-

View metadata, citation and similar papers at core.ac.uk brought to you byf: CORE

provided by Open Repository and Bibliography - Luxembourg

Logical Modes of Attack in
Argumentation Networks

Dov M. Gabbay Artur S. d’Avila Garcez
Department of Computer Science Department of Computing
King's College London City University London
WC2R 2LS, London, UK EC1V OHB, London, UK.
dg@dcs.kcl.ac.uk aag@soi.city.ac.uk

April 30, 2009

Abstract

This paper studies methodologically robust options foimgjyogical contents
to nodes in abstract argumentation networks. It defines ietyaof notions of
attack in terms of the logical contents of the nodes in a ndkkw@eneral properties
of logics are refined both in the object level and in the me#l® suit the needs
of the application. The network-based system improves gpame of the attempts
in the literature to define attacks in terms of defeasibl®fsahe so-called rule-
based systems. We also provide a number of examples andiebasigorous case
study, which indicate that our system does ndfesufrom anomalies. We define
consequence relations based on a notion of defeat, comatitamality postulates,
and prove that one such consequence relation is consistent.

1 Introduction

An abstract argumentation network has the foByR), whereS is a nonempty set of
arguments an® C S x S is an attack relation. Whemx(y) € R, we sayx attacksy.

The elements o8 are atomic arguments and the model does not give any informa-
tion on what structure they have and how they manage to attachk other.

The abstract theory is concerned with extracting infororafrom the network in
the form of a set of arguments which are winning (or ‘in’), & gearguments which
are defeated (or are ‘out’) and the rest are undecided. Brergeveral possibilities for
such sets and they are systematically studied and class#esiFigure 1 for a typical
situation.x — yin the figure represents,(y) € R.

A good way to see what is going on is to consider a Caminaddliladpe This is
a functiona on S distributing valuesi(x), x € S in the set{in, out, 3 satisfying the
following conditions.

1. If xis not attacked by anythenA(x) = 1

https://core.ac.uk/display/19772139?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

2.
3.
4.

. \ /)
an €n
Figure 1:

If (y, X) € RandA(y) = 1 thena(x) =0
If all y which attackx haveA(y) = 0 thena(x) = 1.
If oney which attackx hasA(y) =? and all othey haveA(y) € {0, ?} thenA(x) =7.

Sucha exist wheneves is finite and for any such, the setS} = {x | A(X) = 1} is
the set of winning argumentS; = {x | A(x) = O} is the set of defeated arguments and

S7 =

{x| A(xX) =7} is the set of undecided arguments.

The features of this abstract model are as follows:

1.
2.

Arguments are atomic, have no structure.

Attacks are stipulated by the relatiBnwe have no information on how and why
they occur.

. Arguments are either ‘in’ in which case all their attackes active or are ‘out’ in

which case all their attacks are inactive. There is no in betwstate (partially
active, can do some attacks, etc.). Arguments can be uretecid

. Attacks have a single strength, no degrees of strengthgred of transmission

of attack along the arrow, etc.

. There are no counter attacks, no defensive actions allowany other responses

Or counter measures.

. The attacks fronx are uniform on ally such that x,y) € R. There are no

directional attacks or coordinated attaékis Figure 1,ay, . . ., a, attackb indi-
vidually and not in coordination. For examp#g, does not attack with a view
of stoppingb from attackinge; but without regard te, .. ., €,.

1There is some controversy on whether arguments accrue eWhllock denies the existence of cumu-
lative argumentatio15], Verheij defends that arguments can be combined either bgrdimnation or by
coordination, and may accrue in stagé§]. The debate is by no means over or out of date, see e.g. also
[13]. Relatedly, in neural networks, the accrual of argumentsoaydination appears to be a natural property
of the network model§s]. The accrual of arguments can also be learned naturallygunentation neural
networks.

7. The view of the network is static. We have a graph here amiadionR on it.
So Figure 1 is static. We use the words ‘there is no prograssithe network’
to indicate this; the network is static. We seek &belling on it and we may
find several. In the case of Figure 1 there is only one sucl(a) = 1, A(b) =
0,Ag)=Li,j=1,...,n
We advocate a dynamic view, like firgtattackb andb then (if it is not out dead)
tries to attacle. Or better still, at the same time each node launches arkattac
whoever it can. S@; attackb andb attackseg and the result is tha; are alive
(not being attacked) while ande; are all dead.

Points 4 and 7 above have been addressd@]inand points 6 and 7 if6], but
points 1-3 and 5 remain untreated by us. It is our aim in thiep#o give theoretical
answers to these questions.

There are several authors who have already addressed sthes®efjuestions. See
[3; 4]. We shall build upon their work, especiali].

Obviously, to answer the above questions we must give ctsterthe nodes. We
can do this in two ways. We can do this in the metalevel, byipygredicates and
labels on the nodes and by writing axioms about them or we cait id the object
level, giving internal structure to the atomic argument¥ansaying what they are and
defining the other concepts, e.g. the notion of attack in $avfithe contents.

Example 1.1 (Metalevel connects to nodedfigure 2 is an example of a metalevel
extension.

a:a B:b
Figure 2:

The node a is labelled by. It attacks the node b with transmission factor
Thistransmission factais an important feature of our approach. In fact, it will pev
crucial in answering some of the questions. The idea steom &ur research on
neural-symbolic computatiof8], where the weights of neural networks are always
labelled by real numbers which are learnable (i.e. can bepadd through the use of a
learning algorithm to account for a new situation).

Node b is labelled bg. The attack arrow itself constitutes attack on the attack
arrow from b to c. This attack is itself attacked by node b. Heattack has its own
transmission factor. We denote attacks on arrows by doutsteva. Allowing attacks

on arrows is another new idea in argumentation, first promhisethe context of neural
computation in[7]. It can be associated with the above-mentioned learninggss,
where an agent identifies the changes that are required irsyiséem. This concept
turns out to be quite general and yet useful in a computatiseting. In the case of a
recurrent network, for example, attacks on arrows can beltgeontrol infinite loops,
as discussed ifi2] and exemplified through the use of learning algorithmggh In
other words, we see loops as a trigger for learning.

Formally, we have a set S of nodes, here

S =1{aNb,c}.

The relation R is more complex. It has the usual arrdgesb), (b, c)} € R and also
the double arrows, namelf((a, b), (b, ¢)), (b, ((a, b), (b, ¢)))} € R. We have a labelling
functionl, giving values

I(a) = @, 1(b) =B.1(c) = v,
I((a. b)) = &,1((b, c)) = n.
I(((a.). (b,))) = 6

I((a. (&, b), (b, ©)))) = w.

