
Global View On Reactivity:
Switch Graphs and Their Logics

Dov Gabbay
King’s College London, UK
Bar Ilan University, Israel

University of Luxembourg, Luxembourg

Sérgio Marcelino∗

SQIG - Instituto de Telecomunicações, Portugal
Departamento de Mateḿatica, IST, Lisboa, Portugal

Abstract

The notion of reactive graph generalises the one of graph by allowing thebase
accessibility relation to change when its edges are traversed. Can we represent
these more general structures using points and arrows? We prove this can be done
by introducing higher order arrows: the switches.

The possibility of expressing the dependency of the future states of the accessi-
bility relation on individual transitions by the use of higher-order relations,that is,
coding meta-relational concepts by means of relations, strongly suggests the use of
modal languages to reason directly about these structures. We introduce a hybrid
modal logic for this purpose and prove its completeness.

1 Introduction

In computer science the word reactivity has been used to denote systems that react to
their environment and are not meant to terminate, as coined by Pnueli and Harel in [25].
In this paper the word has a different meaning, reactive systems are history-dependent
relational structures, where the accessibility relation is determined not only by the point
where one is, but also by the previous transitions. This concept was introduced by Dov
Gabbay in 2004, see [14] and the extended version [15]. We show that the concept of
reactivity by presenting some structures that embody it andsome logics to reason about
them. Let us start by explaining how this concept of reactivity was born and outlining
its short life-story.

∗The author Śergio Marcelino thanks the support of FCT and EU FEDER, via the postdoc scholarship
SFRH/BPD/76513/2011, the PhD grant SFRH/BD/27938/2006, the project FCT PEst-OE/EEI/LA0008/2011
of IT, the FP7-PEOPLE-2012-IRSES GetFun Marie Curie International Research Staff Exchange Scheme
Fellowship within the 7th European Community Framework Programme, as well as the PQDR initiative of
SGIQ.

1

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Open Repository and Bibliography - Luxembourg

https://core.ac.uk/display/19772043?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

New kind of arrows. In [14], Dov Gabbay introduced the idea of enriching graph-
based structures with arrows of a new type, calling it the double arrows. Double arrows,
instead of connecting points, connect arrows with arrows orother double arrows, see
Figure 1. The idea is that this new kind of arrows can represent the dependence of

Figure 1: An enriched graph.

the state of the targeted arrow (or double arrow) upon the crossing of the arrow in its
origin. In this first presentation the double arrows would simply change the targeted
arrow state. Let us see how it works by playing with the example in Figure 1. We
represent the fact that an arrow is off by drawing its body as a dotted line. Let us see

Figure 2: The effect of crossing edges.

2

the effect that crossing some of its edges has. As shown in Figure 2, when we cross
the edges(a,b) (left) or (b,c) (right), the arrows that are in the scope of the double
arrows coming out of them, become off or on if they are on or off respectively (that is,
their state changes). This process is cumulative, after crossing(a,b) we can also cross
(b,c) and the effects are determined by the new state of double arrows, see Figure 3.
These ideas were presented using suggestive motivational cases, for example in Figure

Figure 3: The effect of crossing edges.

4 we see how these new arrows can represent a classical inheritance networks case.

Figure 4: A classical inheritance networks example. We can represent simple excep-
tions: birds do fly, but although penguins are birds they do not fly. And we can also
represent higher order exceptions (exceptions to exceptions): even though the son of
Tweety is a special penguin (so also a penguin) he does fly.

The general idea that a relational structure may vary when one moves through it
and the enriched kind of frames that came along with it fuelled publications in many
areas. Indeed, there are applications of the reactive ideasin such diverse areas as modal
logic, preferential non-monotonic logic, inheritance systems, context-free grammars,
automata theory, deontic logic and contrary to duty, argumentation and other networks,
see papers [5, 20, 12, 16, 23, 21, 22, 17, 28]. For example whenone adds these kind
of double arrows to the structure of an automata, one allows it to modify its transi-
tion relation while reading a sentence, that is, one makes itreactive. This alternative

3

paradigm competes with non-determinism in the task of obtaining automata with mini-
mal number of states accepting a language. Indeed, the following theorem (Proposition
6.1, [12]) is proven:

If A is deterministic automaton withkn states, it has an equivalent reactive
automatonR(A) with knstates.

Another interesting application of this kind of enriched graphs (though not using the
dynamical counterpart) can be found in [28], where Dung’s abstract argumentation
theory is extended incorporating the meta-level argumentation-based reasoning, about
possibly conflicting preferences between arguments.

Changing Kripke structures One can say that the relational semantics of modal
logic already encompasses change. In fact, one can consider(or access to) different
worlds, and the propositional truths, given by the propositional variables valuation,
may change. Also the accessible worlds may change with thesetransitions. Yet, the
truths at a given world are ‘still’. In a Kripke model both propositional truths and the
accessible worlds are fixed for each world. One can take it a step further and let these
vary. In many situations it makes sense to consider semantics such that when certain
operators are evaluated, the model, where the formula is being evaluated, changes.
Therefore, the interpretation of a formula in the scope of a modal operator is given by
a general condition of the type:

M, x ⊧ ◇ϕ if M′, x′ ⊧ ϕ

wherex′ is a point in a new modelM′. Indeed there are various examples of such
approaches, e.g.:

• in dynamic epistemic logics with agent’s public announcements [33];

• in sabotage logics edges can be deleted [32];

• in memory logics one may keep the information that a certain world was visited,
adding it to the memory of the model [4];

• in Hyper-modalities the meaning of the modal operators depends on where in the
formula they occur [13];

• in product logics one may think that while moving along one direction the valu-
ation of the remaining hyper-plan is changing, for example modelling valuation
change in time if that direction is a time flow [18].

Local view: reactive logics, making Kripke reactive In [15] Kripke structures are
made reactive. Gabbay introduces a semantics based on Kripke frames enriched with
double arrows, where the basic relation changes along the interpretation of a formula
by the action of the double arrows. The dependence is on whereone has been before,
that is, neither relation nor propositional variables values change with the clock ticking
but they react when and because we move. Moreover, the changes are sensitive to the

4

way we got to the current world. Subsequently it is proven that this semantics strictly
generalises the Kripke semantics, in fact, we may have classes of these frames origi-
nating logics that are not closed under substitution. It is not claimed that the classical
Kripke frames cannot cope with these types of change, the matter is more about how to
incorporate these meta-level notions into the models and which language to consider
in order to reason about them. In [19, 27] is introduced a moreabstract notion of reac-
tive Kripke frames. Whereas in [15] the changes in the accessible relation are the ones
produced by the action of the double arrows, in the abstract notion of reactive Kripke
frames these changes are given. In reality, in the usual semantics of modal logic the
only important information to the value of a modal formula isthe set of successors
at each moment, i.e thelocal accessibility relation. Therefore the notion of reactive
Kripke frame boils down to a set of admissible sequences of points, that is, the set of
admissible paths. One can picture the initial accessibility relation by considering the
paths of size two, and its evolution is encoded in the one stepprolongment relation
on the bigger paths. The semantics presented in [15] is generalised over these abstract
structures, allowing the valuation to vary along the paths,and the language is enriched
with an extra operator relating paths that have the same endpoint. This is similar to
what it is done in the branching-time logic with quantification over branches in [34].
Finally results of soundness and completeness are presented characterising some prop-
erties of these frames (generalising some familiar properties of ‘static’ Kripke frames:
reflexivity, symmetry and transitivity). Furthermore someresults regarding the decid-
ability of the resulting logics are obtained. Let us look to aconcrete case and see some
examples of what can be expressed in the considered language.

Example 1.1. Let us consider the situation of a traveller with a budget. The set of his
possible moves depends on whether he has enough money to do them (to pay tolls, oil,
train or flight tickets), furthermore his actual moves also determine his future possibil-
ities. So the paths of the correspondent reactive frame are the sequences of cities he
can visit with a certain budget. The formulas are interpreted over these paths. Let◇R

stand for the dynamics operator, that is, corresponding to the accessibility relation, and
◇P to the relation identifying the paths with the same endpoint. So,◇Rϕ means that
after the current path we can access to a city such that the resulting path satisfiesϕ.
◇Rϕ means that there is a path to the current world satisfyingϕ. Let us consider that
the propositional symbolspb and pw correspond to the predicate of being able to buy
bread and wine respectively, andm be true if there is still some money left. See Table
1 for examples of what can be said.

Modal language Natural language
¬m→ ◻R� If the traveller has no money left then he cannot move

◇P(◻Rpb ∧◇R⊺) There is a path to the current city, after which the traveller is not blocked
and he has enough money to buy bread every city he can access to

(pw ∧ ◻Rpw) If the traveller can buy wine now, and at any immediate next stop, then
→ ◻Ppb he would always be able to buy bread in the current city regardless of

how he got there

Table 1: Possible statements in the considered modal semantics.

5

The truth values of the sentences in Table 1 depend on the particular valuation we
pick, but we noticed above, with this language we can captureinteresting structural
aspects of these frames (see [19]).

1.1 Global view: Switch graphs and their frames

While the notion of reactive frame contains exactly the necessary information to gen-
eralise the usual Kripke semantics to the reactive case, it ignores the state of the global
accessibility relation. In order to model this global dependence we consider the con-
cept of reactive graphs. Intuitively a reactive graph consists in a graph that may change
its configuration when a certain edge is crossed.

As in the case of reactive frames, we define a reactive graph tobe a set of admissible
sequences of edges. Clearly, from such a set one can extract the evolution of the whole
relational structure while transversing the graph edges. For any admissible sequenceλ,
the relational state of the reactive graph afterλ is given by

Rλ = {(w,w′) ∶ λ(w,w′) is an admissible sequence of edges}.

At this point a natural question arises: can all these relational behaviours be en-
coded by double arrows? In order to answer this question we introduce the concept of
a switch graph.

Switch graphs A switch graph is a graph enriched with two kinds of double arrows,
the connecting and the disconnecting switches. As their names suggest, when the origin
of a connecting/disconnecting switch is crossed its target is connected/disconnected.

