a, b), (b, c)} ⊆ R and also
the double arrows, namely,{((a, b), (b, c)), (b, ((a, b), (b, c)))} ⊆ R. We have a labelling
functionl, giving values

l(a) = α, l(b) = β, l(c) = γ,
l((a, b)) = ε, l((b, c)) = η,
l(((a, b), (b, c))) = δ
l((a, ((a, b), (b, c)))) = ω.

We can generalise the Caminada labelling as a function from S∪ R to some val-
ues which satisfy some conditions involving the labels. We can write axioms about
the labels in some logical language and these axioms will give more meaning to the
argumentation network. See[2] for some details along these lines. The appropriate
language and logic to do this is Labelled Deductive Systems (LDS)[9] .

We shall not pursue the metalevel extensions approach in this paper except for one
well known construction which will prove useful to us later.

Example 1.2 (The logic program associated with an ordinary abstract network)
Let N = (S,R) and consider S as a set of literals. Let⇒ be the logic programming
arrow and let∧,¬ be conjunction and negation as failure. Consider the logic program
P(N) containing the following clauses Cx, x ∈ S

Cx :
m∧

i=1

¬yi ⇒ x

where y1, . . . , ym are all the nodes in S which attack x (i.e.(
∧

(y,c)∈R y)⇒ x).
If no node attacks x then Cx = x.
Cx simply says in logic programming language that x isin if all y which attack it

areout (i.e.¬yi).

In [14], a neural network is used as a computational model for conditional logic, in
which attacks on arrowsare allowed. More precisely, these are graphs where arcs are
allowed to connect not only nodes, but nodes to arcs, denoting an exception that can
change a default assumption. For example, suppose that nodea is connected to nodeb,
indicating thata normally implies b. A nodec can be connected to the connection from
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a to b, indicating thatc is an exception to the rule. In other words, ifc is activated, it
blocks the activation ofb, regardless of the activation ofa. In logic programming terms,
we would havea∧¬c⇒ b. Leitgeb’s networks can be reduced to networks containing
no arcs connected to arcs; these are theCILP networks used in[5] to compute and
learn logic programming. Here, the networks are more general. There are three cases
to consider:

1. The fact that a nodea attacks a nodeb can attack a nodec, (a→ b)→ c;

2. A nodea can attack the attack of a nodeb on a nodec, a→ (b→ c); and

3. The fact that nodea attacks nodeb attacks the attack from nodec to noded (but
not any other attack ond), (a→ b)→ (c→ d).

Here, there are cases that cannot be reduced or flattened. Themost general network
set-up allowing for connections to connections is the fibring set-up of[7], where it is
proved that fibred networks are strictly more expressive than their flattened counter-
part,CILP networks. In[7], nodes in one network (or part of a network) are allowed
to change dynamically the weights (or transmission factors) of connections in another
network. This can be seen as an integration of learning (the progressive change of
weights) into the reasoning system (the network computation). It provides a rich con-
nectionist model towards a unifying theory of logic and network reasoning.

We are now ready for our second approach, namely giving logical content to nodes.
Assume we are using a certain logicL . L can be monotonic, nonmonotonic, algo-

rithmic, etc. At this stage anything will do. This logic has the notion of formulasA of
the logic, theories∆ of the logic and the notion of∆ ⊢ A, and possibly also the notion
of ∆ is not consistent.

The simplest approach is to assume the nodesx ∈ S are theories∆x supporting
logically a formulaAx (i.e.∆x ⊢ Ax in the logic). The exact nature of the nodes will
determine our options for defining attacks of one node on another.

We list the important parameters.

1. The nature of the logic at nodex and how it is presented. The logic can be classi-
cal logic, intuitionistic logic, substructural logic, nonmonotonic logic, etc. It can
be presented proof theoretically, or semantically or as a consequence relation, or
just as an algorithm.

2. What is∆x? A set of wffs? A proof? A network (e.g. a Bayesian network) with
algorithms to extract information from it? etc.

3. The nature of the support∆x givesAx. We can have∆x ⊢ Ax, or we can have that
Ax is extracted from∆x by some algorithmAx (e.g. abduction algorithms, etc.).

4. How does the nodex attack other nodes? Does it have a stock of attack formulas
{α1, α2, . . .} that it uses? Does it useAx? etc.

5. What does the nodex do when it is attacked? How does it respond? Does it
counter attack? Does it transform itself? Does it die (become inconsistent)?
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6. To define the notion of an attack one must give precise formal definitions of all
the parameters involved.

We give several examples of network and attack options.

Example 1.3 (Networks based on monotonic logic)Let L be any monotonic logic,
with a notion of inconsistency. Let the nodes have the form x= (∆x,Ax) where∆x is
a set of formulas such that∆x ⊢ Ax and∆x is a minimal such set (i.e. noΘ $ ∆x can
prove Ax).
∆x attacks∆y by forcing itself onto∆y (i.e. forming∆x ∪ ∆y). If the result is incon-

sistent then a revision process starts working and a maximalΘy ⊆ ∆y is chosen such
that ∆x ∪ Θy is consistent. The result of the attack on y isΘy. Of course if∆x ∪ ∆y

is consistent then the attack fails, asΘy = ∆y ⊢ Ay, otherwiseΘy 0 Ay and the attack
succeeds. However, the node y transforms itself into a logically weaker node.

Note that unlessΘy is empty, the new transformedΘy is still capable of attacking.
To give a specific example, consider the two nodes:

x = (¬A,¬A) and y= ((A,A→ B), B)

x attacks y and the result of the attack is a new∆′y = {A → B}. ∆′y can still attack its
targets though with less force.

Consider the following sequence:

z= (¬E,¬E), x′ = ((E,¬A),¬A∧ E), y = ((A,A→ B), B)

z attacks x′, x′ as a result of the attack regroups itself into x and proceeds to attack y.
Note that we view progression from left to right along R.

Consider now the following Figure 3, as a third example:

x′

y

z

z′ x

Figure 3:

where z′ = (A,A) and z, x′, x and y are as before. Because of the attack of z′, x′ cannot
regroup itself into x because x is also being attacked.

Consider now a fourth example, Figure 4. Here neither x1 nor x2 can cripple y but
a joint attack can.
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y = (A∨ B→ C,C)

x1 = (¬A,¬A)

x2 = (¬B,¬B)

Figure 4:

Remark 1.4 (Summary of options for the monotonic example)

1. Attacks are done by hurling oneself at the target. This canbe refined further by
allowing sending different formulas at different targets.

