
Studia Logica (2009) 93: 147–180
DOI: 10.1007/s11225-009-9220-3 © Springer 2009

Dov M. Gabbay

Andrzej Sza�las

Annotation Theories over

Finite Graphs

Abstract. In the current paper we consider theories with vocabulary containing a num-

ber of binary and unary relation symbols. Binary relation symbols represent labeled edges

of a graph and unary relations represent unique annotations of the graph’s nodes. Such

theories, which we call annotation theories, can be used in many applications, including

the formalization of argumentation, approximate reasoning, semantics of logic programs,

graph coloring, etc. We address a number of problems related to annotation theories over

finite models, including satisfiability, querying problem, specification of preferred models

and model checking problem.

We show that most of considered problems are NPTime- or co-NPTime-complete.

In order to reduce the complexity for particular theories, we use second-order quantifier

elimination. To our best knowledge none of existing methods works in the case of anno-

tation theories. We then provide a new second-order quantifier elimination method for

stratified theories, which is successful in the considered cases. The new result subsumes

many other results, including those of [2, 28, 21].

Keywords: argumentation theory, labeled graphs, annotations, semantics of logic pro-

grams, second-order quantifier elimination.

1. Introduction to Annotation Theories and Related

Problems

In the current paper we consider theories with vocabulary containing a num-
ber of binary and unary relation symbols. Binary relation symbols represent
labeled edges of a graph and unary relations represent unique annotations
of the graph’s nodes. We call such theories annotation theories. They can
be used in many applications, including the formalization of argumentation,
approximate reasoning, semantics of logic programs, graph coloring, etc.
Given an annotation theory, we address the following problems, where only
finite models are considered:

• satisfiability: given a finite set D, is there a model for the theory with D

as the underlying domain?

Special Issue: New Ideas in Argumentation Theory
Edited by Dov M. Gabbay and Leendert van der Torre

148 D. M. Gabbay and A. Sza�las

• querying problem: given a graph with edges represented by binary rela-
tions, are there annotations satisfying the theory?

• specification of preferred models: how to use circumscription on chosen
annotations to specify preferred models and how to reduce second-order
circumscription formulas to first-order or fixpoint logic?

• model checking problem: given a relational structure with edges and an-
notations, does it satisfy the circumscribed annotation theory?

These problems are of second-order nature. The methodology we use de-
pends then on specifying them in the second-order logic and then on elim-
inating second-order quantifiers.1 An application of quantifier elimination
methods applied in this paper, if successful, can result in:

• a formula of the first-order logic, validity of which (over finite models)
is in logSpace and therefore also in PTime. Here we apply the DLS
algorithm of [11], based on the Ackermann lemma (see Lemma 5.3); also
the SCAN algorithm of [14] can be used here;

• a formula of the fixpoint logic, validity of which (over finite models) is
in PTime. Here one can apply our Theorem 5.10, which substantially
extends existing direct methods, including the theorem of Nonnengart
and Sza�las [28], theorem of Kachniarz and Sza�las [21] and Ackermann’s
lemma [2] (quoted as Theorems 5.2, Theorem 5.1 and Lemma 5.3 in
Section 5).

Therefore second-order quantifier elimination, when successful, gives us also
tractable algorithms for problems we address.

The main contribution of this paper depends on providing a general
second-order quantifier elimination result (Theorem 5.10), results for reduc-
ing circumscribed theories (Lemmas 6.4, 6.5), including annotation theories
as well as results related to specific theories: Phan’s argumentation theory2

[30] (Section 6.3), a theory related to approximate reasoning (Section 6.4)
and a theory formalizing a semantics of logic programs with negation, de-
rived from considerations of [36], closely related to stable models [17, 1]
(Section 6.5).

Complexity results are valid in the case of finite models only. On the
other hand, the provided quantifier elimination techniques are not restricted

1For an overview of known second-order quantifier elimination techniques see [15].
2Phan’s argumentation theory is perhaps better known as “Dung’s argumentation the-

ory” and frequently cited using “Dung” as the author’s family name. In fact, “Dung” is
the first name and the family name is “Phan”.

Annotation Theories over Finite Graphs 149

to finite models nor to annotation theories. To make quantifier elimination
possible, we define the notion of stratification of the considered theories,
generalizing the corresponding idea known from logic programming. Theo-
rem 5.10 works for any stratified theories. It is worth emphasizing that no
existing up to now direct second-order quantifier elimination methods is suc-
cessful for annotation theories (see the discussion provided in Section 6.1).
Also resolution-based methods fail when axioms are recursive, which takes
place in theories considered in this paper.

The paper is structured as follows. In Section 2 we recall some well-
known notions used in the paper. Section 3 introduces the concept of annota-
tion theories and illustrates them by Phan’s argumentation theory, a theory
related to approximate reasoning as well as by a formalization of semantics of
logic programs. In Section 4 we show that the satisfiability problem and the
querying problem are NPTime-complete by noticing that graph colorability
can be formulated as an annotation theory. We also show that model check-
ing problem for circumscribed annotation theories is co-NPTime complete.
Then, in Section 5, we provide second-order quantifier elimination results.
Section 6 is devoted to elimination of second-order quantifiers in the context
of circumscribed annotation theories. Finally, Section 7 concludes the paper.

2. Preliminaries

2.1. Basics

Through the paper we use the language of classical first- and second-order
logic without function symbols.3 We assume the standard first- and second-
order semantics.

By a literal we understand a first-order formula of the form R(. . .) or
¬R(. . .), where R is a relation symbol. A formula A is in the negation nor-
mal form if it uses no propositional connectives other than ¬,∨,∧ and the
negation sign ¬ does not occur in A outside of literals. It is well-known that
every classical first- and second- order formula can equivalently be trans-
formed into a formula in negation normal form.

Let A(R) be a formula and B(R) be a formula in the negation normal
form equivalent to A(R). An occurrence of R is positive in A(R), if the
corresponding occurrence of R in B(R) is not preceded by ¬. An occurrence
of R is negative in A(R), if the corresponding occurrence of R in B(R) is of
the form ¬R. Formula A(R) is positive w.r.t. R if all occurrences of R in A

3We do not use function symbols as they do not appear in theories we deal with. Also,
this allows us to use deductive databases [1, 13, 20] as a computational machinery.

150 D. M. Gabbay and A. Sza�las

are positive. It is negative w.r.t. R if all occurrences of R in A are negative.4

Writing A(X̄, ȳ), we mean that A contains variables X̄ and ȳ, but we do
not exclude other arguments.

If M = 〈D, R̄〉 is a relational structure and v is a valuation of variables in
D then we write M,v |= A to denote that A is true in M under the valuation
v. We write M |= A to denote that A is true in M under all valuations of
free variables occurring in A. If R̄ is empty then we write D |= A rather
than 〈D〉 |= A.

By A(a, . . .)λx̄1.e1,...,λx̄k.ek

λȳ1.f1,...,λȳk.fk
we understand the expression obtained from A

in such a way that for any 1 ≤ i ≤ k, all occurrences of ei of the form ei(ā)
are replaced by fi(ȳi), where ȳi itself is replaced by ā. When λ-expression is
a relation symbol applied to some arguments, say P (z̄), then we write P (z̄)
rather than λz̄.P (z̄). For example,

(
P (s) ∨ R(t)

)P (x), R(y)

λu.(Q(a,u)∧Q(u,b)), S(z,z)
=

(
Q(a, s) ∧ Q(s, b)

)
∨ S(t, t).

2.2. Circumscription

In what follows we also use circumscription [27, 26, 11], which is basically
a technique for minimizing chosen predicates with some other allowed to
vary and all other fixed. Let us now formally define this concept.

Definition 2.1. Let P̄ = 〈P1, . . . , Pk〉, S̄ = 〈S1, . . . , Sm〉 be disjoint tuples
of relation symbols, and let T (P̄ , S̄) be a first-order formula.

The second-order circumscription of P̄ in T (P̄ , S̄) with variable S̄, writ-
ten Circ↓(T ; P̄ ; S̄), is the second-order formula

T (P̄ , S̄)∧

∀X̄∀Ȳ
{[

T (P̄ , S̄)
P̄ ,S̄

X̄,Ȳ
∧

k∧
i=1

∀x̄i[Xi(x̄i) → Pi(x̄i)]
]
→

k∧
i=1

∀x̄i[Pi(x̄i) → Xi(x̄i)]
}

,

(1)

where X̄ and Ȳ are tuples of relational variables of the same arities as those
in P̄ and S̄, respectively.

We will also need a dual form of circumscription, where some predicates
are maximized rather than minimized.

4Observe that formula in which R does not occur is both positive and negative w.r.t. R.

Annotation Theories over Finite Graphs 151

Definition 2.2. Let P̄ , S̄ and T (P̄ , S̄) be as in Definition 2.1. The dual
second-order circumscription of P̄ in T (P̄ , S̄) with variable S̄, written
Circ↑(T ; P̄ ; S̄), is the second-order formula

T (P̄ , S̄)∧

∀X̄∀Ȳ
{[

T (P̄ , S̄)
P̄ ,S̄

X̄,Ȳ
∧

k∧
i=1

∀x̄i[Pi(x̄i) → Xi(x̄i)]
]
→ (2)

k∧
i=1

∀x̄i[Xi(x̄i) → Pi(x̄i)]
}

.

The class of all models of a theory T will be denoted by mod(T). We
assume that the class consists of relational structures of the form M =
〈DM , 〈RM

i 〉i∈I〉.
The semantics of circumscription is based on the concept of sub-models

(see [25, 26]) defined as follows.