Given a setW, a switch is either an edges ∈ W2 (switch of level 0, neither connect-
ing or disconnecting) or a triples= (a, s′,∗) (of leveln > 0), where

• a ∈ W2 in the edge that triggers its action,

• s′ is the targeted switch (of leveln− 1)

• ∗ ∈ {●, ○} says if it is a connecting (black circle) or disconnecting (white circle)
switch.

The type of the switches of level 0 isǫ (the empty sequence) and ofs = (a, s′,∗) is
σ∗ whereσ is the type ofs′. We use the following notation to refer to switches in an
easier fashion:

• (ab, ǫ) = (a,b),
• (v1v2, . . . ,v2n+1v2n+2,a,∗1 . . .∗n+1) = ((v1,v2), (v3v4, . . . ,v2n+1v2n+2,∗1 . . .∗n),∗n+1).

In graphical representations we use white headed arrows to represent the disconnect-
ing switches and black headed arrow to represent the connecting ones. Let us see an
example of a situation where the dynamical restrictions areeasily represented by these
structures.

6

Example 1.2. Switches can easily grasp the fact that certain resources are finite, that
is, one can use them a finite number of times. Depending on the meaning of the ac-
cessibility relation (e.g. crossing a bridge, driving a road, taking a pill from a tablet,
printing pages, ask a person for a cigarette, etc) the switchconfiguration presented in
Figure 1.2 represents the fact that a particular action can be taken exactlyk > 1 number
of times. The set of switches is given by{(a,b), (ab, . . . ,ab, ○●k−1)}. For k = 0 we
would have(a,b) and(ab,ab, ○) on, and would not need more switches.

Figure 5: The edge(a,b) can be crossed exactlyk > 1 times.

The main result of section 2 answers to the above question, weprove that any
reactive graph can be generated by a switch graph. We also provide an example where
switches are used to represent the dynamical restrictions required for the solution of
the mutual exclusion problem.

Switch reactive hybrid logic In order to reason about switches and their actions we
introduce an interpretation of a hybrid modal language overKripke frames generated
by switch graphs dynamics. Usually nominals are valid in exactly one point in each
model. In the reactive setting they are valid in exactly one point for each of the com-
ponents representing different reactive moments, with different relational states. The
general idea is has follows:

• Instead of having an operator relating the different relational states of a point, we
use nominals to identify them.

• Also, using the fact that double arrows are relations (of different arities) over the
carrier, we consider the correspondent modal operators. Toeach type of switches
we consider the associated 2n+ 2 relation

Rσ = {(w1,w2, . . . ,w2n+1w2n+2) ∶ (w1w2, . . . ,w2n+1w2n+1, σ) is on.}

for ∣σ∣ = n, and its correspondent modal operator 2n+ 1-ary modal operator◇σ.

7

• Moreover the use of the hybrid operator @ allows us to have a global view over
the switch configuration at each moment.

• To the fragment of the language introduced above, that allows us to talk about the
switches state in each moment, we add the modal operatorz relating the differ-
ent states of the switch graph, being the real dynamics operator (corresponding
to◇R in the reactive Kripke frames).

In section 3 we give an axiomatisation of the switches evolution by capturing the inter-
action between these components but for now let us look at some examples of what we
may express in this language.

Example 1.3. Let us consider a non-local version of Example 1.1. Instead of con-
sidering a single traveller, that can be only at one place at atime, let us consider the
same problem but with a truck company (or group of travellers) with a common budget.
Clearly each move affects all the subsequent possible moves. We know from the result
proven in Chapter 2 that any such reactive dynamics can be expressed by switches. If
we consider a switch graph generating this dynamics and the language described above
we may express the local interdependencies explicitly, e.g.

@a ∧y○(b,c,d)
means that the fact that a truck ina goes tob implies that no truck inc can go tod.
That is

@a z (b→@c¬z d).
In the case of Example 1.2 dealing with bounded resources, where we allow only

certain kinds of switches:
@a(yǫb∧y○(b,a,b))

means that(a,b) can be crossed exactly once, @a z (b→@a¬z b),
@a(yǫb∧ ¬y○ (b,a,b) ∧ ¬y○● (b,a,b,a,b) ∧y○●●(b,a,b,a,b,a,b))

means that(a,b) can be crossed exactly three times, @az(b→@az(b→@a¬zb)),
and so on.

We do not claim that this is the most appropriate language to reason about all cases
of reactivity. For instance, in Examples 1.1 and 1.3 we can envisage a language that
could explicitly reason about the cost of each move and the remaining budget after
it. And in the case of Example 1.2, where only some shapes of switches are allowed,
the language could be simplified. Still, the fact is that all reactive systems can be
generated by switches and this language seems adequate to express the local dynamic
dependencies on each move, imposed by the switches. We hope that it represents a
kind of skeleton for the various possibilities. In the conclusion of section 3 we discuss
possible extensions of this language with operators of the kind we find inCT L and
CT L∗. The main result of this section is the proof of the usual hybrid completeness
result in this dynamic context. An important fact to retain is that in each moment
the whole future relational dynamics is coded in the switches, so it may be that some
properties (that depend only on the worlds - corresponding to pure formulas, having no
propositional symbol that is not a nominal) can be derived byreasoning locally, using
only the information contained in switches configuration.

8

2 Switch graphs

A graph is the abstract representation of a binary relation between objects. There are
many graph-based structures, and often, to read (some of) the information represented
in them, one needs to travel across their vertices followingtheir edges, e.g. to check if
two points are connected or to interpret modal formulas in Kripke model. In the usual
notion of graph the vertices that are accessible from a vertex are fixed.

When we modify the notion of graph allowing that the accessible vertices depend
on the sequence of edges we have crossed we obtain a reactive graph. So, to each
sequence of crossed edges corresponds a (relational) stateof the graph, where the edges
that are available are the ones that can prolong the current sequence. The information
in such a graph boils down to the sequences of edges (or actions) over a certain set.

A direct way of representing such a graph would be to draw the tree given by the
admissible sequences of edges, and, perhaps, to draw at eachof its nodes the state of
the graph at that point. Although this idea of having different points representing the
relational state of the same point is useful (in [19] we used it to obtain a relation with
classical modal logic), it does not offer an easy reading of the changes that crossing
an edge implies. As stated in the introduction, the concept of reactivity was initially
introduced using an enrichment of graphs with new kinds of arrows representing the
local effects of traversing an edge in the global relation. The representation offered
by these structures seems to be much more interesting as it truly grasps the reactiv-
ity flavour. Furthermore, we prove that these new multi-level-arrowed structures are
enough to code all the relational dynamics (Theorem 2.8).

The simplest effect crossing an edge can have over the accessibility relation is to
turn on or off a connection. These elementary changes can be represented by drawing
an arrow from the crossed edge to the edge representing the connection being altered.
Crossing an edge does not have necessarily always the same effects. To represent these
changes we use arrows from the edges to the arrows representing the elementary effects,
and so on, obtaining infinite levels of arrows.

In this context we refer to the arrows as switches. The edges connecting points are
0-level switches and the switches connecting 0-level andn-level switches aren+1-level
switches. The switches of level greater than 0 can be of two kinds, the connecting and
disconnecting ones. A set equipped with a set of switches is called switch graph.

The state of the relation after a certain sequence of actionsin a switch graph takes
into account its levelled structure. The switches of level bigger than 0 do not represent
the accessibility relation between points but how this relation changes after each action,
corresponding to the 0-level arrows. When we cross an edge we turn on/off the switches
that are the targets of the connecting/disconnecting switches coming out of it.

In Figure 6 we can see the switch graph representing the reactive graph with set
of points{a,b}, and admitting as set of actions the set given by the following regular
expression (being{a,b}2 the alphabet):

((a,a) + (a,b))∗(b,b)((a,b) + (b,b))∗(a,a)((a,a) + (b,b))∗.

We see that once(b,b) is crossed, the disconnecting switch coming from(a,a) to

9

Figure 6: The white pointed arrows represent the connectingswitches, the black ar-
rows the disconnecting ones and the dashed line the fact thatthe switch is initially
disconnected.

(a,b) becomes connected. Thus, after crossing(b,b) and(a,a), (a,b) can no longer
be crossed.

Many other kinds of switches, having different effects, could be considered. These
seem to be the most primitive ones, since they incorporate the basic actions in graph
reactivity, connecting and disconnecting edges. We shall see that this is enough to
represent all reactive graphs. That is: any reactive behaviour can be decomposed into
this kind of local actions.

2.1 Reactive by Switch

Definition 2.1. A reactive graphis a pair(W,∆), where

• W is a non-empty set, the set ofworlds, and

• ∆, the behaviour, is the set of admissible sequences of edges, i.e., a subset of
(W × W)∗ closed under prefixes containingǫ (the empty sequence is always
admissible).

The state of the accessible relation after an admissible sequence of edgesλ being
covered is given by

Rλ = {(w,w′) ∶ λ(w,w′) ∈ ∆}.
We now introduce the enriched notion of graph, the switch graphs, and formalise

in which sense they can be used to represent (or generate) reactive graphs highlighting
the effects that moving around the base graph has on the accessibility relation.

Definition 2.2. For a non-empty setW andn < ω, the setAn(W) of switchesoverW
of leveln is defined as:

• A0(W) = W×W (of level 0),

• An+1(W) = (W×W) ×An(W) × {●, ○} (of leveln).

10

A switch with● (○) as its third component is called aconnecting (disconnecting) switch.
The set of all switches onW is defined by takingA(W) = ⋃n<ωAn(W).

Definition 2.3. A switch graphis a pair(W,R), where

• W is a non-empty set, the set ofworlds, and

• R⊆ A(W) is the set ofswitches.

We say that(W,R) hasreactivity of level nif R⊆ ⋃i≤nAi(W).
Remark 2.4. In the graphical representation we use normal arrows for the0-level
switches, a black (white) pointed arrow for the connecting (disconnecting) switches
and switches that are off are drawn with a dashed line.

