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palavras-chave incêndios florestais, erosão, escorrência, repelência, mulch, 
efetividade, turvação. 

resumo O presente trabalho centra-se na avaliação da efetividade de quatro técnicas 
de controlo da escorrência e da erosão após  incêndios florestais, adaptadas 
para o caso de povoamentos florestais no centro norte de Portugal.  A seleção 
e desenvolvimento das técnicas foi efetuada após revisão bibliográfica 
alargada, mas sobre tudo após a comprovação no campo, efetuando 
simulações de chuva, de quais os fatores determinantes da erosão nos solos 
típicos do centro norte do País, caracterizados por serem altamente repelentes 
ainda antes dos incêndios.   
  
O “mulch” com restos de casca de eucalipto triturada foi um tratamento 
pioneiro nunca antes testado e deu bons resultados no controlo da escorrência 
e da erosão em eucaliptais ardidos. O “mulch” com restos florestais não 
triturados (ramos, paus e folhas) aplicados em um pinhal recentemente ardido 
não pode ser bem testado devido à protecção natural que forneceram as 
agulhas do pinheiro que caíram das árvores. No entanto, a sua alta taxa de 
aplicação desaconselham a sua utilização.  O “hidromulch”, uma variante do 
“mulch” composto por água, fibras orgânicas e sementes utilizadona 
restauração de taludes e pedreiras, também  deu resultados altamente efetivos 
e foi indicado para o tratamento de áreas especialmente sensíveis.  Por outro 
lado, a utilização de poliacrilamidas (PAM), um agente aglutinante com 
bastante êxito na redução da erosão em terrenos agrícolas e  com alto 
potencial devido ao seu baixo custo, não obteve resultados satisfatórios, uma 
vez que não alterou o principal fator envolvido na geração da erosão: o coberto 
do solo.   
  
No decorrer destas experiências, foi ainda desenvolvido um sensor óptico de 
turvação que permite facilitar a determinação da concentração de sedimentos 
nas amostras de escorrência das parcelas de erosão. Atualmente, foi realizado 
o pedido de patente de um novo protótipo de sensor de turvação da água mais 
desenvolvido. 
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abstract 
 

 

This study aims to measure the effectiveness of four post-fire emergency 
techniques for reducing overland flow and soil erosion on the central-Portugal 
typical forest. The selection and development of these techniques was based 
on the review of the scientific background, but specially after checking 
throughout field rainfall simulation experiments which factors were the key for 
runoff and soil erosion on the specific case of high repellent soils.  
 
The forest residue mulch, a new treatment never tested before, was highly 
effective in reducing runoff and soil erosion in recently burnt eucalypt forest. 
The logging slash mulch had no obvious effect, but it was attributed to the small 
amounts of runoff and sediments that the untreated plots produced due to the 
extensive needle cast following a low severity fire. The hydromulch, a mixture 
of water, organic fibres, seeds, nutrients and a surfactant used in cutted slopes 
rehabilitation was also highly successful and was specially indicated for 
especially sensible areas. The utilization of polyacrylamides, a chemical agent 
with good performance in agricultural erosion, was not successful in post-fire 
runoff and soil erosion control, once that did not alter the most important key 
factor for soil erosion: the ground cover.  
 
The development of a new fibre optic turbidity sensor was a successful 
development on the soil erosion determination methodology, and its patent is 
being processed in the mean time. 
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1. Introduction 

1.1. Wildfires and their effects on geomorphic and hydrological processes. 

Over the last 400 million years, vegetation has evolved to adapt to fire as a natural 

component of ecosystem dynamics (Pausas, 2004). Fire-adapted vegetation can recover 

from the damage provoked by wildfire through regeneration mechanisms such as 

resprouting from resistant plant parts as well as through germination strategies (Whelan, 

1995). During the last millennia, however, fire regime has been strongly modified by 

human societies (James, 1989, Goren-Inbar et al., 2004). Since the Neolithic age, fire has 

been used as a source of energy and as a tool in defence, for hunting and for managing 

the landscape, introducing agricultural and pasture lands in previously forested areas 

(Bird et al., 2008). As a result, forests had lower fuel loads and became intersected by 

open spaces, whilst fires became more frequent and, at the same time, of lower intensity 

(Pausas, 2004). In the Mediterranean Basin, human settlements have shaped the 

surrounding landscapes during the last 10.000 years. 