Definition 2.3. Let P̄ , S̄ and T (P̄ , S̄) be as in Definitions 2.1 and 2.2. Let
M and N be models of T . We say that M is a (P̄ , S̄)-submodel of N , written
M ≤(P̄ ,S̄) N , iff

1. DM = DN

2. RM = RN , for any relation symbol R not in P̄ ∪ S̄

3. RM ⊆ RN , for any relation symbol R in P̄ .

We write M <(P̄ ,S̄) N when M ≤(P̄ ,S̄) N , but not N ≤(P̄ ,S̄) M . A model
M of T is (P̄ , S̄)-minimal iff T has no model N such that N <(P̄ ,S̄) M .
It is (P̄ , S̄)-maximal iff T has no model N such that M <(P̄ ,S̄) N . We also

write mod
(P̄ ,S̄)
↓ (T) to denote the class of all (P̄ , S̄)-minimal models of T

and mod↑
(P̄ ,S̄)

(T) to denote the class of all (P̄ , S̄)-maximal models of T .
The semantics of circumscription is now given by

mod
(
Circ↓(T ; P̄ ; S̄)

)
= mod

(P̄ ,S̄)
↓ (T) (3)

mod
(
Circ↑(T ; P̄ ; S̄)

)
= mod↑

(P̄ ,S̄)
(T). (4)

2.3. Simultaneous Fixpoints

We will also use the notion of simultaneous fixpoints (see, e.g., [1, 13, 20]
for a detailed exposition of the theory of fixpoints and their applications as
database queries).

152 D. M. Gabbay and A. Sza�las

Let Q̄ = 〈Q1, . . . , Qk〉 be a tuple of relation symbols and Ai(Q̄, x̄i, ȳi),
for i = 1, . . . , k, be classical first-order formulas, where

• x̄i and ȳi are all free first-order variables of Ai

• the number of variables in x̄ is ki

• none of the x’s is among the y’s

• for i = 1, . . . , k, Qi is a ki-argument relation symbol, whose all occur-
rences in A1, . . . , Ak are positive.

Definition 2.4. Under the above assumptions, the expression

Slfp [Q1(x̄1) ≡ A1(Q̄, x̄1, ȳ1), . . . , Qk(x̄k) ≡ Ak(Q̄, x̄k, ȳk)] (5)

is called the simultaneous least fixpoint of A1, . . . , Ak, and the expression

Sgfp [Q1(x̄1) ≡ A1(Q̄, x̄1, ȳ1), . . . , Qk(x̄k) ≡ Ak(Q̄, x̄k, ȳk)] (6)

is called the simultaneous greatest fixpoint of A1, . . . , Ak.

Note that both Slfp and Sgfp represent k-tuples of relations.
In the rest of the paper we often abbreviate the formula in the scope of

Slfp in (5) (and of Sgfp in (6)) by Q̄ ≡ Ā, formula (5) by Slfp [Q̄ ≡ Ā],
and formula (6) by Sgfp [Q̄ ≡ Ā].

Definition 2.5. The semantics of Slfp [Q̄ ≡ Ā] is given by (the unique)
tuple of relations Q̄ satisfying Circ↓(Q̄ ≡ Ā; Q̄; ∅), and the semantics of
Sgfp [Q̄ ≡ Ā] is given by (the unique) tuple of relations Q̄ satisfying
Circ↑(Q̄ ≡ Ā; Q̄; ∅).

If k = 1 in formulas (5) and (6), then the simultaneous fixpoints reduce
to the standard fixpoints. In such cases we write Lfp

[
Q(x̄) ≡ A(Q, x̄, ȳ)

]
to stand for Slfp [Q(x̄) ≡ A(Q, x̄, ȳ)] and Gfp

[
Q(x̄) ≡ A(Q, x̄, ȳ)

]
to stand

for Sgfp [Q(x̄ ≡ A(Q, x̄, ȳ)].

3. Annotation Theories

3.1. Definition

We consider a directed graph or network, seen as a model of binary relations
R̄ = 〈Ri〉i=1,...,m (m ≥ 1) on a finite set D. Relations in R̄ represent edges
of various kinds. D is called the set of nodes. If m = 1 then we omit the
subscript and write R rather than R1. We allow annotations on the nodes.
The annotation is represented by unary predicates Q̄ = 〈Qj〉j=1,...,n (n > 1),
where Qi(x) holds if node x is annotated by Qi. ∆mn-theories allow us to
set requirements on annotations.

Annotation Theories over Finite Graphs 153

Definition 3.1. Let m ≥ 1 and n > 1. By an (m,n)-annotation the-
ory, referred to as ∆mn-theory, we understand any finite first-order the-
ory ∆mn(R̄, Q̄) over the signature containing binary relation symbols R̄ =
〈Ri〉i=1,...,m and unary relation symbols Q̄ = 〈Qj〉j=1,...,n, where we assume
that annotations in Q̄ are unique, i.e., each ∆mn-theory, in addition to spe-
cific axioms, contains also axioms:

σ(n)
def
≡ ∀x

[∨
1≤i≤n

Qi(x)
]

and π(n)
def
≡

∧
1≤i�=j≤n

∀x [¬Qi(x) ∨ ¬Qj(x)] .

Observe that for each 1 ≤ i ≤ n,

σ(n) ≡ ∀x
[(∧

1≤k �=i≤n

¬Qk(x)
)
→ Qi(x)

]
. (7)

The above simple observation is useful in specifying preferred models. In
particular, it shows that annotations are strongly related to each other and
minimizing/maximizing some of them usually requires varying all others. In
is also useful in eliminating second-order quantifiers from circumscription
axioms.

In the rest of the paper we only allow a finite number of axioms. Any
finite set of axioms can be represented by a single formula being the con-
junction of its members. This restriction allows us to encode the considered
problems by second-order formulas.

3.2. Example: Phan’s Argumentation Theory

In argumentation theory the following ∆13-theory, A(R,Q1, Q2, Q3), is often
considered (see Phan [30]):

σ(3) ∧ π(3) (8)

∀x[∀y[R(y, x) → Q1(y)] → Q2(x)] (9)

∀x[∃y[R(y, x) ∧ Q2(y)] → Q1(x)] (10)

∀x[(∀y[R(y, x) → (Q1(y) ∨ Q3(y))] ∧ ∃y[R(y, x) ∧ Q3(y)]) → Q3(x)].(11)

The intended meaning of R,Q1, Q2, Q3 is:

• elements of underlying models are arguments

• R(x, y) means that argument x attacks argument y

• Q1(x) means that argument x is not-active/refuted, Q2(x) means that
argument x is active and Q3(x) means that argument x is undecided.

154 D. M. Gabbay and A. Sza�las

Here one looks for minimal Q2, maximal Q2 or minimal Q3, where in each
case all relations, other than the minimized/maximized one, are allowed
to vary (see [7]). That is, we respectively consider Circ↓(A;Q2;Q1, Q3)
(see Section 6.3.1), Circ↑(A;Q2;Q1, Q3) (see Section 6.3.2) and Circ↓(A;Q3;
Q1, Q2) (see Section 6.3.3).

3.3. Example: Theory Related to Approximate Reasoning

In approximate reasoning one often uses a generalization of rough sets and re-
lations [29], which depends on allowing arbitrary similarity relations, while in
the rough set theory only equivalence relations are considered. Such general-
ized approximate reasoning has been shown useful in many application areas
requiring the use of approximate knowledge structures (see, e.g., [9, 12]).

In order to formalize the fact that similarities should preserve properties
of objects, we use the following ∆13-theory, R(R,Q1, Q2, Q3):

σ(3) ∧ π(3) (12)

∀x∀y[(R(x, y) ∧ Q1(x)) → Q1(y)] (13)

∀x∀y[(R(x, y) ∧ Q2(x)) → Q2(y)] (14)

∀x∀y[(R(x, y) ∧ Q3(x)) → Q3(y)]. (15)

The intended meaning of R,Q1, Q2, Q3 is:

• elements of underlying models are objects

• R(x, y) means that object x is similar to object y

• Q1(x) means that x satisfies a given property, Q2(x) means that x does
not satisfy the property and Q3(x) means that it is unknown whether x

satisfies the property.

Here one often looks for simultaneous minimization of Q1 and Q3 with Q2

allowed to vary, i.e., we consider Circ↓(R;Q1, Q3;Q2) (see Section 6.4). This
policy corresponds to the closed world assumption, where it is assumed that
all positive facts are specified and all other facts should be considered false.

3.4. Example: Formalizing Semantics for Logic Programs

with Negation

In order to provide a semantics for logic programs with negation allowed in
the bodies of rules, we use a ∆23-theory, which we derive from considerations
provided in [36].

Annotation Theories over Finite Graphs 155

Let P be a propositional logic program with negation as failure. Consider
clauses of the form:

q : −
∧
i∈I

ai,
∧
j∈J

¬bj, (16)

where I, J are finite sets of indices.
We regard the atoms q, {ai}i∈I , {bj}j∈J as elements in a classical model.

The domain od the model, DP , consists of all the atoms appearing in a given
logic program.

We consider two binary relations R+, R- such that:

– for clauses of the form (16) we require that
R+(ai, q) and R-(bj , q) hold (i ∈ I, j ∈ J)

– for all other cases R+, R- are false.
(17)

Consider a logic program P satisfying the condition that

for any literal q, P contains at most one clause with q as its head. (18)

With such a program we can associate a model 〈DP , R+, R-〉, where DP is
the set of atoms in P and R+, R- are defined as above. Conversely, with any
finite domain model 〈DP , R+, R-〉 with two binary relations R+, R- we can
associate a logic program

y : −
∧

{x|R+(x,y)}

x,
∧

{x|R-(x,y)}

¬x. (19)

Assume now that a program violates (18), i.e., contains several clauses with
the same head,

qk : −
∧
i∈Ik

ak
ik

,
∧

j∈Jk

¬bk
jk

, (20)

where k ≤ r, for some r ≥ 1.
We add r new propositions, qk

1 , . . . , qk
r and we replace clauses C1, . . . , Cr

by clauses:

qk
i : −

∧
i∈Ik

ak
ik

,
∧

j∈Jk

¬bk
jk

, q∗ : −
∧

1≤k≤r

¬qk
i , q : − ¬q∗. (21)

Now,

• q succeeds if q∗ fails

156 D. M. Gabbay and A. Sza�las

• q loops if q∗ loops

• q∗ fails if at least one of ¬qk
i fails, i.e., if at least one of qk

i succeeds, i.e.,

if at least one of bodies
[∧

i∈Ik

ak
ik

,
∧

j∈Jk

¬bk
jk

]
succeeds.

Therefore, given a program P , one can write a program P ′ satisfying the
assumption (18) as to unique heads.

We now formalize the semantics of logic programs with negation by
a ∆23-theory L(R+, R-, Q1, Q2, Q3), where

• elements of underlying models are atoms of a given logic program

• R+, R- are explained in (17)

• Q1(x) means that the computation of x fails

• Q2(x) means that the computation of x succeeds

• Q3(x) means that the computation of x loops.