Here we introduce some notation to refer to switches in an easier fashion:

Definition 2.5. (v1v2, . . . ,v2n−1v2n,a, σ) for σ = s1 . . . sn ∈ {●, ○}n, n < ω and a ∈
A(W) is defined as:

• (a, ǫ) = a,

• (v1v2, . . . ,v2n+1v2n+2,a, s1 . . . sn+1) = ((v1,v2), (v3v4, . . . ,v2n+1v2n+2,a, s1 . . . sn), sn+1).
We say that(v1v2, . . . ,v2n−1v2n, σ) is a switch of typeσ.
For example,

(w1w2,w3w4,w5,w6, ○ ● ●)p = ((w1,w2), ((w2,w3), ((w3,w4), (w4,w5), ○), ●), ●)

is of type○ ● ●.
Definition 2.6. Given a switch graphS = (W,R), thebehaviour of Sis the smallest
set,∆S, such that:

• ǫ ∈ ∆S,

• If α ∈ ∆n
S thenα(w,w′) ∈ ∆S for all (w,w′) ∈ Rα.

WhereRα ⊆ A(W) is the switch stateof our switch graph after crossing the
sequence of edgesα:

– Rǫ = R, the initial state,

– Rα(w,w′) = (Rα − {a ∶ ((w,w′),a, ○) ∈ Rα}) ∪ {a ∶ ((w,w′),a, ●) ∈ Rα}.

(W,∆S) is the reactive graph generated byS and

∆S = {Rα ∶ α ∈ ∆S}

of switch statesof S.

Notice that the reactive level ofRα is the same for allα. Neither the highest order
arrows can ever be turned off, nor higher order ones can be introduced, since a switch
that acts over a switch of ordern has ordern+ 1.

11

Remark 2.7. When we informally introduced the switches dynamics we did not spec-
ify what should happen when a connecting and a disconnectingswitch act simulta-
neously over the same switch. In the previous definition the convention is that the
connecting action prevails. We could have opted instead for:

• the disconnecting switch would prevail

Rα(w,w′) = (Rα ∪ {a ∶ ((w,w′),a, ●) ∈ Rα}) − {a ∶ ((w,w′),a, ○) ∈ Rα},
• or that it would depend on the state of the target, by, for example, always chang-

ing its state

Rα(w,w′) = (Rα − {a ∶ ((w,w′),a, ○) ∈ Rα}) ∪ {a ∶ ((w,w′),a, ●) ∈ Rα & a ∉ Rα}.

We are interested in studying how expressive these structures are regarding the
generation of reactive graphs. It is easy to see that given a reactive graphF = (W,∆)
the switch graphG = (W,R○ ∪R●) where

R● = {(w1w2, . . . ,w2∣σ∣+1w2∣σ∣+2, σ) ∶ σ ∈ {●}∗, w1 . . .w2∣σ∣+2 ∈ ∆},
R○ = {(vv′,w1w2, . . . ,w2∣σ∣+1w2∣σ∣+2, σ○) ∶ σ ∈ {●}∗, v,v′,wi ∈ W},

generatesF if the connecting switches prevail. For the other options there does not
seem to be such a direct way of coding the reactive behaviour.We can then ask whether
these options are relevant for this goal. Next theorem showsthat if one allows un-
bounded levels, these options do not limit the switch graphsexpressivity. Furthermore,
it presents a general construction such that given any reactive graph we obtain a switch
graph that, regardless of the chosen option, generates the given reactive graph.

Theorem 2.8. Any reactive graph can be generated by a switch graph, furthermore
this switch graph can be chosen such that no connecting and disconnecting switches
ever act simultaneously over the same switch.

Proof. Given a reactive graph(W,∆), we define a relationC ⊆ {●, ○}∗ × (W×W)∗ by
taking

C(σ,α) iff either the number of○s inσ is even andα ∈ ∆,
or the number of○s inσ is odd andα ∉ ∆.

This definition clearly implies the following:

Lemma 2.9. C(σ●, α)↔ ¬C(σ○, α).
Now let

R= {(w1w2, . . . ,w2∣σ∣+1w2∣σ∣+2, σ) ∶ C(σ, (w1,w2) . . . (w2∣σ∣+1,w2∣σ∣+2)), σ ∈ {●, ○}∗,
wi ∈ W andw1 . . .w2∣σ∣ ∈ ∆}.

We claim that, for everyα ∈ ∆S, the following hold:

Lemma 2.10. For every(β,σ) ∈ A(W), (β,σ) ∈ Rα ⇐⇒ C(σ,αβ).

12

We prove the lemma by induction onα. Forα = ǫ this is just the definition ofR.
Now suppose thatα(w,w′) ∈ ∆S and Lemma 2.10 holds forα. Then, by Lemma 2.9,
we have that

((w,w′)β,σ●) ∈ Rα ⇐⇒ ((w,w′)β,σ○) ∉ Rα. (1)

Now by (1) we have:

for every(β,σ) ∈ A(W), (β,σ) ∈ Rα(w,w′) ⇐⇒ ((w,w′)β,σ●) ∈ Rα. (2)

Now we can show Lemma 2.10 forα(w,w′):

(β,σ) ∈ Rα(w,w′)

iff (by (2))
((w,w′)β,σ●) ∈ Rα

iff (by the IH)
C(σ●, α(w,w′)β)

iff
C(σ,α(w,w′)β).

Now we can complete the proof of the theorem as follows. First, ǫ ∈ ∆ ∩ ∆S.
Otherwise,α(w,w′) ∈ ∆S iff α ∈ ∆S and(w,w′) ∈ Rα iff (by Lemma 2.10)α ∈ ∆S and
C(ǫ, α(w,w′)) iff α ∈ ∆S andα(w,w′) ∈ ∆ iff α(w,w′) ∈ ∆. �

Remark 2.11. Notice that the condition that w1 . . .w2∣σ∣ ∈ ∆ in the definition of R is not
necessary but avoids the inclusion of switches that will have no part in the dynamics.
Indeed it is easy to see that in what respects to the behaviourof a switch graph only
such switches matter.

2.2 Modelling multiple agents or processes

Reactive/Switch graphs can model situations where the accessibilityrelations change
when an edge is crossed. Without any limitation on the numberof individuals going
through its edges. In fact a reactive graph may be used to design a particular interaction
between many agents going around in a graph.

In a k-agents (processes, individuals, etc.) setting, the switch configuration ceases
to be the only relevant information, we need to keep track of each agent’s position. The
k-behaviour of a switch graph with set of initial configurations C ⊆ Wk is the set of
allowed sequences of moves when thek agents are located they start in positions inC
elements are allowed to do. Let us formalise this notion.

Definition 2.12. Given a reactive graphR = (W,∆) and a number k of agents wan-
dering about in the graph we define:

• (Wk)% is the subset of(Wk)+ formed by the sequences where each element dif-
fers from its successor of only one component, that is:

– Wk ∈ (Wk)%,

13

– α(w1, . . . ,wi , . . . ,wk) ∈ (Wk)% thenα(w1, . . . ,wi , . . . ,wk)[i → w] ∈ (Wk)%

for any1 ≤ i ≤ n, where

α(w1, . . . ,wi , . . . ,wk)[i → w] = α(w1, . . . ,wi , . . . ,wk)(w1, . . . ,w, . . . ,wk).

• E ∶ (Wk)% → (W×W)+ is defined as:

– α ∈ Wk thenE(α) = ǫ,
– α = α′(w1, . . . ,wi , . . . ,wk)[i → w] ∈ (Wk)% then

E(α) = E(α(w1, . . . ,wi , . . . ,wk))(wi ,w).

Let C⊆ Wk be a set of initial allowed configurations for the k-agents, Cgenerated
k-behaviour is:

∆
k
C = {α ∈ (Wk)% ∶ E(α) ∈ ∆k and existsγ ∈ C that is a prefix ofα}.

Switch graphs can be useful in modelling programs or protocols, capturing the
intended interaction between the entities involved. The design of the constraints can be
directly imposed by strategically locating the appropriate switches. Ideally, this double
perspective on the dynamics, would allow that the verification of such properties over a
switch graphS, departing from a given configurationγ, could either be extracted from
the shape ofS switches or exhaustively checked over∆k

C.

Example 2.13. Let us consider the mutual exclusion problem, taken from [26]. There
we can find a model-based approach to the verification of the required properties in a
given system, presented as the solution to this problem. And, the idea is to code the
intended properties inCT Land verify if the transition system associated to the solution
satisfies them. Here we lay the basis for a different approach.

As we referred in the introduction, in [12] by adding higher order arrows to the
structure of an automata, and thus allowing its transition table to change while it is
reading a sentence, the authors achieved an exponential reduction in the minimal num-
ber of states needed to accept a language. Therefore, this way of representing systems
may have impact in model checking, where the state explosionproblem is a serious
drawback. The switches configuration at each point determines all the future dynam-
ics, coding the interdependence of actions. Of course that if one obtains less states
when considering the switch graph corresponding to a certain protocol instead of con-
sidering its associated transition system, is not because some information was thrown
away. The fact is that this information is coded in a different form, hopefully in a
more intuitive and accessible way. It is the extra expressivity, given by the higher order
arrows, that allows us to identify different states with the same point by associating
them to different switches configuration. Moreover, if one finds an appropriate way to
extract the corresponding switch graph of a program or protocol, one may expect that
the verification of some properties can be reduced (by means of some intermediary
reasoning) to a simpler verification over the switches. Although we do not develop the
verification part, in the next section we introduce a language to reason about switches
and their effects. We believe that this language can be extended to a pointwhere we

14

can reason about both the switch view and the usual transition system view, and de-
rive enough knowledge about their interaction in such a way that in order to verify
some properties at one level it is enough to guarantee some related properties in the
other and vice-versa. Nevertheless, here, we concentrate on showing how switches
can be integrated in transition systems to improve their modelling expressivity. We
understand that in this case the switches are associated to conditional commands and
changes on the auxiliary variables used in these conditions. However, no systematic
knowledge about that connection was obtained yet. We will limit ourselves to present
examples of switch graphs ‘associated’ (in an informal and intuitive way) to protocols
that constitute possible solutions to the problem and discuss them.