We can generalise the Caminada labelling as a function fromf$Sto some val-
ues which satisfy some conditions involving the labels. #vewerite axioms about
the labels in some logical language and these axioms wit giwre meaning to the
argumentation network. Séé&] for some details along these lines. The appropriate
language and logic to do this is Labelled Deductive Syst&m$)[9].

We shall not pursue the metalevel extensions approachdip#per except for one
well known construction which will prove useful to us later.

Example 1.2 (The logic program associated with an ordinary bstract network)
Let N = (S,R) and consider S as a set of literals. Let be the logic programming
arrow and leta, = be conjunction and negation as failure. Consider the logagpam
P(N) containing the following clauses{x € S

m

Cx:Aﬁyi=>x

i=1

wherey, ..., ym are all the nodes in S which attack X (i(@\y,gerY) = X)-

If no node attacks x then,G= x.

Cy simply says in logic programming language that »xnisf all y which attack it
areout(i.e. —y;).

In [14], a neural network is used as a computational model for cimmaiklogic, in
which attacks on arrowsre allowed. More precisely, these are graphs where arcs are
allowed to connect not only nodes, but nodes to arcs, dematinexception that can
change a default assumption. For example, suppose thatrisdennected to nodg
indicating thata normally implies bA nodec can be connected to the connection from

ato b, indicating thatc is an exception to the rule. In other wordsciis activated, it
blocks the activation df, regardless of the activation af In logic programming terms,
we would havea A =¢ = b. Leitgeb’s networks can be reduced to networks containing
no arcs connected to arcs; these areGHieP networks used 5] to compute and
learn logic programming. Here, the networks are more gén€heere are three cases
to consider:

1. The fact that a nodaattacks a nodb can attack a node (a — b) — ¢;
2. A nodea can attack the attack of a node®n a nodec, a — (b — c); and

3. The fact that noda attacks nodé attacks the attack from noaego noded (but
not any other attack od), (a — b) — (c — d).

Here, there are cases that cannot be reduced or flattenechddg@eneral network
set-up allowing for connections to connections is the fipset-up off 7], where it is
proved that fibred networks are strictly more expressive thair flattened counter-
part, CILP networks. In[7], nodes in one network (or part of a network) are allowed
to change dynamically the weights (or transmission fagtorsonnections in another
network. This can be seen as an integration of learning (tbgrpssive change of
weights) into the reasoning system (the network computatih provides a rich con-
nectionist model towards a unifying theory of logic and natkweasoning.

We are now ready for our second approach, namely giving&bgantent to nodes.

Assume we are using a certain logicL can be monotonic, honmonotonic, algo-
rithmic, etc. At this stage anything will do. This logic h&tnotion of formula#\ of
the logic, theoriea of the logic and the notion of + A, and possibly also the notion
of A is not consistent.

The simplest approach is to assume the nodesS are theories\x supporting
logically a formulaAy (i.e. Ax + Ay in the logic). The exact nature of the nodes will
determine our options for defining attacks of one node ontemot

We list the important parameters.

1. The nature of the logic at nodeand how it is presented. The logic can be classi-
cal logic, intuitionistic logic, substructural logic, nmnotonic logic, etc. It can
be presented proof theoretically, or semantically or asweguence relation, or
just as an algorithm.

2. What isAx? A set of wifs? A proof? A network (e.g. a Bayesian network) with
algorithms to extract information from it? etc.

3. The nature of the suppaki, givesA,. We can have\, + Ay, or we can have that
A, is extracted from\, by some algorithn¥, (e.g. abduction algorithms, etc.).

4. How does the nodeattack other nodes? Does it have a stock of attack formulas
{aq, as, ...} thatit uses? Does it udg? etc.

5. What does the node do when it is attacked? How does it respond? Does it
counter attack? Does it transform itself? Does it die (bexdmonsistent)?

6. To define the notion of an attack one must give precise fbdefinitions of all
the parameters involved.

We give several examples of network and attack options.

Example 1.3 (Networks based on monotonic logic).et L be any monotonic logic,
with a notion of inconsistency. Let the nodes have the formn(Ax, Ax) whereAy is
a set of formulas such that, - Ax and Ay is a minimal such set (i.e. N® & A4 can
prove A).

Ay attacksAy by forcing itself onta\y (i.e. formingAy U Ay). If the result is incon-
sistent then a revision process starts working and a max@gat Ay is chosen such
that Ay U @y is consistent. The result of the attack on ¥Bis Of course ifA, U Ay
is consistent then the attack fails, @ = Ay + Ay, otherwise®y ¥ A, and the attack
succeeds. However, the node y transforms itself into addigioveaker node.

Note that unles®y is empty, the new transformeéy, is still capable of attacking.
To give a specific example, consider the two nodes:

x = (=A,-A)and y= ((A,A— B),B)

X attacks y and the result of the attack is a n&jv= {A — B}. A can still attack its
targets though with less force.
Consider the following sequence:

z=(-E,-E),X = ((E,—-A),-AA E),y = (ALA— B),B)

z attacks X X’ as a result of the attack regroups itself into x and proceedsttack y.
Note that we view progression from left to right along R.
Consider now the following Figure 3, as a third example:

Z —————————» y
XI
z
Figure 3:

where z= (A, A) and z X/, x and y are as before. Because of the attack,of zannot
regroup itself into x because x is also being attacked.

Consider now a fourth example, Figure 4. Here neithgnar x, can cripple y but
a joint attack can.

X1 = (=A, =A)

y=(AvB—-CC)

X2 = (=B, =B)

Figure 4:

Remark 1.4 (Summary of options for the monotonic example)

1. Attacks are done by hurling oneself at the target. Thistmarefined further by
allowing sending dferent formulas at dferent targets.

2. Attacks can be combined.

3. The target may be crippled but can still ‘regroup’ and altessome of its own
targets.

4. The nature of any attack is based on inconsistency andiogvi
5. We can sequence the attacks as a progression along thimreR.

6. Attacks are not symmetrical since we use revision. So itaks~ A, AGM
revision[1], for example, will give preference to A. So feA to attack A it has
to do so explicitly, and the winner is determined by the peegion of the attack
seguence.

Example 1.5 (Networks based on nonmonotonic logicThis example allows for
nodes of the form x (A, Ax) where the underlying logic is a nonmonotonic conse-
quence~. In nonmonotonic logic we know that we may haye A, butAy + Bk Ay.2

So if node x= (Ax, Ay) attacks node y, it simply adds, to Ay and we get ¥y =
Ax U Ay-2Ay.