The theory L consists of the following axioms:

σ(3) ∧ π(3) (22)

∀x
[(
∃y[R+(y, x) ∧ Q1(y)] ∨ ∃y[R-(y, x) ∧ Q2(y)]

)
→ Q1(x)

]
(23)

∀x
[(
∀y[R+(y, x) → Q2(y)] ∧ ∀y[R-(y, x) → Q1(y)]

)
→ Q2(x)

]
(24)

∀x
[(
∀y[R+(y, x) → (Q2(y) ∨ Q3(y))] ∧ ∀y[R-(y, x) → (Q1(y) ∨ Q3(y))]

∧∃y[(R-(y, x) ∨ R+(y, x)) ∧ Q3(y)]
)
→ Q3(x)

]
.

(25)

We look for models with minimal Q2, where Q1 and Q3 are allowed to vary,
which is expressed by Circ↓(L;Q2;Q1, Q3) (see Section 6.5).

3.5. Some other Applications

Observe that roles considered in description logics [3] can be represented
as graphs whose edges correspond to roles. Annotations become necessary
whenever one needs to uniquely identify nodes. In [19], Horrocks and Sattler
discuss the need for annotations:

“realistic ontologies typically contain references to named individuals
within class descriptions. E.g., Italians might be described as persons
who are citizens of Italy, where Italy is a named individual.”

Yet another motivation for annotation theories is related to nominals
which are a prominent feature of hybrid logics and their immediate ancestors,
called modal logics with names [4, 18]. Consider, for example temporal

Annotation Theories over Finite Graphs 157

reasoning. Once we refer to particular time points, e.g., by using dates (“it
is going to be a board meeting on November 15th at 13:15”), we deal with
unique annotations.

4. Complexity Results

Consider first satisfiability checking and the querying problem.
Let T (R1, . . . , Rm, Q1, . . . , Qn) be an arbitrary ∆mn-theory. The satisfi-

ability problem for T over a set of nodes D is expressed by

D |= ∃R1 . . . ∃Rm∃Q1 . . . ∃Qn[T (R1, . . . , Rm, Q1, . . . , Qn)]. (26)

The querying problem assumes that a structure M = 〈D,R1, . . . , Rm〉 is
given and one asks whether

M |= ∃Q1 . . . ∃Qn[T (R1, . . . , Rm, Q1, . . . , Qn)]. (27)

We start with the querying problem.

Theorem 4.1. For m ≥ 1 and n ≥ 3, the querying problem for annotation
theories is NPTime-complete.

Proof. Let T (R1, . . . , Rm, Q1, . . . , Qn) be an arbitrary ∆mn-theory, where
m,n are fixed natural numbers.

Given a finite model M = 〈D,R1, . . . , Rm, Q1, . . . , Qn〉, one can check
whether

M |= T (R1, . . . , Rm, Q1, . . . , Qn)

deterministically in time polynomial in the size of D (see [1, 13, 20]). So,
given 〈D,R1, . . . , Rm〉, a nondeterministic polynomial time algorithm for
the querying problem depends on guessing Q1, . . . , Qn and then accepting
the result when the obtained model satisfies T (R1, . . . , Rm, Q1, . . . , Qn). Of
course, guessing Q1, . . . , Qn can be done in time linear in the size of D (recall
that n is fixed). Thus the querying problem is in NPTime.

To show NPTime-completeness we consider the following ∆1n-theory,
denoted by C(R,Q1, . . . , Qn):

σ(n) ∧ π(n) ∧
∧

1≤i≤n

∀x∀y
[
R(x, y) → (¬Qi(x) ∨ ¬Qi(y))

]
. (28)

The theory C expresses the fact that a graph with edges represented by R

can be colored using n colors Q1, Q2, . . . , Qn.

158 D. M. Gabbay and A. Sza�las

If only 〈D,R〉 is given, then checking n-colorability is expressed by:

〈D,R〉 |= ∃Q1 . . . ∃Qn

[
(28)

]
. (29)

It is well-known that this problem is NPTime-complete already for
n = 3.

By a similar proof we have the following theorem.

Theorem 4.2. For m ≥ 1 and n ≥ 3, the satisfiability problem for annota-
tion theories is NPTime-complete.

The model checking problem for a ∆mn-theory T assumes that a structure
M = 〈D,R1, . . . , Rm, Q1, . . . , Qn〉 is given and one asks whether

M |= Circ↓(T , Q̄′, Q̄′′) (respectively, M |= Circ↑(T , Q̄′, Q̄′′)), (30)

where Q̄′, Q̄′′ are chosen from Q1, . . . , Qn.

Let us now show that model checking for circumscribed annotation the-
ories is a co-NPTime-complete problem. We adapt the proof given by Ko-
laitis and Papadimitriou (see pages 11-12 of [23]) for co-NPTime-complete-
ness of model checking for circumscription (Theorem 6 of [23]). We cannot
use this result directly, as we want to show that co-NPTime-completeness
can be proved for circumscription on annotations, while the result of [23] ap-
plies circumscription to edges. For other results concerning the complexity
of circumscription see [5, 22] and references there.

We need the following definition.

Definition 4.3. We call a undirected graph cubic if all its nodes have degree
three. A circuit of a graph is a closed path without repetitions of edges.
A circuit is long if it contains at least twelve nodes. A graph is simple if it
is a disjoint union of long circuits.

We say that graph G = 〈N,E〉 is a subgraph of graph G′ = 〈N ′, E′〉 if
N = N ′ and E ⊆ E′. G is a proper subgraph of G′ if it is a subgraph of G′

and E �= E′.

Of course, cubicity of a graph is a first-order property and can be ex-
pressed by a first-order formula ρ(E) on edges.

Observe that simple graphs have all degrees two and there are no circuits
of length eleven or less in them. Therefore, simplicity is also a first-order
property and can ce expressed by a first-order formula η(E).

We have the following lemma.

Annotation Theories over Finite Graphs 159

Lemma 4.4 (Lemma 2 of Kolaitis and Papadimitriou [23]). It is NPTime-
complete to check whether a cubic connected graph has a simple subgraph.

Now we are in position to prove the announced complexity result.

Theorem 4.5. There is an annotation theory and circumscriptive policy on
annotations whose model checking is co-NPTime-complete.

Proof. Consider the following ∆12-theory, denoted by B with axioms:

σ(2) ∧ π(2)
ρ(E) ∨ η(E)

η(E′), where E′(x, y)
def
≡

(
Q1(x) ∧ Q1(y)

)
.

Theory B states that graph G = 〈N,E〉 is either cubic or simple and that
Q1 “selects” a simple subgraph from G, while Q2 annotates nodes outside of
the selected subgraph. Consider Circ↓(B;Q1;Q2). It additionally says that
there is no proper subgraph of G which is cubic or simple.

Consider a relational structure M = 〈N,E,Q1, Q2〉 with 〈N,E〉 being
a cubic graph. The question is whether

M |= Circ↓(B;Q1;Q2). (31)

As noted above, (31) holds when there is no proper subgraph of G which is
cubic or simple. No proper subgraph of a cubic graph can be cubic, so (31)
holds when no simple subgraph of G exists. By Lemma 4.4, checking exis-
tence of a simple subgraph of a given graph is NPTime-complete. Therefore
checking whether (31) holds is an co-NPTime complete problem.

Remark 4.1. Observe that, in the light of Theorems 4.1, 4.2 and 4.5, the
elimination of all second-order quantifiers from formulas (26), (27) and (30)
is, in general, problematic. A successful elimination from formulas con-
sidered in proofs of Theorems 4.1, 4.2 and 4.5, would imply that PTime

=NPTime.
The presence of both σ(n) and π(n) in ∆mn-theories suggests that algo-

rithmic quantifier elimination techniques depending on the syntactic shape
of formulas require further simplifications of circumscribed formulas or cer-
tain syntactic restrictions as to the remaining axioms. To see the intuition,
assume that the underlying database consisting of objects and edges is given.
One can now translate a given annotation theory into a propositional theory
with propositional variables corresponding to annotations. The resulting
propositional theory is non-Schaefer [31]. Due to the Schaefer’s dichotomy

160 D. M. Gabbay and A. Sza�las

theorem, the satisfiability problem for theories containing axioms of that
shape is NPTime-complete. We can then strongly expect that second-order
quantifier elimination methods depending on the shape of formulas cannot
generally be applied here.

For a dichotomy theorem directly concerning circumscribed theories, also
supporting this intuition, see [22].

5. Second-Order Quantifier Elimination

5.1. Simultaneous Elimination Theorem

Let us start with a theorem allowing one to eliminate a number of second-
order existential quantifiers at the same time. Theorem 5.1 is a special case
of Theorem 5.10, but we formulate it separately for two reasons. First,
it is useful in some applications which do not require the full strength of
Theorem 5.10. Second, it considerably simplifies the proof of Theorem 5.10.

Theorem 5.1 (Kachniarz and Sza�las [21]). Let X̄ = X1, . . . ,Xk be distinct
relation variables and C(X̄), Ai(X̄, x̄1, . . . , x̄k, z̄) (1 ≤ i ≤ k) be classical
first-order formulas, where the number of distinct variables in x̄i is equal to
the arity of Xi and Ai(X̄, . . .) is positive w.r.t. X̄. Then:

• if C(X̄) is negative w.r.t. X1, . . . ,Xk then

∃X1 . . . ∃Xk

{ ∧
1≤i≤k

∀x̄i[Ai(X̄, x̄1, . . . , x̄k, z̄) → Xi(x̄i)] ∧ C(X̄)
}

|||

C(X̄)
X1(x̄1),...,Xk(x̄k)

λx̄1,...,x̄kSlfp [X1(x̄1)≡A1(X̄,...),...,Xk(x̄k)≡Ak(X̄,...)]
.

(32)

• if C(X̄) is positive w.r.t. X1, . . . ,Xk then

∃X1 . . . ∃Xk

{ ∧
1≤i≤k

∀x̄i[Xi(x̄i) → Ai(X̄, x̄1, . . . , x̄k, z̄)] ∧ C(X̄)
}

|||

C(X̄)
X1(x̄1),...,Xk(x̄k)

λx̄1,...,x̄kSgfp [X1(x̄1)≡A1(X̄,...),...,Xk(x̄k)≡Ak(X̄,...)]
.