The mutual exclusion problem as presented in Chapter 3 of [26] is:

When concurrent processes share a resource (such as a file on adisk or a
database entry), it may be necessary to ensure that they do not have access
to it at the same time. Several processes simultaneously editing the same
file would not be desirable. We therefore identify certain critical sections
of each process’s code and arrange that only one process can be in its
critical section at a time. The critical section should include all the access
to the shared resource (though it should be as small as possible so that
no unnecessary exclusion takes place). The problem we are faced with
is to find a protocol for determining which process is allowedto enter its
critical section at which time. Once we have found one which we think
it works, we verify our solution by checking that it has some expected
properties, such as the following ones:

Safety: The protocol allows only one process to be in its critical section at
any time.

This safety property is not enough, since a protocol which permanently
excludes every process from its critical section would be safe, but not very
useful. Therefore, we should also require:

Liveness: Whenever any process wants to enter its critical section, it will
eventually be permitted to do so.

Non-blocking: A process can always request to enter its critical section.

Some rather crude protocols might work on the basis that theycycle through
the processes, making each one in turn enter its critical section. Since
it might be naturally the case that some of them request accesses to the
shared resource more than others, we should make sure our protocol has
the property:

No strict sequencing: Processes need not enter their critical section in
strict sequence.

We modelN processes, each of which is in its non-critical state (n), or trying to
enter its critical state (t), or in its critical state (c). Each individual process undergoes
transitions in the cyclen → t → c → n → ..., see in Figure 71 the caseN = 2, but the
two processes interleave with each other.

1In the graphical representation one finds numbers juxtaposedto the letters, this is due a limitation of the

15

Figure 7: The mutual exclusion problem: combining processes sharing resources, two
processes scenario.

One immediate solution (forN = 2) one can think of, is to use switches to impose
directly the condition that one process gets to its criticalarea the other cannot – us-
ing (t1c1, t2c2, ○) and(t2c2, t1c1, ○) – and to remove this restriction when it returns to
the non-critical state – using(c1n1, t2c2, ●) and(c2n2, t1c1, ○), see Figure 8. The two
processes start off in their non-critical states as indicated by the incoming edges with
no source. Either of them may now move to its trying state, butonly one of them can
ever make a transition at a time (asynchronous interleaving). The problem here is that
nothing prevents one of the processes from getting stuck at the trying state while the
other one accesses continuously to the critical area, so liveness fails.

A way to guarantee liveness is, when a process requires permission to move to the
critical state (moves to state t), to allow the other processto require access the critical
area only once until the first process accesses to it. In Figure 9 we can see that the extra
switches do exactly this. The situation is symmetric so letscheck liveness for the first
process, that is, if it moves tot1, it will eventually be able to move toc1. If process
1 moves tot1, it turns on(c2n2,n2t2, ○) (by the action of(n1t1,c2n2,n2t2, ○●)), which
guarantees that if process 2 does the whole cycle once, then (since(c2n2,n2t2, ○) is on)
it can only try again if process 2 passes byc2, (t1c1,n2t2, ●) and(t1c1,c2n2,n2t2, ○○)
remove that restriction. But this is done by restricting process’s 2 ability torequire
access to its critical section, thus failing the non-blocking constraint.

This is easily solved in Figure 10, where the limitation is forced only at the last
stage. One can see that the two switch graphs are really similar, the difference is that the

application used, thus they should be seen has being underscripts. Outside the figures we will use the proper
form to avoid that with their intense use the text becomes unreadable. E.g.t1 in the figure corresponds tot1
in the text.

16

Figure 8:N = 2: liveness fails.

Figure 9:N = 2: non-blocking fails.

disconnected edge is(t2,c2) instead of(n2, t2). That is, instead of using the following
set of switches

{(ni ti ,c jn j ,n j t j , ○●), (tici ,n j t j , ●), (tici ,c jn j ,n j t j , ○○) ∶ i, j ∈ {1,2}, i ≠ j},

we use

{(ni ti ,c jn j , t jc j , ○●), (tici , t jc j , ●), (tici ,c jn j , t jc j , ○○) ∶ i, j ∈ {1,2}, i ≠ j}.

17

So when one process requires to access to the critical state,the other may access only
once to it, though being still able require access to it, until the first’s access is granted
(other levels could be as easily set). Thus this solution complies with all the problem
requirements.

Figure 10:N = 2: a complete solution.

Hence, the advantage of the switch graph representation is that we can force/check
the properties at the meta-level. We directly observe the effect that each transition
has on the global accessibility relation. This strongly suggests how these solutions
could be implemented by programming. Though the other direction (from programs to
switch graphs) is not approached here, it seems a fundamental step in evaluating these
structures potential.

Till now we tried solutions where each process runs around ondifferent connected
components of the presented switch graph, but there is no reason to be so. If we allow
more process to run around the solutions in 9 and 10, then bothliveliness and non-
blocking properties would clearly be lost. Let us look to some solutions with only
one connected component where all process run, thus saving in the number of required
points in the graph.

In Figure 11 we have a general straightforward solution for the N processes case,
but again liveness is not guaranteed. Again nothing forbidsa process (or a group of
N′ < N processes) to keep accessing the critical area making it impossible for some
processes to do it. There does not seem to be a way of avoiding this with this base graph
(without losing the Non-blocking property), at least if we do not use multiple connec-
tion between each point, which are not allowed in our definition of switch graphs. Of
course it would be easy to consider labelled switch graphs where this was allowed but
it would be closer to considering different connected components.

Instead, in order to guarantee the other properties we will consider a slightly more

18

Figure 11:N arbitrary: safety and no strict sequence only.

complex base graph. We use a number of ‘trying’ states equal to the number of pro-
cesses. We learned the kind of restrictions needed from Figure 10 and we can see in
Figure 12 a switch graph using the same idea for avoiding the loss of liveness. Since
here both processes share the same graph point for non-critical and critical sections the
way of imposing it changes slightly. First we need to guarantee we do not have more
than one process in the same point representing ‘trying to get to critical section’, by
having(nti ,nti , ○) and(tic,nti , ●), for i = 1,2, controlling that. Initially we have both
(cn, t1c, ●) and(cn, t2c, ●) on. One way to avoid the loss of liveness is to have that when
a process moves toti then(cn, t jc, ●) (for j = 3 − i) becomes off, that is we have the
switch(nti ,cn, t jc, ●○). Clearly when that process moves out ofti the restriction is not
needed anymore, and so we have(tic,cn, t jc, ●●). This constitutes a complete solution
for N = 2 but for N > 2 it loses liveness and non-blocking. If we want to accommo-
date more processes we can simply add more trying states, as many as the number of
processes being considered and have the same switch structure between every pairti ,
t j for i ≠ j. Meaning that a solution for arbitraryN is given bySN = (WN,RN) with
WN = {n,c, t1, . . . , tN} and

RN = {(n, ti), (ti ,c), (c,n),

(nti ,nti , ○), (tic,nti , ●), (cn, tic, ●), (cn, t jc, ●), (tic, t jc, ○),
(nti ,cn, t jc, ●○), (tic,cn, t jc, ●●) ∶ 1 ≤ i, j ≤ N, i ≠ j}

Clearly forN > 2, SN is not as easily visualised, but this is also a cost to pay alsowhen
drawing the transition system associated to the protocol for the mutual exclusion with
various processes. We believe that it is still impressive the fact that the switch structure
is easily definable for allN, being clear from theN = 2 case analysis why it works in
the general case.

19

Figure 12: N arbitrary: safety, liveness, no strict sequencing and non-blocking for
N = 2.

20

2.3 Comments and remarks

Level of Reactivity Being true that all reactive graphs can be represented by switch
graphs, the level of reactivity of the representation is of obvious practical importance.

Given a reactive graph, it is easy to see that the minimal reactive level for a switch
graph representing it, depends on the choice of dynamics we discussed above. Consider
R = ({a,b},∆), where∆ = {α ∶ λ = (a,a)n or α = (a,a)2n(a,b),n < ω}. Using the
definition where the connecting switches win we cannot find a finite reactive level
switch graph that represents it. Whereas using the alternating one it can be represented
by a switch graph of reactivity level 1:

({a,b},{(a,a), (a,b), ((a,a), (a,b), ○), ((a,a), (a,b), ●)}).

Figure 13: Alternating dynamics example with the followingbehaviour:∆ = {α ∶ λ =
(a,a)n or α = (a,a)2n(a,b),n < ω}.

It is also easy to cook a reactive graph that cannot be represented by a finite level
graph for any of the options we mentioned above, nor with any switches with ‘recursive
behaviour’. Letf be a non recursive binary sequence and

R= ({a,b},∆), where∆ = {α ∶ α = (a,a)n or α = (a,a)k(a,b),n < ω, f (k) = 1}.

Question 2.14.For each of the considered options which is the set of reactive graphs
generated by switch graphs of reactivity level n∈ ω?

Further extensions We have seen how arrows can represent more than the basic tran-
sitions, they can represent the transitions between statesof the accessibility relation
itself. These new arrows are a natural extension of the concept of graph corresponding
to a kind of meta-transitions in the above sense. They provide an explicit way of ex-
pressing the meta-level graph’s notion of reactivity, in a way that allows an immediate
(and complete) reading of the effects of crossing an edge.

In Section 2.2 we considered multiple entities going through the graph, the effects
of each action were independent of whom was doing it and no synchronous movements
were allowed. Other types of dependences can be considered:

• Dependence on the identity of the individual entities couldbe modelled by hav-
ing different relations for each entity, or groups of entities.

21

• Synchronous movements could also be represented by specialrelations. Of
course switches can connect arrows regardless of the relation they represent.