Here the attack is based on providing more information antdaminconsistency
and revision.

To show the dgierence, letAy be:

1. Bird (a) — Fly (a)
2. Penguin@)A Bird (a) —~ Fly (a)

2A nonmonotonic consequence on thésof the logic satisfies three minimal properties
1. Reflexivity: ARAIf A€ A.
2. Restricted monotonicityArA andARB imply A, A~B.
3. Cut Rule:A, AvB andARA imply ARB.
Note that~ can be presented in many ways, semantically, proof theatfigtior algorithmically.

3. Bird (a)

where is defeasible implication.

Let A, be Fly(a).

Let Ax and A, be Penguin(@). x can attack y by sending it the extra information
that Penguirn(@). Another attack from another pointto y can be by sending Bird(a)

toy, i.e.Ay = Ax =~ Bird (a).

b1—>

Figure 5:

Example 1.6 (Prolog programs) The theories here are Prolog programs and the ar-
guments are the literals they prove.

An attack is executed by sending a literal from the attackivepry to the target
theory. See Figure 5.

Example 1.7 (Counter-attack) The Dung framework does not allow for counter-
attacks being gective only when attacked but not before. The model is stdtie
attacks do not ‘progress’ along the network like a flow goihgptigh the nodes acti-
vating them as it goes along. However, if we perceive sucression, we can define
the concept of counter-attack. This is the same progreghi@minmay resolve syntactic
loops in[6].

Consider Figure 6.A; + a and can attack\, by passing a along the attacking
arrow. The?d is a counter-attack. As long &, is not attacked by, d is not
provable and so cannot be sentAg. OnceA; is attacked then d becomes provable
and can counter-attack, and render a unprovable.

Example 1.8 (Directional attacks) The following is a more enriched logical model
where more options are naturally available. We can let a nade a nonmonotonic
theory A, such thatAja. We can understand an attack of a nonmonotonic node a,
say, on node gas the transmission of an item of data, say(such thatAaa1) to Ae,

with the gfect thatAe, + @1 b+ €1. SinceAg, is nonmonotonic, the insertion af into it

may change what it can prove. See Figure 7.

EEE—— -—-a—e

A;
Figure 6:
e
Ae1
|
|
x B a o |
Ll A |
AX a an :
|
Ae,
Figure 7:

We hav%xl"‘ﬁ, Axl"’x, Aal"’a, Aal"’ai, | = 1, R B
We may have
Aa+B ka1

and therefore the attack on dails, but we may still have that, + B~an, hence the
attack on g still succeeds. The attack B\is not a specific attack on the arrow from a
to e. It tansforms a to something else which does not attackSe Figure 7 is not a
good representation of it. It shows the result but not the mrea

By the way, to attack the attack frorto a in Figure 7, we might add a formuf#
to B, and so the attack changes fr@no (3 andg’).

Example 1.9 (Abduction) Another example can be abduction.

The node y contains an argument of the following form. It smesknow ofA,
and the fact that a formula JEshould be provable, buky cannot prove E So we
abduce 4 as the most reasonable additional hypothesis. So the nodéay,iAy),
where A = Abducefy, Ey). x can attack by sending additional informatidg. It
may be that\y U Ay ¥ Ey, butAbducefyy U Ay, Ey) is some Aand not 4.

An example that we like is from Euclid. Euclid proved thaté&f ave a segment
of length | we can construct a triangle ABC whose sides areglial to length I. The
construction is as in the diagram:

A lengthl B

We construct the two aresande’ of radius | around A and B and they intersect at
point C.

The gap in the proof is that the two arcs may slip through gapsach other. In
other words the point C may be a hole in the plane. The prieajpminimal hypothesis
for abduction would add the least hypothesis needed nainalatl rational points in
the field with V2 are allowed but not more. So the lines can still have gaps émth
This argument can be attacked by the additional informatrat the Greeks thought
in terms of continuous lines and not in terms of the field gateerby the rationals and
V2. So we must abduce the hypothesis that lines have no gapsputationally this
may, of course, be problematic still. Discrete algorithrasieot deal with continuous
lines having an infinite number of points; some approxinratidl be necessary.

Example 1.10 (Replacement networks) et be a consequence relation. Consider
a network N= (S, R), where the set S contains atoms of the language ahd the
nodes x have the theoriésy, Ay) associated with them, whesg = {x} and A = X.

The networkS, R) can now be viewed in two ways. One as an abstract network
and one as a logical network wiilhx, Ay).

To have the two points of view completely identical we musiras abouf that
the following holds:

(*) whenevery, ...,y are all the nodes that attack x (i.gRx holds) then we have
{yi, X} = x, foreachji=1,... k.

When we have (*) the logical attack coincides with the almttreetwork attack. By the
properties of consequence relation, we also have . Note that we do not know
much about~ beyond property (*) and so any nonmonotonic consequenegion!
satisfying (*) will do the job of being equivalent to the alst network. So let us take
a Prolog consequenaefor a language with atomsy, = and- (negation as failure).
Let
x = (A i) = X

Ax =X
This satisfies condition (*) and so can represent or replacen the networks. Com-
pare with Example 1.2.

10

Remark 1.11 Example 1.10 leaves us with several general questions

1. Given anonmonotonfeunder what conditions can it be represented by a Prolog
program?

2. What can we do with extensions of Prolog, say N-Prdtt@, etc. How much
more can we get?

3. Given the above network, what do we get if we describe hémteta-level as
we did in Example 1.2

4. Given areasonable, can we cook up a reasonable extension of Prolog to match
it? Can we be systematic about it and have the same constnuictr any rea-
sonable~?

2 Methodological considerations

In order to present a methodologically robust view of logioades of attack in argu-
mentation networks, as intutiively described in the lastisa, we need to clarify some
concepts. There is logical tension between two possiblgriratible themes.

Theme 1

Start with a general logical consequerieeuse databases of this logic as nodes in a
network and define the notion of attack and then emerge wighoormore admissible
extensions.

Questions

These extensions are sets of nodes (the ‘winning’ nodeardtwork ‘output’ nodes).
They contain logic in them, being themselves theories ofb@akground logic. What
are we going to expect from them? Consistency? Are we goinigtioe a new logic
from the process?

Theme 2

We start with some notion of proof (argument). We can proveosing formulas or
databases of some langudgé/e create a network of all the proofs we are interested
in and define the notion of one proof (argument) attackinglearo We emerge with
several admissible or winning sets of proofs.