(33)

Proof. We prove (33). The proof of (32) is analogous. Let M be a rela-
tional structure and v be a valuation of variables.

Annotation Theories over Finite Graphs 161

(→) Assume that

M,v |= ∃X1 . . . ∃Xk

{ ∧
1≤i≤k

∀x̄i[Xi(x̄i)→Ai(X̄, x̄1, . . . , x̄k, z̄)] ∧ C(X̄)
}

. (34)

Therefore, there exists a valuation V assigning to X1, . . . ,Xk relations over
the domain of M such that

M,v, V |=
∧

1≤i≤k

∀x̄i[Xi(x̄i) → Ai(X̄, x̄1, . . . , x̄k, z̄)] ∧ C(X̄).

Note that the greatest (w.r.t. →) X̄ satisfying

∧
1≤i≤k

∀x̄i[Xi(x̄i) → Ai(X̄, x̄1, . . . , x̄k, z̄)]

is the greatest X̄ satisfying
∧

1≤i≤k

∀x̄i[Xi(x̄i) ≡ Ai(X̄, x̄1, . . . , x̄k, z̄)], which

by Definition 2.5 and equation (4), is given by

Sgfp [X1(x̄1) ≡ A1(X̄, . . .), . . . ,Xk(x̄k) ≡ Ak(X̄, . . .)].

Since C(X̄) is positive in X1, . . . ,Xk, it is also monotone in X1, . . . ,Xk.
Therefore we have that

M,v, V |= C(X̄)
X1(x̄1),...,Xk(x̄k)

λx̄1,...,x̄kSgfp [X1(x̄1)≡A1(X̄,...),...,Xk(x̄k)≡Ak(X̄,...)]
. (35)

Relational variables X1, . . . ,Xk in (35) are bound by the simultaneous fix-
point operator Sgfp, so V in (35) becomes redundant and we obtain

M,v |= C(X̄)
X1(x̄1),...,Xk(x̄k)

λx̄1,...,x̄kSgfp [X1(x̄1)≡A1(X̄,...),...,Xk(x̄k)≡Ak(X̄,...)]
. (36)

(←) Assume now (36). It is easy to observe that X1, . . . ,Xk defined by res-
pective coordinates of Sgfp [X1(x̄1) ≡ A1(X̄, . . .), . . . ,Xk(x̄k) ≡ Ak(X̄, . . .)]

satisfy M,v |=
∧

1≤i≤k

∀x̄i[Xi(x̄i) → Ai(X̄, x̄1, . . . , x̄k, z̄)].

By (36), such X1, . . . ,Xk satisfy M,v |= C(X̄). We have then indicated

X1, . . . ,Xk for which M,v |=
∧

1≤i≤k

∀x̄i[Xi(x̄i) → Ai(X̄, x̄1, . . . , x̄k, z̄)]∧C(X̄).

Therefore (34) holds, too.

162 D. M. Gabbay and A. Sza�las

5.2. Some Consequences of the Elimination Theorem

We have two corollaries of Theorem 5.1, which we also use in further calcu-
lations.

The following theorem is a particular case of Theorem 5.1 when we elim-
inate a single relation variable.

Theorem 5.2 (Nonnengart and Sza�las [28]). Let X be a relation variable
and A(X, x̄, z̄), C(X) be a classical first-order formula, where the number
of distinct variables in x̄ is equal to the arity of X, A(X, x̄, z̄) is positive
w.r.t. X. Then

• if C(X) is negative w.r.t. X then

∃X
{
∀x̄[A(X, x̄, z̄) → X(x̄)]∧C(X)

}
≡ C(X)

X(x̄)

λx̄.Lfp
[
X(x̄)≡A(X,x̄,z̄)

]. (37)

• if C(X) is positive w.r.t. X then

∃X
{
∀x̄[X(x̄) → A(X, x̄, z̄)]∧C(X)

}
≡ C(X)

X(x̄)

λx̄.Gfp
[
X(x̄)≡A(X,x̄,z̄)

]. (38)

The following lemma is a particular case of Theorem 5.2 (thus also of
Theorem 5.1), when A contains no occurrences of the eliminated relational
variable.

Lemma 5.3 (Ackermann [2]). Let X be a relation variable and A(x̄, z̄), C(X)
be classical first-order formulas, where the number of distinct variables in x̄

is equal to the arity of X. Let A contain no occurrences of X. Then

• if C(X) is negative w.r.t. X then

∃X
{
∀x̄[A(x̄, z̄) → X(x̄)] ∧ C(X)

}
≡ C(X)

X(x̄)
λx̄.A(x̄,z̄). (39)

• if C(X) is positive w.r.t. X then

∃X
{
∀x̄[X(x̄) → A(x̄, z̄)] ∧ C(X)

}
≡ C(X)

X(x̄)
λx̄.A(x̄,z̄). (40)

Annotation Theories over Finite Graphs 163

5.3. Strengthening the Method

Observe that axioms of annotation theories are often formulated in the form
of “rules”. In considered examples of annotation theories, formulas (9)–
(11), (13)– (15) and (23)– (25) have a form of rules. Also formula σ(n) can
be considered as a rule due to its form expressed as (7).

We shall strengthen the method formalized as Theorem 5.1 by using in-
tuitions from the semantics of stratified logic programs and Datalog¬ , where
recursion is not allowed to pass negation (cf. [1]). Namely, when we have
rules with negated atoms in bodies, Theorem 5.1 is not applicable, but ac-
tually we can apply the theorem for separate strata and collect the results.
The following example illustrates the idea.

Example 5.4. Consider the following second-order formula

∃X∃Y
{
∀x[¬X(x) ∧ ¬Y (x)] (41)

∀x[∃y[R(x, y) ∨ X(y)] → X(x)]∧ (42)

∀x
[(
∃y[R(x, y) ∧ Y (y)] ∨ ¬X(x)

)
→ Y (x)

]}
. (43)

Theorem 5.1 cannot be applied due to the negative literal ¬X(x) in (43). On
the other hand, one can first “compute” X using (42) and then use its defi-
nition “computing” Y . Here we can even apply Theorem 5.2. The definition
of X is given by:

Lfp
[
X(x) ≡ ∃y[R(x, y) ∨ X(y)]

]
(44)

and, given (44) and (43), the definition of Y is given by

Lfp
[
Y (x) ≡ ∃y[R(x, y) ∧ Y (y)] ∨ ¬X(x)

]
. (45)

Formula (41)–(41) is then equivalent to ∀x[¬X(x) ∧ ¬Y (x)], where X and
Y are given by their definitions (44) and (45).

Other examples of applications of this method are provided in the next
section.

In the rest of this section we formulate and prove the main second-order
quantifier elimination result of this paper, substantially extending Theo-
rem 5.1. The strengthened version of the theorem can be formalized as
follows.

Definition 5.5. Let A(P, T̄ , x̄) be a classical first-order formula positive
w.r.t. P with P, T̄ being its all relation symbols.

164 D. M. Gabbay and A. Sza�las

A Pia formula w.r.t. P is any formula of the form ∀x̄[A(P, T̄ , x̄)→P (x̄)].5

By a Pia formula we understand a Pia formula w.r.t. P for some P .
Dually, by an Aip formula w.r.t. P we understand any formula of the

form ∀x̄[P (x̄) → A(P, T̄ , x̄)].6 By an Aip formula we understand an Aip

formula w.r.t. P for some P .
A rule is a Pia formula or an Aip formula. In both cases the atom is

called the head and the antecedent (consequent) is called the body of the
rule. For a rule ρ, the head of ρ is denoted by head(ρ) and the body of ρ is
denoted by body(ρ).

By a Pia set we understand any finite set of Pia formulas and by an Aip

set we understand any finite set of Aip formulas. A set of rules is either a Pia

set or an Aip set S such that any head of a rule of S appears in S in exactly
one rule.7

Observe that the restriction as to uniqueness of heads’ occurrences in
rules is introduced solely to simplify presentation. Any set of Pia formulas
and of Aip formulas can easily be transformed to a set satisfying this re-
quirement. It suffices to rename variables and use the following tautologies:(

∀x̄[A(x̄)] ∧ ∀x̄[B(x̄)]
)
≡ ∀x̄[A(x̄) ∧ B(x̄)](

(A → C) ∧ (B → C)
)
≡

(
(A ∨ B) → C

)(
(A → B) ∧ (A → C)

)
≡

(
A → (B ∧ C)

)
.

The following definition generalizes the well-known definition of stratifi-
cation of logic programs.

Definition 5.6. A stratification of a set of rules S is a partition S1, . . . ,Sl

of S such that there is a mapping δ from the set of heads appearing in S to
{1, . . . , l}, satisfying:

• all rules with the same head P are in the same partition Sδ(P)

• if
(
∀x̄[A(P, T̄ , x̄) → P (x̄)]

)
∈ S (dually, if

(
∀x̄[P (x̄) → A(P, T̄ , x̄)]

)
∈ S)

and P, T̄ are all relation symbols occurring in A, then for any Ti in T̄ :

– if A is positive w.r.t. Ti then δ(Ti) ≤ δ(P)

– if there is a negative occurrence of Ti in A then δ(Ti) < δ(P).

Given a stratification S1, . . . Sl of S, each Si is called a stratum of the strat-
ification, and δ is called the stratification mapping.

5The acronym Pia, introduced in [35], stands for “Positive antecedent Implies Atom”.
6Aip stands for “Atom Implies Positive consequent”.
7Let us emphasize that we do not consider sets containing both Pia and Aip formulas.

Annotation Theories over Finite Graphs 165

We shall need an ordering on the set of heads of considered sets of rules,
preserving the stratification mapping.

Definition 5.7. Let r be the cardinality of a set of rules S stratifiable
with a stratification mapping δ. A mapping γ : {1, . . . , r} −→ {1, . . . , r} is
a δ-order if it is one-to-one, onto and, for 1 ≤ i ≤j ≤r, satisfies the condition:

δ
(
head(rule γ(i))

)
≤ δ

(
head(rule γ(j))

)
.

Let Q̄ = 〈Q1, . . . , Qk〉 be a tuple of relation symbols and Ai(Q̄, x̄i, ȳi),
for i = 1, . . . , k, be classical first-order formulas, where

• x̄i and ȳi are all free first-order variables of Ai

• the number of variables in x̄ is ki

• none of the x’s is among the y’s

• for i = 1, . . . , k, Qi is a ki-argument relation symbol

• the set of rules with bodies Ai and heads Qi is stratifiable.