2. Attacks can be combined.

3. The target may be crippled but can still ‘regroup’ and attack some of its own
targets.

4. The nature of any attack is based on inconsistency and revision.

5. We can sequence the attacks as a progression along the relation R.

6. Attacks are not symmetrical since we use revision. So if A attacks∼ A, AGM
revision[1] , for example, will give preference to A. So for∼ A to attack A it has
to do so explicitly, and the winner is determined by the progression of the attack
sequence.

Example 1.5 (Networks based on nonmonotonic logic)This example allows for
nodes of the form x= (∆x,Ax) where the underlying logic is a nonmonotonic conse-
quence|∼. In nonmonotonic logic we know that we may have∆y|∼Ay but∆y + B |/ Ay.2

So if node x= (∆x,Ax) attacks node y, it simply adds∆x to ∆y and we get y′ =
∆x ∪ ∆u|∼?Ay.

Here the attack is based on providing more information and not on inconsistency
and revision.

To show the difference, let∆y be:

1. Bird (a) 7→ Fly (a)

2. Penguin(a)∧ Bird (a) 7→∼ Fly (a)

2A nonmonotonic consequence on the wffs of the logic satisfies three minimal properties

1. Reflexivity:∆|∼A if A ∈ ∆.

2. Restricted monotonicity:∆|∼A and∆|∼B imply ∆,A|∼B.

3. Cut Rule:∆, A|∼B and∆|∼A imply ∆|∼B.

Note that|∼ can be presented in many ways, semantically, proof theoretically or algorithmically.
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3. Bird (a)

where7→ is defeasible implication.
Let Ay be Fly(a).
Let ∆x and Ax be Penguin(a). x can attack y by sending it the extra information

that Penguin(a). Another attack from another point x′ to y can be by sending∼ Bird(a)
to y, i.e.∆x′ = Ax′ =∼ Bird (a).

¬b1→ a1

...

¬bn→ an

b1→
...

a1

an

...

...

¬a1→ e1

¬an→ en

Figure 5:

Example 1.6 (Prolog programs)The theories here are Prolog programs and the ar-
guments are the literals they prove.

An attack is executed by sending a literal from the attackingtheory to the target
theory. See Figure 5.

Example 1.7 (Counter-attack) The Dung framework does not allow for counter-
attacks being effective only when attacked but not before. The model is static. The
attacks do not ‘progress’ along the network like a flow going through the nodes acti-
vating them as it goes along. However, if we perceive such progression, we can define
the concept of counter-attack. This is the same progressionthat may resolve syntactic
loops in[6] .

Consider Figure 6.∆1 ⊢ a and can attack∆2 by passing a along the attacking
arrow. The?d is a counter-attack. As long as∆2 is not attacked by∆1, d is not
provable and so cannot be sent to∆1. Once∆2 is attacked then d becomes provable
and can counter-attack∆1 and render a unprovable.

Example 1.8 (Directional attacks) The following is a more enriched logical model
where more options are naturally available. We can let a nodea be a nonmonotonic
theory∆a such that∆a|∼a. We can understand an attack of a nonmonotonic node a,
say, on node e1 as the transmission of an item of data, sayα1 (such that∆a|∼α1) to ∆e1

with the effect that∆e1 + α1 |/ e1. Since∆e1 is nonmonotonic, the insertion ofα1 into it
may change what it can prove. See Figure 7.
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¬c→ a

d→ c

¬a→ e

a→ d

∆1 ∆2
?d

a

Figure 6:

en

x β

∆x

a
∆a αn

e1

∆e1

α1

∆en

Figure 7:

We have∆x|∼β,∆x|∼x,∆a|∼a,∆a|∼αi , i = 1, . . . , n.
We may have

∆a + β |/ α1

and therefore the attack on e1 fails, but we may still have that∆a + β|∼αn, hence the
attack on en still succeeds. The attack byβ is not a specific attack on the arrow from a
to e1. It tansforms a to something else which does not attack e1. So Figure 7 is not a
good representation of it. It shows the result but not the meaning.

By the way, to attack the attack fromx to a in Figure 7, we might add a formulaβ′

to β, and so the attack changes fromβ to (β andβ′).

Example 1.9 (Abduction) Another example can be abduction.
The node y contains an argument of the following form. It says, we know of∆y

and the fact that a formula Ey should be provable, but∆y cannot prove Ey. So we
abduce Ay as the most reasonable additional hypothesis. So the node y is (∆y,Ay),
where Ay = Abduce(∆y,Ey). x can attack by sending additional information∆x. It
may be that∆y ∪ ∆x 0 Ey, butAbduce(∆y ∪ Ax,Ey) is some A′y and not Ay.

An example that we like is from Euclid. Euclid proved that if we have a segment
of length l we can construct a triangle ABC whose sides are allequal to length l. The
construction is as in the diagram:
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A Blengthl

C

α′α

We construct the two arcsα andα′ of radius l around A and B and they intersect at
point C.

The gap in the proof is that the two arcs may slip through gaps in each other. In
other words the point C may be a hole in the plane. The principle of minimal hypothesis
for abduction would add the least hypothesis needed namely that all rational points in
the field with

√
2 are allowed but not more. So the lines can still have gaps in them.

This argument can be attacked by the additional informationthat the Greeks thought
in terms of continuous lines and not in terms of the field generated by the rationals and√

2. So we must abduce the hypothesis that lines have no gaps. Computationally this
may, of course, be problematic still. Discrete algorithms cannot deal with continuous
lines having an infinite number of points; some approximation will be necessary.

Example 1.10 (Replacement networks)Let |∼ be a consequence relation. Consider
a network N= (S,R), where the set S contains atoms of the language of|∼ and the
nodes x have the theories(∆x,Ax) associated with them, where∆x = {x} and Ax = x.

The network(S,R) can now be viewed in two ways. One as an abstract network
and one as a logical network with(∆x,Ax).

To have the two points of view completely identical we must assume about|∼ that
the following holds:

(*) whenever y1, . . . , yk are all the nodes that attack x (i.e. yiRx holds) then we have
{yi , x} |/ x, for each i, i = 1, . . . , k.

