
Chapter 9
An Analysis of Defeasible Inheritance Systems

The material in this chapter is taken from [GS08e].

9.1 Introduction

9.1.1 Terminology

“Inheritance” will stand here for “nonmonotonic or defeasible inheritance”. We will
use indiscriminately “inheritance system”, “inheritance diagram”, “inheritance net-
work”, “inheritance net”.

In this introduction, we first give the connection to reactive diagrams, then give
the motivation, then describe in very brief terms some problems of inheritance dia-
grams, and mention the basic ideas of our analysis.

9.1.2 Inheritance and Reactive Diagrams

Inheritance systems or diagrams have an intuitive appeal. They seem close to human
reasoning, natural, and are also implemented (see [Mor98]). Yet, they are a more
procedural approach to nonmonotonic reasoning, and, to the authors’ knowledge,
a conceptual analysis, leading to a formal semantics, as well as a comparison to
more logic-based formalisms like the systems P and R of preferential systems are
lacking. We attempt to reduce the gap between the more procedural and the more
analytical approaches in this particular case. This will also give indications how to
modify the systems P and R to approach them more to actual human reasoning.
Moreover, we establish a link to multi-valued logics and the logics of information
sources (see, e.g. [ABK07] and forthcoming work of the same authors, and also
[BGH95]).

An inheritance net is a directed graph with two types of connections between
nodes, x → y and x 	→ y. Diagram 9.1.1 (p. 252) is such an example. The meaning
of x → y is that x is also a y and the meaning of x 	→ y is that x is not a y.
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Diagram 9.1.1 The Nixon
Diamond

a

cb

d

We do not allow the combinations x 	→ y 	→ z or x 	→ y → z, but we do allow
x → y → z and x → y 	→ z.

Given a complex diagram such as Diagram 9.1.2 (p. 252) and two points say z
and y, the question we ask is to determine from the diagram whether the diagram
says that

(1) z is y,
(2) z is not y,
(3) nothing to say.

Since in Diagram 9.2.2 (p. 259) there are paths to y from z either through x or
through v, we need to have an algorithm to decide. Let A be such an algorithm.

Diagram 9.1.2 The problem
of downward chaining z

u

xv

y
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We need A to decide

(1) Are there valid paths from z to y?
(2) Of the opposing paths (one which supports “z is y” and one which supports “z

is not y”), which one wins (usually winning makes use of being more specific,
but there are other possible options)?

So, for example, in Diagram 9.1.2 (p. 252), the connection x → v makes paths
through x more specific than paths through v. The question is whether we have a
valid path from z to x .

In the literature, as well as in this chapter, there are algorithms for deciding the
valid paths and the relative specificity of paths. These are complex inductive algo-
rithms, which may need the help of a computer for the case of the more complex
diagrams.

It seems that for inheritance networks we cannot adopt a simple minded approach
and just try to “walk” on the graph from z to y, and depending on what happens
during this “walk” decide whether z is y or not. To explain what we mean, suppose
we give the network a different meaning, that of fluid flow. x → y means there is
an open pipe from x to y and x 	→ y means there is a blocked pipe from x to y.

To the question “can fluid flow from z to y in Diagram 9.1.2” (p. 252), there is a
simple answer:

Fluid can flow iff there is a path comprising of → only (without any 	→ among
them).

Similarly, we can ask in the inheritance network something like (*) below:

(*) z is (resp. is not) y according to diagram D, iff there is a path π from z to y
in D such that some noninductive condition ψ(π ) holds for the path π .

Can we offer the reader such a ψ?
If we do want to help the user to “walk” the graph and get an answer, we can

proceed as one of the following options:

Option 1. Add additional annotations to paths to obtain D∗ from D, so that a
predicate ψ can be defined on D∗ using these annotations. Of course, these
annotations will be computed using the inductive algorithm in A, i.e. we
modify A to A∗ which also executes the annotations.

Option 2. Find a transformation τ on diagrams D to transform D to D′ = τ (D),
such that a predicate ψ can be found for D′. So we work on D′ instead of
on D.

We require a compatibility condition on options 1 and 2:
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(C1) If we apply A∗ to D∗ we get D∗ again.
(C2) τ (τ (D)) = τ (D).

We now present the tools we use for our annotations and transformation. These are
the reactive double arrows.

Consider the following Diagram 9.1.3 (p. 254):
We want to walk from a to e. If we go to c, a double arrow from the arc a → c

blocks the way from d to e. So the only way to go to e is through b. If we start at
a′ there is no such block. It is the travelling through the arc (a, c) that triggers the
double arrow (a, c) 	 (d, e).

We want to use 	 in A∗ and in τ . So in Diagram 9.1.2 (p. 259) the path u →
x 	→ y is winning over the path u → v → y, because of the specificity arrow
x → v. However, if we start at z then the path z → u → v → y is valid because of
z 	→ x . We can thus add the following double arrows to the diagram to get Diagram
9.1.4 (p. 255).

If we start from u and go to u → v, then v → y is cancelled. Similarly,
u → x → v cancelled v → y. So the only path is u → x 	→ y.

If we start from z, then u → x is cancelled and so is the cancellation (u, v) 	
(v, y). Hence the path z → u → v → y is open.

We are not saying that τ (Diagram 9.1.3)= Diagram 9.1.4, but something effec-
tively similar will be done by τ .

We emphasize that the construction depends on the point of departure. Consider
Diagram 9.1.2 (p. 259). Starting at u, we will have to block the path uvy. Starting

Diagram 9.1.3 Reactive
graph
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Diagram 9.1.4 Walking
through the diagram

u

z

y

v x

Diagram 9.1.5 The problem
of downward chaining –
reactive z

u

xv

y

at z, the path zuvy has to be free. See Diagram 9.1.5 (p. 255). So we cannot just add
a double arrow from u → v to v → y, blocking v → y, and leave it there when we
start from z. We will have to erase it when we change the origin. At the same time,
this shows an advantage over just erasing the arrow v → y:

When we change the starting point, we can erase simply all double arrows, and
do not have to remember the original diagram.

How do we construct the double arrows given some origin x?
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First, if all possible paths are also valid, there is nothing to do. (At the same
time, this shows that applying the procedure twice will not result in anything
new.)

Second, remember that we have an upward chaining formalism. So if a potential
path fails to be valid, it will do so at the end.

Third, suppose that we have two valid paths σ : x → y and τ : x → y.

If they are negative (and they are either both negative or positive, of course),
then they cannot be continued. So if there is an arrow y → z or y 	→ z, we
will block it by a double arrow from the first arrow of σ and from the first
arrow of τ to y → z (y 	→ z, respectively).

If they are positive, and there is an arrow y → z or y 	→ z, both σ y → z and
τ y → z are potential paths (the case y 	→ z is analogue). One is valid iff the
other one is, as σ and τ have the same endpoint; so preclusion, if present, acts
on both in the same way. If they are not valid, we block y → z by a double
arrow from the first arrow of σ and from the first arrow of τ to y → z. Of
course, if there is only one such σ, we do the same, there is just to consider
to see the justification.

We summarize: Our algorithm switches impossible continuations off by making
them invisible; there is just no more arrow to concatenate. As validity in inheritance
networks is not forward looking – validity of σ : x → y does not depend on what is
beyond y – validity in the old and in the new network starting at x are the same. As
we left only valid paths, applying the algorithm twice will not give anything new.

We illustrate this by considering Diagram 9.1.6 (p. 256). First, we add double
arrows for starting point c, see Diagram 9.1.7 (p. 257), and then for starting point
x, see Diagram 9.1.8 (p. 257).

For more information on reactive diagrams, see also [Gab08c], and an earlier
version [Gab04].

Diagram 9.1.6 STOP signs x

y
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STOP
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Diagram 9.1.7 Starting point c

Diagram 9.1.8 Starting
point x x

y

a
b

c
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gf

9.1.3 Conceptual Analysis

Inheritance diagrams are deceptively simple. Their conceptually complicated nature
is seen by, e.g. the fundamental difference between direct links and valid paths, and
the multitude of existing formalisms, upward vs. downward chaining, intersection
of extensions vs. direct scepticism, on-path vs. off-path preclusion (or pre-emption),
split validity vs. total validity preclusion, etc. to name a few; see the discussion
in Sect. 9.2.3 (p. 269). Such a proliferation of formalisms usually hints at deeper



258 9 An Analysis of Defeasible Inheritance Systems

problems on the conceptual side, i.e. that the underlying ideas are ambiguous, and
not sufficiently analysed. Therefore, any clarification and resulting reduction of pos-
sible formalisms seems a priori to make progress. Such clarification will involve
conceptual decisions, which need not be shared by all, they can only be suggestions.
Of course, a proof that such decisions are correct is impossible, and so is its contrary.

We will introduce into the analysis of inheritance systems a number of concepts
not usually found in the field, like multiple truth values, access to information,
comparison of truth values. We think that this additional conceptual burden pays
off by a better comprehension and analysis of the problems behind the surface of
inheritance.

We will also see that some distinctions between inheritance formalisms go far
beyond questions of inheritance, and concern general problems of treating contra-
dictory information – isolating some of these is another objective of this article.

The text is essentially self-contained, still some familiarity with the basic con-
cepts of inheritance systems and nonmonotonic logics in general is helpful. For a
presentation, the reader might look into [Sch97] and [Sch04].

The text is organized as follows. After an introduction to inheritance theory, con-
nections with reactive diagrams in Sect. 9.3 (p. 270), and big and small subsets
and the systems P and R in Sect. 9.2 (p. 258), we turn to an informal description
of the fundamental differences between inheritance and the systems P and R in
Sect. 9.4.2 (p. 276), give an analysis of inheritance systems in terms of information
and information flow in Sect. 9.4.3 (p. 277), then in terms of reasoning with proto-
types in Sect. 9.4.4 (p. 281), and conclude in Sect. 9.5 (p. 284) with a translation
of inheritance into (necessarily deeply modified) coherent systems of big and small
sets, respectively, logical systems P and R. One of the main modifications will be
to relativize the notions of small and big, which thus become less “mathematically
pure”, but perhaps closer to actual use in “dirty” common sense reasoning.

9.2 Introduction to Nonmonotonic Inheritance

9.2.1 Basic Discussion

We give here an informal discussion. The reader unfamiliar with inheritance systems
should consult in parallel Definition 9.2.3 (p. 265) and Definition 9.2.4 (p. 266).
As there are many variants in the definitions, it seems reasonable to discuss them
before a formal introduction, which, otherwise, would seem to pretend to be definite
without being so.

9.2.1.1 (Defeasible or Nonmonotonic) Inheritance Networks or Diagrams

Nonmonotonic inheritance systems describe situations like “normally, birds fly”,
written birds → f ly. Exceptions are permitted, “normally penguins don’t fly”,
penguins 	→ f ly.
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Definition 9.2.1 A nonmonotonic inheritance net is a finite DAG, directed, acyclic
graph, with two types of arrows or links, → and 	→, and labelled nodes. We will
use Γ, etc. for such graphs, and σ , etc. for paths – the latter to be defined below.

Roughly (and to be made precise and modified below, we try to give here just a
first intuition), X → Y means that “normal” elements of X are in Y, and X 	→ Y
means that “normal” elements of X are not in Y. In a semi-quantitative set interpre-
tation, we will read “most” for “normal”, thus “most elements of X are in Y ”, “most
elements of X are not in Y ”, etc. These are by no means the only interpretations,
as we will see – we will use these expressions for the moment just to help the
reader’s intuition. We should add immediately a word of warning: “most” is here
not necessarily, but only by default, transitive, in the following sense. In the Tweety
diagram, see Diagram 9.2.1 (p. 259) below, most penguins are birds, most birds fly,
but it is not the case that most penguins fly. This is the problem of transfer of relative
size which will be discussed extensively, especially in Sect. 9.5 (p. 284).

According to the set interpretation, we will also use informally expressions like
X ∩Y, X −Y , C X – where C stands for set complement. But we will also use nodes
informally as formulas, like X ∧ Y, X ∧¬Y, ¬X . All this will only be used here as
an appeal to intuition.