Definition 5.8. Under the above assumptions, the expression

Stlfp[Q1(x̄1) ≡ A1(Q̄, x̄1, ȳ1), . . . , Qk(x̄k) ≡ Ak(Q̄, x̄k, ȳk)] (46)

is called the stratified least fixpoint of A1, . . . , Ak, and the expression

Stgfp[Q1(x̄1) ≡ A1(Q̄, x̄1, ȳ1), . . . , Qk(x̄k) ≡ Ak(Q̄, x̄k, ȳk)] (47)

is called the stratified greatest fixpoint of A1, . . . , Ak.

Definition 5.9. Let S1, . . . ,Sl (1 ≤ i ≤ l) be strata of sets of rules con-
sidered in Definition 5.8. The semantics of Stlfp[Q̄ ≡ Ā] is given by (the
unique) tuple of relations Q̄ given by Slfp [S1], . . . ,Slfp [Sl]. The seman-
tics of Stgfp[Q̄ ≡ Ā] is given by (the unique) tuple of relations Q̄ given by
Sgfp [S1], . . . ,Sgfp [Sl].

We are now in position to formulate the elimination theorem. The in-
tuition behind its proof is that one eliminates quantifiers starting from the
first stratum and proceeds stratum by stratum until the last one. So, in the
result, for each stratum there is a corresponding simultaneous fixpoint.

Theorem 5.10. Let X̄ = X1, . . . ,Xk be distinct relation variables and C(X̄),
Ai(X̄, x̄1, . . . , x̄k, z̄) (1 ≤ i ≤ k) be classical first-order formulas, where the
number of distinct variables in x̄i is equal to the arity of Xi. Then:

166 D. M. Gabbay and A. Sza�las

• if {∀x̄[Ai(X̄, . . .) → Xi(x̄i)] | 1 ≤ i ≤ k} is stratifiable with a stratifica-
tion mapping δ, γ is a δ-order and C(X̄) is negative w.r.t. X1, . . . ,Xk

then:

∃X1 . . . ∃Xk

{ ∧
1≤i≤k

∀x̄i[Ai(X̄, x̄1, . . . , x̄k, z̄) → Xi(x̄i)] ∧ C(X̄)
}

|||

C(X̄)
Xγ(1)(x̄γ(1)),...,Xγ(k)(x̄γ(k))

λx̄γ(1),...,x̄γ(k)Stlfp[Xγ(1)(x̄γ(1))≡Aγ(1)(X̄,...),...,Xγ(k)(x̄γ(k))≡Aγ(k)(X̄,...)]
.

(48)

• if {∀x̄[Xi(x̄i) → Ai(X̄, . . .)] | 1 ≤ i ≤ k} is stratifiable with a stratifica-
tion mapping δ, γ is a δ-order and C(X̄) is positive w.r.t. X1, . . . ,Xk

then:

∃X1 . . . ∃Xk

{ ∧
1≤i≤k

∀x̄i[Xi(x̄i) → Ai(X̄, x̄1, . . . , x̄k, z̄)] ∧ C(X̄)
}

|||

C(X̄)
Xγ(1)(x̄γ(1)),...,Xγ(k)(x̄γ(k))

λx̄γ(1),...,x̄γ(k)Stgfp[Xγ(1)(x̄γ(1))≡Aγ(1)(X̄,...),...,Xγ(k)(x̄γ(k))≡Aγ(k)(X̄,...)]
.

(49)

Proof. We prove the theorem by induction on the number of strata l ≥ 1.
The case of a single stratum, l = 1, is formulated and proved as

Theorem 5.1.
Assume that the theorem holds for sets of rules with l > 1 strata. Let

S a Pia set with l + 1 strata, S1, . . . ,Sl,Sl+1, consisting of k rules. First,
reorder existential second-order quantifiers in (48) (respectively, (49)) ac-
cording to γ from right to left, so that the resulting sequence of quantifiers
is ∃head(rule γ(k)) . . . ∃head(rule γ(1)).

Existential second-order quantifiers binding heads of stratum l+1 are the
outermost ones. Use the inductive assumption to eliminate all quantifiers ex-
cept those binding heads of stratum l+1. In the resulting formula substitute
any occurrence of a fixpoint operator of the form Slfp [R̄ ≡ Ū] by a new re-
lation symbol, say N applied to the same arguments as Slfp [R̄ ≡ Ū]. Next,
add to the theory definitions of the new symbols as the respective fixpoints
by using equivalences of the form:

∀x
[
N(x̄) ≡ Slfp [R̄ ≡ Ū]

]
. (50)

Now we apply Theorem 5.1, replace N ’s by fixpoints according to respective
definitions (50) and finally remove those definitions.

Annotation Theories over Finite Graphs 167

Remark 5.1.

1. As noted in the above proof, Theorem 5.1 is a corollary of Theorem 5.10
in the case when there is a stratification consisting of a single stratum.

2. Observe that Theorem 5.10 can be extended to higher-order contexts
along the lines of the elimination theorem of Gabbay and Sza�las proved
in [16].

6. Reducing Circumscription Formulas in Annotation

Theories

6.1. Discussion

We have already indicated in Remark 4.1 that axioms of the form σ(n) ∧
π(n), appearing in ∆mn-theories, make second-order quantifier techniques
presented in Section 5 rarely applicable.

In all examples of annotation theories we consider, formulas contain re-
cursive clauses, which excludes the possibility of eliminating all second-order
quantifiers using the lemma of Ackermann (i.e., Lemma 5.3). The resulting
formulas are then at least formulas of the fixpoint logic. This makes the
SCAN algorithm [14] inapplicable, too.

So a candidate could be the Theorem 5.1, which to our best knowledge
provides the strongest second-order quantifier elimination method that could
be applied here.8 As we show below, this theorem is not directly applicable,
too. The argument is based on van Benthem’s result [35]. To present the
result we need the following definition.

Definition 6.1. A first-order formula A(P, T̄) has the intersection property
w.r.t. P iff in any relational structure M , whenever M,Pi |= A(P, T̄) for all
predicates in a family {Pi | i ∈ I}, A(P, T̄) also holds for their intersection,

i.e., we have that M,
⋂
i∈I

Pi |= A(P, T̄).

The following theorem has been proved by van Benthem in [35].

Theorem 6.2 (van Benthem [35]). The following are equivalent for all first-
order formulas A(P, T̄):

1. A(P, T̄) has the intersection property w.r.t. P ;

2. There is a Pia formula equivalent to A(P, T̄).

8Except, of course, for our Theorem 5.10.

168 D. M. Gabbay and A. Sza�las

We now have the following corollary.

Corollary 6.3. For n > 1 and m ≥ 1, no ∆mn-theory theory is equivalent
to a conjunction of Pia formulas.

Proof. Let n > 1. Then the formula σ(n) ∧ π(n) of ∆mn-theory expresses
the fact that every node of a graph is uniquely annotated. The intersection
of two different annotations is then inconsistent.

The above result shows that the method based on Theorem 5.1 is not
directly applicable in the case of the first form (32) of formulas required
there.9

This shows that the method introduced in Section 5.3, based on Theo-
rem 5.10 is indeed substantial.

6.2. Useful Simplifications

As already discussed, axioms σ(n)∧π(n) of ∆mn-theories are a source of dif-
ficulties in applying second-order quantifier techniques. The following two
lemmas allow us to simplify the formulas. Namely, in the case of minimiza-
tion one can remove π(n) (together with other conjuncts negative w.r.t. min-
imized relations) from the second-order part of circumscription formula (1).
Dually, in the case of maximization one can remove σ(n) (together with
other conjuncts positive w.r.t. maximized relations) from the second-order
part of circumscription formula (2).

Below we first consider circumscribed theories without varied predicates,
so theories are denoted by T (P̄) rather than T (P̄ , S̄), as S̄ = ∅.

Lemma 6.4. Let T (P̄) be a theory. Assume that T is of the form of con-
junction T±(P̄)∧ T+(P̄), where T+(P̄) is positive w.r.t. all relation symbols
in P̄ . Then Circ↑(T ; P̄ , ∅) is equivalent to

T (P̄) ∧ ∀X̄
{[

T±(P̄)
P̄
X̄ ∧

k∧
i=1

∀x̄i[Pi(x̄i) → Xi(x̄i)]
]
→

k∧
i=1

∀x̄i[Xi(x̄i) → Pi(x̄i)]
}

.

(51)

9Similar argument applies to the form required in (33). This can be seen by considering
the contraposition of the implication and respectively replace ¬Xi’s by Xi’s.

Annotation Theories over Finite Graphs 169

Proof. 10 Since T+(P̄) positive w.r.t. all relation symbols in P̄ , it is also
monotone w.r.t. all relation symbols in P̄ . We then have that for any
relational structure M and valuation v:

M,v |=

[
T+(P̄) ∧

k∧
i=1

∀x̄i[Pi(x̄i) → Xi(x̄i)]

]
→ T+(P̄)

P̄
X̄ .

Thus, in the presence of the conjunct T (P̄), formula (51) obtained from (2)

by removing T+(P̄)
P̄
X̄ is equivalent to (2).

Lemma 6.5. Let T (P̄) be a theory. Assume that T is of the form of con-
junction T±(P̄)∧T−(P̄), where T−(P̄) is negative w.r.t. all relation symbols
in P̄ . Then Circ↓(T ; P̄ ; ∅) is equivalent to

T (P̄) ∧ ∀X̄
{[

T±(P̄)
P̄
X̄ ∧

k∧
i=1

∀x̄i[Xi(x̄i) → Pi(x̄i)]
]
→

k∧
i=1

∀x̄i[Pi(x̄i) → Xi(x̄i)]
}

.

(52)

Proof. Similar to the proof of Lemma 6.4, by observing that contraposition
of all implications ∀x̄i[Xi(x̄i) → Pi(x̄i)] together with the monotonicity of
T− w.r.t. ¬Pi imply the result.

In order to deal with varied predicates we use the following observation,
allowing one to eliminate varied predicates.