Thus leading to the question:

Question 2.15. Is the switches formalism enough to represent these more general be-
haviours?

Model Checking Above we gave an example of how a mutual exclusion protocol
may be coded by a switch graph. Specifically, we model at the ‘Kripke level’, how the
action of one agent (i.e. the transition between worlds/states) precludes the execution
of an action (i.e. transition) of another agent. In this caseswitches are associated to
changes on the auxiliary variables keeping the critical area safe. It is clear that the fact
that we directly express that when one process access to the critical area, all the others
will not be able to access to it (by having the appropriate switch in place, and no other
switch acting on it), may give enough evidence to guaranty safety, without the need to
check the whole state space.
It may be that depending on the property in question, the mosteffective way of verify-
ing a certain system satisfies involves considering different types of models associated
to that system, and checking a stronger property that entails it. Hopefully switch graphs
are among the useful structures to do it. In the future we hopeto find more meaningful
examples that allow us to understand the general case.

3 Reactive hybrid switch logics

In the previous section we have shown that switch graphs are suitable structures to
embody and represent the reactive paradigm. In this sectionwe introduce a logic that
allows us to reason about switches and their effects and prove completeness. A basic
feature of such a logic would be to be able to express that if a certain switch is on, then
after such move the state of certain switch will be such.

In the introduction we gave some motivation for the used language. On one hand,
given a switch graph(W,R), for each switch typeσ ∈ {○, ●}∗, the set ofσ-switches
forms ∣σ∣+2-ary relation overW and there is the∣σ∣+1-ary modal correspondent,yσ.
On the other hand, similarly to◇R in [19], there is the operator corresponding to its
behaviour,z. The goal is to relate both, expressing how the switches determine the
behaviour.

The logics we considered in [19] were suitable to talk about local effects of reactiv-
ity, but here we are dealing with its global effects and at the same time we feel the need
to to explicitly refer to specific states. Ordinary modal logic’s lack of mechanisms for
dealing with states explicitly is a recognised weakness. Infact the idea of adding vari-
ables that are used to name worlds dates back to the pioneering work of Prior [30, 29]
and especially of Bull [11](see [24]). Recently the study ofthis idea gained popular-
ity and its development became an autonomous subfield of modal logic, calledhybrid
logic2.

2For more details see [2, 1, 6].

22

Hybrid languages are a very simple extension of modal ones. Aspecial set of
propositional variables, called nominals, is added and it is used to name worlds. Nom-
inals are true at exactly one world in any model. Many operators related to the nomi-
nals were studied. A particularly simple one is @ that allowsone to jump to particular
worlds, in the sense that, for each nominali, @iϕ is true ifϕ is true in the world named
i, which suits our need to think globally.

We consider models constructed from switch graphs in such a way that for each
admissible sequence of edges we get an usual hybrid model based on the Kripke frame
given by the switches’ state at that point. Of course each nominal must be true in the
same world in all these models but all the other variables maychange.

This language allows us to express some strong reactive assertions. Consider the
formula

@i z (j →@i¬z j).

This says that if we cross the edge from the world namedi to the world namedj,
that connection will be turned off. Another way to say this is to say that there is a
disconnecting switch from that edge to itself:

@i y○ (j, i, j).

We obtain completeness for the introduced logic adapting the usual Henkin style
proof of completeness for hybrid logics, see [7, 9]. This further justifies the choice of
language by showing that it is appropriate to capture the switches’ dynamics.

3.1 Switch Models

Definition 3.1. We consider thereactive switch similarity type

s= ({z} ∪ {yσ ∶ σ ∈ {○, ●}∗}, ρ),
whereρ(z) = 1 andρ(yσ) = 2∣σ∣ + 1. Thus we define the hybrid modal language
Hs(@) is defined by

ϕ ∶∶= i ∣ p ∣ ¬ϕ ∣ ϕ1 ∧ ϕ2 ∣zϕ ∣yσ(ϕ1, . . . , ϕ2∣σ∣+1) ∣@iϕ ,

wherep ∈ Π, i ∈ NOM andσ ∈ {○, ●}∗ . The other connectives:⊺, �, ∨,→,↔, ⧄ and
qσ are introduced by the usual abbreviations.

Givenλ ∈ (NOM× NOM)∗ we define the abbreviationzλϕ by recursion:

• zǫϕ = ϕ,

• z(i, j)λϕ = @i z (j ∧zλϕ) (clearlyz(i, j)λϕ = z(i, j)zλ ϕ),

and⧄λϕ = ¬zλ ¬ϕ.

Definition 3.2. Given a switch graphS = (W,R) and using the dynamics defined in
2.6 we generate, for eachλ ∈ ∆S, a reactive graph:Sλ = (W,Rλ).

A switch frame is the Kripke frame given by the disjoint unionof all these switch
graphs, whereσ switches inRλ give origin to local(2∣σ∣ + 2)-ary relations and with a
global accessibility relation connectingw in Sλ andw′ in Sλ(w,w′), see Figure 14.

Formally, theswitch frame overS isFS = (W× ∆S, ŘS) where

23

• ŘS = {Řσ
λ }σ∈{○,●}∗,λ∈∆S

and

• ((w1, λ), . . . , (w2n+2, λ)) ∈ Řσ
λ iff (w1w2, . . . ,w2n+1w2n+2, σ) ∈ Rλ.

Figure 14: A representation of a switch frame. The various components are limited by
a dashed line, the switches of that component represented bythe arrows as before and
the (reactive) transitions by the line formed by lines and dots.

A switch modeloverFS is a pairM = (F, ν), whereν is a function

ν ∶ Π ∪ NOM→ 2∆S×W

such that fors ∈ NOM we haveV(s) = {w} × ∆S for somew ∈ W.
Given a switch modelM = (W × ∆S,RS, ν), for every(w, λ) ∈ W × ∆S and every

L-formulaϕ, we define the notionϕ is true at(w, λ) inM (M, (w, λ) ⊧ ϕ) inductively
as follows:

• M, (w, λ) ⊧ p iff (w, λ) ∈ ν(p) for variablesp,

24

• M, (w, λ) ⊧ s iff (w, λ) ∈ ν(s) for nominalss,

• M, (w, λ) ⊧ ¬ϕ iffM, (w, λ) /⊧ ϕ,

• M, (w, λ) ⊧ ϕ1 ∧ ϕ2 iffM, (w, λ) ⊧ ϕ1 andM, (w, λ) ⊧ ϕ2,

• M, (w, λ) ⊧zϕ iff there isw′ ∈ W such thatλ(w,w′) ∈ ∆ andM, (w′, λ(w,w′)) ⊧
ϕ,

Notice thatλ(w,w′) iff (w,w′) = (w,w′, ǫ) ∈ Rλ iff (w,w′) ∈ Řǫ
λ,

• M, (w, λ) ⊧@iϕ iffM, (w′, λ) ⊧ ϕ for ν(i) = ∆S × {w′},
• M, (w, λ) ⊧yσ(ϕ1, . . . , ϕ2n+1) iff there arev1 . . .v2n+1 ∈ W such that
(w,v1, . . . ,v2n,v2n+1) ∈ Řσ

λ andM, (λ,vi) ⊧ ϕi .

We say thatϕ is true inM iffM, (w, λ) ⊧ ϕ for every(w, λ) ∈ ∆S ×W. We say thatϕ
is valid ina switch frame if it is true in every switch model over it.

3.2 Axiomatising

In this section we prove that the axiomatisation presented in Figure 15, generates all
theHs(@)-formulas that are valid in all switch frames. Furthermore,we obtain the
usual hybrid automatic completeness for pure axioms. The following axiomatisation is
the natural adaptation of the ones for the standard hybrid logics given in [8, 9].

Remark 3.3. Notice that if we considered a different dynamics for the switches,Dyn
would have to be different. For example the alternatives in 2.7 correspond to:

• the disconnecting switch would prevail

z(i, j)@i1 yσ (i2, . . . , i2n+2)↔
¬@i yσ○ (j, i1 . . . , i2n+2) ∧ (@i1 yσ (i2, . . . , i2n+2) ∨@i yσ● (j, i1 . . . , i2n+2)),

• always changing state

z(i, j)@i1 yσ (i2, . . . , i2n+2)↔
(@i1yσ(i2, . . . , i2n+2)∧¬@iyσ○(j, i1 . . . , i2n+2)∨
¬@i1yσ(i2, . . . , i2n+2)∧@iyσ●(j, i1 . . . , i2n+2)).

Here is the theorem we shall prove:

Theorem 3.4. LetΛ be a set of pureHs(@) formulas. A set ofHs(@) formulasΣ is
Ls +Λ-consistent iff Σ is satisfiable in a model satisfying the frame properties defined
byΓ. Where Ls+Λ is the above axiomatisation extended with the axioms ofΛ.

Lemma 3.5. The following are derivable

• K−1
@ : ⊢ (@iϕ→@iψ)→@i(ϕ→ ψ),

• Nom:⊢@i j → (@iϕ→@jϕ),

• S ym:⊢@i j →@j i,

25

Ls

Axioms:
CT All classical tautologies
K l
qσ qσ(ϕ1, . . . , ϕ→ ψ, . . . , ϕ2n+1)→

(qσ(ϕ1, . . . , ϕ, . . . , ϕ2n+1)→ qσ(ϕ1, . . . , ψ, . . . , ϕ2n+1))
wherel is the component whereϕ→ ψ is.