When we have (*) the logical attack coincides with the abstract network attack. By the
properties of consequence relation, we also have yi |/ x. Note that we do not know
much about|∼ beyond property (*) and so any nonmonotonic consequence relation
satisfying (*) will do the job of being equivalent to the abstract network. So let us take
a Prolog consequence for a language with atoms,∧,⇒ and¬ (negation as failure).
Let

∆x = (
∧
¬yi)⇒ x

Ax = x

This satisfies condition (*) and so can represent or replace|∼ on the networks. Com-
pare with Example 1.2.
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Remark 1.11 Example 1.10 leaves us with several general questions

1. Given a nonmonotonic|∼ under what conditions can it be represented by a Prolog
program?

2. What can we do with extensions of Prolog, say N-Prolog[10], etc. How much
more can we get?

3. Given the above network, what do we get if we describe it in the meta-level as
we did in Example 1.2

4. Given a reasonable|∼, can we cook up a reasonable extension of Prolog to match
it? Can we be systematic about it and have the same construction for any rea-
sonable|∼?

2 Methodological considerations

In order to present a methodologically robust view of logical modes of attack in argu-
mentation networks, as intutiively described in the last section, we need to clarify some
concepts. There is logical tension between two possibly incompatible themes.

Theme 1

Start with a general logical consequence|∼, use databases of this logic as nodes in a
network and define the notion of attack and then emerge with one or more admissible
extensions.

Questions

These extensions are sets of nodes (the ‘winning’ nodes or the network ‘output’ nodes).
They contain logic in them, being themselves theories of ourbackground logic. What
are we going to expect from them? Consistency? Are we going todefine a new logic
from the process?

Theme 2

We start with some notion of proof (argument). We can prove opposing formulas or
databases of some languageL . We create a network of all the proofs we are interested
in and define the notion of one proof (argument) attacking another. We emerge with
several admissible or winning sets of proofs.

Questions

What are we to do with these proofs? Do we define a logical consequence relation
using them? For example, let∆ be a set of formulas and rules. LetS be all possible
proofs we can build up using∆. Note that these proofs can prove opposing results, e.g.
q and∼ q, etc. So we do not yet have a consequence relation for gettingresults out of
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∆. Let Rbe a notion of attack we define onS. Let E be a winning extension chosen in
some agreed manner. Then we define a new consequence by declaring∆|∼E.

What connection do we require between this new consequence|∼ and some other
possibly reasonable consequence relation we can define directly using proofs (without
the intermediary of networks)? We need rationality postulates on the notion of defeat.

To make the above questions precise and gain some intuitionstowards their so-
lutions we need to examine some examples in rigorous detail.We begin with some
puzzles critically examined in[4].

Example 2.1 This is example 4 in[4, p. 292]. The language allows for atoms, nega-
tion∼, strict rules (implication)→ and defeasible rules (implication)⇒. The theory∆
contains

1. wr (strict fact)
Reading: John wears something that looks like a wedding ring.

2. go (strict proof)
Reading: John often goes out until late with his friends.

3. wr⇒ m
m reads: John is married

4. go⇒ b
b reads: John is a bachelor

5. m→ hw
hw reads: John has a wife

6. b→∼ hw

If modus ponens (detachment) is the only rule we can use, we can construct the follow-
ing arguments from∆ :

A1 : wr
A2 : go
A3 : wr,wr ⇒ m
A4 : go, go⇒ b
A5 : wr,wr ⇒ m,m→ hw
A6 : go, go⇒ b, b→∼ hw.

The following is implicit in the Caminada and Amgoud understanding of the situa-
tion.

I1 ∆ = {1, 2, 3, 4, 5, 6}

I2 The argument network isall possible arguments that can be constructed from
elements of∆.
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I3 An argument is a sequence (chain) or elements from∆ that respect modus ponens
(detachment).

I4 Given x→ y, we take it literally and do not say that we also have∼ y→∼ x. If
we want the latter we need to include it explicitly. This assumption is clear since
later Caminada and Amgoud do include such additional rules explicitly as part
of their proposed solution to some anomalies.

I5 One argument attacks another if the last head of the last implication is the nega-
tion of the last head of the last implication of the other.

Caminada and Amgoud point out an anamoly in this example. They point out that
A1, . . . ,A4 do not have any defeaters. So they win. What{A1, . . . ,A4} prove (their
‘output’ as they define it), is the set{wr, go,m, b}. Thus if the output is supposed to
mean what is justified then both m and b are to be considered justified. Yet, and here
is the anomaly, the strict rules closure of the output is inconsistent since it contains
{hw,∼ hw}.

We now discuss this example.
First let us try to sort out some confusion. Are we working in Theme 1, where there

is a background logic or in Theme 2 where we want to use an argumentation framework
to define a logic?

If there is a background logic then does it inlcude closure under strict rules? If yes,
thenA3 andA4 already attack each other. If no, then don’t worry about the inconsis-
tency of the output. We simply have defined an inconsistent theory using the tool of
argumentation networks.

Caminada and Amgoud are aware that if we allow closure under strict rules at
every stage then the anomaly is resolved. They attribute this solution to Prakken and
Sartor[17]. They offer another example, which has anomaly, example 6, page 293,
and where this trick does not work. We shall address this example later. Let us first
consider Caminada and Amgoud’s own solution to Example 4. They add two more
contraposition rules to the database.

7. hw→∼ b

8. ∼ hw→∼ m

With two more rules in the database, two more arguments can beconstructed from the
database:

A7 wr,wr ⇒ m,m→ hw, hw→∼ b

A8 go, go→ b, b⇒∼ hw,∼ hw→∼ m.

Now that our stock of arguments has A7 and A8, we have that A8 defeats A3 and
A7 defeats A4. The set of winning arguments changes and the only justified arguments
are{wr, go}, without the anomalies{b,m}.

We do not consider this as a solution to the anomaly. Caminadaand Amgoud
changed the problem (i.e. took a different, bigger database) and changed the underlying
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logic. Not always do we have that ifx→ y is a rule so is∼ y→∼ x. We need to give a
rigorous definition of the defeasible logic we are using, andthen examine the problem
of anomalies. We shall do this in Section 3. See Example 3.9 and Remark 3.12. The
anomalies arise because the Dung framework does not allow for joint attacks. By the
way, Caminada and Amgoud have done an excellent analysis of the anomalies. We are
simply continuing their initial work.

Let us now address Example 6 of[4].

Example 2.2 The database has the following facts and rules

1. a, strict fact

2. d, strict fact

3. g, strict fact

4. b∧ c∧ e∧ f →∼ g

5. a⇒ b

6. b⇒ c

7. d⇒ e

8. e⇒ f .