Proposition 6.6 (Lifschitz [24]). The circumscription Circ↓(T (P̄ , S̄); P̄ ; S̄)

is equivalent to T (P̄ , S̄) ∧ Circ↓(∃Ȳ [T (P̄ , S̄)
S̄
Ȳ]; P̄ ; ∅).

Similarly, we have analogous proposition for the dual form of circum-
scription.

Proposition 6.7. The circumscription Circ↑(T (P̄ , S̄); P̄ ; S̄) is equivalent to

T (P̄ , S̄) ∧ Circ↑(∃Ȳ [T (P̄ , S̄)
S̄
Ȳ]; P̄ ; ∅).

The following proposition, known as the purity deletion principle, is
sometimes useful.

10The proof is similar to the one given by Lifschitz [26] for proving a reduction result
for separated formulas, but we deal with a more general context here.

170 D. M. Gabbay and A. Sza�las

Proposition 6.8 (Sza�las [34]). Let A be a classical first-order formula of
the form Q1x1....Qrxr[A1 ∧ ... ∧ Aq], where Q1, . . . , Qr ∈ {∃,∀} and each
A1, ..., Aq containing an occurrence of P is of the form

(
B ∨ P (z̄)

)
with B

being any first-order formula, possibly containing arbitrary occurrences of P .
Then the formula ∃P [A] is equivalent to Q1x1....Qrxr[Ai1 ∧ ... ∧ Ais], where
i1, ..., is ∈ {1, ..., q} and Ai1 , ..., Ais are all conjuncts that do not contain
occurrences of P (the empty conjunction is, by convention, True).

The same holds when each A1, ..., Aq containing an occurrence of P is
of the form

(
B ∨ ¬P (z̄)

)
.

6.3. Reducing Circumscription in Phan’s Argumentation Theory

In this section we consider the Phan’s theory A(R,Q1, Q2, Q3) specified in
Section 3.2. We show that all circumscriptive policies considered there are
reducible to fixpoint logic.

6.3.1. Minimization on Q2

Consider the circumscription formula Circ↓(A(R,Q1, Q2, Q3);Q2;Q1, Q3):

A(R,Q1, Q2, Q3)∧ (53)

∀X1∀X2∀X3[(A(R,X1,X2,X3) ∧ ∀x[X2(x) → Q2(x)]) →
∀x[Q2(x) → X2(x)]].

(54)

We focus on (54), which is equivalent to

¬∃X1∃X2∃X3

{
∀x[X1(x) ∨ X2(x) ∨ X3(x)]∧

∀x[¬X1(x) ∨ ¬X2(x)] ∧ ∀x[¬X1(x) ∨ ¬X3(x)] ∧ ∀x[¬X2(x) ∨ ¬X3(x)]∧

∀x[∀y[R(y, x) → X1(y)] → X2(x)]∧

∀x[∃y[R(y, x) ∧ X2(y)] → X1(x)]∧

∀x[(∀y[R(y, x) → (X1(y) ∨ X3(y))] ∧ ∃y[R(y, x) ∧ X3(y)]) → X3(x)]∧

∀x[X2(x) → Q2(x)] ∧ ∃z[Q2(z) ∧ ¬X2(z)]]
}
.

Using (7) and minor transformations we obtain

¬∃X1∃X2∃X3

{
∀x[X2(x) → Q2(x)] ∧ ∃z[Q2(z) ∧ ¬X2(z)]∧ (55)

∀x[¬X1(x)∨¬X2(x)]∧∀x[¬X1(x)∨¬X3(x)]∧∀x[¬X2(x)∨¬X3(x)]∧ (56)

∀x[∀y[R(y, x) → X1(y)] → X2(x)]∧ (57)

∀x[∃y[R(y, x) ∧ X2(y)] → X1(x)]∧ (58)

∀x
[(
∀y[R(y, x) → (X1(y) ∨ X3(y))] ∧ ∃y[R(y, x) ∧ X3(y)]∨

(¬X1(x) ∧ ¬X2(x))
)
→ X3(x)

]}
.

(59)

Annotation Theories over Finite Graphs 171

We have two strata: {(57), (58)} and {(59)}. Using Theorem 5.10, we first
simultaneously eliminate ∃X1∃X2 and then ∃X3.

The elimination of ∃X1∃X2 provides us with the following definition of
X1 and X2:

Slfp
[
X1(x) ≡ ∃y[R(y, x) ∧ X2(y)], X2(x) ≡ ∀y[R(y, x) → X1(y)]

]
. (60)

The elimination of ∃X3 provides us with the following definition of X3:

Lfp
[
X3(x) ≡ ∀y[R(y, x) → (X1(y) ∨ X3(y))] ∧ ∃y[R(y, x) ∧ X3(y)]

∨(¬X1(x) ∧ ¬X2(x))
]
.

(61)

The result of elimination is then

¬
{
∀x[X2(x) → Q2(x)] ∧ ∃z[Q2(z) ∧ ¬X2(z)]∧
∀x[¬X1(x)∨¬X2(x)]∧∀x[¬X1(x)∨¬X3(x)]∧∀x[¬X2(x)∨¬X3(x)]

} (62)

with X1,X2,X3 respectively substituted by definitions given by formulas
(60) and (61).

Formula (62) can then be presented in a more readable form as:

∀x[X2(x) → Q2(x)] ∧ ∀x[¬X1(x) ∨ ¬X2(x)]∧
∀x[¬X1(x) ∨ ¬X3(x)] ∧ ∀x[¬X2(x) ∨ ¬X3(x)]

}
→ ∀z[Q2(z) → X2(z)].

Since the result is a fixpoint formula, we have the following corollary.

Corollary 6.9. Model checking problem for the theory A(R,Q1, Q2, Q3)
with circumscriptive policy expressed by Circ↓(A(R,Q1, Q2, Q3);Q2;Q1, Q3)
is in PTime in the size of the structure.

6.3.2. Maximization on Q2

Consider the dual circumscription formula Circ↑(A(R,Q1, Q2, Q3);Q2;
Q1, Q3):

A(R,Q1, Q2, Q3)∧ (63)

∀X1∀X2∀X3

[
(A(R,X1,X2,X3) ∧ ∀x[Q2(x) → X2(x)]) →

∀x[X2(x) → Q2(x)]
]
.

(64)

We focus on (64), which is equivalent to

¬∃X1∃X2∃X3

{
∀x[X1(x) ∨ X2(x) ∨ X3(x)]∧

∀x[¬X1(x)∨¬X2(x)] ∧ ∀x[¬X1(x)∨¬X3(x)] ∧ ∀x[¬X2(x)∨¬X3(x)]∧

∀x[∀y[R(y, x) → X1(y)] → X2(x)]∧

∀x[∃y[R(y, x) ∧ X2(y)] → X1(x)]∧

∀x[(∀y[R(y, x) → (X1(y) ∨ X3(y))] ∧ ∃y[R(y, x) ∧ X3(y)]) → X3(x)]∧

∀x[Q2(x) → X2(x)] ∧ ∃z[X2(z) ∧ ¬Q2(z)]]
}

172 D. M. Gabbay and A. Sza�las

and further to

¬∃z∃X1∃X2∃X3

{
¬Q2(z) ∧ ∀x[¬X1(x) ∨ ¬X2(x)]∧ (65)

∀x[¬X1(x) ∨ ¬X3(x)] ∧ ∀x[¬X2(x) ∨ ¬X3(x)]∧ (66)

∀x[
(
∀y[R(y, x) → X1(y)] ∨ Q2(x) ∨ x = z

)
→ X2(x)]∧ (67)

∀x[∃y[R(y, x) ∧ X2(y)] → X1(x)]∧ (68)

∀x
[(
∀y[R(y, x) → (X1(y) ∨ X3(y))] ∧ ∃y[R(y, x) ∧ X3(y)]∨

(¬X1(x) ∧ ¬X2(x))
)
→ X3(x)

]}
.

(69)

We have two strata: {(67), (68)}, {(69)}. Using Theorem 5.10, we first
simultaneously eliminate ∃X1∃X2 and then ∃X3.

The elimination of ∃X1∃X2 provides us with the following definition of
X1 and X2:

Slfp
[
X1(x) ≡ ∃y[R(y, x) ∧ X2(y)],
X2(x) ≡

(
∀y[R(y, x) → X1(y)] ∨ Q2(x) ∨ x = z

)]
.

(70)

The elimination of ∃X3 provides us with the definition of X3 given by (61).
The result of elimination is then

¬∃z
{
¬Q2(z) ∧ ∀x[¬X1(x) ∨ ¬X2(x)]∧
∀x[¬X1(x) ∨ ¬X3(x)] ∧ ∀x[¬X2(x) ∨ ¬X3(x)]

} (71)

with X1,X2,X3 respectively substituted by definitions provided by formulas
(61) and (70).

Formula (71) can then be presented in a more readable form as:

∀z

{(
∀x[¬X1(x) ∨ ¬X2(x)]∧
∀x[¬X1(x) ∨ ¬X3(x)] ∧ ∀x[¬X2(x) ∨ ¬X3(x)]

)
→ Q2(z)

}
.

Note that the quantifier ∀z cannot be moved to Q2(z), since z appears in
the antecedent as a part of definition of X2 given by (70).

Since the resulting formula is a fixpoint formula, we have the follow-
ing corollary.

Corollary 6.10. Model checking problem for the theory A(R,Q1, Q2, Q3)
with circumscriptive policy expressed by Circ↑(A(R,Q1, Q2, Q3);Q2;Q1, Q3)
is in PTime in the size of the model.

6.3.3. Minimization on Q3

Consider the circumscription formula Circ↓(A;Q3;Q1, Q2):

A(R,Q1, Q2, Q3)∧ (72)

∀X1∀X2∀X3[(A(R,X1,X2,X3) ∧ ∀x[X3(x) → Q3(x)]) →
∀x[Q3(x) → X3(x)]].

(73)

Annotation Theories over Finite Graphs 173

We focus on (73), which is equivalent to

¬∃X1∃X2∃X3

{
∀x[X1(x) ∨ X2(x) ∨ X3(x)]∧

∀x[¬X1(x)∨¬X2(x)] ∧ ∀x[¬X1(x)∨¬X3(x)] ∧ ∀x[¬X2(x)∨¬X3(x)]∧

∀x[∀y[R(y, x) → X1(y)] → X2(x)]∧

∀x[∃y[R(y, x) ∧ X2(y)] → X1(x)]∧

∀x[(∀y[R(y, x) → (X1(y) ∨ X3(y))] ∧ ∃y[R(y, x) ∧ X3(y)]) → X3(x)]∧

∀x[X3(x) → Q3(x)] ∧ ∃z[Q3(z) ∧ ¬X3(z)]]
}
.