K@ @i(ϕ→ ψ)→ (@iϕ→@iψ)
S el f dual@ @iϕ↔ ¬@i¬ϕ
Re f@ @i i
Agree @i@jϕ↔@jϕ

Intro i → (ϕ↔@iϕ)
S ync zi ↔yǫ i
Detz z(i ∧ ϕ)→ ⧄(i → ϕ)
K⧄ ⧄(ϕ→ ψ)→ (⧄ϕ→ ⧄ψ)
Dyn z(i, j)@i1 yσ (i2, . . . , i2n+2)↔

(@i1 yσ (i2, . . . , i2n+2) ∧ ¬@i yσ○ (j, i1 . . . , i2n+2) ∨@i yσ● (j, i1 . . . , i2n+2))
Rules:
MP If ⊢ ϕ and⊢ ϕ→ ψ then⊢ ψ
S ubst If ⊢ ϕ then⊢ ϕθ

Genqσ If ⊢ ϕ then⊢ qσ(�, . . . ,�, ϕ,�, . . . ,�)
Gen@ If ⊢ ϕ then⊢@iϕ

Gen⧄ If ⊢ ϕ then⊢ ⧄ϕ
Name If ⊢@iϕ andi does not occur inϕ then⊢ ϕ
Pastezλyσ

If ⊢zλ@i yσ (j1, . . . , j2n+1) ∧zλ(⋀1≥l≥2n+1 @j lϕl)→ ψ and jm ≠ i
does not occur inϕl or ψ then⊢zλ@i yσ (ϕ1, . . . , ϕ2n+1)→ ψ

Paste′zλz If ⊢zλ@i z j ∧zλz@jϕ→ ψ and j ≠ i does not occur inϕ or ψ then
⊢zλ@i z ϕ→ ψ

Figure 15: TheLs axiomatisation.

• Name′: If ⊢ i → ϕ then⊢ ϕ where i does not occur inϕ,

• Backyσ
: yσ(ϕ1, . . . ,@iϕk, . . . , ϕ2n+1)→@iϕk,

• Bridgeyσ
: @i yσ (j1, . . . , j2n+1) ∧ (⋀1≥l≥2n+1 @j lϕl)→@i yσ (ϕ1, . . . , ϕ2n+1).

Proof. The first 4 are proved in [9].

• Backz

@i@jϕ↔@u@jϕ
Agree,Agree

@u yσ (ϕ1, . . . , j, . . . , ϕ2n+1) ∧@i@jϕ→@u@jϕ

@u yσ (ϕ1, . . . ,@jϕ, . . . , ϕ2n+1)→@u@jϕ
Pasteyσ

yσ(ϕ1, . . . ,@jϕ, . . . , ϕ2n+1)→@jϕ
K−1

@ ,Name

• Bridgezσ by induction onσ, σ = ǫ is trivial and

26

qǫ(¬ϕ→ ¬ j) → (qǫ¬ϕ→ qǫ¬ j)
Kqǫ

qǫ¬ϕ ∧yǫ j →yǫ(j ∧ ¬ϕ)
CT

j ∧ ¬ϕ→ @j¬ϕ
Int@,CT

qǫ¬ϕ ∧yǫ j →yǫ@j¬ϕ
CT

yǫ@j¬ϕ→ @j¬ϕ
Back

@i(qǫ¬ϕ ∧yǫ j) → @i@j¬ϕ
Gen@,K@

@i qǫ ¬ϕ ∧@i yǫ j → @j¬ϕ
K@,CT,Agree,S el f dual@

@i yǫ j ∧@jϕ→ @i yǫ ϕ
CT

The proof for arbitraryσ’s consists in the repetition of this derivation applied to
each of the 2∣σ∣−1 coordinates, where in each time an argument eats a conjunct.

�

Lemma 3.6. The following are derivable:

• ⧄(i, j)λϕ↔@i ⧄ (j → ⧄λϕ),
• Gen⧄λ : If ⊢ ϕ then⊢ ⧄λϕ,

• K⧄λ : ⧄λ(ϕ→ ψ)→ (⧄λϕ→ ⧄λψ),
• Detzλ : zλϕ↔ ⧄λϕ ∧zλ⊺,

• Gen′zλ : ⊢ ϕ→ ψ then⊢zλϕ→zλϕ.

Furthermore from Gen⧄λ and K⧄λ we easily getzλ(ϕ∧ψ)↔zλϕ∧zλψ andzλ(ϕ∨
ψ)↔zλϕ ∨zλψ.

Proof. • ⧄(i, j)λϕ = ¬@i z (j ∧zλ¬ϕ) that is equivalent to @i ⧄ (j → ¬zλ ¬ϕ) =
@i ⧄ (j → ⧄λϕ).
• Gen⧄λ by induction onλ, ǫ is trivial and

ϕ

⧄λϕ IH

j → ⧄λϕ CT

⧄(j → ⧄λϕ) Gen⧄

@i ⧄ (j → ⧄λϕ) Gen@

• K⧄λ by induction onλ, λ = ǫ is trivial and

ϕ

⧄(i, j)λ(ϕ→ ψ)
IH

@i ⧄ (j → (⧄λϕ→ ⧄λψ)) CT

@i ⧄ (j → ⧄λϕ)→@i ⧄ (j → ⧄λψ) K⧄,K@

⧄(i, j)λϕ→ ⧄(i, j)λψ
de f

27

• Detz(i, j)λ by induction onλ, λ = ǫ is trivial and

⧄(i, j)λϕ ∧z(i, j)λ⊺→z(i, j)λϕ K(i, j)λ⧄ ,CT

z(i, j)λϕ→@i z (j ∧ [⧄λϕ ∧zλ⊺])
De f, IH

z(i, j)λϕ→@i z (j ∧ ⧄λϕ)
IH,CT

z(i, j)λϕ→ ⧄(i, j)λϕ ∧z(i, j)λ⊺ CT

z(i, j)λϕ↔ ⧄(i, j)λϕ ∧z(i, j)λ⊺ CT

• Gen′zλ by induction onλ, λ = ǫ is trivial and

ϕ→ ψ

⧄λ(ϕ→ ψ)
Gen⧄λ

zλ⊺ ∧ ⧄λ(ϕ→ ψ)
CT

⧄λϕ ∧zλ⊺→ ⧄λψ ∧zλ⊺ K⧄λ ,CT

zλϕ→zλψ
Detzλ

�

Definition 3.7. LetΣ be a set ofHs(@)-formulas:

• Σ is named if one of its elements is a nominal.

• Σ isyσ-saturated if for allσ′ andzλ@i yσ′ (ϕ1, . . . , ϕ2n+1) ∈ Σ there are nom-
inals j1, . . . , j2n+1 such thatzλ@i yσ′ (j1, . . . , j2n+1) ∈ Σ andzλ@jkϕk ∈ Σ,
k = 1, . . . ,2n+ 1.

• Σ isz-saturated if for allzλ@i z ϕ ∈ Σ there is a nominal j such thatzλ@i z
(j ∧ ϕ) = zλ(i, j)ϕ ∈ Σ.

Lemma 3.8. (Lindenbaum Lemma). Every Ls + Γ-consistent set of formulas can be
extended to a named,z-saturated andyσ-saturated MCS, by adding countably many
new nominals to the language.

Proof. Let (in)n<ω be an enumeration of the new nominals and(ϕn)n<ω an enumeration
of the formulas in the extended language.

We defineΣ0 = Σ ∪ i0, Name′ guarantees that it is consistent.

If Σn ∪ {ϕn} is inconsistent thenΣn+1 = Σn. Otherwise:

1. Σn+1 = Σn∪ {ϕn} if ϕn is not of the formzλ@i yσ (ψ1, . . . , ψ2k+1) orzλ@i zψ,

2. Σn+1 = Σn ∪ {ϕn} ∪ {zλ@i yσ (im, . . . , im+2n+1)} ∪ {zλ@im+lψl ∶ 1 ≤ l ≤ 2k+ 1}
if it is of the formzλ@i yσ (ψ1, . . . , ψ2k+1),

3. Σn+1 = Σn ∪ {ϕn} ∪ {zλ@i z (im∧ ψ)} if it is of the formzλ@i z ψ.

Whereim is the first new nominal that does not occur inΣn or ϕn.
Let Σω = ⋃n<ω Σ

n. ThenΣ ⊆ Σω andΣω is named,yσ-saturated,z-saturated, maximal
and consistence. The only non-trivial step is in 2, and here consistency is guaranteed
by Pastezλyσ

andPaste′zλz. �

28

Definition 3.9. (Henkin model fromΓ). LetΓ be a maximal consistent set ofHs(@)
formulas. For all nominals i, let∣i∣ = { j ∶ @i j ∈ Γ}. Then theMΓ = (W,∆,T, ν) is given
by:

W = {∣i∣ ∶ i is a nominal},

∆ = {⟨λ⟩ ∶ zλ⊺ ∈ Γ},
Ř= {Tσ

⟨λ⟩}σ,⟨λ⟩,

Řσ
⟨λ⟩(∣i1∣, . . . , ∣i2n+2∣) iff zλ @i1 yσ (i2, . . . , i2n+2) ∈ Γ,
ν(p) = {(∣i∣, ⟨λ⟩) ∶ zλ@i p ∈ Γ},
ν(i) = {(∣i∣, ⟨λ⟩) ∶ ⟨λ⟩ ∈ ∆},

where⟨ǫ⟩ = ǫ and ⟨λ(i, j)⟩ = ⟨λ⟩ (∣i∣, ∣ j∣). ThatMΓ is well-defined follows from Re f ,
S ym, Nom and Gen′yλ

.

Lemma 3.10.zλ(i, j)ϕ = zλ@i z (j ∧ ϕ).
Proof. By induction onλ:

Forλ = ǫ the two formulas coincide trivially and forλ = (s, t)γ

z(s,t)γ(i, j)ϕ = z(s,t)zγ(i, j)
ϕ =IH z(s,t)zγ @i z (j ∧ ϕ) = z(s,t)γ@i z (j ∧ ϕ).

�

Lemma 3.11.MΓ is a switch model where(W × ∆, Ř) is the switch frame generated
by S= (W,R) such that

R= {(∣i1∣∣i2∣, . . . , ∣i2n+1∣∣i2n+2∣, σ) ∶ (∣i1∣, ∣i2∣, . . . , ∣i2n+1∣, ∣i2n+2∣) ∈ Řσ
ǫ }.