Also in Portugal, the landscape reflects a long history of intense land management, 

with a mosaic of (semi-)natural and man-made agricultural and afforested lands, 

unploughed and ploughed hillslopes connected by a dense net of tracks and roads 

(Shakesby 2011). Since the 1980´s, however, wildfires have increased dramatically in 

frequency and extent, aided by a general warming and drying trend but driven primarily by 

socio-economic changes (Ferreira et al., 2009). These changes were first and foremost 

the large-scale introduction of commercial plantations of fire-prone tree species such as 

eucalypt and pine (Figure 1), and the decline in traditional practices like grazing and 

coppicing, increasing the accumulation of flammable materials (Pereira et al., 2006; 

Radich and Alves, 2000; Shakesby et al., 1996). Between 1980 and 2010, wildfires have, 

on average, affected 110.000 ha of rural lands per year in Portugal (AFN, 2012). 
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Figure 1. Two views of the recently burnt areas studied in this thesis, the Pessegueiro 

area burnt in 2007 (top; Chapter 3) and the Colmeal area burnt in 2008 (bottom; Chapter 

5). 

The most evident change produced by a wildfire is the total or partial loss of the 

vegetation and litter cover. The removal of vegetation and litter reduces rainfall 

interception and, thereby, enhances throughfall (Díaz-Fierros et al., 1987; Soto et al., 

1998) and can increase overland flow (Soto et al., 1993) as well as subsurface and 

groundwater flow (Lavabre et al., 1993). Vegetation loss also decreases the leaf area from 

which evapotranspiration occurs, and reduces the obstacles to overland flow (Shakesby 

and Doerr, 2006). Besides vegetation and litter cover, wildfires can have significant 

impacts on soil chemical and physical properties, depending to a large extent on fire 

severity (e.g. Inbar et al., 1998; Robichaud, 2000; Shakesby and Doerr, 2006). Fire has 

been found to cause (partial) combustion of organic matter, deterioration of soil structure 
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and aggregate stability, increase in bulk density and soil water repellency (DeBano, 2000; 

Doerr et al., 2000; Fernández et al., 2004; Giovannini et al., 1988; Imeson et al., 1992; 

Llovet et al., 2009; Soler et al., 1994). These changes often make the soil more 

susceptible to overland flow generation and removal by rain drop and runoff (Shakesby, 

2011). Fire-induced changes in soil water repellency deserve special reference in the 

case of north-central Portugal. On the one hand, the prevalent forest plantations of 

Maritime Pine and especially eucalypt commonly exhibit pronounced repellency (Doerr et 

al., 1996; Ferreira et al., 1997; Keizer et al., 2008; Leighton-Boyce et al., 2007; Malvar et 

al., 2011; Figure 2) and on the other hand, soil water repellency is widely considered as 

one of the main factors in enhancing runoff generation and the associated soil losses 

following wildfire (e.g. Leighton-Boyce et al., 2007; Shakesby and Doerr, 2006; Sheridan 

et al., 2007). The eucalypt plantations are typically planted as monocultures for paper pulp 

production. The harvesting cycles are about every 7-14 years, after which the stumps are 

left to regrow up to four times and a new plantation cycle begins (Ferreira et al., 1997; 

Keizer et al., 2008; Leighton-Boyce et al., 2007; Malvar et al., 2011).  

Figure 2. Illustration of extreme soil water repellency following wildfire, showing three 

drops with an ethanol concentration of 36 % “sitting” on dry soil. 

Soil erosion is a two-stage process, involving detachment of soil particles and their 

subsequent transport by water, wind or gravity (Morgan 2005). In the case of post-fire soil 

erosion, fire severity was often found to be a key factor (Benavides-Solorio and 
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MacDonald, 2005; González-Pelayo, 2006; Rubio et al., 1997; Prosser and Williams, 

1998; Robichaud, 2000). However, fire severity must be assessed after “the smoke has 

gone”, using indicators that give qualitative rather than quantitative estimates of the 

heating regime. Ryan and Noste (1985) developed a fire severity index based on visual 

estimation of soil cover by litter and duff, and of alteration of soil colour (Figure 3). Vega et 

al. (2008) recommended using canopy cover consumption and ash colour (Figure 4). 

Other severity indices such as the Twig Method Severity Index (TMSI; Moreno and 

Oechel, 1989;) and the NIR-based Maximum Temperature Reached (Guerrero et al., 

2007; Maia et al., 2012) can be more precise but also more labour-intensive. 

Figure 3. Ash colour indicating higher burnt severity on the left than right on the 

photograph. 
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Figure 4. In the Pessegueiro wildfire of 2007, the tree canopies were fully consumed at 

the eucalypt study site (left) but only partially at the pine study site (right), so that the lower 

fire severity was associated to “natural” mulching by the subsequent cast of the scorched 

leaves and needles  

Extreme sediment losses of 20 to even 170 Mg ha-1 year-1 have been observed 

following wildfires in North America (Spigel and Robichaud, 2007; Riechers et al., 2008; 

Robichaud et al., 2000) as well as in Europe, (Galicia: Díaz-Fierros et al.,1987; Fernández 

et al., 2011; Catalonia: Úbeda and Sala, 1998; Marquès and Mora, 1992; France: Lavabre 

and Martin, 1997; Martin et al.,1997; Greece: Dimitrakopoulos and Seilopoulos, 2002; 

including Portugal Shakesby et al., 1994; as it was recently reviewed by Shakesby, 2011). 