As in Section 6.3.1, we obtain

¬∃X1∃X2∃X3

{
∀x[X3(x) → Q3(x)] ∧ ∃z[Q3(z) ∧ ¬X3(z)]∧ (74)

∀x[¬X1(x)∨¬X2(x)]∧∀x[¬X1(x)∨¬X3(x)]∧∀x[¬X2(x)∨¬X3(x)]∧ (75)

∀x[∀y[R(y, x) → X1(y)] → X2(x)]∧ (76)

∀x[∃y[R(y, x) ∧ X2(y)] → X1(x)]∧ (77)

∀x
[(
∀y[R(y, x) → (X1(y) ∨ X3(y))] ∧ ∃y[R(y, x) ∧ X3(y)]∨

(¬X1(x) ∧ ¬X2(x))
)
→ X3(x)

]}
.

(78)

We have two strata: {(76), (77)} and {(78)}, which are the same as in Sec-
tion 6.3.1. The result of elimination is then

¬
{
∀x[X3(x) → Q3(x)] ∧ ∃z[Q3(z) ∧ ¬X3(z)]∧
∀x[¬X1(x)∨¬X2(x)] ∧ ∀x[¬X1(x)∨¬X3(x)] ∧ ∀x[¬X2(x)∨¬X3(x)]

} (79)

with X1,X2,X3 respectively substituted by definitions given by formulas
(60) and (61).

Formula (79) can be presented as:

∀x[X3(x) → Q3(x)] ∧ ∀x[¬X1(x) ∨ ¬X2(x)]∧
∀x[¬X1(x) ∨ ¬X3(x)] ∧ ∀x[¬X2(x) ∨ ¬X3(x)]

}
→ ∀z[Q3(z) → X3(z)].

Since the result is a fixpoint formula, we have the following corollary.

Corollary 6.11. Model checking problem for the theory A(R,Q1, Q2, Q3)
with circumscriptive policy expressed by Circ↓(A(R,Q1, Q2, Q3);Q3;Q1, Q2)
is in PTime in the size of the structure.

6.4. Reducing Circumscription in the Annotation Theory

Related to Approximate Reasoning

Let us now illustrate techniques introduced in Section 6.2.

174 D. M. Gabbay and A. Sza�las

Consider the circumscription formula Circ↓(R;Q1, Q3;Q2):

R(R,Q1, Q2, Q3)∧ (80)

∀X1∀X2∀X3[(R(R,X1,X2,X3)∧
∀x[X1(x) → Q1(x)] ∧ ∀x[X3(x) → Q3(x)]) →

∀x[Q1(x) → X1(x)] ∧ ∀x[Q3(x) → X3(x)]].
(81)

We focus on (81).

We first apply Proposition 6.6, so attempt to eliminate second-order
quantifiers from

∃X2

{
∀x[X1(x) ∨ X2(x) ∨ X3(x)]∧

∀x[¬X1(x)∨¬X2(x)]∧∀x[¬X1(x)∨¬X3(x)]∧∀x[¬X2(x)∨¬X3(x)]∧

∀x∀y[(R(x, y) ∧ X1(x)) → X1(y)]∧

∀x∀y[(R(x, y) ∧ X2(x)) → X2(y)]∧

∀x∀y[(R(x, y) ∧ X3(x)) → X3(y)]
}
.

The above formula is equivalent to

∃X2

{
∀x[¬X1(x)∨¬X2(x)]∧∀x[¬X1(x)∨¬X3(x)]∧∀x[¬X2(x)∨¬X3(x)]∧

∀x∀y[(R(x, y) ∧ X1(x)) → X1(y)]∧

∀y
[(

(¬X1(y) ∧ ¬X3(y)) ∨ ∃x[R(x, y) ∧ X2(x)]
)
→ X2(y)

]
∧

∀x∀y[(R(x, y) ∧ X3(x)) → X3(y)]
}
.

Using Theorem 5.2, we obtain the following definition of X2:

Lfp
[
X2(y) ≡

(
(¬X1(y) ∧ ¬X3(y)) ∨ ∃x[R(x, y) ∧ X2(x)]

)]
.

Now we can use Lemma 6.5, which allows us to remove formulas where X1

and X3 appear only negatively, and we obtain that (81) is equivalent to

¬∃X1∃X3

[
R′(R,X1,X2,X3)∧

∀x[X1(x) → Q1(x)] ∧ ∀x[X3(x) → Q3(x)]∧(
∃x[Q1(x) ∧ ¬X1(x)] ∨ ∃x[Q3(x) ∧ ¬X3(x)]

)]
,

(82)

where R′ is the conjunction

∀x∀y[(R(x, y) ∧ X1(x)) → X1(y)]∧
∀x∀y[(R(x, y) ∧ X3(x)) → X3(y)].

(83)

Annotation Theories over Finite Graphs 175

Formula (82) is then equivalent to

¬
{
∃X1∃X3

[
R′(R,X1,X2,X3)∧ (84)

∀x[X1(x) → Q1(x)] ∧ ∀x[X3(x) → Q3(x)]∧ (85)

∃x[Q1(x) ∧ ¬X1(x)]
]
∨ (86)

∃X1∃X2∃X3

[
R′(R,X1,X2,X3)∧ (87)

∀x[X1(x) → Q1(x)] ∧ ∀x[X3(x) → Q3(x)]∧ (88)

∃x[Q3(x) ∧ ¬X3(x)]
)]}

, (89)

so in the scope of the outermost negation we have a disjunction of two
second-order formulas,

(
(84)−(86)

)
∨
(
(87)−(89)

)
. We start with the first

disjunct:

∃x∃X1∃X3

[
∀y[∃x[R(x, y) ∧ X1(x)] → X1(y)]∧

∀y[∃x[R(x, y) ∧ X3(x)] → X3(y)]∧

∀x[X1(x) → Q1(x)] ∧ ∀x[X3(x) → Q3(x)]∧

Q1(x) ∧ ¬X1(x)
]
.

Observe that for both X1 and X3 satisfy assumptions of Proposition 6.8,
so the formula reduces to ∃x[Q1(x)]. Similarly, the second disjunct reduces
to ∃x[Q3(x)]. When we move negation inside, disjunction is switched to
conjunction, so the final result is

∀x[¬Q1(x)] ∧ ∀x[¬Q3(x)]. (90)

Since (90) is a classical first-order formula, we have the following corollary.

Corollary 6.12. Model checking problem for the theory R(R,Q1, Q2, Q3)
with circumscriptive policy expressed by Circ↓(R;Q1, Q3;Q2) is in
logSpace (so also in PTime) in the size of the structure.

We have Corollary 6.12 because we did not place any positive facts as
to Q1 and Q3. Such facts would contribute to the result. In such a case
Theorem 5.1 would be applicable, so we have the following proposition.

Proposition 6.13. Model checking problem for the theory R(R,Q1, Q2, Q3)
with circumscriptive policy expressed by Circ↓(R;Q1, Q3;Q2) and additional
positive facts concerning Q1 and/or Q2 is in PTime in the size of the
model.

176 D. M. Gabbay and A. Sza�las

6.5. Reducing Circumscription in the Formalization

of Semantics of Logic Programs

Consider the circumscription formula Circ↓(L;Q2;Q1, Q3):

L(R+, R-, Q1, Q2, Q3)∧ (91)

∀X1∀X2∀X3

[
(L(R+, R-,X1,X2,X3) ∧ ∀x[X2(x) → Q2(x)]) →

∀z[Q2(z) → X2(z)]
]
.

(92)

We focus on (92), which is equivalent to

¬∃z∃X1∃X2∃X3

{
∀x[X2(x) → Q2(x)] ∧ Q2(z) ∧ ¬X2(z)∧ (93)

∀x[¬X1(x)∨¬X2(x)]∧∀x[¬X1(x)∨¬X3(x)]∧∀x[¬X2(x)∨¬X3(x)]∧ (94)

∀x
[(
∃y[R+(y, x) ∧ X1(y)] ∨ ∃y[R-(y, x) ∧ X2(y)]

)
→ X1(x)

]
∧ (95)

∀x
[(
∀y[R+(y, x) → X2(y)] ∧ ∀y[R-(y, x) → X1(y)]

)
→ X2(x)

]
∧ (96)

∀x
[(
∀y[R+(y, x) → (X2(y) ∨ X3(y))]∧

∀y[R-(y, x) → (X1(y) ∨ X3(y))]∧ (97)

∃y[
(
(R-(y, x)∨R+(y, x)) ∧ X3(y)

)
]∨(¬X1(x)∧¬X2(x))

)
→ X3(x)

]
.

We have two strata: {(95), (96)} and {(97)}. Using Theorem 5.10, we first
simultaneously eliminate ∃X1∃X2 and then ∃X3.

The elimination of ∃X1∃X2 provides us with the following definition of
X1 and X2:

Slfp
[
X1(x) ≡

(
∃y[R+(y, x) ∧ X1(y)] ∨ ∃y[R-(y, x) ∧ X2(y)]

)
,

X2(x) ≡
(
∀y[R+(y, x) → X2(y)] ∧ ∀y[R-(y, x) → X1(y)]

)]
.

(98)

The elimination of ∃X3 provides us with the following definition of X3:

Lfp
[
X3(x) ≡

(
∀y[R+(y, x) → (X2(y) ∨ X3(y))]∧

∀y[R-(y, x) → (X1(y) ∨ X3(y))]∧
∃y[

(
(R-(y, x) ∨ R+(y, x)) ∧ X3(y)

)
] ∨ (¬X1(x) ∧ ¬X2(x))

)]
.

(99)

The result of elimination is then

¬∃z
[
∀x[X2(x) → Q2(x)] ∧ Q2(z) ∧ ¬X2(z) ∧ ∀x[¬X1(x) ∨ ¬X2(x)]∧

∀x[¬X1(x) ∨ ¬X3(x)] ∧ ∀x[¬X2(x) ∨ ¬X3(x)]
]
,

(100)

with X1,X2,X3 respectively substituted by definitions given by formulas
(98) and (99).