Nodes at the beginning of an arrow can also stand for individuals, so T weety 	→
f ly means something like: “Normally, Tweety will not fly”. As always in non-
monotonic systems, exceptions are permitted, so the soft rules “birds fly”, “pen-
guins don’t fly”, and (the hard rule) “penguins are birds” can coexist in one dia-
gram, penguins are then abnormal birds (with respect to flying). The direct link
penguins 	→ f ly will thus be accepted, or considered valid, but not the composite
path penguins → birds → f ly, by specificity – see below. This is illustrated by
Diagram 9.2.1 (p. 252), where a stands for Tweety, c for penguins, b for birds, and
d for flying animals or objects.

(Remark: The arrows a → c, a → b, and c → b can also be composite paths –
see below for the details.)

Diagram 9.2.1 Tweety
diagram a

bb

d
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(Of course, there is an analogous case for the opposite polarity, i.e. when the
arrow from b to d is negative, and the one from c to d is positive.)

The main problem is to define in an intuitively acceptable way a notion of valid
path, i.e. concatenations of arrows satisfying certain properties. We will write Γ |=
σ , if σ is a valid path in the network Γ, and if x is the origin, and y the endpoint of
σ, and σ is positive, we will write Γ |= xy, i.e. we will accept the conclusion that xs
are ys, and analogously Γ |= x y for negative paths. Note that we will not accept any
other conclusions, only those established by a valid path; so many questions about
conclusions have a trivial negative answer: There is obviously no path from x to y.

For example, there is no path from b to c in Diagram 9.2.1 (p. 256). Likewise, there
are no disjunctions, conjunctions, etc. in our conclusions, and negation is present
only in a strong form: “It is not the case that xs are normally ys” is not a possible
conclusion, only “ xs are normally not ys” is one. Also, possible contradictions are
contained, there is no EFQ.

To simplify matters, we assume that for no two nodes x, y ∈ Γ x → y and
x 	→ y are both in Γ, intuitively, that Γ is free from (hard) contradictions. This
restriction is inessential for our purposes. We admit, however, soft contradictions
and preclusion, which allows us to solve some soft contradictions – as we already
did in the penguins example. We will also assume that all arrows stand for rules with
possibly exceptions; again, this restriction is not important for our purposes. More-
over, in the abstract treatment, we will assume that all nodes stand for (nonempty)
sets, though this will not be true for all examples discussed.

This might be the place for a remark on absence of cycles. Suppose we also
have a positive arrow from b to c in Diagram 9.1.1 (p. 256). Then, the concept of
preclusion collapses, as there are now equivalent arguments to accept a → b → d
and a → c 	→ d. Thus, if we do not want to introduce new complications, we
cannot rely on preclusion to decide conflicts. It seems that this would change the
whole outlook on such diagrams. The interested reader will find more on the subject
in [Ant97], [Ant99], [Ant05].

Inheritance networks were introduced about 20 years ago (see, e.g. [Tou84],
[Tou86], [THT87]), and exist in a multitude of more or less differing formalisms;
see, e.g. [Sch97] for a brief discussion. There still does not seem to exist a satisfying
semantics for these networks. The authors’ own attempt [Sch90] is an a posteriori
semantics, which cannot explain or criticize or decide between different formalisms.
We will give here a conceptual analysis, which provides also at least some building
blocks for semantics, and a translation into (a modified version of) the language of
small and big subsets, familiar from preferential structures; see, Sect. 3.2.2.6 (p. 58).

We will now discuss the two fundamental situations of contradictions, then give
a detailed inductive definition of valid paths for a certain formalism so the reader
has firm ground under his feet, and then present briefly some alternative formalisms.

As in all of nonmonotonic reasoning, the interesting questions arise in the treat-
ment of contradictions and exceptions. The difference in quality of information
is expressed by “preclusion” (or pre-emption). The basic diagram is the Tweety
diagram, see, Diagram 9.2.1 (p. 256).
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Unresolved contradictions give either rise to a branching into different exten-
sions, which may roughly be seen as maximal consistent subsets, or to mutual can-
cellation in directly sceptical approaches. The basic diagram for the latter is the
Nixon Diamond, see, Diagram 9.1.1 [(p. 257)], where a = Nixon, b = Quaker,
c = Republican, d = paci f ist.

In the directly sceptical approach, we will not accept any path from a to d as
valid, as there is an unresolvable contradiction between the two candidates. The
extensions approach can be turned into an indirectly sceptical one, by forming first
all extensions, and then taking the intersection of either the sets of valid paths, or of
valid conclusions, see [MS91] for a detailed discussion. See also Sect. 9.2.3 (p. 269)
for more discussion on directly vs. indirectly sceptical approaches.

[We describe this now in more detail:]

9.2.1.2 Preclusion

In the above example, our intuition tells us that it is not admissible to conclude
from the fact that penguins are birds, and that most birds fly that most penguins
fly. The horizontal arrow c → b together with c 	→ d bars this conclusion; it
expresses specificity. Consequently, we have to define the conditions under which
two potential paths neutralize each other, and when one is victorious. The idea is
as follows: (1) We want to be sceptical, in the sense that we do not believe every
potential path. We will not arbitrarily chose one either. (2) Our scepticism will be
restricted, in the sense that we will often make well-defined choices for one path
in the case of conflict: (a) If a compound potential path is in conflict with a direct
link, the direct link wins. (b) Two conflicting paths of the same type neutralize each
other, as in the Nixon Diamond, where neither potential path will be valid. (c) More
specific information will win over less specific one.

(It is essential in the Tweety diagram that the arrow c 	→ d is a direct link; so it
is in a way stronger than compound paths.) The arrows a → b, a → c, c → b can
also be composite paths: The path from c to b (read c ⊆ . . .⊆ b, where ⊆ stands
here for soft inclusion), however, tells us that the information coming from c is more
specific (and thus considered more reliable), so the negative path from a to d via c
will win over the positive one via b. The precise inductive definition will be given
below. This concept is evidently independent of the length of the paths, a · · · → c
may be much longer than a · · · → b, so this is not shortest path reasoning (which
has some nasty drawbacks, discussed in, e.g. [HTT87]).

A final remark: Obviously, in some cases, it need not be specificity, which decides
conflicts. Consider the case where Tweety is a bird, but a dead animal. Obviously,
Tweety will not fly, here because the predicate “dead” is very strong and overrules
many normal properties. When we generalize this, we might have a hierarchy of
causes, where one overrules the other, or the result may be undecided. For instance,
a falling object might be attracted in a magnetic field, but a gusty wind might pre-
vent this, sometimes, with unpredictable results. This is then additional information
(strength of cause), and this problem is not addressed directly in traditional inheri-
tance networks. We would have to introduce a subclass “dead bird” – and subclasses
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often have properties of “pseudo-causes”, being a penguin probably is not a “cause”
for not flying, nor bird for flying; still, things change from class to subclass for a
reason. Before we give a formalism based on these ideas, we refine them, adopt one
possibility (but indicate some modifications), and discuss alternatives later.

9.2.2 Directly Sceptical Split Validity Upward Chaining
Off-Path Inheritance

Our approach will be directly sceptical, i.e. unsolvable contradictions result in the
absence of valid paths, it is upward chaining, and split validity for preclusions (dis-
cussed below, in particular, in Sect. 9.2.3 (p. 269)). We will indicate modifications
to make it extension based, as well as for total validity preclusion. This approach
is strongly inspired by classical work in the field by Horty, Thomason, Touretzky,
and others, and we claim no priority whatever. If it is new at all, it is a very minor
modification of existing formalisms.

Our conceptual ideas to be presented in detail in Sect. 9.4.3 (p. 277) make split
validity, off-path preclusion, and upward chaining a natural choice. For the reader’s
convenience, we give here a very short resume of these ideas: We consider only
arrows as information, e.g. a → b will be considered information b valid at or for a.

Valid composed positive paths will not be considered information in our sense. They
will be seen as a way to obtain information, so a valid path σ : x . . . → a makes
information b accessible to x, and, second, as a means of comparing information
strength, so a valid path σ : a . . . . → a′ will make information at a stronger than
information at a′. Valid negative paths have no function; we will only consider the
positive initial part as discussed above, and the negative end arrow as information,
but never the whole path.

Choosing direct scepticism is a decision beyond the scope of this article, and we
just make it. It is a general question how to treat contradictory and absent informa-
tion, and if they are equivalent or not, see the remark in Sect. 9.4.4 (p. 281). (The
fundamental difference between intersection of extensions and direct scepticism for
defeasible inheritance was shown in [Sch93].) See also Sect. 9.2.3 (p. 269) for more
discussion.

We now turn to the announced variants as well as a finer distinction within the
directly sceptical approach. Again, see also Sect. 9.2.3 (p. 269) for more discus-
sion. Our approach generates another problem, essentially that of the treatment of a
mixture of contradictory and concordant information of multiple strengths or truth
values. We bundle the decision of this problem with that for direct scepticism into
a “plug-in” decision, which will be used in three approaches: the conceptual ideas,
the inheritance algorithm, and the choice of the reference class for subset size (and
implicitly also for the treatment as a prototype theory). It is thus well encapsulated
and independent from the context.

These decisions (but, perhaps to a lesser degree, (1)) concern a wider subject
than only inheritance networks. Thus, it is not surprising that there are different for-
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malisms for solving such networks, deciding one way or the other. But this multitude
is not the fault of inheritance theory, it is only a symptom of a deeper question. We
first give an overview for a clearer overall picture, and discuss them in detail below,
as they involve sometimes quite subtle questions.

(1) Upward chaining against downward or double chaining.
(2.1) Off-path against on-path preclusion.
(2.2) Split validity preclusion against total validity preclusion.

(3) Direct scepticism against intersection of extensions.
(4) Treatment of mixed contradiction and preclusion situations, no preclusion by

paths of the same polarity.

(1) When we interpret arrows as causation (in the sense that X → Y expresses
that condition X usually causes condition Y to result), this can also be seen
as a difference in reasoning from cause to effect vs. backward reasoning,
looking for causes for an effect. (A word of warning: There is a well-known
article [SL89] from which a superficial reader might conclude that upward
chaining is tractable and downward chaining is not. A more careful reading
reveals that, on the negative side, the authors only show that double chaining
is not tractable.) We will adopt upward chaining in all our approaches. See
Sect. 9.4.4 (p. 281) for more remarks.

(2.1) and (2.2) Both are consequences of our view – to be discussed below in
Sect. 4.3 – to see valid paths also as an absolute comparison of truth values,
independent of reachability of information. Thus, in Diagram 9.2.1 (p. 256),
the comparison between the truth values “penguin” and “bird” is absolute,
and does not depend on the point of view “Tweety”, as it can in total validity
preclusion – if we continue to view preclusion as a comparison of information
strength (or truth value). This question of absoluteness transcends obviously
inheritance networks. Our decision is, of course, again uniform for all our
approaches.

(3) This point, too, is much more general than the problems of inheritance. It is,
among other things, a question of whether only the two possible cases (posi-
tive and negative) may hold, or whether there might be still other possibilities.
See Sect. 9.4.4 (p. 281).

(4) This concerns the treatment of truth values in more complicated situations,
where we have a mixture of agreeing and contradictory information. Again,
this problem reaches far beyond inheritance networks.

We will group (3) and (4) together in one general, “plug-in” decision, to be found in
all approaches we discuss.

Definition 9.2.2 This is an informal definition of a plug-in decision:
We describe now more precisely a situation which we will meet in all contexts

discussed, and whose decision goes beyond our problem – thus, we have to adopt
one or several alternatives, and translate them into the approaches we will discuss.
There will be one global decision, which is (and can be) adapted to the different
contexts.
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Suppose we have information about φ and ψ, where φ and ψ are presumed to
be independent – in some adequate sense. Suppose then that we have information
sources Ai : i ∈ I and B j : j ∈ J, where the Ai speak about φ (they say φ or
¬φ) and the B j speak about ψ in the same way. Suppose further that we have a
partial, not necessarily transitive (!), ordering < on the information sources Ai and
B j together. X < Y will say that X is better (intuition: more specific) than Y. (The
potential lack of transitivity is crucial, as valid paths do not always concatenate to
valid paths – just consider the Tweety diagram.)