Questions

What are we to do with these proofs? Do we define a logical cpresece relation
using them? For example, latbe a set of formulas and rules. L8tbe all possible
proofs we can build up usingy. Note that these proofs can prove opposing results, e.g.
gand~ g, etc. So we do not yet have a consequence relation for ge#suts out of

11

A. LetRbe a notion of attack we define & Let E be a winning extension chosen in
some agreed manner. Then we define a new consequence byrdpslaE.

What connection do we require between this new consequeracel some other
possibly reasonable consequence relation we can defirelginsing proofs (without
the intermediary of networks)? We need rationality posad@n the notion of defeat.

To make the above questions precise and gain some intuiibovesrds their so-
lutions we need to examine some examples in rigorous daféd.begin with some
puzzles critically examined if4].

Example 2.1 This is example 4 ib4, p. 293. The language allows for atoms, nega-
tion ~, strict rules (implication)— and defeasible rules (implicatiosy. The theonA
contains

1. wr (strict fact)
Reading: John wears something that looks like a wedding ring

2. go (strict proof)
Reading: John often goes out until late with his friends.

3. wr=m
m reads: John is married

4. go=b
b reads: John is a bachelor

5. m— hw
hw reads: John has a wife

6. b—~ hw

If modus ponens (detachment) is the only rule we can use, nvearsstruct the follow-
ing arguments from :

Ar: owr
A>: go
As: wrLwr=m
As: gogo=Db

As: wr,wr = mm-— hw
As: g0,go= b ,b—~ hw

The following is implicit in the Caminada and Amgoud undamsting of the situa-
tion.

11 A={1,2,3,4,5,6}

2 The argument network iall possible arguments that can be constructed from
elements oA.

12

I3 An argumentis a sequence (chain) or elements fkahat respect modus ponens
(detachment).

4 Given x— Yy, we take it literally and do not say that we also havg —~ x. If
we want the latter we need to include it explicitly. This asption is clear since
later Caminada and Amgoud do include such additional rubgdieitly as part
of their proposed solution to some anomalies.

I5 One argument attacks another if the last head of the laptigation is the nega-
tion of the last head of the last implication of the other.

Caminada and Amgoud point out an anamoly in this example.y Po@t out that
A4, ...,A, do not have any defeaters. So they win. Wat. .., Ay} prove (their
‘output’ as they define it), is the séwr,go,m b}. Thus if the output is supposed to
mean what is justified then both m and b are to be considereififals Yet, and here
is the anomaly, the strict rules closure of the output is mgistent since it contains
{hw, ~ hw}.

We now discuss this example.

First let us try to sort out some confusion. Are we working lreime 1, where there
is a background logic or in Theme 2 where we want to use an agtation framework
to define a logic?

If there is a background logic then does it inlcude closumenstrict rules? If yes,
thenAs and A4 already attack each other. If no, then don’t worry about tio®nsis-
tency of the output. We simply have defined an inconsistesarthusing the tool of
argumentation networks.

Caminada and Amgoud are aware that if we allow closure unttliet sules at
every stage then the anomaly is resolved. They attribusestiuition to Prakken and
Sartor[17]. They dfer another example, which has anomaly, example 6, page 293,
and where this trick does not work. We shall address this ex@ahater. Let us first
consider Caminada and Amgoud’s own solution to Example 4eyTddd two more
contraposition rules to the database.

7. hw—~Db
8. ~hw—~m

With two more rules in the database, two more arguments caof&ructed from the
database:

A7 wr,wr = mm— hw,hw—~b
A8 go,go— b,b =~ hw,~ hw -~ m.

Now that our stock of arguments has A7 and A8, we have that A&atle A3 and
A7 defeats A4. The set of winning arguments changes and tlygustified arguments
are{wr, go}, without the anomalieg, m}.

We do not consider this as a solution to the anomaly. CamieadaAmgoud
changed the problem (i.e. took dferent, bigger database) and changed the underlying

13

logic. Not always do we have thatif— yis arule so is- y -~ x. We need to give a
rigorous definition of the defeasible logic we are using, tireth examine the problem
of anomalies. We shall do this in Section 3. See Example d%R@mark 3.12. The
anomalies arise because the Dung framework does not allojif attacks. By the
way, Caminada and Amgoud have done an excellent analydie @fitomalies. We are
simply continuing their initial work.

Let us now address Example 6[di.

Example 2.2 The database has the following facts and rules
1. a, strict fact
. d, strict fact

. g, strict fact

2
3
4. bacrenf -~g
5.a=b
6. b=c
7.d=>e
8. e= f.
Caminada and Amgoud consider the following arguments
A aa=b
B:dd=e
C:aa=bb=c
D: d,d=>ee= f.
We also have the arguments
F1: a
F2: d
F3: g

The notion of one argument defeating another is the samefasehée. we need the
two arguments to end their chains with opposite heads. Thiss@&D do not have
any defeaters. The justified literals &g c, e, f} as well as the fact&, d, g}.

Thus we get an anomaly: the closure of the winning facts ustliet rules is not
consistent.

We again ask the question, what exactly is the underlyinigPog/e need a formal
definition to assess the situation.

Is the following argument G also acceptable?

14

G: ACB,D,4
In other words, G is
aa=>bhaa=>hb=cdd=edd=,e= fbaAcrernf -~g

We first use AC, B, D to prove the antecedent of 4 and then geg.

If this argument is acceptable, then it must be included énrtetwork, as the rules
of the game is to include in the network all arguments whiah lsa constructed from
A, then G and B attack each other and so the winning set is dblyc, e, f, a} and we
have no inconsistency.

If argument G is not acceptable because we cannot do moduengomith more
than one assumption, then the winning set is indéeed e, f, a, g} but then we cannot
get inconsistency because we cannot use modus ponensaihnle A f —~ g.

So again we ask: we need a rigorous definition of the logic!

Depending on how the logic works, we may be able to deducexéonple, from A
the rule cA e A f =~ g (since b defeasibly follows from a) and similarly from B we
deducencA f =~ gand from C we gete f =~ g and from D we geth c =~ g.

If we are allowed to have that then we have that C and D defectt ether, and
again we have no anomaly. So it all depends on the logic.

It would be better to compute these arguments using the netitgelf, as we
have done i 6] for a simpler argumentation framework (where argumentsadognic
rather than proofs). We are working on this for the generadeca We believe that
network fibring has the answét 1; 7].

Let us now define one such a logic. We shall indicate what aptige have.