Formula (100) can be presented in a more readable form:

∀x{X2(x) → Q2(x)] ∧ ∀x[¬X1(x) ∨ ¬X2(x)]∧
∀x[¬X1(x) ∨ ¬X3(x)] ∧ ∀x[¬X2(x) ∨ ¬X3(x)]

}
→ ∀z[Q2(z) → X2(z)].

Since the result is a fixpoint formula, we have the following corollary.

Annotation Theories over Finite Graphs 177

Corollary 6.14. Model checking problem for theory L(R+, R-, Q1, Q2, Q3)
with circumscriptive policy expressed by Circ↓(L;Q2;Q1, Q3) is in PTime in
the size of the structure.

7. Conclusions

In the paper we introduced the concept of annotation theories and showed
that such theories, together with minimization/maximization policies ex-
pressed by means of circumscription, are rich enough to capture important
phenomena appearing in many applications, including specific theories of ar-
gumentation, approximate reasoning as well as semantics of logic programs
with negation.

Even if circumscription is substantially a second-order formalism, we
provided a number of results allowing to eliminate second-order quantifiers.
Even simpler methods, based on results from [11, 28] appear quite powerful
and applicable to a wide class of circumscribed formulas (see also [10, 15]).
The problem of quantifier elimination in annotation theories appears, in gen-
eral, as difficult as the question whether PTime =NPTime, so considering
particular annotation theories is an interesting research area, far from being
completed.

Annotation theories deserve further investigations. In particular, an in-
teresting problem is to search for algorithms for finding annotations, espe-
cially ones that construct the model incrementally on the graph. In general
this problem is as difficult as PTime =NPTime, as shown in Section 4. How-
ever, in the case of stratified theories we can apply Theorem 5.10, allowing
us to reduce complexity to PTime.11

Also, using theory approximation [32, 33, 5, 6, 8] is worth investigat-
ing in the context of second-order quantifier elimination from circumscribed
annotation theories. Namely, when such elimination is not possible using
Theorem 5.10, one can approximate considered theories by theories admit-
ting quantifier elimination. We leave these subjects for future research.

Acknowledgements. We would like to thank Linh Anh Nguyen for care-
ful reading of this paper and many helpful comments and suggestions.

This work has been supported in part by the grant N N206 399134 of
Polish Ministry of Science and Higher Education and by grants from the
Swedish Foundation for Strategic Research (SSF) Strategic Research Center
MOVIII and the Swedish Research Council (VR) Linnaeus Center CADICS.

11This method is applicable to annotation theories considered in Sections 3.2, 3.3 and 3.4.

178 D. M. Gabbay and A. Sza�las

References

[1] Abiteboul, S., R. Hull, and V. Vianu, Foundations of Databases, Addison-Wesley

Pub. Co., 1996.

[2] Ackermann, W., ‘Untersuchungen über das eliminationsproblem der mathematis-

chen logik’, Mathematische Annalen, 110 (1935), 390–413.

[3] Baader, F., D. Calvanese, D.L. McGuinness, D. Nardi, and P.F. Patel-

Schneider, (eds.) Description Logic Handbook, Cambridge University Press, 2002.

[4] Blackburn, P., and J. Seligman, ‘Hybrid languages’, Journal of Logic, Language

and Information, 4 (1995), 41–62.

[5] Cadoli, M., Tractable Reasoning in Artificial Intelligence, vol. 941 of LNCS,

Springer-Verlag, 1995.

[6] Cadoli, M, and F.M. Donini, ‘A survey on knowledge compilation’, AI Communi-

cations, 10 (1997), 3-4, 137–150.

[7] Caminada, M., and D.M. Gabbay, ‘A logical account of formal argumentation’,

Studia Logica, 93 (2009), 2-3, 109–145, this issue.

[8] Darwiche, A., and P. Marquis, ‘A knowledge compilation map’, Journal of Artifi-

cial Intelligence Research, 17 (2002), 229–264.

[9] Doherty, P., W. �Lukaszewicz, A. Skowron, and A. Sza�las, Knowledge repre-

sentation techniques. A rough set approach, vol. 202 of Studies in Fuziness and Soft

Computing, Springer-Verlag, 2006.

[10] Doherty, P., W. �Lukaszewicz, and A. Sza�las, ‘A reduction result for circum-

scribed semi-Horn formulas’, Fundamenta Informaticae, 28 (1996), 3–4, 261–271.

[11] Doherty, P., W. �Lukaszewicz, and A. Sza�las, ‘Computing circumscription revis-

ited’, Journal of Automated Reasoning, 18 (1997), 3, 297–336.

[12] Doherty, P., and A. Sza�las, ‘On the correspondence between approximations and

similarity’, in S. Tsumoto, R. Slowinski, J. Komorowski, and J.W. Grzymala-Busse,

(eds.), Proc. RSCTC’2004, vol. 3066 of LNAI, 2004, pp. 143–152.

[13] Ebbinghaus, H-D., and J. Flum, Finite Model Theory, Springer-Verlag, Heidel-

berg, 1995.

[14] Gabbay, D. M., and H. J. Ohlbach, ‘Quantifier elimination in second-order predi-

cate logic’, South African Computer Journal, 7 (1992), 35–43.

[15] Gabbay, D.M., R. Schmidt, and A. Sza�las, Second-Order Quantifier Elimination.

Foundations, Computational Aspects and Applications, vol. 12 of Studies in Logic,

College Publications, 2008.

[16] Gabbay, D.M., and A. Sza�las, ‘Second-order quantifier elimination in higher-order

contexts with applications to the semantical analysis of conditionals’, Studia Logica,

87 (2007), 37–50.

[17] Gelfond, M., and V. Lifschitz, ‘The stable model semantics for logic program-

ming’, in Proceedings of the Fifth International Conference on Logic Programming

(ICLP), 1988, pp. 1070–1080.

[18] Goranko, V., ‘Temporal logics with reference pointers and computation tree logics’,

Journal of Applied Non-Classical Logics, 10 (2000), 3-4.

Annotation Theories over Finite Graphs 179

[19] Horrocks, I., and U. Sattler, ‘Ontology reasoning in the shoq(d) description

logic’, in In Proc. of the 17th Int. Joint Conf. on Artificial Intelligence (IJCAI 2001,

2001, pp. 199–204.

[20] Immerman, N., Descriptive Complexity, Springer-Verlag, New York, Berlin, 1998.

[21] Kachniarz, J., and A. Sza�las, ‘On some extensions of second-order quantifier tech-

niques’, Unpublished manuscript, (2001).

[22] Kirousis, L.M., and P.G. Kolaitis, ‘A dichotomy in the complexity of propositional

circumscription’, in In Proceedings of the 16th Annual IEEE Symposium on Logic in

Computer Science – LICS’01, 2001, pp. 71–80.

[23] Kolaitis, P.G., and C.H. Papadimitriou, ‘Some computational aspects of circum-

scription’, Journal of the ACM, 37 (1990), 1, 1–14.

[24] Lifschitz, V., ‘Computing circumscription’, in Readings in Nonmonotonic Reason-

ing, Morgan Kaufmann, 1985, pp. 121–127.

[25] Lifschitz, V., ‘On the satisfiability of circumscription’, Artificial Intelligence J., 28

(1986), 17–27.

[26] Lifschitz, V., ‘Circumscription’, in D.M. Gabbay, C.J. Hogger, and J.A. Robinson,

(eds.), Handbook of Artificial Intelligence and Logic Programming, vol. 3, Oxford

University Press, 1991, pp. 297–352.

[27] McCarthy, J., ‘Circumscription: A form of non-monotonic reasoning’, Artificial

Intelligence J., 13 (1980), 27–39.

[28] Nonnengart, A., and A. Sza�las, ‘A fixpoint approach to second-order quantifier

elimination with applications to correspondence theory’, in E. Or�lowska, (ed.), Logic

at Work: Essays Dedicated to the Memory of Helena Rasiowa, vol. 24 of Studies in

Fuzziness and Soft Computing, Springer Physica-Verlag, 1998, pp. 307–328.

[29] Pawlak, Z., Rough Sets. Theoretical Aspects of Reasoning about Data, Kluwer Aca-

demic Publishers, Dordrecht, 1991.

[30] Phan, M.D., ‘On the acceptability of arguments and its fundamental role in non-

monotonic reasoning, logic programming and n-person games’, Artificial Intelligence,

77 (1995), 321–357.

[31] Schaefer, T.J., ‘The complexity of satisfiability problems’, in STOC ’78: Proceed-

ings of the 10th Annual ACM symposium on Theory of Computing, 1978, pp. 216–226.

[32] Selman, B., and H. Kautz, ‘Knowledge compilation using horn approximations’, in

In Proceedings of AAAI-91, 1991, pp. 904–909.

[33] Selman, B., and H. Kautz, ‘Knowledge compilation and theory approximation’,

Journal of the ACM, 43 (1996), 193–224.

[34] Sza�las, A., ‘On the correspondence between modal and classical logic: An automated

approach’, Journal of Logic and Computation, 3 (1993), 605–620.

[35] van Benthem, J., ‘Minimal predicates, fixed-points, and definability’, Journal of

Symbolic Logic, 70 (2005), 3, 696–712.

[36] Wu, Yining, M. Caminada, and D.M. Gabbay, ‘Complete extensions in argumen-

tation coincide with 3-valued stable models in logic programming’, Studia Logica, 93

(2009), 2-3, 383–403, this issue.

180 D. M. Gabbay and A. Sza�las

Dov M. Gabbay

Department of Computer Science
King’s College, London, UK
Bar-Ilan University, Israel
University of Luxembourg
dov.gabbay@kcl.ac.uk

Andrzej Sza�las

Institute of Informatics
Warsaw University, Poland
Dept. of Comp. and Information Sci.
University of Linköping, Sweden
andsz@mimuw.edu.pl

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /SyntheticBoldness 1.00
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org?)
 /PDFXTrapped /False

 /Description <<
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006400690067006900740061006c0020007000720069006e00740069006e006700200061006e00640020006f006e006c0069006e0065002000750073006100670065002e000d0028006300290020003200300030003400200053007000720069006e00670065007200200061006e006400200049006d007000720065007300730065006400200047006d00620048>
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [5952.756 8418.897]
>> setpagedevice