We also assume that there are contradictions, i.e. some Ai say φ, some ¬φ,

likewise for the B j – otherwise, there are no problems in our context. We can now
take several approaches, all taking contradictions and the order < into account.

• (P1) We use the global relation <, and throw away all information coming from
sources of minor quality, i.e. if there is X such that X < Y, then no information
coming from Y will be taken into account. Consequently, if Y is the only source
of information about φ, then we will have no information about φ. This seems an
overly radical approach, as one source might be better for φ, but not necessarily
for ψ too.

If we adopt this radical approach, we can continue as below, and can even split
in analogue ways into (P1.1) and (P1.2), as we do below for (P2.1) and (P2.2).

• (P2) We consider the information about φ separately from the information about
ψ. Thus, we consider for φ only the Ai , for ψ only the B j . Take now, e.g. φ and
the Ai . Again, there are (at least) two alternatives.

– (P2.1) We eliminate again all sources among the Ai for which there is a better
Ai ′ , irrespective of whether they agree on φ or not.

• (a) If the sources left are contradictory, we conclude nothing about φ, and
accept for φ none of the sources. (This is a directly sceptical approach of
treating unsolvable contradictions, following our general strategy.)

• (b) If the sources left agree for φ, i.e. all say φ or all say ¬φ, then we
conclude φ (or ¬φ), and accept for φ all the remaining sources.

– (P2.2) We eliminate again all sources among the Ai for which there is a better
Ai ′ , but only if Ai and Ai ′ have contradictory information. Thus, more sources
may survive than in approach (P2.1).

We now continue as for (P2.1):

• (a) If the sources left are contradictory, we conclude nothing about φ, and
accept for φ none of the sources.

• (b) If the sources left agree for φ, i.e. all say φ or all say ¬φ, then we conclude
φ (or ¬φ), and accept for φ all the remaining sources.

The difference between (P2.1) and (P2.2) is illustrated by the following simple
example. Let A < A′ < A′′, but A 	< A′′ (recall that < is not necessarily transitive),
and A |= φ, A′ |= ¬φ, A′′ |= ¬φ. Then (P2.1) decides for φ (A is the only
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survivor), (P2.2) does not decide, as A and A′′ are contradictory, and both survive
in (P2.2).

There are arguments for and against either solution: (P2.1) gives a uniform pic-
ture, more independent from φ, (P2.2) gives more weight to independent sources, it
“adds” information sources, and thus gives potentially more weight to information
from several sources. (P2.2) seems more in the tradition of inheritance networks, so
we will consider it in the further development.

The reader should note that our approach is quite far from a fixed-point approach
in two ways: First, fixed-point approaches seem more appropriate for extension-
based approaches, as both try to collect a maximal set of uncontradictory informa-
tion. Second, we eliminate information when there is better, contradicting informa-
tion, even if the final result agrees with the first. This, too, contradicts in spirit the
fixed-point approach.

After these preparations, we turn to a formal definition of validity of paths.

9.2.2.1 The Definition of |= (i.e. of Validity of Paths)

All definitions are relative to a fixed diagram Γ. The notion of degree will be defined
relative to all nodes of Γ, as we will work with split validity preclusion, so the paths
to consider may have different origins. For simplicity, we consider Γ to be just a set
of points and arrows, thus, e.g. x → y ∈ Γ and x ∈ Γ are defined, when x is a point
in Γ, and x → y an arrow in Γ. Recall that we have two types of arrows, positive
and negative ones.

We first define generalized and potential paths, then the notion of degree, and
finally validity of paths, written Γ |= σ, if σ is a path, as well as Γ |= xy, if Γ |= σ

and σ : x . . . . → y.

Definition 9.2.3 (1) Generalized paths:
A generalized path is an uninterrupted chain of positive or negative arrows
pointing in the same direction; more precisely:

x → p ∈ Γ → x → p is a generalized path,
x 	→ p ∈ Γ → x 	→ p is a generalized path.

If x · · · → p is a generalized path, and p → q ∈ Γ, then x · · · → p → q is a
generalized path,
if x · · · → p is a generalized path, and p 	→ q ∈ Γ, then x · · · → p 	→ q is a
generalized path.

(2) Concatenation:
If σ and τ are two generalized paths, and the end point of σ is the same as the
starting point of τ, then σ ◦ τ is the concatenation of σ and τ.

(3) Potential paths (pp.):
A generalized path contains atmost one negative arrow, and this at the end, is a
potential path. If the last link is positive, it is a positive potential path, if not, a
negative one.
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(4) Degree:
As already indicated, we shall define paths inductively. As we do not admit
cycles in our systems, the arrows define a well-founded relation on the vertices.
Instead of using this relation for the induction, we shall first define the auxiliary
notion of degree, and do induction on the degree. Given a node x (the origin),
we need a (partial) mapping f from the vertices to natural numbers such that
p → q or p 	→ q ∈ Γ implies f (p) < f (q), and define (relative to x) :

Let σ be a generalized path from x to y, then degΓ,x (σ ) := degΓ,x (y) := the
maximal length of any generalized path parallel to σ, i.e. beginning in x and ending
in y.

Definition 9.2.4 Inductive definition of Γ |= σ :
Let σ be a potential path.

• Case I:
σ is a direct link in Γ. Then Γ |= σ

(Recall that we have no hard contradictions in Γ.)
• Case II:

σ is a compound potential path, degΓ,a(σ ) = n, and Γ |= τ is defined for all τ

with degree less than n – whatever their origin and endpoint.
• Case II.1: Let σ be a positive pp. x · · · → u → y, let σ ′ := x · · · → u, so

σ = σ ′ ◦ u → y.
Then, informally, Γ |= σ iff

(1) σ is a candidate by upward chaining,
(2) σ is not precluded by more specific contradicting information,
(3) all potential contradictions are themselves precluded by information contra-

dicting them.

Note that (2) and (3) are the translation of (P2.2) in Definition 9.2.2 (p. 263).
Formally, Γ |= σ iff

(1) Γ |= σ ′ and u → y ∈ Γ.

(The initial segment must be a path, as we have an upward chaining approach.
This is decided by the induction hypothesis.)

(2) There are no v, τ, τ ′ such that v 	→ y ∈ Γ and Γ |= τ := x · · · → v and
Γ |= τ ′ := v · · · → u. (τ may be the empty path, i.e. x = v.)
(σ itself is not precluded by split validity preclusion and a contradictory link.
Note that τ ◦ v 	→ y need not be valid; it suffices that it is a better candidate
(by τ ′).)

(3) All potentially conflicting paths are precluded by information contradicting
them:
For all v and τ such that v 	→ y ∈ Γ and Γ |= τ := x · · · → v (i.e. for all
potentially conflicting paths τ ◦ v 	→ y) there is z such that z → y ∈ Γ and
either
z = x
(the potentially conflicting pp. is itself precluded by a direct link, which is
thus valid)
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or
there are Γ |= ρ := x · · · → z and Γ |= ρ ′ := z · · · → v for suitable ρ

and ρ ′.

• Case II.2: The negative case, i.e. σ a negative pp. x · · · → u 	→ y, σ ′ := x · · · →
u, σ = σ ′ ◦ u 	→ y is entirely symmetrical.

Remark 9.2.1 The following remarks all concern preclusion.

(1) Thus, in the case of preclusion, there is a valid path from x to z, and z is more
specific than v, so τ ◦ v 	→ y is precluded. Again, ρ ◦ z → y need not be a
valid path, but it is a better candidate than τ ◦ v 	→ y is, and as τ ◦ v 	→ y is in
simple contradiction, this suffices.

(2) Our definition is stricter than many popular ones in the following sense: We
require – according to our general picture to treat only direct links as informa-
tion – that the preclusion “hits” the precluded path at the end, i.e. v 	→ y ∈ Γ

and ρ ′ hits τ ◦ v 	→ y at v. In other definitions it is possible that the preclusion
hits at some v′, which is somewhere on the path τ, and not necessarily at its
end. For instance, in the Tweety diagram, see, Diagram 9.2.1 (p. 256), if there
were a node b′ between b and d, we will need the path c → b → b′ to be valid,
(obvious) validity of the arrow c → b will not suffice.

(3) If we allow ρ to be the empty path, then the case z = x is a subcase of the
present one.

(4) Our conceptual analysis has led to a very important simplification of the defini-
tion of validity. If we adopt on-path preclusion, we have to remember all paths
which led to the information source to be considered: In the Tweety diagram, we
have to remember that there is an arrow a → b; it is not sufficient to note that
we somehow came from a to b by a valid path, as the path a → c → b → d is
precluded, but not the path a → b → d. If we adopt total validity preclusion,
see also Sect. 9.2.3 (p. 269) for more discussion, we have to remember the valid
path a → c → b to see that it precludes a → c → d. If we allow preclusion
to “hit” below the last node, we also have to remember the entire path which is
precluded. Thus, in all those cases, whole paths (which can be very long) have
to be remembered, but NOT in our definition.

We only need to remember (consider the Tweety diagram)

(a) we want to know if a → b → d is valid, so we have to remember a, b, d.

Note that the (valid) path from a to b can be composed and very long.
(b) we look at possible preclusions, so we have to remember a → c 	→ d;

again the (valid) path from a to c can be very long.
(c) we have to remember that the path from c to b is valid (this was decided by

induction before).

So in all cases (the last one is even simpler), we need only to remember the
starting node, a (or c), the last node of the valid paths, b (or c), and the information
b → d or c 	→ d – i.e. the size of what has to be recalled is ≤ 3. (Of course, there
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may be many possible preclusions, but in all cases we have to look at a very limited
situation, and not arbitrarily long paths.)

We take a fast look forward to Sect. 4.3, where we describe diagrams as infor-
mation and its transfer, and nodes also as truth values. In these terms – and the
reader is asked to excuse the digression – we may note above point (a) as a ⇒b d –
expressing that, seen from a, d holds with truth value b, (b) as a ⇒c ¬d, (c) as
c ⇒c b – and this is all we need to know.

We indicate here some modifications of the definition without discussion, which
is to be found below.

(1) For on-path preclusion only: Modify condition (2) in Case II.1 to: (2′) There is
no v on the path σ (i.e. σ : x · · · → v · · · → u) such that v 	→ y ∈ Γ.

(2) For total validity preclusion: Modify condition (2) in Case II.1 to: (2′) There are
no v, τ, τ ′ such that v 	→ y ∈ Γ and τ := x · · · → v and τ ′ := v · · · → u such
that Γ |= τ ◦ τ ′.

(3) For extension-based approaches: Modify condition (3) in Case II.1 as follows:
(3′) If there are conflicting paths, which are not precluded themselves by contra-
dictory information, then we branch recursively (i.e. for all such situations) into
two extensions: one, where the positive non-precluded paths are valid second;
where the negative non precluded paths are valid.

Definition 9.2.5 Finally, define Γ |= xy iff there is σ : x → y s.t. Γ |= σ, likewise
for x y and σ : x · · · 	→ y.

Diagram 9.2.2 (p. 257) shows the most complicated situation for the positive
case.

We have to show now that the above approach corresponds to the preceding dis-
cussion.

Fact 9.2.1 The above definition and the informal one outlined in Definition 9.2.2
(p. 263) correspond, when we consider valid positive paths as access to information
and comparison of information strength, as indicated at the beginning of Sect. 9.2.2
(p. 262) and elaborated in Sect. 9.4.3 (p. 277).

Proof As Definition 9.2.2 (p. 263) is informal, this cannot be a formal proof, but it
is obvious how to transform it into one.

We argue for the result, the argument for valid paths is similar. Consider then
case (P2.2) in Definition 9.2.2 (p. 263), and start from some x .

Case 1: Direct links, x → z or x 	→ z.
By comparison of strength via preclusion, as a direct link starts at x, the
information z or ¬z is stronger than all other accessible information. Thus,
the link and the information will be valid in both approaches. Note that we
assumed Γ free from hard contradictions.