Caminada and Amgoud consider the following arguments

A: a, a⇒ b

B: d, d⇒ e

C: a, a⇒ b, b⇒ c

D: d, d⇒ e, e⇒ f .

We also have the arguments

F1: a

F2: d

F3: g

The notion of one argument defeating another is the same as before, i.e. we need the
two arguments to end their chains with opposite heads. Thus A, B,C,D do not have
any defeaters. The justified literals are{b, c, e, f } as well as the facts{a, d, g}.

Thus we get an anomaly: the closure of the winning facts understrict rules is not
consistent.

We again ask the question, what exactly is the underlying logic? We need a formal
definition to assess the situation.

Is the following argument G also acceptable?
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G: A,C, B,D, 4

In other words, G is

a, a⇒ b; a, a⇒ b, b⇒ c; d, d⇒ e; d, d⇒, e⇒ f , b∧ c∧ e∧ f →∼ g

We first use A,C, B,D to prove the antecedent of 4 and then get∼ g.
If this argument is acceptable, then it must be included in the network, as the rules

of the game is to include in the network all arguments which can be constructed from
∆, then G and F3 attack each other and so the winning set is only{b, c, e, f , a} and we
have no inconsistency.

If argument G is not acceptable because we cannot do modus ponens with more
than one assumption, then the winning set is indeed{b, c, e, f , a, g} but then we cannot
get inconsistency because we cannot use modus ponens with b∧ c∧ e∧ f →∼ g.

So again we ask: we need a rigorous definition of the logic!
Depending on how the logic works, we may be able to deduce, forexample, from A

the rule c∧ e∧ f ⇒∼ g (since b defeasibly follows from a) and similarly from B we
deduce b∧ c∧ f ⇒∼ g and from C we get e∧ f ⇒∼ g and from D we get b∧ c⇒∼ g.

If we are allowed to have that then we have that C and D defeat each other, and
again we have no anomaly. So it all depends on the logic.

It would be better to compute these arguments using the network itself, as we
have done in[6] for a simpler argumentation framework (where arguments areatomic
rather than proofs). We are working on this for the general case. We believe that
network fibring has the answer[11; 7] .

Let us now define one such a logic. We shall indicate what options we have.

Definition 2.3 Let Q be a set of atoms. Let∧ be conjunction,∼ a form of negation and
→ stand for strict (monotonic) implication and⇒ for defeasible implication.

2. A rule has the form
±a1 ∧ . . . ∧ ±an→ ±b (strict rule)
±a1 ∧ . . . ∧ ±an⇒ ±b (defeasible rule)
where ai , b are atoms,+a means a and−a means∼ a.

3. A fact has the form±a (we consider strict facts only; an alternative would be to
consider beliefs, and yet another to consider degrees of belief).

4. A database∆ is a set of rules (strict or defeasible) and facts.

Definition 2.4 Let∆ be a database. We define the notion of the sequenceπ of formulas
(actually a tree of formulas written as a sequence) is an argument for the literal±a of
length n and defeasible degree m, and specificityσ.

1. π is an argument of±a from∆ of length 1 and degree 0 iff ±a ∈ ∆ andπ = (±a).
Letσ = {±a}.
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2. Assumeπ1, . . . , πk are all proofs of±a from∆ of lengths ni and degree mi and
specificity setsσi resp. for i = 1, . . . , k. Assume

∧
±ai → ±b is a strict rule.

Then(π1, π2, . . . , πn,
∧
±ai → ±b) is an argument for±b of length1+

∑
i ni and

degreef→(m1, . . . ,mk), wheref→ is some agreed function representing the degree
of ‘defeasiblility’ in the argument.

Options forf→ are

Option max
f→ = max(mi)

Option sum3

f→ =
∑

mi

Letσ =
k⋃

i=1
σi .

3. Assumeπi are arguments of±ai . Let
∧
±ai ⇒ ±b be a defeasible rule. Then

π1, . . . , πk,
∧
±ai → ±b is an argument of±b. The length of the argument is

1+
∑

ni and the degree of the argument isf⇒ = 1+f→(m1, . . . ,mk), andσ =
⋃
σi .

Remark 2.5

1. The strict rules are not necessarily classical logic. So for example from x→∼ y
and y we cannot deduce∼ x.

2. The definition of an argument watched for the complexity m measuring how many
defeasible rules are used in the argument and the specificityσ recording the set
of literals (i.e. the factual information) used in the argument. This measure is
used later to define when one argument defeats another. We know from defeasible
logic that the specificity of a rule is also important. So a∧b⇒ c is more specific
that a ⇒ c. The setσ is a rough measure of specificity. One can be more
fine tuned. We can define a more complex measure sayµ which reflects a finer
balance between the number of defeasible rules used and their specificity.

Definition 2.6 Let∆ be a database. An argumentπ is said to be based on∆ if all its
elements are in∆. We now define the notion of∆|∼ ± a, a atomic, using Theme 1 point
of view.

We wish to do this in steps:

Step 1 ∆|∼1 ± a iff ±a ∈ ∆

Step m+ 1 ∆|∼m+1 ± a iff there is a rule in∆ of the form
∧
±ai ⇒ ±a such that

∆|∼mi
± ai, with

∑
mi = m, and for no rule in∆ of the form

∧
±a′i ⇒ ∓a

(note∓a =∼ ±a) do we have∆|∼m′j
±b j with

∑
m′i < m, or if

∑
m′i = m then

we do not have that
⋃
σi $

⋃
σ′i . (In words,±a is proved using defeasible

rule complexity m and specificity setσ and there is neither a less complex

3One could think of this as: the more involved the proof, the weaker the argument. For example, the
more steps there are in the proof, the larger

∑
mi . Notice that a fact is strongest.
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argument for∓a nor an argument for∓a with the same complexity but
more specific, i.e.σ $ σ′.)

We also agree that if∆|∼m ± ai and
∧
±ai → ±a ∈ ∆ then∆|∼m ± a. We say∆|∼ ± a if

∆|∼m± a for some m.

Remark 2.7 The previous definition is one possibility of many. The important point to
note is that any definition of|∼ must say inside the induction step how one argument
defeats another.

Let us give some examples.

Example 2.8

1. Let∆ be{d, a, a⇒ b, d⇒∼ c, d∧ b⇒ c}.
We have that∆ |/2 c because the argument a, a⇒ b, d, d∧ b⇒ c is defeated by
the argument d, d⇒∼ c, and thus∆|∼ ∼ c.