Definition 2.3 Let Q be a set of atoms. Letbe conjunction; a form of negation and
— stand for strict (monotonic) implication ang for defeasible implication.

2. Arule has the form
+a1 A ... A +ay, — =+b (strict rule)
+a; A ... A xa, = b (defeasible rule)
where a b are atoms;+a means a and-a means- a.

3. Afact has the forma (we consider strict facts only; an alternative would be to
consider beliefs, and yet another to consider degrees aéfpel

4. A database is a set of rules (strict or defeasible) and facts.

Definition 2.4 LetA be a database. We define the notion of the sequentéormulas
(actually a tree of formulas written as a sequence) is an argat for the literak-a of
length n and defeasible degree m, and specifieity

1. nis an argument ofa fromA of length 1 and degree fFira € A andn = (+a).
Leto = {xa}.

15

2. Assumery, ...,y are all proofs ofxa from A of lengths nand degree mand
specificity seterj resp. fori= 1,...,k. AssumeA\ +a — =b is a strict rule.
Then(my, w2, . .., m, A\ 28 — +b) is an argument foe-b of lengthl + >; n; and
degred_(my,..., m), wheref_, is some agreed function representing the degree
of ‘defeasiblility’ in the argument.

Options forf_, are

Option max
f, = ma m)

Option sum?®
fo=YXm

k
Leto = U 0.
i=1
3. Assumer; are arguments ofa;. Let A\ +a, = b be a defeasible rule. Then
m, ...,k /\ £8 — b is an argument okb. The length of the argument is
1+ nand the degree of the argumentis = 1+f_(my,..., my), ando = | 0.

Remark 2.5

1. The strict rules are not necessarily classical logic. @oefkample from x->~y
and y we cannot deducex.

2. The definition of an argument watched for the complexitye@suring how many
defeasible rules are used in the argument and the speciftaigcording the set
of literals (i.e. the factual information) used in the argemmt. This measure is
used later to define when one argument defeats another. Weflora defeasible
logic that the specificity of a rule is also important. Sela= c is more specific
that a = c. The setr is a rough measure of specificity. One can be more
fine tuned. We can define a more complex measurg sayich reflects a finer
balance between the number of defeasible rules used andspesificity.

Definition 2.6 LetA be a database. An argumenis said to be based oA if all its
elements are ilh. We now define the notion af + a, a atomic, using Theme 1 point
of view.

We wish to do this in steps:

Step 1 Abi xaiffzac A

Stepmt+ 1 Akn.q = @ iff there is a rule inA of the form A £ = +a such that
Abm £ &, with 3 m = m, and for no rule inA of the formA +a' = Fa
(note¥a =~ +a) dowe hav@hmj +bjwith 2 m <m, orif 3, m' = mthen
we do not have that) o ¢ (J 7. (Inwords,+a is proved using defeasible
rule complexity m and specificity setand there is neither a less complex

30ne could think of this as: the more involved the proof, thekez the argument. For example, the
more steps there are in the proof, the largemn;. Notice that a fact is strongest.

16

argument forFa nor an argument forra with the same complexity but
more specific, i.er & 0”.)

We also agree that i, £ 8 and A +a; — +a € A thenAk, + a. We say\r = a if
Ak, = a for some m.

Remark 2.7 The previous definition is one possibility of many. The irtgparpoint to
note is that any definition ¢f must say inside the induction step how one argument
defeats another.

Let us give some examples.

Example 2.8

1. LetAbe{d,a,a= b,d=>~c,dAb=c}.

We have than |+, ¢ because the argumenta= b,d,d A b = c is defeated by
the argument gdd =~ ¢, and thusA ~ c.

Some defeasible systems will say the argument for ¢ defesgsgument for ¢
because it is more specific. Our system says the argument fodefeats the
argument for ¢ because it uses fewer defeasible rules.

2. Our definition does say, for example, that for the datakse{a,d,a= c,aA
d =~ c} we have that- c can be proved because it relies on more specific
information. See remark 2.5.

3. We could give a definition which measures not only how mafgadible rules
are used but also gives them weights according to how spdiedicare. Our
aim here is not to develop the theory of defeasible systeohthair options and
merits but simply to show how one defines the notion of déleasbinsequence
relation and to make a single most important point:

To define the notion of consequence relation for a defeasistem
we must already have a clear notion of argument defeat.

Definition 2.9 We now give a second definition of a consequence relation:

1. Let AB be two arguments. Define the notion of A defeats B in someanann
Denote it by ADB.

2. LetA be a theory, being a set of rules and literals. Let N be the $etllo
arguments based ok Consider the networldN, D) whereD is the relation from
(1) above. LetA be an algorithm for choosing a winning justified set of atoms
from the net, e.g. let usi take the unique grounded extension which always
exists. Then defing~ g, , + a iff +a is justified by the above processin the
(N, D) network.

We are now ready for some methodological comments.

17

Rationality postulates for defeat

We need rationality postulates on the notinof one argument defeating another
where the arguments are defined in the context of factst mites and defeasible rules.
Caminada and Amgoud give rationality postulates on the ssibie sets derived from

D but this is instficient. D must be such that it ensures we get a proper consequence
relationt ¢ out of it, satisfying reflexivity, restricted monotoniciand cut.

Representation problem

1. Given a consequence relatipnfor defeasible logic (i.e~ contains defeasible
and strict rules), can we extract frgma defeat notiorD = D, for arguments,
and a network algorithif such that the notioHD,ﬂ is a subset of?

2. Given any consequence relation defined by any means (gfiged semanti-
cally), can we guegimvent a notion of argument and a notion of def&asuch
that the associateelﬂﬂ is a subset of?

3. If we don't have such a representation theorem in the cb@e above, using a
naturaID}V, then we perceive this as an anomaly.

Any solution to the anomalies raised[if] must respect the above methodologial ob-
servations. It must not be & hocsolution.

3 Avrigorous case study — 1

This section shows in a rigorous way how Theme 2 works. We éefinonmonotonic
consequence relation using networks on arguments builsing uules.

Two comments

1. The strict rules need not be classical logic.

2. We use labelling to keep control of the proof process arsipty add strength
to rules. However, the labels will not be used at first in oufindigons and

examples.
Some strict logics require the labels in their formulatierg(resource logics) as
well.
Definition 3.1
1. Let our language contain atomic statements=Qp, g,r, ...}, the connective-

for negation for conjunction,— for strict rules and= for defeasible rules.