Proof. Let ∆S andRS = {Rσ
λ } as defined in 2.6. The proof that∆ = ∆S andŘσ

λ = Rσ
λ is

done by induction on the length of⟨λ⟩.
The case of⟨λ⟩ = ǫ is trivial since it is in both∆ (⊺ ∈ Γ by CT) and∆S, furthermore

Řσ
ǫ = Rσ

ǫ by definition.
The induction step (⟨λ⟩→ ⟨λ(i, j)⟩):
⟨λ(∣i∣, ∣ j∣)⟩ ∈ ∆S iff
⟨λ⟩ ∈ ∆S and(∣i∣, ∣ j∣) ∈ Rλ iff ⟨λ⟩ ∈ ∆S andRǫ

⟨λ⟩(∣i∣, ∣ j∣) iff (IH)

zλ⊺ ∈ Γ andŘǫ
⟨λ⟩(∣i∣, ∣ j∣) iffzλ@i z (j ∧ ⊺) = zλ(i, j)⊺ ∈ Γ iff

⟨λ⟩ (∣i∣, ∣ j∣) ∈ ∆.

And,
(∣i1∣∣i2∣, . . . , ∣i2n+1∣∣i2n+2∣, σ) ∈ R⟨λ(i, j)⟩ iff
(∣i1∣∣i2∣, . . . , ∣i2n+1∣∣i2n+2∣, σ) ∈ R⟨λ⟩ and(∣i∣∣ j∣, ∣i1∣∣i2∣, . . . , ∣i2n+1∣∣i2n+2∣, σ○) ∉ R⟨λ⟩
or
(∣i∣∣ j∣, ∣i1∣∣i2∣, . . . , ∣i2n+1∣∣i2n+2∣, σ●) ∈ R⟨λ⟩
iff (IH)
Řσ
λ (∣i1∣, ∣i2∣, . . . , ∣i2n+1∣, ∣i2n+2∣, σ) andŘσ○

λ (∣i∣, ∣ j∣, ∣i1∣, ∣i2∣, . . . , ∣i2n+1∣, ∣i2n+2∣)
or

29

Řσ●
λ (∣i∣, ∣ j∣, ∣i1∣, ∣i2∣, . . . , ∣i2n+1∣, ∣i2n+2∣)

iff
zλ@i1 yσ (i2, . . . , i2n+2) ∈ Γ andzλ@i yσ○ (j, i1 . . . , i2n+2) ∉ Γ
or
zλ@i yσ● (j, i1 . . . , i2n+2) ∈ Γ
iff
zλ@i1yσ(i2, . . . , i2n+2)∧zλ¬@iyσ○(j, i1 . . . , i2n+2)∨zλ@iyσ●(j, i1 . . . , i2n+2) ∈ Γ
iff (Dyn, Gen′zλ and Lemma 3.6)

zλz(i, j) @i1 yσ (i2, . . . , i2n+2) ∈ Γ
iff (Lemma 3.10)
zλ(i, j)@i1 yσ (i2, . . . , i2n+2) ∈ Γ.

�

Lemma 3.12(Truth lemma). For all z-saturated andyσ-saturated Ls+Λ-MCS’sΓ,
nominals i and formulasϕ,

M, (∣i∣, ⟨λ⟩) ⊧ ϕ iff zλ @iϕ ∈ Γ.
Proof. By induction on the length ofϕ.

• propositional symbols and nominals by definition;

• ϕ = ¬ψ
MΓ, (∣i∣, ⟨λ⟩) ⊧ ¬ψ iffMΓ, (∣i∣, ⟨λ⟩) /⊧ ψ andMΓ, (∣i∣, ⟨λ⟩) ⊧ ⊺
iff (IH)

zλ@iψ ∉ Γ andzλ@i⊺ ∈ Γ iff ¬zλ @iψ ∧zλ⊺ ∈ Γ
iff (S el f dual@, Gen′zλ andDetzλ)

zλ@i¬ψ;

• ϕ = ψ1 → ψ2 as in the previous case we applyK@, K−1
@ , Gen′zλ andDetzλ ;

• ϕ = @jψ applyAgreeandGen′zλ ;

• ϕ = yσψ;

If MΓ, (∣i∣, ⟨λ⟩) ⊧yσ(ψ1, . . . , ψ2n+1) then there are∣ j1∣, . . . , ∣ j2n+1∣ such that

Řσ
⟨λ⟩(∣i∣, ∣ j1∣, . . . , ∣ j2n+1∣)

andMΓ, (∣ j l ∣, ⟨λ⟩) ⊧ ψl . By definitionzλ@i yσ (j1, . . . , i2n+1) ∈ Γ and (IH)
@j lψl ∈ Γ for 1 ≤ l ≤ 2n+ 1. Thus, usingBridgeyσ

, Gen′zλ and Lemma 3.6, we
have that

zλ@i yσ (ϕ1, . . . , ϕ2n+1) ∈ Γ.
Conversely, supposezλ@i yσ (ϕ1, . . . , ϕ2n+1) ∈ Γ then byzλ-saturation there
are j1, . . . , j2n+1 such thatzλ@i yσ (j1, . . . , j2n+1) ∈ Γ andzλ@j lψl ∈ Γ for 1 ≤
l ≤ 2n+ 1. By IHMΓ, (∣ j l ∣, ⟨λ⟩) ⊧ ψl and by definitionŘσ

⟨λ⟩(∣i∣, ∣ j1∣, . . . , ∣ j2n+1∣).
Hence,

MΓ, (∣i∣, ⟨λ⟩) ⊧yσ(ψ1, . . . , ψ2n+1).

30

• ϕ = zψ
MΓ, (∣i∣, ⟨λ⟩) ⊧zϕ iff

exists∣ j∣ such that⟨λ⟩ (∣i∣, ∣ j∣) ∈ ∆ such thatMΓ, (∣ j∣, ⟨λ⟩ (∣i∣, ∣ j∣)) ⊧zϕ iff (I.H.)

exists∣ j∣ such thatzλ(i, j)@jϕ = zλ@i z (j ∧@jϕ) ∈ Γ iff (usingz-saturation
andCT)

zλ@i z ϕ ∈ Γ.
�

Lemma 3.13(Frame lemma). For all z-saturated andyσ-saturated Ls + Λ-MCS’s,
MΓ satisfies the switch frame properties defined byΛ.

Proof. It follows from the fact thatΛ ⊆ Γ contains⧄λ@iϕ whereϕ is an instance of an
element ofΛ from S ubst, Gen@ andGen⧄λ . �

We can now prove Theorem 3.4.

Proof. (Of Theorem 3.4) SupposeΣ is Ls + Λ-consistent. By Lemma 3.8,Σ can be
extended to a named,z-saturated andyσ-saturatedLs + Λ-MCS’s Γ. Let i ∈ Σ. By
Lemma 3.12 we haveMΓ, (∣i∣, ⟨ǫ⟩) ⊧ Σ. By Lemma 3.13,MΓ satisfies all required
frame properties. �

3.3 Comments and remarks

Small switch frames The fact that the propositional valuation is allowed to change
at each move implies that switch frames based on switch graphs with infinite behaviour
have infinite components. Nevertheless, to have a complete view on the switch dynam-
ics it would be enough to have one component for each reachable switch configuration.
Let AS = {Rλ ∶ λ ∈ ∆S} be the set of switches’ configurations that are obtained inS’s
dynamics. One can then consider the Kripke frameF′S = (W×A, Ř′S) (the small switch
frame overS) where

• Ř′S = {R̂σ}σ∈{○,●}∗ ,

• ((w1,R), . . . , (w2n+2,R)) ∈ Řσ
λ iff (w1w2, . . . ,w2n+1w2n+2, σ) ∈ Rand

• (w,Rλ) connects (reactively) with(w′,Rλww′).

So everything is the same apart from the fact that we do not always get a new compo-
nent from a move, the tree structure disappears. It is easy tosee thatF′S is finite if and
only if S is finite. See Figure 16 for an example.

Let us consider a semantics ofHs(@) over the small switch frames trivially adapted
from Definition 3.2 (only the interpretation ofz changes), and call them small switch
models. If the set of propositional symbols is empty (Π = ∅) these two classes of
frames trivially generate the same logic. Also, when, e.g. for modal checking pur-
poses, everything in the model is finite, including the number of propositional variables

31

Figure 16: Small switch frame of{{a,b,c},{(a,b), (a,c), (ab,cd, ○)}}.

involved, one would consider similarly a finite representation by having one compo-
nent for each configuration of the switches and distributionof the relevant propositional
variables.

Moreover, it is interesting to notice that even if the classes of small and the original
switch frames are not immediately reducible to one another they yield the same logic.

It is trivial to define a model overFS from a model overF′S preserving modal
truths, since we just have to copy the valuation of each configuration and paste it where
it appears, so

{ϕ ∈Hs(@) ∶ ϕ is valid over switch frames} ⊆
{ϕ ∈Hs(@) ∶ ϕ is valid over small switch frames}.

The converse is not so immediate since if we cannot fit two different configurations
in the same component of a small switch model. However, it is not hard to see that
these two classes define the same logic. The idea of the proof is the following:

Givenϕ and a switch model(W×∆S,RS, ν), (w, ǫ) ⊧ ϕ (we can assumeλ = ǫ since
the past clearly does not interfere with the evaluation ofϕ). We then consider a switch
graphS′ which is a copy ofS plus some switches of a high enough level so that they
do not interfere with the evaluation ofϕ and that during the evaluation ofϕ the new
switches’ configuration changes and so that we can accommodate theν. Let k be the
higher level of the switches referred inϕ, it is clear we can add new points and switches
such that at each crossing of an edge a different switch, of level higher thank, changes
its state. For example one could add for each admissible sequence of edges covered in
the interpretation ofz, λ = (w1w2) . . . (w2n−1w2n), a pointwλ and the switch

(w1w2, . . . ,w2n−1w2n, [wλwλ]
k
, ●n−1+k)

where[wλwλ]
k stands fork+ 1-occurrences ofwλwλ with a comma dividing each oc-

currence. Thus guaranteeing a different component for each sequence of edges and
therefore being able to define the appropriate valuation to each of them.