Some defeasible systems will say the argument for c defeats the argument for∼ c
because it is more specific. Our system says the argument for∼ c defeats the
argument for c because it uses fewer defeasible rules.

2. Our definition does say, for example, that for the database∆′ = {a, d, a⇒ c, a∧
d ⇒∼ c} we have that∼ c can be proved because it relies on more specific
information. See remark 2.5.

3. We could give a definition which measures not only how many defeasible rules
are used but also gives them weights according to how specificthey are. Our
aim here is not to develop the theory of defeasible systems and their options and
merits but simply to show how one defines the notion of defeasible consequence
relation and to make a single most important point:

To define the notion of consequence relation for a defeasiblesystem
we must already have a clear notion of argument defeat.

Definition 2.9 We now give a second definition of a consequence relation:

1. Let A, B be two arguments. Define the notion of A defeats B in some manner.
Denote it by ADB.

2. Let ∆ be a theory, being a set of rules and literals. Let N be the set of all
arguments based on∆. Consider the network(N,D) whereD is the relation from
(1) above. LetA be an algorithm for choosing a winning justified set of atoms
from the net, e.g. let usA take the unique grounded extension which always
exists. Then define∆|∼D,A ± a iff ±a is justified by the above processA in the
(N,D) network.

We are now ready for some methodological comments.

17



Rationality postulates for defeat

We need rationality postulates on the notionD of one argument defeating another
where the arguments are defined in the context of facts, strict rules and defeasible rules.
Caminada and Amgoud give rationality postulates on the admissible sets derived from
D but this is insufficient.D must be such that it ensures we get a proper consequence
relation|∼D out of it, satisfying reflexivity, restricted monotonicityand cut.

Representation problem

1. Given a consequence relation|∼ for defeasible logic (i.e.|∼ contains defeasible
and strict rules), can we extract from|∼ a defeat notionD = D|∼ for arguments,
and a network algorithmA such that the notion|∼D,A is a subset of|∼?

2. Given any consequence relation defined by any means (e.g. defined semanti-
cally), can we guess/invent a notion of argument and a notion of defeatD such
that the associated|∼D,A is a subset of|∼?

3. If we don’t have such a representation theorem in the case of (1) above, using a
naturalD|∼, then we perceive this as an anomaly.

Any solution to the anomalies raised in[4] must respect the above methodologial ob-
servations. It must not be anad hocsolution.

3 A rigorous case study — 1

This section shows in a rigorous way how Theme 2 works. We define a nonmonotonic
consequence relation using networks on arguments built up using rules.

Two comments

1. The strict rules need not be classical logic.

2. We use labelling to keep control of the proof process and possibly add strength
to rules. However, the labels will not be used at first in our definitions and
examples.

Some strict logics require the labels in their formulation (e.g. resource logics) as
well.

Definition 3.1

1. Let our language contain atomic statements Q= {p, q, r, . . .}, the connective∼
for negation,∧ for conjunction,→ for strict rules and⇒ for defeasible rules.

2. A literal x is either an atom q or∼ q. We write−x to mean∼ q if x = q and q if
x =∼ q.

A rule has the form(x1, . . . , xn)→ x (strict rule) or(x1, . . . , xn)⇒ x (defeasible
rule) where xi , x are literals. We are writing(x1, . . . , xn)→ x instead of

∧
xi → x
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to allow us to regard the antecedent of a rule as a sequence. This gives us
a greater generality in interpreting the strict rules as notnecessarily classical
logic. We can also allow for∅⇒ x, where∅ is the empty set.

3. A rule of the form(x1, . . . , xn) ⇒ x is said to be more specific than a rule
(y1, . . . , ym) ⇒ y iff m < n and for some i1, . . . , im ≤ n we have xi j = y j . Of
course, any rule(x1, . . . , xn) ⇒ x is more specific than∅ ⇒ y. Note that we are
not requiring y=∼ x.

4. A labelled database is a set of literals, strict rules and defeasible rules. We
assume each element of the database has a unique label from a set of labelsΛ.
Λ is a new set of symbols, not connected with Q or anything else.

So we present the database as

∆ = {α1 : A1, . . . , αk : Ak}

whereαi are different atomic labels fromΛ and Ai are either literals or rules.

The labels are just names at this stage, allowing us greater control of whatever
we are going to do.

5. Let∆ be a labelled database. We define by induction the strict closure of ∆
denoted by∆S as follows:

(a) Let∆S
0 = ∆.

(b) Assume∆S
n has been defined. Let∆S

n+1 = ∆
S
n∪{β : x | for someαi : xi ∈ ∆S

n ,
α : (x1, . . . , xn)→ x ∈ ∆ andβ = (α, α1, . . . , αn)}.

Let∆S =
⋃

n∆
S
n .

∆ is consistent if for no literal x do we have+x and−x ∈ ∆S.

6. Note that we do not close under Boolean operations. The strict logic is not
necessarily classical. We may have∼ q → r,∼ r ∈ ∆, this does not imply
q ∈ ∆S.

7. Also note that only strict rules are used in the closure. Soif ∆0 is the set of
defeasible rules in∆, then∆S = ∆0 ∪ (∆ − ∆0)S.

Definition 3.2 (Arguments) We define the notion of an argument (or proof)π (based
on a database∆) its ∆-outputθ∆(π), its head H(π) , its literal base L(π), and its family
of subarguments A(π).

1. Any literal t : x ∈ ∆ is an argument of level 1. Its head is t: x. Its∆-output is the
set of all literals in the strict closure of{t : x} and its head rule H(∆) is t : x. Its
literal base is{t : x} and its subarguments are∅.

2. Letπ1, . . . , πn be arguments in∆ of level mi , and letρ : (x1, . . . , xn)⇒ x be a de-
feasible rule in∆. Assumeαi : xi can be proved using strict rules from the union
of the outputsθ∆(πi). Then(π1, . . . , πn, ρ : (x1, . . . , xn) ⇒ x) is a new argument
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π. Its output is all the literals in the strict closure of{x} ∪
⋃

i θ∆(πi),H(π) = ρ :
(x1, . . . , xn) ⇒ x, L(π) =

⋃
L(πi), and A(π) = {π1, . . . , πn} ∪

⋃
i A(πi). The level

of π is 1+max(mi).

3. An argument is consistent if its output is consistent.

4. Note that there is no redundancy in the structure of an argument. If a, b are
literals then(a, b) is not an argument. Ifπ1, π2 are arguments then(π1, π2) is not
a argument.