2. Aliteral x is either an atom g ot g. We write—x to mean~ q if x = g and q if
X=~q.
A rule has the forngxy, ..., X,) — X (strict rule) or(x, ..., X,) = X (defeasible
rule) where x x are literals. We are writingxa, . .., X,) — X instead ofA X, — X

18

to allow us to regard the antecedent of a rule as a sequencés gities us
a greater generality in interpreting the strict rules as nacessarily classical
logic. We can also allow fog = X, whereg is the empty set.

3. A rule of the form(xs,...,X,) = X is said to be more specific than a rule
(Y1,---»Ym) = Y iff m < n and for someyi...,im < n we have x = y;. Of
course, any ruléx,, ..., X,) = x is more specific tham = y. Note that we are
not requiring y=~ X.

4. A labelled database is a set of literals, strict rules arefedsible rules. We
assume each element of the database has a unique label fretroélabelsA.
A is a new set of symbols, not connected with Q or anything else.

So we present the database as

A={a1: A, ..., A

whereq; are djfferent atomic labels fromA and A are either literals or rules.
The labels are just names at this stage, allowing us greaiatrol of whatever
we are going to do.

5. LetA be a labelled database. We define by induction the strictucosf A
denoted by\S as follows:

(a) LetAS = A.
(b) Assume has been defined. LAF,, = ASU{B : x| for somer; : X € A3,
a:(Xg,...,%) = XeAandp = (a, a1, ..., an)}.
LetAS = U, A
A is consistent if for no literal x do we hawex and—x € AS.
6. Note that we do not close under Boolean operations. Thet $tgic is not

necessarily classical. We may haveq — r,~ r € A, this does not imply
qe AS.

7. Also note that only strict rules are used in the closure. ifSty is the set of
defeasible rules in\, thenAS = Ag U (A — Ag)S.

Definition 3.2 (Arguments) We define the notion of an argument (or praofbased
on a databasa) its A-outputd, (r), its head Hr) , its literal base (), and its family
of subarguments ().

1. Any literalt: x € A is an argument of level 1. Its head is x. ItsA-output is the
set of all literals in the strict closure df : x} and its head rule A) is t: X. Its
literal base is{t : x} and its subarguments are.

2. Letmy,...,m, be arguments i of level m, and leto : (X, ..., X,) = X beade-
feasible rule inA. Assumey; : x; can be proved using strict rules from the union
of the output®, (). Then(ry,...,m,p @ (X1,..., %) = X) iS a new argument

19

7. Its output is all the literals in the strict closure @f} U | J; Oa (i), H(7) = p :
(X1,..., %) = X, L(x) = U L(r), and An) = {m1,...,7m} U U; A(mi). The level
of ris 1 + max(m).

3. An argument is consistent if its output is consistent.

4. Note that there is no redundancy in the structure of an argnt. If gb are
literals then(a, b) is not an argument. lt,, 7, are arguments thefr, 75) is not
a argument.

Definition 3.3 (Notion of defeat for arguments of levels 1 an@) Let 71, 72 be two
consistent argument. We define the notioniafefeatsr,, 71D, as follows:

1. Aliteral t: x € A considered as an argument of level 1 defeats any argument
of any level 1 with-x in its output. Note that if our arguments come from a con-
sistent theony, then no level 1 argument can defeat another level 1 argument

They are all consistent together as elementa%f

2. Let
mr= (Xt XX, Xn) = X)
m=(st Y, S Y S (YL, Ym) =)

be two arguments of level 2, then defeatsr, if r : (xi,..., %)) = X is more
specific than s (Y1,...,Ym) = Y, andda(mz) and 6,(r1) are inconsistent to-
gether?

3. In(2) above, we defined how an argument of level 2 can defedher argument
of level 2. (It cannot defeat any argument of level 1). No#& iihcan defeat an
argument of any level m if it defeats any of its subargumefrits/el 2.

4. Note that two arguments of level 2 cannot defeat each.other
5. We shall give later the general definition of defeat foelewm n.
6. An argumentr; attacks an argument if

(a) Their outputs are not consistent.

(b) The head rule of; is more specific than the head rule of, or 71 is of
level 1.

7. m1 may attackr, but not defeat it. However a level 2 argument always defeats

other arguments it attacks.

Example 3.4 LetA = {a,a= x,a= Yy,XAY —~ a}. A is consistent because
AS = {a)}.
The arguments

m=(aa= X

m=(aa=y)

“Note that we do not require that=~ y, nor that(x, y} is inconsistent. The requirement is that the outputs
are inconsistent.

20

attack each other, but none can defeat the other becauss ibhze more specific.
Compare with Example 3.9.

Example 3.5 This example does not use labels. We also wkite = x, when we do
not care about the order of, x

1. Consider the two arguments

m=(d,aadAra=c)
m=(d,a,a=h,anbAad=~c).

1 is of level 2 andrs is of level 3. In this section, our definition of defeat will
say thatr, defeatsr; because the head ab is more specific than the head of
m1. We are not giving advantage #q@ on account of it being shorter (contrary to
Definition 2.6).

2. Consider nowrs
m3=(d,a,arnd=>~b,and = c).
Doesr, defeatrs?

Its main head rule, & b A d =~ cis more specific but its subpro@f, a,a = b)
is defeated by thes subproof(d,a,aA d =~ b).

Sorrz defeatsr, according to this section (as opposed to Definition 2.6).

Example 3.6 (Cut rule) Again we do not use labels, and we do not care about order
in the antecedents of rules.
LetA be

A={b,ddArarb=cd=>carnb=~c,c= a}
We have
A, akc

Because of the proof
1 (b,d,a,dAaAnb=c},

w2 = (&, b,an b=~ c)is defeated byt;.
We also have
Aka

This is because off3.
m3=(d,d=c,c= a).

We ask do we haug~c? We can substitute the proof of a into the proof of ¢, thatds w
substituters into 1. We getry.

ma=(b,d,d=cc=>adArarb=c).

The question is, can we defea® We can get a proof of ¢ by substitutingrs into 5,
to getrs
ms=(d,d=>c,c=>abaArb=~0c).

21

Example 3.7 (Mutual defeat) Let r; be(a,b,aA b = X). Letn; be(a,b,c,a =~
X,aAbAC=~ X~ XA ~ X = Y). Thenr, defeats a subargument 8§, namely
(a,a =~ x). A subargument of,, namely(a,b,c,aA b A ¢ -~ x) defeatsr;. You
may ask why does, prove~ X twice in two diferent ways? Well, maybe the strict
rules of the logic are not classical and so two copies of are needed (in linear logic
~ X = (~ X —>Yy)is notthe same as x — Y), or maybe that is the way is; however,
a proof is a proof.