Case 2: Composite paths.
In both approaches, the initial segment has to be valid, as information will
otherwise not be accessible. Also, in both approaches, information will have
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the form of direct links from the accessible source. Thus, condition (1) in
Case II.1 corresponds to condition (1) in Definition 9.2.2 (p. 263).
In both approaches, information contradicted by a stronger source (preclu-
sion) is discarded, as well as information which is contradicted by other, not
precluded sources; so (P2.2) in Definition 9.2.2 (p. 263) and II.1 (2) + (3)
correspond. Note that variant (P2.1) of Definition 9.2.2 (p. 263) would give
a different result – which we could, of course, also imitate in a modified
inheritance approach.

Case 3: Other information.
Inheritance nets give no other information, as valid information is deduced
only through valid paths by Definition 9.2.5 (p. 268), and we did not add any
other information either in the approach in Definition 9.2.2 (p. 263). But as
is obvious in Case 2, valid paths coincide in both cases.

Thus, both approaches are equivalent. �

9.2.3 Review of Other Approaches and Problems

We now discuss shortly in more detail some of the differences between various
major definitions of inheritance formalisms. Diagram 6.8, p. 179, in [Sch97-1]
(which is probably due to folklore of the field) shows requiring downward chaining
would be wrong. We repeat it here, see, Diagram 9.1.2 (p. 259).

Preclusions valid above (here at u) can be invalid at lower points (here at z), as
part of the relevant information is no longer accessible (or becomes accessible). We
have u → x 	→ y valid, by downward chaining. Any valid path z → u . . . .y has
to have a valid final segment u . . . .y, which can only be u → x 	→ y, but intuition
says that z → u → v → y should be valid. Downward chaining prevents such
changes, and thus seems inadequate, so we decide for upward chaining. (Already
preclusion itself underlines upward chaining: In the Tweety diagram, we have to
know that the path from bottom up to penguins is valid. So at least some initial
subpaths have to be known – we need upward chaining.) (The rejection of downward
chaining seems at first sight to be contrary to the intuitions carried by the word
“inheritance”.) See also the remarks in Sect. 9.4.4 (p. 281).

9.2.3.1 Extension-Based vs. Directly Sceptical Definitions

As this distinction has already received detailed discussion in the literature, we shall
be very brief here. An extension of a net is essentially a maximally consistent and
in some appropriate sense reasonable subset of all its potential paths. This can, of
course, be presented either as a liberal conception (focussing on individual exten-
sions) or as a sceptical one (focusing on their intersection – or, the intersection
of their conclusion sets). The seminal presentation is that of [Tou86], as refined
by [San86]. The directly sceptical approach seeks to obtain a notion of sceptically
accepted path and conclusion, but without detouring through extensions. Its clas-
sic presentation is that of [HTT87]. Even while still searching for fully adequate
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definitions of either kind, we may use the former approach as a useful “control”
on the latter. For if we can find an intuitively possible and reasonable extension
supporting a conclusion x y, whilst a proposed definition for a directly sceptical
notion of legitimate inference yields xy as a conclusion, then the counterexemplary
extension seems to call into question the adequacy of the directly sceptical construc-
tion, more readily than inversely. It has been shown in [Sch93] that the intersection
of extensions is fundamentally different from the directly sceptical approach. See
also the remark in Sect. 9.4.4 (p. 281).

From now on, all definitions considered shall be (at least) upward chaining.

9.2.3.2 On-Path vs. Off-Path Preclusion

This is a rather technical distinction discussed in [THT87]. Briefly, a path σ : x →
. . . → y → . . . → z and a direct link y 	→ u is an off-path preclusion of τ :
x → . . . → z → . . . → u, but an on-path preclusion only iff all nodes of τ

between x and z lie on the path σ.

For instance, in the Tweety diagram, the arrow c 	→ d is an on-path preclusion of
the path a → c → b → d, but the paths a → c and c → b, together with c 	→ d,

is an (split validity) off-path preclusion of the path a → b → d.

9.2.3.3 Split Validity vs. Total Validity Preclusion

Consider again a preclusion σ : u → . . . → x → . . . → v and x 	→ y of
τ : u → . . . → v → . . . → y. Most definitions demand for the preclusion
to be effective – i.e. to prevent τ from being accepted – that the total path σ is
valid. Some ([GV89], [KK89], [KKW89a], [KKW89b]) content themselves with
the combinatorially simpler separate (split) validity of the lower and upper parts of
σ : σ ′ : u → . . . → x and σ ′′ : x → . . . → v. In Diagram 9.2.3 (p. 271), taken from
[Sch97-1], the path x → w → v is valid, so is u → x, but not the whole preclusion
path u → x → w → v.

Thus, split validity preclusion will give here the definite result uy. With total
validity preclusion, the diagram has essentially the form of a Nixon Diamond.

9.3 Defeasible Inheritance and Reactive Diagrams

Before we discuss the relationship in detail, we first summarize our algorithm.

9.3.1 Summary of Our Algorithm

We look for valid paths from x to y.

(1) Direct arrows are valid paths.
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Diagram 9.2.2 The
complicated case

x

u v z

y

Diagram 9.2.3 Split vs. total
validity preclusion

u

v w x

y

(2) Consider the set C of all direct predecessors of y, i.e. all c such that there is a
direct link from c to y.

(2.1) Eliminate all those to which there is no valid positive path from x (found by
induction); let the new set be C ′ ⊆ C.

If the existence of a valid path has not yet been decided, we have to wait.
(2.2) Eliminate from C ′ all c such that there is c′ ∈ C ′ and a valid positive path

from c′ to c (found by induction) – unless the arrows from c and from c′ to y
are of the same type. Let the new set be C ′′ ⊆ C ′ (this handles preclusion).
If the existence of such valid paths has not yet been decided, we have to wait.

(2.3) If the arrows from all elements of C ′′ to y have same polarity, we have a valid
path from x to y, if not, we have an unresolved contradiction, and there is no
such path.

Note that we were a bit sloppy here. It can be debated whether preclusion by some
c′ such that c and c′ have the same type of arrow to y should be accepted. As we are
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basically only interested whether there is a valid path, but not in its details, this does
not matter.

9.3.2 Overview

There are several ways to use reactive graphs to help us solve inheritance diagrams –
but also to go beyond them.

(1) We use them to record results found by adding suitable arrows to the graph.
(2) We go deeper into the calculating mechanism, and use new arrows not only as

memory, but also for calculation.
(3) We can put up “signposts” to mark dead ends in the following sense: If we

memorize valid paths from x to y, then, anytime we are at a branching point
u coming from x, trying to go to y, and there is valid path through an arrow
leaving u, we can put up a signpost saying “no valid path from x to y through
this arrow”.

Note that we have to state destination y (of course), but also outset, x : There
might be a valid path from u to y, which may be precluded or contradicted by
some path coming from x .

(4) We can remember preclusion in the following sense: If we found a valid positive
path from a to b, and there are contradicting arrows from a and b to c, then we
can create an arrow from a to the arrow from b to c. So, if, from x, we can
reach both a and b, the arrow from b to c will be incapacitated.

Before we discuss the first three possibilities in detail, we shortly discuss the
more general picture (in rough outline).

(1) Replacing labels by arrows and vice versa.
As we can switch arrows on and off, an arrow carries a binary value – even
without any label. So the idea is obvious:

If an arrow has one label with n possible values, we can replace it with n
parallel arrows (i.e. same source and destination), where we switch exactly one
of them on – this is the label.

Conversely, we can replace n parallel arrows without labels, where exactly
one is active, by one arrow with n labels.

We can also code labels of a node x by an arrow α : x → x, which has the
same labels.

(2) Coding logical formulas and truth in a model.
We take two arrows for each propositional variable, one stands for true, the other
for false. Negation blocks the positive arrow, enables the negative one. Con-
junction is solved by concatenation, disjunction by parallel paths. If a variable
occurs more than once, we make copies, which are “switched” by the “master
arrow”.
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We come back to the first three ways to treat inheritance by reactive graphs, and
also mention a way to go beyond usual inheritance.

9.3.3 Compilation and Memorization

When we take a look at the algorithm deciding which potential paths are valid, we
see that, with one exception, we only need the results already obtained, i.e. whether
there is a valid positive/negative path from a to b, and not the actual paths them-
selves. (This is, of course, due to our split validity definition of preclusion.) The
exception is that preclusion works “in the upper part” with direct links. But this is a
local problem: We only have to look at the direct predecessors of a node.

Consequently, we can do most of the calculation just once, in an induction of
increasing “path distance”, memorize valid positive (the negative ones cannot be
used) paths with special arrows which we activated once their validity is established,
and work now as follows with the new arrows:

Suppose we want to know if there is a valid path from x to y. We look backwards
at all predecessors b of y (using a simple backward pointer), and look whether there
is a valid positive path from x to b, using the new arrows. We then look at all arrows
going from such b to y. If they all agree (i.e. all are positive or all are negative),
we need not look further, and have the result. If they disagree, we have to look at
possible comparisons by specificity. For this, we see whether there are new arrows
between the bs. All such b to which there is a new arrow from another b are out
of consideration. If the remaining agree, we have a valid path (and activate a new
arrow from x to y if the path is positive), if not, there is no such path. (Depending on
the technical details of the induction, it can be useful to note this also by activating
a special arrow.)

9.3.4 Executing the Algorithm

Consider any two points x, y. There can be no path, a positive potential path, a
negative potential path, both potential paths, a valid positive path, or a valid negative
path (from x to y). Once a valid path is found, we can forget potential paths; so we
can code the possibilities by {∗, p+, p−, p + −, v+, v−} in above order. We saw
that we can either work with labels, or with a multitude of parallel arrows; we choose
the first possibility. We create for each pair of nodes a new arrow, (x, y), which we
intialize with label ∗.

First, we look for potential paths. If there is a direct link from x to y, we change
the value ∗ of (x, y) directly to v+ or v− . If (x, y′) has value p+, or p+−, or v+,

and there is a direct link from y′ to y, we change the value of (x, y) from ∗ to p+ or
p−, depending on the link from y′ to y, from p+ or p− to p +− if adequate (we
found both possibilities), and leave the value unchanged otherwise. This determines
all potential paths.
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We make for each pair x, y at y a list of its predecessors, i.e. of all c s.t. there is
a direct link from c to y. We do this for all x, so we can work in parallel. A list is,
of course, a concatenation of suitable arrows. Suppose we want to know if there is
valid path from x to y.

First, there might be a direct link, and we are done. Next, we look at the list of
predecessors of y for x . If one c in the list has value ∗, p−, v− for (x, c), it is
eliminated from the list. If one c has p+ or p+−, we have to wait. We do this until
all (x, c) have ∗, v+, or v−, so those remaining in the list will have v + . We look
at all pairs in the list. While at least one (c, c′) has p+ or p + −, we have to wait.
Finally, all pairs will have ∗, p−, v+ or v − . Eliminate all c′ s.t. there is (c, c′)
with value v+ – unless the arrows from c and c′ to y are of the same type. Finally,
we look at the list of the remaining predecessors, if they all have the same link to
y. We set (x, y) to v+ or v−, otherwise to ∗. All such operations can be done by
suitable operations with arrows, but it is very lengthy and tedious to write down the
details.

9.3.5 Signposts

Putting up signposts requires memorizing all valid paths, as leaving one valid path
does not necessarily mean that there is no alternative valid path. The easiest thing
to do is probably to put up a warning post everywhere, and collect the wrong ones
going backwards through the valid paths.

We illustrate this with Diagram 9.3.5 (p. 256):
There are the following potential paths from x to y : xcy, xceb-y, xcebday,

xay.

The paths xc, xa, and xceb are valid. The latter, xce is valid. xceb is in compe-
tition with xcg − b and xceg − b, but both are precluded by the arrow (valid path)
eg. ys predecessors on those paths are a, b, c. a and b are not comparable, as there
is no valid path from b to a, as bda is contradicted by b f −a. None is more specific
than the other one. b and c are comparable, as the path ceb is valid, since cg − b
and ceg − b are precluded by the valid path (arrow) eg. So c is more specific than
b. Thus, b is out of consideration, and we are left with a and c. They agree, so there
is positive valid path from x to y; more precisely, one through a, one through c. We
have put STOP signs on the arrows ce and cg, as we cannot continue via them to y.