Definition 3.3 (Notion of defeat for arguments of levels 1 and2) Let π1, π2 be two
consistent argument. We define the notion ofπ1 defeatsπ2, π1Dπ2, as follows:

1. A literal t : x ∈ ∆ considered as an argument of level 1 defeats any argumentπ

of any level 1 with−x in its output. Note that if our arguments come from a con-
sistent theory∆, then no level 1 argument can defeat another level 1 argument.
They are all consistent together as elements of∆S.

2. Let
π1 = (t1 : x′1, . . . , tn : x′n, r : (x1, . . . , xn)⇒ x)
π2 = (s1 : y′i , . . . , sm : y′m, s : (y1, . . . , ym)⇒ y)

be two arguments of level 2, thenπ1 defeatsπ2 if r : (x1, . . . , xn) ⇒ x is more
specific than s: (y1, . . . , ym) ⇒ y, andθ∆(π2) and θ∆(π1) are inconsistent to-
gether.4

3. In (2) above, we defined how an argument of level 2 can defeatanother argument
of level 2. (It cannot defeat any argument of level 1). Note that it can defeat an
argument of any level m if it defeats any of its subarguments of level 2.

4. Note that two arguments of level 2 cannot defeat each other.

5. We shall give later the general definition of defeat for levels m, n.

6. An argumentπ1 attacks an argumentπ2 if

(a) Their outputs are not consistent.

(b) The head rule ofπ1 is more specific than the head rule ofπ2, or π1 is of
level 1.

7. π1 may attackπ2 but not defeat it. However a level 2 argument always defeats
other arguments it attacks.

Example 3.4 Let∆ = {a, a⇒ x, a ⇒ y, x ∧ y →∼ a}. ∆ is consistent because
∆S = {a}.
The arguments

π1 = (a, a⇒ x)
π2 = (a, a⇒ y)

4Note that we do not require thatx =∼ y, nor that{x, y} is inconsistent. The requirement is that the outputs
are inconsistent.
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attack each other, but none can defeat the other because it has to be more specific.

Compare with Example 3.9.

Example 3.5 This example does not use labels. We also write
∧

xi ⇒ x, when we do
not care about the order of xi .

1. Consider the two arguments

π1 = (d, a, d∧ a⇒ c)
π2 = (d, a, a⇒ b, a∧ b∧ d⇒∼ c).

π1 is of level 2 andπ2 is of level 3. In this section, our definition of defeat will
say thatπ2 defeatsπ1 because the head ofπ2 is more specific than the head of
π1. We are not giving advantage toπ1 on account of it being shorter (contrary to
Definition 2.6).

2. Consider nowπ3

π3 = (d, a, a∧ d⇒∼ b, a∧ d⇒ c).

Doesπ2 defeatπ3?

Its main head rule, a∧ b∧ d⇒∼ c is more specific but its subproof(d, a, a⇒ b)
is defeated by theπ3 subproof(d, a, a∧ d⇒∼ b).

Soπ3 defeatsπ2 according to this section (as opposed to Definition 2.6).

Example 3.6 (Cut rule) Again we do not use labels, and we do not care about order
in the antecedents of rules.

Let∆ be

∆ = {b, d, d∧ a∧ b⇒ c, d⇒ c, a∧ b⇒∼ c, c⇒ a}

We have
∆, a|∼c

Because of the proof
π1 : (b, d, a, d∧ a∧ b⇒ c},

π2 = (a, b, a∧ b⇒∼ c) is defeated byπ1.
We also have

∆|∼a

This is because ofπ3.
π3 = (d, d⇒ c, c⇒ a).

We ask do we have∆|∼c? We can substitute the proof of a into the proof of c, that is we
substituteπ3 into π1. We getπ4.

π4 = (b, d, d⇒ c, c⇒ a, d∧ a∧ b⇒ c).

The question is, can we defeatπ4? We can get a proof of∼ c by substitutingπ3 into π2,
to getπ5

π5 = (d, d⇒ c, c⇒ a, b, a∧ b⇒∼ c).
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Example 3.7 (Mutual defeat) Let π1 be (a, b, a ∧ b ⇒ x). Let π2 be (a, b, c, a ⇒∼
x, a ∧ b ∧ c ⇒∼ x,∼ x∧ ∼ x ⇒ y). Thenπ1 defeats a subargument ofπ2, namely
(a, a ⇒∼ x). A subargument ofπ2, namely(a, b, c, a∧ b ∧ c →∼ x) defeatsπ1. You
may ask why doesπ2 prove∼ x twice in two different ways? Well, maybe the strict
rules of the logic are not classical and so two copies of∼ x are needed (in linear logic
∼ x→ (∼ x→ y) is not the same as∼ x→ y), or maybe that is the wayπ2 is; however,
a proof is a proof.

The output ofπ1 is {a, b, x} and the ouput ofπ2 is {a, b, c,∼ x, y}. Each is consistent.

Definition 3.8 (Defeat for higher levels)

1. We already defined how any argument of level 1 can defeat anyargument of level
m≥ 2. No argument of level m can defeat an argument of level 1 (thisis because
all arguments are based on a consistent∆).

2. We defined how an argument of level 2 can defeat another argument of level 2.

3. An argumentπ1 of level 3 can defeat an argumentπ2 of level 2 if

(a) one of its level 1 or level 2 subarguments defeatsπ2

or

(b) its head is more specific than the head ofπ2 of level 2, its output is in-
consistent with the output ofπ2, andπ2 does not defeat any of its level 2
subarguments.

4. Assume by induction that we know how an argumentπ2 of level 2 can defeat or
be defeated by an argumentπ1 of level k≤ m. We show the same for level m+ 1.

• π2 defeatsπ1 if

(a) π2 defeats some subargument of level k≤ m ofπ1

or

(b) the head ofπ2 is more specific than the head ofπ1, its output is incon-
sistent with that ofπ1, and no subargument ofπ1 of level≤ m defeats
π2.

• The argumentπ2 is defeated byπ1 if

(a) Some subargument ofπ1 of level≤ m defeatsπ2

or

(b) the head ofπ1 is more specific than the head ofπ2, its output is incon-
sistent with that ofπ2, andπ2 does not defeat any subargument of level
≤ m ofπ1.

We have thus defined how an argument of level 2 can defeat or be defeated by
any argument of level m for any m.

5. Assume by induction on k that we defined for level k and any m how any argument
of level k can defeat or be defeated by any argument of level m for any m.