The output ofr; is {a, b, X} and the ouput of; is {a, b, ¢, ~ X, y}. Each is consistent.

Definition 3.8 (Defeat for higher levels)

1. We already defined how any argument of level 1 can defeargaynent of level
m > 2. No argument of level m can defeat an argument of level 1ifliecause
all arguments are based on a consistat

2. We defined how an argument of level 2 can defeat anothensgtiof level 2.
3. An argumenir; of level 3 can defeat an argumertof level 2 if

(a) one ofits level 1 or level 2 subarguments defeats
or

(b) its head is more specific than the headrgfof level 2, its output is in-
consistent with the output af, andnr, does not defeat any of its level 2
subarguments.

4. Assume by induction that we know how an argumeiaif level 2 can defeat or
be defeated by an argumentof level k< m. We show the same for leveln.

e 1, defeatsr; if
(a) m, defeats some subargument of leved kn of 7y
or

(b) the head ofr; is more specific than the headf, its output is incon-
sistent with that ofr;, and no subargument af; of level< m defeats
TTo.

e The argument is defeated byt if

(a) Some subargumentof of level< m defeatsr;,
or

(b) the head ofr; is more specific than the headsf, its output is incon-
sistent with that of,, andr, does not defeat any subargument of level
< mofny.

We have thus defined how an argument of level 2 can defeat cefbatdd by
any argument of level m for any m.

5. Assume by induction on k that we defined for level k and argwrahy argument
of level k can defeat or be defeated by any argument of levef amfy m.

We define the same for levelKL.

22

We define this by induction on m. We know from item (4) how can defeat
or be defeated by an argument of level 2. Assume we have detinert,; can
defeat or be defeated by any argumehnof level n< m. We define the same for
level n=m+ 1.

(a) mx.1 is defeated by an argument, , of level m+ 1if eithern/ ., defeats a
subargument ofy, of level< k or if the head ofr_, , is more specific than
the head ofr, 1, its output is not consistent with the output@f; and no

subargument of;, of level< m is defeated by, 1.

(b) my,1 defeats an argument . , if either it defeats a subargumentadf, ; of
level< m or its head is more specific than the headrdf,, its output is
not consistent with the output of . ; and no subargument af; of level
< kis defeated by, . ;.

6. We thus completed the induction step of (5) and we haveeddfinany k and m
how an argument of level k can defeat or be defeated by an aguof level m
for any m and k.

7. We need one more clausa: defeatsr; if some subargument of r; defeatsr;
according to clause (1)—(5) above.

Example 3.9 (Anomalies)Consider the following databage

A = {abca=db=>ec= f,anbAacAadAre—~ f}.
AS = {ahb,c}.

The arguments are, besides the literaj®a, the following:

maa=d
mibb=e
m3.cCc= f

In our system, all the arguments form an admissible winnét@ed we get an anomaly
since the output is inconsistent. We have no more argumierts we use in our defi-
nition only defeasible rules. If we allow in arguments faicttrules, or turn the strict
rule into a defeasible rule,a b A cA d A e=~ f, this might helpA itself becomes
one big argument, and defeatsrs on account of it being more specific. But thén
itself containsrs and so it is self defeating. Thus we are still left withbzc, 71, 72, 73
as the winning arguments and the anomaly stands.
By the way, a well known rule of nonmonotonic logic is thati#flmmonotonically
then &b nonmonotonically. So we can adsk the strict rules in our arguments.
We can add the axiom
(X1, .., %) = X
(X1, ..., %n) = X
So why are we getting anomalies? The reason is not our péaticlefinition of
defeat or the way we write the rules or the like.
The reason is that we do not allow fmint attacks You will notice that some of
the devices used in Example 2.1 can help here, but they amneitiodological. We

23

are getting anomalies because outputs of successful amfgnean join together in
the strict reasoning part to get a contradiction, but thedugces (i.e. the defeasible
arguments which output them) cannot join together in a jaitdck. See Example 2.2
which is very similar to this example.

The dfference now in comparison with Example 2.2 is that we haveiggatef-
initions for our notions of defeat etc. and so we can definet jattacks, change the
underlying logic or take whatever methodological steps eed

The simplest way to introduce joint attacks in our systenhaut changing the
definitions is to add the following rule axiom schema for any

(X1,.. X)) =T
forany x, ..., X,, any n. Thus we would have the proofs

n3 . (my,m2,(d,€) = T)
n2 . (my,ms,(d, f) = 1)
n:(m2,ms, (6, f) = T)

no : (m1,m,m3,(d, e,)= T

The argumenty is inconsistent, and we ignore arguments lfkea = T) or (a,a =
d, (a,d) = T), which give nothing new.

Since attacks and defeats are done by the output of the argamee get that,
attacks and is being attacked by

The resulting network will need a Caminada labelling and alot;, ; will always
be winning.

The outputs of the various arguments are as follows:

output@) = {a}

outputp) = {b}

output€) = {c}

outputr;) = {a,d}

outputgr,) = {b,€}

outputrs) = {c, f}

outputgs) = {a,b,d, e}
outputgz) = {a,d,c, f}
outputgy) = {b,ec, f}
outputgo) = {a,b,c,d, e f,~ f}.

Figure 8 shows the network (we ignore the arguments whica gathing new).
Clearly, any Caminada labelling will choose one of the p&itsri}. The justified
theory will be consistent!

Definition 3.10 (Consequence relation based on defeat)/e assume we allow joint
attacks as suggested in Example 3.9. A&k a consistent theory and let a be a literal.
We define the notion df~a as follows:

24

3 n3
o
Figure 8:

Let A be the set of all consistent arguments based\cand letD be the defeat
relation as defined above. Thél, D) is a Dung framework. LéE be an admissible set
of arguments (take some Caminada labelling or if you wiske the unique grounded
set) and letA, be the strict closure of the union of all outputs of the argntaen T.
Then we define

Ahaiffac Q,.
Lemma 3.11 Q is consistent.

Proof. Otherwise we have several winning argumentsi. = 1,...,nwith X; € ()
such thatAS and(x;} and the strict rules in can provey and~ y. Assumenis minimal
for giving a contradiction.

However, the argument

N = (1, s Mot Mty oo s Ty (XL, - v Ximds Xit Lo o< -5 Xn) = T)

attacks and is being attacked iy
So not allr; can be winning!]

Remark 3.12 The exact results fop depend on the admissible set winning but the
important point is that now the system is aware of the anorfiatypnsistency) and so
we have no anomaly!