9.3.6 Beyond Inheritance

We can also go beyond usual inheritance networks.
Consider the following scenario:

• Museum airplanes usually will not fly, but usual airplanes will fly.
• Penguins don’t fly, but birds do.
• Nonflying birds usually have fat wings.
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• Nonflying aircraft usually are rusty.
• But it is not true that usually nonflying things are rusty and have fat wings.

We can model this with higher-order arrows as follows:

• Penguins → birds, museum airplanes → airplanes, birds → fly, airplanes → fly.
• Penguins 	→ fly, museum airplanes 	→ fly.
• Flying objects 	→ rusty, flying objects 	→ have fat wings.
• We allow concatenation of two negative arrows:

For example, coming from penguins, we want to concatenate penguins 	→
fly and fly 	→ fat wings. Coming from museum aircraft, we want to con-
catenate museum airfcraft 	→ fly and fly 	→ rusty.

We can enable this as follows: We introduce a new arrow α : ( penguin 	→
fly) → (fly 	→ fat wings), which when traversing penguin 	→ fly enables
the algorithm to concatenate with the arrow it points to, using the rule
“− ∗ − = +”, giving the result that penguins usually have fat wings.

See [Gab08d] for deeper discussion.

9.4 Interpretations

9.4.1 Introduction

We will discuss in this section three interpretations of inheritance nets.

First, we will indicate fundamental differences between inheritance and the
systems P and R. They will be elaborated in Sect. 9.5 (p. 284), where an
interpretation in terms of small sets will be tried nonetheless, and its limita-
tions are explored.

Second, we will interpret inheritance nets as systems of information and infor-
mation flow.

Third, we will interpret inheritance nets as systems of prototypes.

Inheritance nets present many intuitively attractive properties; thus, it is not sur-
prising that we can interpret them in several ways. Similarly, preferential structures
can be used as a semantics of deontic and of nonmonotonic logic; they express
a common idea: choosing a subset of models by a binary relation. Thus, such an
ambiguity need not be a sign for a basic flaw.
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9.4.2 Informal Comparison of Inheritance with the Systems
P and R

9.4.2.1 The Main Issues

In the authors’ opinion, the following two properties of inheritance diagrams show
the deepest difference to preferential and similar semantics, and the first even to
classical logic. They have to be taken seriously, as they are at the core of inheritance
systems, are independent of the particular formalism, and show that there is a fun-
damental difference between the former and the latter. Consequently, any attempt
at translation will have to stretch one or both sides perhaps beyond the breaking
point.

(1) Relevance and
(2) subideal situations or relative normality.

Both (and more) can be illustrated by the following simple Diagram 9.4.1 (p. 277)
(which also shows conflict resolution by specificity).

(1) Relevance: As there is no monotonous path whatever between e and d, the
question whether es are ds, or not, or vice versa, does not even arise. For the
same reason, there is no question whether bs are cs, or not. (As a matter of
fact, we will see below in Fact 9.5.1 (p. 286) that bs are non-cs in system P –
see Definition 2.3 (p. 35).) In upward chaining formalisms, as there is no valid
positive path from a to d, there is no question either whether as are f s or not.
Of course, in classical logic, all information is relevant to the rest, so we can
say, e.g. that es are ds, or es are non-ds, or some are ds, some are not, but
there is a connection. As preferential models are based on classical logic, the
same argument applies to them.

(2) In our diagram, as are bs, but not ideal bs, as they are not ds, the more specific
information from c wins. But they are es, as ideal bs are. So they are not per-
fectly ideal bs, but as ideal bs as possible. Thus, we have graded ideality, which
does not exist in preferential and similar structures. In those structures, if an
element is an ideal element, it has all properties as such; if one such property is
lacking, it is not ideal, and we can’t say anything anymore. Here, however, we
sacrifice as little normality as possible; it is thus a minimal change formalism.

In comparison, questions of information transfer and strength of information seem
lesser differences. Already systems P and R (see Definition 2.3 (p. 35)) differ on
information transfer. In both cases, transfer is based on the same notion of small-
ness, which describes ideal situations. But, as said in Remark 3.2.1 (p. 58), this is
conceptually very different from the use of smallness, describing normal situations.
Thus, it can be considered also on this level an independent question, and we can
imagine systems based on absolutely ideal situations for normality, but with a totally
different transfer mechanism.

For these reasons, extending preferential and related semantics to cover inheri-
tance nets seems to stretch them to the breaking point. Thus, we should also look
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Diagram 9.4.1 Information
transfer

a

cb

de

f

for other interpretations. (The term “interpretation” is used here in a nontechnical
sense.) In particular, it seems worthwhile to connect inheritance systems to other
problems, and see whether there are similarities there. This is what we do now. We
come back to the systems P and R in Sect. 9.5 (p. 284).

Note that Reiter defaults behave much more like inheritance nets than like pref-
erential logics.

9.4.3 Inheritance as Information Transfer

An informal argument showing parallel ideas common to inheritance with an
upward chaining formalism and information transfer is as follows: First, arrows rep-
resent certainly some kind of information, of the kind “most as are bs” or so. (See,
Diagram 9.4.1 (p. 277).) Second, to be able to use information, e.g. “ds are f s” at
a, we have to be able to connect from a to d by a valid path. This information has
to be made accessible to a, or, in other terms, a working information channel from
a to d has to be established. Third, specificity (when present) decides conflicts (we
take the split validity approach). This can be done procedurally, or, perhaps simpler
and certainly in a more transparent way, by assigning a comparison of information
strength to valid paths. Now, information strength may also be called truth value (to
use a term familiar in logic) and the natural entity at hand is the node itself – this is
just a cheap formal trick without any conceptual meaning.
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When we adopt this view, nodes, arrows, and valid paths have multiple functions,
and it may seem that we overload the (deceptively) simple picture. But, it is perhaps
the charm and the utility and naturalness of inheritance systems that they are not
“clean”, and hide many complications under a simple surface, as human common
sense reasoning often does, too.

In a certain way, this is a poor man’s interpretation, as it does not base inheritance
on another formalism, but gives only an intuitive reading. Yet, it gives a connection
to other branches of reasoning, and is as such already justified – in the authors’ opin-
ion. Moreover, our analysis makes a clear distinction between arrows and composite
valid paths. This distinction is implicit in inheritance formalisms, and we make it
explicit through our concepts. But this interpretation is by no means the only one,
and can only be suggested as a possibility.

We will now first give the details, and then discuss our interpretation.

9.4.3.1 Information

Direct positive or negative arrows represent information, valid for their source.
Thus, in a set reading, if there is an arrow A → B in the diagram, most elements of
A will be in B. In short: “most As are Bs” – and A 	→ B will mean that most As
are not Bs.

9.4.3.2 Information Sources and Flow

Nodes are information sources. If A → B is in the diagram, A is the source of
the information “most As are Bs”. A valid, composed or atomic positive path σ

from U to A makes the information of source A accessible to U. One can also say
that As information becomes relevant to U. Otherwise, information is considered
independent – only (valid) positive paths create the dependencies.

(If we want to conform to inheritance, we must not add trivialities like “ xs are
xs”, as this would require x → x in the corresponding net, which, of course, will
not be there in an acyclic net.)

9.4.3.3 Information Strength

A valid, composed or atomic positive path σ from A′ to A allows us to compare
the strength of information source A′ with that of A: A′ is stronger than A. (In
the set reading, this comparison is the result of specificity: more specific informa-
tion is considered more reliable.) If there is no such valid path, we cannot resolve
contradictions between information from A and A′. This interpretation results in
split validity preclusion: the comparison between information sources A′ and A is
absolute, and does NOT depend on the U from which both may be accessible –
as can be the case with total validity preclusion. Of course, if desired, we can also
adopt the much more complicated idea of relative comparison.
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Nodes are also truth values. They are the strength of the information whose
source they are. This might seem an abuse of nodes, but we already have them,
so why not use them?

9.4.3.4 Discussion

Considering direct arrows as information meets probably with little objection. The
conclusion of a valid path (e.g. if σ : a . . . → b is valid, then its conclusion is “as
are bs”) is certainly also information, but it has a status different from the informa-
tion of a direct link, so we should distinguish it clearly. At least in upward chaining
formalisms, using the path itself as some channel through which information flows,
and not the conclusion, seems more natural. The conclusion says little about the
inner structure of the path, which is very important in inheritance networks, e.g. for
preclusion. When calculating validity of paths, we look at (sub- and other) paths,
but not just their results, and should also express this clearly.

Once we accept this picture of valid positive paths as information channels, it is
natural to see their upper ends as information sources. Our interpretation supports
upward chaining, and vice versa, upward chaining supports our interpretation.

One of the central ideas of inheritance is preclusion, which, in the case of split
validity preclusion, works by an absolute comparison between nodes. Thus, if we
accept split validity preclusion, it is natural to see valid positive paths as compar-
isons between information of different strengths. Conversely, if we accept absolute
comparison of information, we should also accept split validity preclusion – these
interpretations support each other.

Whatever type of preclusion we accept, preclusion clearly compares information
strength, and allows us to decide for the stronger one. We can see this procedurally,
or by giving different values to different information, depending on their sources,
which we can call truth values to connect our picture to other areas of logic. It is
then natural – as we have it already – to use the source node itself as truth value,
with comparison via valid positive paths.

9.4.3.5 Illustration

Thus, in a given node U, information from A is accessible iff there is a valid positive
path from U to A, and if information from A′ is also accessible, and there is a valid
positive path from A′ to A, then, in case of conflict, information from A′ wins over
that from A, as A′ has a better truth value. In the Tweety diagram, see Diagram 9.2.1
(p. 256), Tweety has access to penguins and birds, the horizontal link from penguin
to bird compares the strengths, and the fly/not fly arrows are the information we are
interested in.

Note that negative links and (valid) paths have much less function in our picture
than positive links and valid paths. In a way, this asymmetry is not surprising, as
there are no negative nodes (which would correspond to something like the set com-
plement or negation). To summarize: A negative direct link can only be information.
A positive direct link is information at its source, but it can also be a comparison of
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truth values, or it can give access from its source to information at its end. A valid,
positive, composed path can only be comparison of truth values, or give access to
information; it is NOT information itself in the sense of direct links. This distinction
is very important, and corresponds to the different treatment of direct arrows and
valid paths in inheritance, as it appears, e.g. in the definition of preclusion. A valid,
negative, composed path has no function, only its parts have.

We obtain automatically that direct information is stronger than any other infor-
mation: If A has information φ, and there is a valid path from A to B, making Bs
information accessible to A, then this same path also compares strength, and As
information is stronger than Bs information.

Inheritance diagrams in this interpretation represent not only reasoning with
many truth values, but also reasoning about those truth values: Their comparison is
done by the same underlying mechanism.

We should perhaps note in this context a connection to an area currently en
vogue: The problem of trust, especially in the context of web information. We can
see our truth values as the degrees of trust we put into information coming from this
node, and, we not only use, but also reason about them.

9.4.3.6 Further Comments

Our reading also covers enriched diagrams, where arbitrary information can be
“appended” to a node. An alternative way to see a source of information is to see it
as a reason to believe the information it gives. U needs a reason to believe some-
thing, i.e. a valid path from U to the source of the information, and also a reason
to disbelieve, i.e. if U ′ is below U, and U believes and U ′ does NOT believe some
information of A, then either U ′ has stronger information to the contrary, or there
is not a valid path to A anymore (and neither to any other possible source of this
information). (“Reason”, a concept very important in this context, was introduced
by Bochman into the discussion.)

The restriction that negative links can only be information applies to traditional
inheritance networks, and the authors make no claim whatever that it should also
hold for modified such systems, or in still other contexts. One of the reasons why
we do not have “negative nodes”, and thus negated arrows also in the middle of
paths might be the following (with C complementation): If, for some X, we also
have a node for C X, then we should have X 	→ C X and C X 	→ X, thus a cycle,
and arrows from Y to X should be accompanied by their opposite to C X, etc.