We define the same for level k+ 1.
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We define this by induction on m. We know from item (4) howπk+1 can defeat
or be defeated by an argument of level 2. Assume we have definedhowπk+1 can
defeat or be defeated by any argumentπ′n of level n≤ m. We define the same for
level n= m+ 1.

(a) πk+1 is defeated by an argumentπ′m+1 of level m+ 1 if eitherπ′m+1 defeats a
subargument ofπk+1 of level≤ k or if the head ofπ′m+1 is more specific than
the head ofπk+1, its output is not consistent with the output ofπk+1 and no
subargument ofπ′m+1 of level≤ m is defeated byπk+1.

(b) πk+1 defeats an argumentπ′m+1 if either it defeats a subargument ofπ′m+1 of
level≤ m or its head is more specific than the head ofπ′m+1, its output is
not consistent with the output ofπ′m+1 and no subargument ofπk+1 of level
≤ k is defeated byπ′m+1.

6. We thus completed the induction step of (5) and we have defined for any k and m
how an argument of level k can defeat or be defeated by an argument of level m
for any m and k.

7. We need one more clause:π1 defeatsπ2 if some subargumentπ3 of π1 defeatsπ2

according to clause (1)–(5) above.

Example 3.9 (Anomalies)Consider the following database∆.

∆ = {a, b, c, a⇒ d, b⇒ e, c⇒ f , a∧ b∧ c∧ d∧ e→∼ f }.
∆S = {a, b, c}.

The arguments are, besides the literals a, b, c, the following:

π1 : a, a⇒ d
π2 : b, b⇒ e
π3 : c, c⇒ f

In our system, all the arguments form an admissible winning set and we get an anomaly
since the output is inconsistent. We have no more arguments since we use in our defi-
nition only defeasible rules. If we allow in arguments for strict rules, or turn the strict
rule into a defeasible rule, a∧ b∧ c∧ d ∧ e⇒∼ f , this might help.∆ itself becomes
one big argument, and∆ defeatsπ3 on account of it being more specific. But then∆
itself containsπ3 and so it is self defeating. Thus we are still left with a, b, c, π1, π2, π3

as the winning arguments and the anomaly stands.
By the way, a well known rule of nonmonotonic logic is that if a⊢ b monotonically

then a|∼b nonmonotonically. So we can add/use the strict rules in our arguments.
We can add the axiom

(x1, . . . , xn)→ x

(x1, . . . , xn)⇒ x

So why are we getting anomalies? The reason is not our particular definition of
defeat or the way we write the rules or the like.

The reason is that we do not allow forjoint attacks. You will notice that some of
the devices used in Example 2.1 can help here, but they are notmethodological. We
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are getting anomalies because outputs of successful arguments can join together in
the strict reasoning part to get a contradiction, but their sources (i.e. the defeasible
arguments which output them) cannot join together in a jointattack. See Example 2.2
which is very similar to this example.

The difference now in comparison with Example 2.2 is that we have precise def-
initions for our notions of defeat etc. and so we can define joint attacks, change the
underlying logic or take whatever methodological steps we need.

The simplest way to introduce joint attacks in our system without changing the
definitions is to add the following rule axiom schema for any∆

(x1, . . . , xn)⇒ ⊤

for any x1, . . . , xn, any n. Thus we would have the proofs

η3 : (π1, π2, (d, e)⇒ ⊤)
η2 : (π1, π3, (d, f )⇒ ⊤)
η1 : (π2, π3, (e, f )⇒ ⊤)

η0 : (π1, π2, π3, (d, e, f )⇒ ⊤

The argumentη0 is inconsistent, and we ignore arguments like(a, a⇒ ⊤) or (a, a⇒
d, (a, d)⇒ ⊤), which give nothing new.

Since attacks and defeats are done by the output of the arguments, we get thatηi

attacks and is being attacked byπi .
The resulting network will need a Caminada labelling and notall πi , ηi will always

be winning.

The outputs of the various arguments are as follows:

output(a) = {a}
output(b) = {b}
output(c) = {c}
output(π1) = {a, d}
output(π2) = {b, e}
output(π3) = {c, f }
output(η3) = {a, b, d, e}
output(η2) = {a, d, c, f }
output(η1) = {b, e, c, f }
output(η0) = {a, b, c, d, e, f ,∼ f }.

Figure 8 shows the network (we ignore the arguments which give nothing new).
Clearly, any Caminada labelling will choose one of the pairs{ηi , πi}. The justified
theory will be consistent!

Definition 3.10 (Consequence relation based on defeat)We assume we allow joint
attacks as suggested in Example 3.9. Let∆ be a consistent theory and let a be a literal.
We define the notion of∆|∼a as follows:
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b ca

π1 η1

π2 η2

π3 η3

η0

Figure 8:

Let A be the set of all consistent arguments based on∆ and letD be the defeat
relation as defined above. Then(A,D) is a Dung framework. LetT be an admissible set
of arguments (take some Caminada labelling or if you wish, take the unique grounded
set) and letA∆ be the strict closure of the union of all outputs of the arguments inT.
Then we define

∆|∼a iff a ∈ Q∆.

Lemma 3.11 Q is consistent.

Proof. Otherwise we have several winning arguments.πi, i = 1, . . . , n with xi ∈ θ∆(πi)
such that∆S and{xi} and the strict rules in∆ can provey and∼ y. Assumen is minimal
for giving a contradiction.

However, the argument

ηi = (π1, . . . , πi−1, πi+1, . . . , πn, (x1, . . . , xi−1, xi+1, . . . , xn)⇒ ⊤)

attacks and is being attacked byπi .
So not allπi can be winning! �

Remark 3.12 The exact results for|∼ depend on the admissible set winning but the
important point is that now the system is aware of the anomaly(inconsistency) and so
we have no anomaly!

To summarise, the devices we used are:

1. joint attacks through the axiom
∧

xi ⇒ ⊤
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2. arguments attack through their output and not just through the head of the last
rule in the argument. In other words, we always close under strict rules at every
stage of the argument.

Remark 3.13 (Failure of cut — 1) This example shows that we cannot always chain
proofs together.

Let∆ = {u, u⇒∼ b,∼ b⇒ a, a⇒ b}.
Then∆|∼a because ofπa = (u, u⇒∼ b,∼ b⇒ a).
We also have∆, a|∼b because ofπb = (a, a ⇒ b). However, we cannot stringπa

andπb together to get a proof for∆|∼b because(u, u ⇒∼ b,∼ b ⇒ a, a ⇒ b) is not
consistent.