To summarise, the devices we used are:

1. joint attacks through the axiofy x, = T

25

2. arguments attack through their output and not just thiotllge head of the last
rule in the argument. In other words, we always close und@tsules at every
stage of the argument.

Remark 3.13 (Failure of cut — 1) This example shows that we cannot always chain
proofs together.

LetA ={uu=>~b,~b=aa= b}.

ThenAka because of; = (U, u=~ b, ~ b= a).

We also have\, a~b because of, = (a,a = b). However, we cannot string,
and mr, together to get a proof foakb becausd€u,u =~ b,~ b = a,a = b) is not
consistent.

Thus cut fails for the consequence relation of DefinitiorD3.The next example
shows failure of cut even when the propfsand sy, can consistently chain.

Example 3.14 (Failure of cut — 2) This is another example for the failure of cut for
the consequence relation of Definition 3.10. het {u,u= a,a= v,y = b,x,Xx =
V, XAV =W, XA U-—>~ W}
ThenAka because of
ma = (U, u= a).

A, ab because of
m=(aa=v,v=bh).

The outputs ofr, andr, together arefu, a, v, b} and are consistent. So we can string
the proofs together taf proving b fromA.

rm=(uu=>aa=vyv=bh).
This proof however is defetated by the prgdgtvhich is consistent and undefeated).
n=0XX=>vXAvV=W).
The output of; is {x, v, w}. The reason for the defeat is because

1. The head rule af is more specific than that af.

2. The union of the outputs paindxs is the setu, a, v, b, X, w} which is inconsistent
because of the strict rule x u -~ w. does not defeat;,, because we need u
to get inconsistency.

Example 3.15 (Success of cutlet A be the following database

A={uxa=>vvobx=~a~a=>v,u= XAv>=>~Dhb}.

26

The arguments we can construct franu {a} are as follows.

ma = (U,u= a)
m = (aa=v,v=>Dh)

n = (XX=>~a~a=>v,XAv=~Dh)
A = (aa=v)
Az = (X, Xx=~ Q)

A = (X,X>~a~a=v)

= (uLu=>aa=v)

= (uLu=>aa>=>vv=bhb

B, = (ax,a=v,XAv=~Dh)

B, = (x,uuu=aa=v,XxXAv=~Db).

Pg
[

©
|

We also have the atomic argumefds, (u) and(x). We haveAra because of, and
maybeA, a~b because ofy, but this is attacked and defeated by. BVe now look at
nf and ask whether it is undefeated and hence showsAfebt It is attacked by and
defeated.

4 Conclusion

We have proposed methodologically robust options for giWrgical contents to nodes
in abstract argumentation networks. We have provided a euwiftexamples and con-
sidered a rigorous case study. We have also defined consaxjtedations based on
a notion of defeat, considered rationality postulates, nogted that one such conse-
guence relation is consistent. As future work we shall itigage the issue of network
computation in connection with the general methodologylwirig, and the question
of learning and adapting the network system further to ndarimation and evolving
scenarios so that statistical aspects of the data can altkée into account by the
logic. Our objective is to provide a unified theory of logiaametwork reasoning, from
unifying principles to computational systems and appiorat. Along with[18] and
[8], this paper is a step in this direction.

References

[1] C.E. Alchourron, P. Gardenfors and D.C. Makinson. On theit.a§ Theory
Change: Partial Meet Contraction and Revision Functiohg, Journal of Sym-
bolic Logic, 50: 510-530, 1985.

[2] H. Barringer, D. M. Gabbay and J. Woods. Temporal DynamicSugfport and
Attack Networks: From Argumentation to Zoology. In D. Hutsend W. Stephan
(eds), Mechanising Mathematical ReasonjngNCS 2605: 59-98, Springer,
2005.

[3] P.Besnard and A. B. HunteElements of ArgumentatipMIT Press, 2008.

[4 M. W. A. Caminada and L. Amgoud. On the evaluation of argumon for-
malisms Atrtificial Intelligence 171 (5-6): 286—-310, 2007.

27

(5]

(6]

(7]

(8]

[l
(10]

(11
(12

(13

[14]

[15]

[16]

[17]

(18

A. S. d’'Avila Garcez, K. Broda and D. M. Gabbay. Neural-Synhibbearning
Systems: Foundations and Applications, Springer, 2002.

A. S. d’Avila Garcez, D. M. Gabbay and L. C. Lamb. Value-basedumenta-
tion Frameworks as Neural-Symbolic Learning Systems.nbiuf Logic and
Computation 15(6):1041-1058, December 2005.

A. S. d’'Avila Garcez and D. M. Gabbay. Fibring Neural Netwsarkn Proc. 19th
National Conference on Artificial Intelligence AAAI 2004af$ Jose, California,
USA, AAAI Press, July 2004.

A. S. d'Avila Garcez, L. C. Lamb and D. M. Gabbay. Neural-SyinbCognitive
Reasoning, Springer, 2008.

D. M. GabbaylLabelled Deductive Systen3UP, 1996.

D. M. Gabbay and U. Reyle. N-Prolog: An Extension of Prolothvdypothetical
Implications. Journal of Logic Programming, 1(4): 319-35984.

D.M. Gabbay. Fibring Logics. OUP, 1998.

D. M. Gabbay and J. Woods. Resource origins of non-monatgn&tudia Log-
ica, 88 (1): 85-112, 2008.

M. J. Gomez Lucero, C. I. Chesnevar and G. R. Simari. On theustof Argu-
ments in Defeasible Logic Programming. In Proc. 21st ImtintiConference on
Artificial Intelligence IJCAI 2009, Pasadena, USA, July 2@ press).

H. Leitgeb. Neural network models of conditionals: an idtrotion. In X. Ar-
razola, J. M. Larrazabal et al. (eds.), Proc. ILCLI Inteioaal Workshop on
Logic and Philosophy of Knowledge, Communication and Activ91-223, Bil-
bao, 2007.

J. Pollock. Self-defeating Arguments. Minds and Machinkg4): 367-392,
1991.

B. Verheij. Accrual of arguments in defeasible argumeatatiin Proc. 2nd
DutclyGerman Workshop on Nonmonotonic Reasoning, Utrecht, 224-1995.

H. Prakken and G. Sartor. Argument based extended logicranuging with
defeasible prioritiesloural of Applied Non-classical Logic$:25-75, 1997.

K. Stenning and M. van Lambalgen. Human reasoning and degrstience.
MIT Press, 2008.

28