Decidability and f.m.p. Given a satisfiable formulaϕ, that is, such that for some
(w, λ) ∈ W× ∆S and valuationµ, we have:

(W× ∆S,RS, µ), (w, λ) ⊧ ϕ.

32

Clearly this is determined by just a part of the whole model. Has we have noticed above
we can start by throwing out the past, that is, assuming thatλ = ǫ. It is also clear that
only the fragment corresponding to the paths bounded by thez-modal nesting-depth
of ϕ, mdz(ϕ), matters. Furthermore, the level of the relevant switches is bounded
by n + mdz(ϕ), wheren is the level of the highest switch in the formula. Thus, the
satisfiability ofϕ is reduced to checking the satisfiability over certain Kripke models
corresponding to that kind of fragment. Of course, ifW is infinite these fragments are
infinite. The most direct way to finitise such a fragment wouldbe to adapt the filtration
method by identifying only the points that satisfy the same relevant formulas in all of
the fragment components.

We start by noticing that this method fails over general switch models. Consider
the following switch graph

S = (ω,{(0,n), (0n,nn, ○) ∶ n < ω}),

see Figure 17, andzz⊺ ∈Hs(@).

Figure 17: A switch graph originating a filtration problem.

Given a model over the switch frame generated byS it is clear that no two points
will be identified since(n,0n)′ ⊧′ ¬zz⊺ and(n,0m)′ ⊧′ zz⊺ for n ≠ m.

We were also unable to adapt the game-based argument to establish the PSPACE
upper bound for the satisfiability problem ofH(@), see [3, 7]. The problem is, when
adding a new world to a particular component, how to update the other components
without falling in a infinite loop of verifications.

The study of the logics corresponding to carefully chosen subclasses may result in
more treatable problems and may lead to a better understanding of the general case.
One interesting example is the class of switch graphs representing that each edge can
only be crossed a certain number of times, modelling the finite durability of certain
resources, e.g. roads, bridges, product stocks, etc. The class of switches required to
model this is very simple (see Example 1.2), which may be reflected positively in an
easier understanding of certain properties of the originating logics, e.g. the finite model
property.

Relation with Reactive Logics There are no obvious connections (e.g. translations)
between these switch logics and the ones studied in [19]. Even if we can extract a

33

reactive frame from a switch graph by considering its local behaviour (its paths without
jumps), the◇P operator allows a global access over all the reactive statesof a point
that cannot be mimicked by the operators considered here. The two approaches are two
transversal extensions of classical modal logic with different expressivity. Applications
may assert which should be developed or even determine the necessity of joining both
views.

Further Extensions Many other hybrid operators have been studied and it would be
interesting to investigate how they would play in this context. A particularly natural
extension of these logics would be to enrichHs(@) with computational tree logic’s
(CTL) operators ([10]) or evenµ-calculus ([31]). This would greatly reinforce our
ability to reason about the behaviour of a switch graph and increase its usability. The
way this would be done is not completely clear and it would depend on one’s particular
interests.

If we want to reason aboutk agents acting in the graph (in Section 2.3 there are
such examples) and they are not allowed to jump, we are not interested in the whole
set of sequences of edges, but only in the ones that the agentsmay cross, which are
determined by their position at each moment. To express these restrictions, it may
be necessary to include in the language the possibility of referring explicitly to the
distribution of the agents in the graph. In this direction, apossibility would be to model
each agent’s location by variables, maybe even introduce another sort of variables to
deal with it like we did with nominals. In the used language wewould be able to
express for example that each agent can be only in one point ata time:

@i(a∧ ¬ j)→@j¬a,

consideringa to be an agent variable. Also, to express their movement, onecould
associate a specific modal operator⧄a with each agent, and say:

@i(a∧ ¬ j ∧z j)→ ⧄a(j → (@ja∧@i¬a)).

References

[1] C. Areces.Logic Engineering. The Case of Description and Hybrid Logics. PhD
thesis, Institute for Logic, Language and Computation, University of Amsterdam,
Amsterdam, The Netherlands, October 2000.

[2] C. Areces, P. Blackburn, and S. R. Delany. Bringing them all together. Journal
of Logic and Computation, 11:657–669, 2001.

[3] C. Areces, P. Blackburn, and M. Marx. A road-map on complexity for Hybrid
logics. InProceedings of the 13th International Workshop and 8th Annual Con-
ference of the EACSL on Computer Science Logic, CSL ’99, pages 307–321, Lon-
don, UK, 1999. Springer-Verlag.

[4] C. Areces, F. Carreiro, S. Figueira, and S. Mera. Basic model theory for memory
logics. InWoLLIC, pages 20–34, 2011.

34

[5] H. Barringer and D. M. Gabbay. Modal and temporal argumentation networks.
In Essays in Memory of Amir Pnueli, pages 1–25, 2010.

[6] P. Blackburn. Representation, reasoning, and relational structures: a hybrid logic
manifesto.LOGIC JOURNAL OF IGPL, 8(3):339–365, 2000.

[7] P. Blackburn, J. F. A. K. v. Benthem, and F. Wolter.Handbook of Modal Logic,
Volume 3 (Studies in Logic and Practical Reasoning). Elsevier Science Inc., New
York, NY, USA, 2006.

[8] P. Blackburn, M. de Rijke, and Y. Venema.Modal Logic. Cambridge University
Press, 2001.

[9] P. Blackburn and B. ten Cate. Pure extensions, proof rules, and Hybrid axiomat-
ics. Studia Logica, 84(2):277–322, 2006.

[10] P. Blackburn and M. Tzakova. Hybrid languages and temporal logic. Logic Jour-
nal of the IGPL, 7(1):27–54, 1999.

[11] R. A. Bull. An approach to tense logic.Theoria, 36(3):282–300, 1970.

[12] M. Crochemore and D. M. Gabbay. Reactive automata.Information and Compu-
tation, In Press, Accepted Manuscript:–, 2011.

[13] D. M. Gabbay. A Theory of Hypermodal Logics: Mode Shifting in Modal Logic.
Journal of Philosophical Logic, 31(3):211–243, June 2002.

[14] D. M. Gabbay. Reactive Kripke semantics and arc accessibility. In D. F. M. P.
Carnielli, W., editor,Proceedings of CombLog 2004, pages 7–20. Centre for
Logic and Computation, University of Lisbon, 2004.

[15] D. M. Gabbay. Introducing reactive Kripke semantics and arc accessibility. In
Pillars of Computer Science, pages 292–341, 2008.

[16] D. M. Gabbay. Reactive Kripke Models and Contrary to Duty Obligations. In
R. van der Meyden and L. van der Torre, editors,DEON, volume 5076 ofLecture
Notes in Computer Science, pages 155–173. Springer, 2008.

[17] D. M. Gabbay. Reactive intuitionistic tableaux.Synthese, pages 1–17, 2010.
10.1007/s11229-010-9781-8.

[18] D. M. Gabbay, A. Kurucz, F. Wolter, and M. Zakharyaschev. Many-Dimensional
Modal Logics: Theory and Applications, volume 148 ofStudies in Logic and the
Foundations of Mathematics. Elsevier, 2003.

[19] D. M. Gabbay and S. Marcelino. Modal Logics of Reactive Frames. Studia
Logica, 93(2-3):405–446, 2009.

[20] D. M. Gabbay and K. Schlechta. Defeasible inheritance systems and reactive
diagrams.Logic Journal of the IGPL, 17(1):1–54, 2009.

35

[21] D. M. Gabbay and K. Schlechta. Reactive Preferential Structures and Nonmono-
tonic Consequence.Review of Symbolic Logic, 2(2):414–450, 2009.

[22] D. M. Gabbay and K. Schlechta. An Analysis of DefeasibleInheritance Sys-
tems. InLogical Tools for Handling Change in Agent-Based Systems, Cognitive
Technologies, pages 251–293. Springer Berlin Heidelberg,2010.

[23] D. M. Gabbay and K. Schlechta. A theory of hierarchical consequence and con-
ditionals.J. of Logic, Lang. and Inf., 19:3–32, January 2010.

[24] G. Gargov and V. Goranko. Modal logic with names.Journal of Philosophical
Logic, 22:607–636, 1993. 10.1007/BF01054038.

[25] D. Harel and A. Pnueli.On the development of reactive systems, pages 477–498.
Springer-Verlag New York, Inc., New York, NY, USA, 1985.

[26] M. Huth and M. Ryan. Logic in computer science: Modelling and reasoning
about systems, 1999.

[27] S. Marcelino. Modal Logic for Changing Systems. PhD thesis, King’s College
London, 2011.

[28] S. Modgil. Reasoning about preferences in argumentation frameworks. Artif.
Intell., 173:901–934, June 2009.

[29] A. Prior. Past, Present and Future. Oxford University Press, 1967.

[30] A. N. Prior. Modality and quantification in S5.The Journal of Symbolic Logic,
Vol. 21(No. 1):pp. 60–62, (Mar., 1956).

[31] U. Sattler and M. Vardi. The hybridµ-calculus. InProceedings of IJCAR’01,
Siena, June 2001.

[32] J. van Benthem. An essay on sabotage and obstruction. InD. Hutter and
W. Stephan, editors,Mechanizing Mathematical Reasoning, volume 2605 ofLec-
ture Notes in Computer Science, pages 268–276. Springer, 2005.

[33] J. van Benthem. Dynamic logic for belief revision.Journal of Applied Non-
classical Logics, 17:129–155, 2007.

[34] A. Zanardo. Branching-Time Logic with Quantification over Branches: The Point
of View of Modal Logic. The Journal of Symbolic Logic, 61(1):pp. 1–39, 1996.

36

	Introduction
	Global view: Switch graphs and their frames

	Switch graphs
	Reactive by Switch
	Modelling multiple agents or processes
	Comments and remarks

	Reactive hybrid switch logics
	Switch Models
	Axiomatising
	Comments and remarks