Thus cut fails for the consequence relation of Definition 3.10. The next example
shows failure of cut even when the proofsπa andπb can consistently chain.

Example 3.14 (Failure of cut — 2) This is another example for the failure of cut for
the consequence relation of Definition 3.10. Let∆ = {u, u⇒ a, a⇒ ν, ν ⇒ b, x, x⇒
ν, x∧ ν⇒ w, x∧ u→∼ w}.

Then∆|∼a because of
πa = (u, u⇒ a).

∆, a|∼b because of
πb = (a, a⇒ ν, ν⇒ b).

The outputs ofπa andπb together are{u, a, ν, b} and are consistent. So we can string
the proofs together toπa

b proving b from∆.

πa
b = (u, u⇒ a, a⇒ ν, ν⇒ b).

This proof however is defetated by the proofη (which is consistent and undefeated).

η = (x, x⇒ ν, x∧ ν⇒ w).

The output ofη is {x, ν,w}. The reason for the defeat is because

1. The head rule ofη is more specific than that ofπa
b.

2. The union of the outputs ofη andπa
b is the set{u, a, ν, b, x,w}which is inconsistent

because of the strict rule x∧ u→∼ w. η does not defeatπb because we need u
to get inconsistency.

Example 3.15 (Success of cut)Let∆ be the following database

∆ = {u, x, a⇒ ν, ν⇒ b, x⇒∼ a,∼ a⇒ ν, u⇒ x∧ ν⇒∼ b}.
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The arguments we can construct from∆ ∪ {a} are as follows.

πa = (u, u⇒ a)
πb = (a, a⇒ ν, ν⇒ b)
η = (x, x⇒∼ a,∼ a⇒ ν, x∧ ν⇒∼ b)
A1 = (a, a⇒ ν)
A2 = (x, x⇒∼ a)
A3 = (x, x⇒∼ a,∼ a⇒ ν)
A4 = (u, u⇒ a, a⇒ ν)
πa

b = (u, u⇒ a, a⇒ ν, ν⇒ b)
B1 = (a, x, a⇒ ν, x∧ ν⇒∼ b)
B2 = (x, u, u⇒ a, a⇒ ν, x∧ ν⇒∼ b).

We also have the atomic arguments(a), (u) and (x). We have∆|∼a because ofπa and
maybe∆, a|∼b because ofπb, but this is attacked and defeated by B1. We now look at
πa

b and ask whether it is undefeated and hence shows that∆|∼b. It is attacked byη and
defeated.

4 Conclusion

We have proposed methodologically robust options for giving logical contents to nodes
in abstract argumentation networks. We have provided a number of examples and con-
sidered a rigorous case study. We have also defined consequence relations based on
a notion of defeat, considered rationality postulates, andproved that one such conse-
quence relation is consistent. As future work we shall investigate the issue of network
computation in connection with the general methodology of fibring, and the question
of learning and adapting the network system further to new information and evolving
scenarios so that statistical aspects of the data can also betaken into account by the
logic. Our objective is to provide a unified theory of logic and network reasoning, from
unifying principles to computational systems and applications. Along with[18] and
[8], this paper is a step in this direction.

References

[1] C.E. Alchourron, P. Gardenfors and D.C. Makinson. On the Logic of Theory
Change: Partial Meet Contraction and Revision Functions, The Journal of Sym-
bolic Logic, 50: 510–530, 1985.

[2] H. Barringer, D. M. Gabbay and J. Woods. Temporal Dynamics ofSupport and
Attack Networks: From Argumentation to Zoology. In D. Hutter and W. Stephan
(eds), Mechanising Mathematical Reasoning, LNCS 2605: 59–98, Springer,
2005.

[3] P. Besnard and A. B. Hunter.Elements of Argumentation, MIT Press, 2008.

[4] M. W. A. Caminada and L. Amgoud. On the evaluation of argumentation for-
malisms,Artificial Intelligence, 171 (5–6): 286–310, 2007.

27



[5] A. S. d’Avila Garcez, K. Broda and D. M. Gabbay. Neural-Symbolic Learning
Systems: Foundations and Applications, Springer, 2002.

[6] A. S. d’Avila Garcez, D. M. Gabbay and L. C. Lamb. Value-basedArgumenta-
tion Frameworks as Neural-Symbolic Learning Systems. Journal of Logic and
Computation 15(6):1041-1058, December 2005.

[7] A. S. d’Avila Garcez and D. M. Gabbay. Fibring Neural Networks. In Proc. 19th
National Conference on Artificial Intelligence AAAI 2004. San Jose, California,
USA, AAAI Press, July 2004.

[8] A. S. d’Avila Garcez, L. C. Lamb and D. M. Gabbay. Neural-Symbolic Cognitive
Reasoning, Springer, 2008.

[9] D. M. Gabbay.Labelled Deductive Systems, OUP, 1996.

[10] D. M. Gabbay and U. Reyle. N-Prolog: An Extension of Prolog with Hypothetical
Implications. Journal of Logic Programming, 1(4): 319-355, 1984.

[11] D.M. Gabbay. Fibring Logics. OUP, 1998.

[12] D. M. Gabbay and J. Woods. Resource origins of non-monotonicity. Studia Log-
ica, 88 (1): 85–112, 2008.

[13] M. J. Gomez Lucero, C. I. Chesnevar and G. R. Simari. On the Accrual of Argu-
ments in Defeasible Logic Programming. In Proc. 21st Intl. Joint Conference on
Artificial Intelligence IJCAI 2009, Pasadena, USA, July 2009 (in press).

[14] H. Leitgeb. Neural network models of conditionals: an introduction. In X. Ar-
razola, J. M. Larrazabal et al. (eds.), Proc. ILCLI International Workshop on
Logic and Philosophy of Knowledge, Communication and Action, 191-223, Bil-
bao, 2007.

[15] J. Pollock. Self-defeating Arguments. Minds and Machines,1 (4): 367–392,
1991.

[16] B. Verheij. Accrual of arguments in defeasible argumentation. In Proc. 2nd
Dutch/German Workshop on Nonmonotonic Reasoning, Utrecht, 217–224, 1995.

[17] H. Prakken and G. Sartor. Argument based extended logic programming with
defeasible priorities.Joural of Applied Non-classical Logics, 7:25–75, 1997.

[18] K. Stenning and M. van Lambalgen. Human reasoning and cognitive science.
MIT Press, 2008.

28