We translate the analysis and decision of Definition 9.2.2 (p. 263) now into the
picture of information sources, accessibility, and comparison via valid paths. This
is straightforward:

(1) We have that information from Ai , i ∈ I, about B is accessible from U, i.e.
there are valid positive paths from U to all Ai . Some Ai may say ¬B, some B.

(2) If information from Ai is comparable with information from A j (i.e. there is a
valid positive path from Ai to A j or the other way around), and Ai contradicts
A j with respect to B, then the weaker information is discarded.
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(3) There remains a (nonempty, by lack of cycles) set of Ai such that for no such
Ai there is A j with better contradictory information about B. If the information
from this remaining set is contradictory, we accept none (and none of the paths
either), if not, we accept the common conclusion and all these paths.

We now continue Remark 9.2.1 (p. 267), (4), and turn this into a formal system. Fix
a diagram Γ, and do an induction as in Definition 9.2.2 (p. 263).

Definition 9.4.1 (1) We distinguish a ⇒ b and a ⇒x b, where the intuition of
a ⇒x b is: we know with strength x that as are bs, and of a ⇒ b that it has
been decided taking all information into consideration that a ⇒ b holds.
(We introduce this notation to point informally to our idea of information
strength, and beyond, to logical systems with varying strengths of implications.)

(2) a → b implies a ⇒a b, likewise a 	→ b implies a ⇒a ¬b.

(3) a ⇒a b implies a ⇒ b, likewise a ⇒a ¬b implies a ⇒ ¬b. This expresses
the fact that direct arrows are uncontested.

(4) a ⇒ b and b ⇒b c imply a ⇒b c, likewise for b ⇒b ¬c. This expresses
concatenation – but without deciding if it is accepted! Note that we cannot make
(a ⇒ b and b ⇒ c imply a ⇒b c) a rule, as this would make concatenation of
two composed paths possible.

(5) We decide acceptance of composed paths as in Definition 9.2.3 (p. 265), where
preclusion uses accepted paths for deciding.

Note that we reason in this system not only with, but also about relative strength of
truth values, which are just nodes. This is then, of course, used in the acceptance
condition, in preclusion more precisely.

9.4.4 Inheritance as Reasoning with Prototypes

Some of the issues we discuss here apply also to the more general picture of infor-
mation and its transfer. We present them here for motivational reasons: it seems
easier to discuss them in the (somewhat!) more concrete setting of prototypes than
in the very general situation of information handling. These issues will be indicated.

It seems natural to see information in inheritance networks as information about
prototypes. (We do not claim that our use of the word “prototype” has more than
a vague relation to the use in psychology. We do not try to explain the usefulness
of prototypes either, one possibility is that there are reasons why birds fly, and why
penguins don’t, etc.) In the Tweety diagram, we will thus say that prototypical birds
will fly, prototypical penguins will not fly. More precisely, the property “fly” is part
of the bird prototype, is the property “¬ f ly” is part of the penguin prototype. Thus,
the information is given for some node, which defines its application or domain (bird
or penguin in our example) – beyond this node, the property is not defined (unless
inherited, of course). It might very well be that no element of the domain has ALL
the properties of the prototype; every bird may be exceptional in some sense. This
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again shows that we are very far from the ideal picture of small and big subsets as
used in systems P and R. (This, of course, goes beyond the problem of prototypes.)

Of course, we will want to “inherit” properties of prototypes; for instance, in
Diagram 9.4.1 (p. 277), a “should” inherit the property e from b, and the property
¬d from c. Informally, we will argue as follows: Prototypical as have property b
and prototypical bs have property e; so it seems reasonable to assume that prototyp-
ical as also have property e – unless there is better information to the contrary. A
plausible solution is then to use upward chaining inheritance as described above to
find all relevant information, and then compose the prototype.

We now discuss three points whose importance goes beyond the treatment of
prototypes:

(1) Using upward chaining has an additional intuitive appeal: We consider infor-
mation at a the best, so we begin with b (and c), and only then, tentatively,
add information e from b. Thus, we begin with strongest information, and add
weaker information successively – this seems good reasoning policy.

(2) In upward chaining, we also collect information at the source (the end of the
path), and do not use information which was already filtered by going down –
thus the information we collect has no history, and we cannot encounter prob-
lems of iterated revision, which are problems of history of change. (In down-
ward chaining, we only store the reasons why something holds, but not why
something does not hold, so we cannot erase this negative information when
the reason is not valid anymore. This is an asymmetry apparently not much
noted before. Consider Diagram 9.1.2 (p. 259). Here, the reason why u does
not accept y as information, but ¬y, is the preclusion via x . But from z, this
preclusion is not valid anymore, so the reason why y was rejected is not valid
anymore, and y can now be accepted.)

(3) We come back to the question of extensions vs. direct scepticism. Consider
the Nixon Diamond, Diagram 9.1.1 (p. 257). Suppose Nixon were a subclass
of Republican and Quaker. Then the extensions approach reasons as follows:
Either the Nixon class prototype has the pacifist property, or the hawk property,
and we consider these two possibilities. But this is not sufficient: The Nixon
class prototype might have neither property – they are normally neither pacifists,
nor hawks, but some are this, some are that. So the conceptual basis for the
extensions approach does not hold: “Tertium non datur” just simply does not
hold – as in intuitionist logic, where we may have a proof neither for φ, nor for
¬φ.

Once we fixed this decision, i.e. how to find the relevant information, we can still
look upward or downward in the net and investigate the changes between the proto-
types in going upward or downward, as follows: For example, in the above example,
we can look at the node a and its prototype, and then at the change going from a
to b, or, conversely, look at b and its prototype, and then at the change going from
b to a. The problem of finding the information, and this dynamics of information
change have to be clearly separated.

In both cases, we see the following:
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(1) The language is kept small, and thus efficient.
For instance, when we go from a to b, information about c is lost, and “c” does
not figure anymore in the language, but f is added. When we go from b to a,

f is lost, and c is won. In our simple picture, information is independent, and
contradictions are always between two bits of information.

(2) Changes are kept small and need a reason to be effective. Contradictory,
stronger information will override the old one, but no other information, except
in the following case: Making new information (in-) accessible will cause indi-
rect changes, i.e. information now made (in-) accessible via the new node. This
is similar to formalisms of causation: if a reason is not there anymore, its effects
vanish too.

It is perhaps more natural when going downward also to consider “subsets” as
follows: Consider Diagram 9.4.1 (p. 277). bs are ds, and cs are ¬ds, and cs are also
bs. So it seems plausible to go beyond the language of inheritance nets, and conclude
that bs which are not cs will be ds, in short to consider (b− c)s. It is obvious which
such subsets to consider, and how to handle them: For instance, loosely speaking, in
b ∩ d e will hold, in b ∩ c ∩ d ¬ f will hold, in b ∩ d ∩ Cc f will hold, etc. This is
just putting the bits of information together.

We turn to another consideration, which will also transcend the prototype situa-
tion, and we will (partly) use the intuition that nodes stand for sets and arrows for
(soft, i.e. possibly with exceptions) inclusion in a set or its complement.

In this reading, specificity stands for soft, i.e. possibly with exceptions, set inclu-
sion. So, if b and c are visible from a, and there is a valid path from c to b (as in
Diagram 9.4.1 (p. 277)), then a is a subset of both b and c, and c a subset of b, so
a ⊆ c ⊆ b (softly). But then a is closer to c than a is to b. Automatically, a will
be closest to itself. This results in a partial, and not necessarily transitive relation
between these distances.

When we go now from b to c, we lose information d and f, win information ¬d,

but keep information e. Thus, this is minimal change: We give up (and win) only
the necessary information, but keep the rest. As our language is very simple, we can
use the Hamming distance between formula sets here. (We will make a remark on
more general situations just below.)

When we look now again from a, we take the set-closest class (c), and use the
information of c, which was won by minimal change (i.e. the Hamming closest)
from information of b. So, we have the interplay of two distances, where the set
distance certainly is not symmetrical, as we need valid paths for access and compar-
ison. If there is no such valid path, it is reasonable to make the distance infinite.

We make now the promised remark on more general situations: In richer lan-
guages, we cannot count formulas to determine the Hamming distance between two
situations (i.e. models or model sets), but have to take the difference in propositional
variables. Consider, e.g. the language with two variables, p and q. The models
(described by) p ∧ q and p ∧¬q have distance 1, whereas p ∧ q and ¬p ∧¬q have
distance 2. Note that this distance is NOT robust under redefinition of the language.
Let p′ stand for (p∧q)∨(¬p∧¬q) and q ′ for q. Of course, p′ and q ′ are equivalent
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descriptions of the same model set, as we can define all the old singletons also in
the new language. Then the situations p ∧ q and ¬p ∧ ¬q have now distance 1, as
one corresponds to p′ ∧ q ′, the other to p′ ∧ ¬q ′.

There might be misunderstandings about the use of the word “distance” here.
The authors are fully aware that inheritance networks cannot be captured by dis-
tance semantics in the sense of preferential structures. But we do NOT think here of
distances from one fixed ideal point, but of relativized distances: Every prototype is
the origin of measurements. For example, the bird prototype is defined by “flying,
laying eggs, having feathers . . . ”. So, we presume that all birds have these properties
of the prototype, i.e. distance 0 from the prototype. When we see that penguins do
not fly, we move as little as possible from the bird prototype, so we give up “flying”,
but not the rest. Thus, penguins (better: the penguin prototype) will have distance
1 from the bird prototype (just one property has changed). So there is a new pro-
totype for penguins, and considering penguins, we will not measure from the bird
prototype, but from the penguin prototype, so the point of reference changes. This
is exactly as in distance semantics for theory revision, introduced in [LMS01], only
the point of reference is not the old theory T, but the old prototype, and the distance
is a very special one, counting properties assumed to be independent. (The picture
is a little bit more complicated, as the loss of one property (flying) may cause other
modifications, but the simple picture suffices for this informal argument.)

We conclude this section with a remark on prototypes. Realistic prototypical rea-
soning will probably neither always be upward nor always be downward. A medical
doctor will not begin with the patient’s most specific category (name and birthday or
so), nor will he begin with all he knows about general objects. Therefore, it seems
reasonable to investigate upward and downward reasoning here.

9.5 Detailed Translation of Inheritance to Modified Systems
of Small Sets

For background material on abstract size semantics, the reader is referred to Chap. 3
(p. 53).

9.5.1 Normality

As we saw already in Sect. 9.4.2 (p. 276), normality in inheritance (and Reiter
defaults, etc.) is relative, and as much normality as possible is preserved. There is
no set of absolute normal cases of X, which we might denote N (X ), but only for φ

a set N (X, φ), elements of X, which behave normally with respect to φ. Moreover,
N (X, φ) might be defined, but not N (X, ψ) for different φ and ψ. Normality in the
sense of preferential structures is absolute: If x is not in N (X ) (= μ(X ) in prefer-
ential reading), we do not know anything beyond classical logic. This is the dark
Swedes’ problem: Even dark Swedes should probably be tall. Inheritance systems
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are different: If birds usually lay eggs, then penguins, though abnormal with respect
to flying, will still usually lay eggs. Penguins are fly-abnormal birds, but will con-
tinue to be egg-normal birds – unless we have again information to the contrary. So
the absolute, simple N (X ) of preferential structures splits up into many, by default
independent, normalities. This corresponds to intuition: There are no absolutely nor-
mal birds, each one is particular in some sense, so

⋂{N (X, φ) : φ ∈ L} may well
be empty, even if each single N (X, φ) is almost all birds.

What are the laws of relative normality? N (X, φ) and N (X, ψ) will be largely
independent (except for trivial situations, where φ ↔ ψ, φ is a tautology, etc.).
N (X, φ) might be defined and N (X, ψ) not. Connections between the different
normalities will be established only by valid paths. Thus, if there is no arrow, or
no path, between X and Y, then N (X, Y ) and N (Y, X ) – where X, Y are also prop-
erties – need not be defined. This will get rid of the unwanted connections found
with absolute normalities, as illustrated by Fact 9.5.1 (p. 286).

We interpret now “normal” by “big set”, i.e. essentially “φ holds normally in X”
iff “there is a big subset of X, where φ holds”. This will, of course, be modified.

9.5.2 Small Sets

The main interest of this section is perhaps to show the adaptations of the concept
of small and big subsets necessary for a more “real-life” situation, where we have
to relativize. The amount of changes illustrates the problems and what can be done,
but also perhaps what should not be done, as the concept is stretched too far. For
more background, see Chap. 3 (p. 53).

As said, the usual informal way of speaking about inheritance networks (plus
other considerations) motivates an interpretation by sets and soft set inclusion –
A → B means that “most As are Bs”. Just as with normality, the “most” will
have to be relativized, i.e. there is a B-normal part of A, and a B-abnormal one,
and the first is B-bigger than the second – where “bigger” is relative to B, too. A
further motivation for this set interpretation is the often evoked specificity argument
for preclusion. Thus, we will now translate our remarks about normality into the
language of big and small subsets.

Consider now the system P (with cumulativity), see Definition 2.3 (p. 35). Recall
from Remark 3.2.1 (p. 58) that small sets (see Sect. 3.2.2.6 (p. 58)) are used in two
conceptually very distinct ways: α ∼| β iff the set of α ∧¬β-cases is a small subset
(in the absolute sense, there is just one system of big subsets of the α-cases) of the
set of α-cases. The second use is in information transfer, used in cumulativity, or
cautious monotony, more precisely: If the set of α ∧ ¬γ -cases is a small subset of
the set of α-cases, then α ∼| β carries over to α∧γ : α∧γ ∼| β. (See Chap. 3 (p. 53)
and also the discussion in [Sch04], (p. 86), after Definition 2.3.6.) It is this transfer
which we will consider here, and not things like AND, which connect different
N (X, φ) for different φ.
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Before we go into details, we will show that, e.g. the system P is too strong
to model inheritance systems, and that, e.g. the system R is too weak for this
purpose. Thus, preferential systems are really quite different from inheritance
systems.

Fact 9.5.1

(a) System P is too strong to capture inheritance.
(b) System R is too weak to capture inheritance.

Proof (a) Consider the Tweety diagram, Diagram 9.2.1 (p. 256). c → b → d,

c 	→ d. There is no arrow b 	→ c, and we will see that P forces one to be
there. For this, we take the natural translation, i.e. X → Y will be “X ∩ Y is
a big subset of X”. We show that c ∩ b is a small subset of b, which we write
c ∩ b < b. c ∩ b = (c ∩ b ∩ d) ∪ (c ∩ b ∩ Cd). c ∩ b ∩ Cd ⊆ b ∩ Cd < b,

the latter by b → d, thus c ∩ b ∩ Cd < b, essentially by right weakening. Set
now X := c ∩ b ∩ d. As c 	→ d, X := c ∩ b ∩ d ⊆ c ∩ d < c, and by the same
reasoning as above X < c. It remains to show X < b. We use now c → b.

As c ∩ Cb < c and c ∩ X < c, by cumulativity X = c ∩ X ∩ b < c ∩ b; so
essentially by OR X = c ∩ X ∩ b < b. Using the filter property, we see that
c ∩ b < b.

(b) Second, even R is too weak: In the diagram X → Y → Z , we want to conclude
that most of X is in Z , but as X might also be a small subset of Y, we cannot
transfer the information “most Y s are in Z” to X. �

We have to distinguish direct information or arrows from inherited information
or valid paths. In the language of big and small sets, it is easy to do this by two types
of big subsets: big ones and very big ones. We will denote the first big, the second
BIG. This corresponds to the distinction between a ⇒ b and a ⇒a b in Definition
9.4.1 (p. 281).

We will have the implications B I G → big and SM AL L → small, so we have
nested systems. Such systems were discussed in [Sch95-1], see also [Sch97-1]. This
distinction seems to be necessary to prevent arbitrary concatenation of valid paths
to valid paths, which would lead to contradictions. Consider, e.g. a → b → c → d,

a → e 	→ d, e → c. Then concatenating a → b with b → c → d, both valid,
would lead to a simple contradiction with a → e 	→ d, and not to preclusion, as it
should be – see below.

For the situation X → Y → Z , we will then conclude that:
If Y ∩ Z is a Z -BIG subset of Y and X ∩ Y is a Y -big subset of X , then X ∩ Z is

a Z -big subset of X. (We generalize already to the case where there is a valid path
from X to Y .)

We call this procedure information transfer.
Y → Z expresses the direct information in this context, so Y ∩ Z has to be

a Z -BIG subset of Y. X → Y can be direct information, but it is used here as
channel of information flow. In particular, it might be a composite valid path, so in



9.5 Detailed Translation of Inheritance to Modified Systems of Small Sets 287

our context, X ∩ Y is a Y -big subset of X. X ∩ Z is a Z -big subset of X : this can
only be big, and not BIG, as we have a composite path.

The translation into big and small subsets and their modifications is now quite
complicated: We seem to have to relativize, and we seem to need two types of big
and small. This casts, of course, a doubt on the enterprise of translation. The future
will tell if any of the ideas can be used in other contexts.

We investigate this situation now in more detail, first without conflicts. The way
we cut the problem is not the only possible one. We were guided by the idea that we
should stay close to usual argumentation about big and small sets, should proceed
carefully, i.e. step by step, and should take a general approach.

Note that we start without any X -big subsets defined, so X is not even a X -big
subset of itself.

(A) The simple case of two arrows, and no conflicts.
(In slight generalization:) If information φ is appended at Y, and Y is accessible
from X (and there is no better information about φ available), φ will be valid
at X. For simplicity, suppose there is a direct positive link from X to Y, written
sloppily X → Y |= φ. In the big subset reading, we will interpret this as: Y ∧φ

is a φ-BIG subset of Y. It is important that this is now direct information, so
we have “BIG” and not “big”. We read now X → Y also as: X ∩ Y is a Y -big
subset of X – this is the channel, so just “big”. We want to conclude by transfer
that X ∩ φ is a φ-big subset of X.

We do this in two steps: First, we conclude that X ∩Y ∩φ is a φ-big subset of
X ∩ Y, and then, as X ∩ Y is a Y -big subset of X, X ∩ φ itself is a φ-big subset
of X. We do NOT conclude that (X −Y )∩φ is a φ-big subset of X −Y . This is
very important, as we want to preserve the reason of being φ-big subsets – and
this goes via Y ! The transition from “BIG” to “big” should be at the first step,
where we conclude that X ∩ Y ∩ φ is a φ-big (and not φ-BIG) subset of X ∩ Y,

as it is really here where things happen, i.e. transfer of information from Y to
arbitrary subsets X ∩ Y.

We summarize the two steps in a slightly modified notation, corresponding
to the diagram X → Y → Z :

(1) If Y ∩ Z is a Z -BIG subset of Y (by Y → Z ) and X ∩ Y is a Y -big subset
of X (by X → Y ), then X ∩ Y ∩ Z is a Z -big subset of X ∩ Y.

(2) If X ∩ Y ∩ Z is a Z -big subset of X ∩ Y and X ∩ Y is a Y -big subset of X
(by X → Y ) again, then X ∩ Z is a Z -big subset of X, so X . . . → Z .

Note that (1) is very different from cumulativity or even rational monotony,
as we do not say anything about X in comparison to Y : X need not be any
big or medium size subset of Y.

Seen as strict rules, this will not work, as it would result in transitivity,
and thus monotony: We have to admit exceptions, as there might just be
a negative arrow X 	→ Z in the diagram. We will discuss such situations
below in (C), where we will modify our approach slightly, and obtain a
clean analysis.
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(Here and in what follows, we are very cautious and relativize all
normalities. We could perhaps obtain our objective with a more daring
approach, using absolute normality here and there. But this would be a
purely technical trick (interesting in its own right), and we look here more
for a conceptual analysis, and, as long as we do not find good conceptual
reasons why to be absolute here and not there, we will just be relative
everywhere.)

We now try to give justifications for the two (defeasible) rules. They will
be philosophical and can certainly be contested and/or improved.

For (1): We look at Y. By X → Y, Y s information is accessible at X,

so, as Z -BIG is defined for Y, Z -big will be defined for Y ∩ X. Moreover,
there is a priori nothing which prevents X from being independent from
Y, i.e. Y ∩ X to behave like Y with respect to Z – by default: of course,
there could be a negative arrow X 	→ Z , which would prevent this. Thus,
as Y ∩ Z is a Z -BIG subset of Y, Y ∩ X ∩ Z should be a Z -big subset
of Y ∩ X. By the same argument (independence), we should also conclude
that (Y − X ) ∩ Z is a Z -big subset of Y − X . The definition of Z -big for
Y − X seems, however, less clear.

To summarize, Y ∩ X and Y − X behave by default with respect to Z
as Y does, i.e. Y ∩ X ∩ Z is a Z -big subset of Y ∩ X and (Y − X ) ∩ Z
is a Z -big subset of Y − X . The reasoning is downward, from supersets to
subsets, and symmetrical to Y ∩ X and Y − X . If the default is violated,
we need a reason for it. This default is an assumption about the adequacy
of the language. Things do not change wildly from one concept to another
(or, better: from Y to Y ∧ X ), they might change, but then we are told so –
by a corresponding negative link in the case of diagrams.

For (2): By X → Y, X and Y are related, and we assume that X behaves
as Y ∩ X does with respect to Z . This is upward reasoning, from subset
to superset and it is NOT symmetrical: There is no reason to suppose that
X−Y behaves the same way as X or Y ∩X do with respect to Z , as the only
reason for Z we have, Y, does not apply. Note that putting relativity aside
(which can also be considered as being big and small in various, per-default
independent dimensions) this is close to the reasoning with absolutely big
and small sets: X ∩Y − (X ∩Y ∩ Z ) is small in X ∩Y, so a fortiori small in
X, and X − (X ∩Y ) is small in X, so (X − (X ∩Y ))∪ (X ∩Y − (X ∩Y ∩ Z ))
is small in X by the filter property, so X ∩ Y ∩ Z is big in X, so a fortiori
X ∩ Z is big in X.

Thus, in summary, we conclude by default that
(3) if Y ∩ Z is a Z -BIG subset of Y and X ∩ Y is a Y -big subset of X, then

X ∩ Z is a Z -big subset of X.

(B) The case with longer valid paths, but without conflicts.
Treatment of longer paths: Suppose we have a valid, composed path from X
to Y, X . . . → Y, and not any longer a direct link X → Y. By induction, i.e.
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upward chaining, we argue – using directly (3) – that X ∩ Y is a Y -big subset
of X, and conclude by (3) again that X ∩ Z is a Z -big subset of X.

(C) Treatment of multiple and perhaps conflicting information.

Consider Diagram 9.5.1 (p. 291).
We want to analyse the situation and argue that, e.g. X is mostly not in Z .
First, all arguments about X and Z go via the Y s. The arrows from X to Y s, and

from Y ′ to Y could also be valid paths. We look at information which concerns Z
(thus U is not considered), and which is accessible (thus Y ′′ is not considered). We
can be slightly more general and consider all possible combinations of accessible
information, not only those used in the diagram by X. Instead of arguing on the level
of X, we will argue one level above, on the Y s and their intersections, respecting
specificity and unresolved conflicts.

(Note that in more general situations, with arbitrary information appended, the
problem is more complicated, as we have to check which information is relevant for
some φ – conclusions can be arrived at by complicated means, just as in ordinary
logic. In such cases, it might be better to look first at all accessible information for
a fixed X, then at the truth values and their relation, and calculate closure of the
remaining information.)

We then have (using the obvious language: “most As are Bs” for “A ∩ B is a big
subset of A”, and “MOST As are Bs” for “A ∩ B is a BIG subset of A”):

In Y, Y ′′, and Y ∩ Y ′′, we have that MOST cases are in Z . In Y ′ and Y ∩ Y ′, we
have that MOST cases are not in Z (= are in C Z ). In Y ′ ∩ Y ′′ and Y ∩ Y ′ ∩ Y ′′, we
are UNDECIDED about Z .

Thus

Y ∩ Z will be a Z -BIG subset of Y, Y ′′ ∩ Z will be a Z -BIG subset of Y ′′,
Y ∩ Y ′′ ∩ Z will be a Z -BIG subset of Y ∩ Y ′′.

Y ′ ∩ C Z will be a Z -BIG subset of Y ′, Y ∩ Y ′ ∩ C Z will be a Z -BIG subset of
Y ∩ Y ′.

Y ′ ∩ Y ′′ ∩ Z will be a Z -MEDIUM subset of Y ′ ∩ Y ′′, Y ∩ Y ′ ∩ Y ′′ ∩ Z will be
a Z -MEDIUM subset of Y ∩ Y ′ ∩ Y ′′.

This is just simple arithmetic of truth values, using specificity and unresolved con-
flicts, and the nonmonotonicity is pushed into the fact that subsets need not preserve
the properties of supersets.

In more complicated situations, we implement, e.g. the general principle (P2.2)
from Definition 9.2.2 (p. 263), to calculate the truth values. This will use in our
case specificity for conflict resolution, but it is an abstract procedure, based on an
arbitrary relation <.

This will result in the “correct” truth value for the intersections, i.e. the one cor-
responding to the other approaches.

It remains to do two things: (C.1) We have to assure that X “sees” the correct
information, i.e. the correct intersection and, (C.2), that X “sees” the accepted Y s,
i.e. those through which valid paths go, in order to construct not only the result, but
also the correct paths.
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(Note that by split validity preclusion, if there is valid path from A through B to
C, σ : A · · · → B, B → C, and σ ′ : A · · · → B is another valid path from A to
B, then σ ′ ◦ B → C will also be a valid path. Proof: If not, then σ ′ ◦ B → C is
precluded, but the same preclusion will also preclude σ ◦ B → C by split validity
preclusion, or it is contradicted, and a similar argument applies again. This is the
same argument as the one for the simplified definition of preclusion – see Remark
9.2.1 (p. 267), (4).)

(C.1) Finding and inheriting the correct information:
X has access to Z -information from Y and Y ′, so we have to consider them. Most

of X is in Y, most of X is in Y ′, i.e. X ∩Y is a Y -big subset of X, X ∩Y ′ is a Y ′-big
subset of X, so X ∩ Y ∩ Y ′ is a Y ∩ Y ′-big subset of X ; thus most of X is in Y ∩ Y ′.

We thus have Y, Y ′, and Y ∩ Y ′ as possible reference classes, and use specificity
to choose Y ∩Y ′ as reference class. We do not know anything, e.g. about Y ∩Y ′∩Y ′′;
so this is not a possible reference class.

Thus, we use specificity twice, on the Y ′s-level (to decide that Y ∩ Y ′ is mostly
not in Z ), and on X ′s-level (the choice of the reference class), but this is good policy,
as, after all, much of nonmonotonicity is about specificity.

We should emphasize that nonmonotonicity lies in the behaviour of the subsets,
determined by truth values and comparisons thereof, and the choice of the refer-
ence class by specificity. But both are straightforward now and local procedures,
using information already decided before. There is no complicated issue here like
determining extensions.

We now use above argument, described in the simple case, but with more detail,
speaking in particular about the most specific reference class for information about
Z , Y ∩ Y ′ in our example – this is used essentially in (1.4), where the “real” infor-
mation transfer happens, and where we go from BIG to big.

(1.1) By X → Y and X → Y ′ (and there are no other Z -relevant information
sources), we have to consider Y ∩ Y ′ as reference class.

(1.2) X ∩ Y is a Y -big subset of X (by X → Y ) (it is even Y -BIG, but we are
immediately more general to treat valid paths), X ∩ Y ′ is a Y ′-big subset of X
(by X → Y ′). So X ∩ Y ∩ Y ′ is a Y ∩ Y ′-big subset of X.

(1.3) Y ∩ Z is a Z -BIG subset of Y (by Y → Z ), Y ′ ∩ C Z is a Z -BIG subset of Y ′

(by Y ′ 	→ Z ), so by preclusion Y ∩ Y ′ ∩ C Z is a Z -BIG subset of Y ∩ Y ′.
(1.4) Y ∩ Y ′ ∩ C Z is a Z -BIG subset of Y ∩ Y ′, and X ∩ Y ∩ Y ′ is a Y ∩ Y ′-big

subset of X, so X ∩ Y ∩ Y ′ ∩ C Z is a Z -big subset of X ∩ Y ∩ Y ′.

This cannot be a strict rule without the reference class, as it would then apply to
Y ∩ Z , too, leading to a contradiction.

(2) If X ∩ Y ∩ Y ′ ∩ C Z is a Z -big subset of X ∩ Y ∩ Y ′, and X ∩ Y ∩ Y ′ is a
Y ∩ Y ′-big subset of X, so X ∩ C Z is a Z -big subset of X.

We make this now more formal.
We define for all nodes X, Y two sets: B(X, Y ) and b(X, Y ), where B(X, Y )

is the set of Y -BIG subsets of X and b(X, Y ) is the set of Y -big subsets of X.

(To distinguish undefined from medium/MEDIUM-size, we will also have to define
M(X, Y ) and m(X, Y ), but we omit this here for simplicity.)
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Diagram 9.5.1 Multiple and
conflicting information

X

Y Y ′ Y ′′

Z

U

The translations are then:

(1.2′) X ∩ Y ∈ b(X, Y ) and X ∩ Y ′ ∈ b(X, Y ′) ⇒ X ∩ Y ∩ Y ′ ∈ b(X, Y ∩ Y ′);
(1.3′) Y ∩ Z ∈ B(Y, Z ) and Y ′ ∩ C Z ∈ B(Y ′, Z ) ⇒ Y ∩ Y ′ ∩ C Z ∈ B(Y ∩ Y ′, Z )

by preclusion;
(1.4′) Y∩Y ′∩C Z ∈ B(Y∩Y ′, Z ) and X∩Y∩Y ′ ∈ b(X, Y∩Y ′) ⇒ X∩Y∩Y ′∩C Z ∈

b(X ∩ Y ∩ Y ′, Z ) as Y ∩ Y ′ is the most specific reference class;
(2′) X ∩ Y ∩ Y ′ ∩ C Z ∈ b(X ∩ Y ∩ Y ′, Z ) and X ∩ Y ∩ Y ′ ∈ b(X, Y ∩ Y ′) ⇒

X ∩ C Z ∈ b(X, Z ).
Finally,

(3′) A ∈ B(X, Y ) → A ∈ b(X, Y ), etc.

Note that we used, in addition to the set rules, preclusion, and the correct choice
of the reference class.

(C.2) Finding the correct paths:
Idea:

(1) If we come to no conclusion, then no path is valid, this is trivial.
(2) If we have a conclusion:

(2.1) All contradictory paths are out: e.g. Y ∩ Z will be Z -big, but Y ∩ Y ′ ∩ C Z
will be Z -big. So there is no valid path via Y.

(2.2) Thus, not all paths supporting the same conclusion are valid.

Consider the following Diagram 9.5.2 (p. 292):
There might be a positive path through Y, a negative one through Y ′, a positive

one through Y ′′ again, with Y ′′ → Y ′ → Y, so Y will be out, and only Y ′′ in. We
can see this, as there is a subset, {Y, Y ′} which shows a change: Y ′ ∩ Z is Z -BIG,
Y ′ ∩ C Z is Z -BIG, Y ′′ ∩ Z is Z -BIG, and Y ∩ Y ′ ∩ C Z is Z -BIG, and the latter
can only happen if there is a preclusion between Y ′ and Y, where Y looses. Thus,
we can see this situation by looking only at the sets.

We now show equivalence with the inheritance formalism given in Definition
9.2.3 (p. 265).
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Diagram 9.5.2 Valid paths
or conclusions

X

Y Y ′ Y ′′

Z

Fact 9.5.2 The above definition and the one outlined in Definition 9.2.3 (p. 265)
correspond.

Proof By induction on the length of the deduction that X∩Z (or X∩C Z ) is a Z -big
subset of X. (Outline)

It is a corollary of the proof that we have to consider only subpaths and infor-
mation of all generalized paths between X and Z . Make all sets (i.e. one for every
node) sufficiently different, i.e. all sets and Boolean combinations of sets differ by
infinitely many elements, e.g. A ∩ B ∩ C will have infinitely many less elements
than A ∩ B, etc. (Infinite is far too many, we just choose it by laziness to have room
for the B(X, Y ) and the b(X, Y ). Put in X ∩ Y ∈ B(X, Y ) for all X → Y, and
X ∩ CY ∈ B(X, Y ) for all X 	→ Y as base theory.

Length = 1: Then big must be BIG, and, if X ∩ Z is a Z -BIG subset of X, then
X → Z , likewise for X ∩ C Z .

We stay close now to above Diagram 9.5.1 (p. 292), so we argue for the negative
case. Suppose that we have deduced X ∩ C Z ∈ b(X, Z ), we show that there must
be a valid negative path from X to Z . (The other direction is easy.) Suppose for
simplicity that there is no negative link from X to Z – otherwise we are finished.
As we can distinguish intersections from elementary sets (by the starting hypothesis
about sizes), this can only be deduced using (2′). So there must be some suitable {Yi :
i ∈ I } and we must have deduced X ∩ ⋂

Yi ∈ b(X,
⋂

Yi ), the second hypothesis
of (2′). If I is a singleton, then we have the induction hypothesis, so there is a
valid path from X to Y. So suppose I is not a singleton. Then the deduction of
X ∩ ⋂

Yi ∈ b(X,
⋂

Yi ) can only be done by (1.2′), as this is the only rule having
in the conclusion an elementary set on the left in b(. . .), and a true intersection on
the right. Going back along (1.2′), we find X ∩ Yi ∈ b(X, Yi ), and by the induction
hypothesis, there are valid paths from X to Yi .

The first hypothesis of (2′), X ∩ ⋂
Yi ∩ C Z ∈ b(X ∩ ⋂

Yi , Z ) can be obtained
by (1.3′) or (1.4′). If it was obtained by (1.3′), then X is one of the Yi , but then there
is a direct link from X to Z (due to the “B”, BIG). As a direct link always wins by
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specificity, the link must be negative, and we have a valid, negative path from X to
Z . If it was obtained by (1.4′), then its first hypothesis

⋂
Yi ∩ C Z ∈ B(

⋂
Yi , Z )

must have been deduced, which can only be by (1.3′), but the set of Yi there was
chosen to take all Yi into account for which there is a valid path from X to Yi

and arrows from Yi to Z (the rule was only present for the most specific reference
class with respect to X and Z !), and we are done by the definition of valid paths in
Sect. 9.2 (p. 258). �

We summarize our ingredients.
Inheritance was done essentially by (1) and (2) of (A) above and its elaborations

(1.i), (2) and (1.i ′), (2′). It consisted of a mixture of bold and careful (in comparison
to systems P and R) manipulation of big subsets. We had to be bolder than the sys-
tems P and R are, as we have to transfer information also to perhaps small subsets.
We had to be more careful, as P and R would have introduced far more connections
than are present. We also saw that we are forced to loose the paradise of absolute
small and big subsets, and have to work with relative size.

We then have a plug-in decision what to do with contradictions. This is a plug-in,
as it is one (among many possible) solutions to the much more general question
of how to deal with contradictory information in the presence of a (partial, not
necessarily transitive) relation which compares strength. At the same place in our
procedure, we can plug-in other solutions, so our approach is truly modular in this
aspect. The comparing relation is defined by the existence of valid paths, i.e. by
specificity. This decision is inherited downward using again the specificity criterion.

Perhaps, the deepest part of the analysis can be described as follows: Relevance
is coded by positive arrows, and valid positive paths, and thus is similar to Kripke
structures for modality, where the arrows code dependencies between the situations
for the evaluation of the modal quantifiers. In our picture, information at A can
become relevant only to node B iff there is a valid positive path from B to A. But,
relevance (in this reading, which is closely related to causation) is profoundly non-
monotonic, and any purely monotonic treatment of relevance would be insufficient.
This seems to correspond to intuition. Relevance is then expressed in our translation
to small and big sets formally by the possibility of combining different small and
big sets in information transfer. This is, of course, a special form of relevance, and
there might be other forms.
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