Since the 1980´s (Swanson, 1981), it is generally accepted that fire-enhance erosion rates 

decrease with time-since-fire till they return to background levels at the end of the so-

called window-of-disturbance (Shakesby and Doerr, 2006). This window-of-disturbance is 

estimated to last between 3 and 10 years, depending on fire severity and post-fire climate 

conditions (e.g. Andreu et al., 2001; DeBano et al., 1998; Robichaud, 2009; Sala et al., 

1994). The relation between wildfire and soil erosion, however, is far to be straightforward 

(Figure 5). Various authors have reported negligible soil erosion rates after wildfires 

(Kutiel & Inbar, 1993; Kutiel et al., 1995; Lane et al., 2004). In general, in Mediterranean 

regions, post-fire erosion rates tend to be low (Shakesby, 2011). This is true for Portugal 
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as well (e. g. Ferreira et al., 2008; Malvar et al., 2011, 2013, and Shakesby et al., 1996). 

In addition, the various factors controlling hydrological processes at different scales 

complicated even further the measurement and comparison of erosion rates (Robichaud, 

2009). Perhaps more importantly, however, is the fact that there is much uncertainty in 

evaluating erosion rates as “tolerable” or not in terms of net soil loss, as the rate of soil 

formation continues to be poorly known. The existing estimates point to less than 1.5 Mg 

ha-1 year-1, with large variations between regions (Alexander 1988; Wakatsuki and 

Rasydin, 1992).  

Figure 5. Alluvial fan deposited during a rainfall event in 2010, eight years after the high-

severity Hayman fire of 2002, Colorado, USA. 
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1.2. Mitigation of soil erosion following wildfires

The first efforts aiming to reduce soil erosion following wildfires were probably carried 

out in the USA (southern California), dating as far back as the late 1800s (Wohlgemuth et 

al., 2009). From then, the association of wildfire with on-site soil erosion and downstream 

flooding and massive sediment deposition became increasingly recognized and, in the 

early part of the last century, led to the first systematic soil erosion control treatments 

following wildfires (Munns, 1919). An event that alarmed the public opinion and 

highlighted the need for post-fire rehabilitation, took place on New Year´s Day 1934, in La 

Crescenta, near Los Angeles. A debris flow deposited river tributaries to depths of up to 5 

m, transported boulders the size of automobiles over several kilometres, produced 

massive damage to properties and killed 16 persons (Kraebel, 1934).  

During the first half of the 20th century, post-fire rehabilitations efforts by and large 

consisted of building engineering structures (check dams) in stream channels to trap the 

sediments and of seeding hillslopes to increase ground cover. However, these pioneering 

treatments involved several problems. First, it proved to be unrealistic to build check dams 

in the often short periods between the occurrence of the wildfires and of the erosion-

producing rains, so that they had to be constructed in advance of wildfires in streams and 

downstream of fire-prone areas (Wohlgemuth et al., 2009). Second, as early as the 

1920s, seeding with native shrub species was recognized to be ineffective, since the 

introduced seeds germinated no earlier than the in-situ seed bank. Subsequent seeding 

trials with faster-growing, non-native herbaceous species such as Mediterranean 

mustards (Brassica ssp.) led to problems in downstream agricultural areas, where the 

species were considered to be noxious weeds by the farmers (Gleason 1947). By the 

1950s, however, seeding with ryegrass (Lolium multiflorum Lam.) had become widely 

regarded as the most cost-effective treatment for augmenting post-fire ground cover, at 

least in California (Barro and Conard, 1987). It also proved a good technique to transform 

shrubland into pasture (Schultz et al., 1955).  

The effectiveness of seeding to mitigate post-fire soil erosion started to be questioned 

during the 1960s, by researchers of the San Dimas Experimental Forest in southern 

California (Rice et al., 1965). Namely, various studies had found that ryegrass seeding did 

not markedly reduce erosion even when effectively increased ground cover (Gautier, 

1983; Taskey et al., 1989). This ultimately led to a strong controversy on the effectiveness 

of seeding during the 1988 Symposium on Fire and Watershed Management, where 

various papers were presented that indicated the effectiveness of alternative post-fire 
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treatments, i.e. application of straw mulch (Gross et al., 1989; Miles et al., 1989) and 

retaining of slash and residues from post-fire logging on the soil surface (Barker 1989; 

Poff 1989). From the above-cited studies, however, only one (Taskey et al., 1989) 

involved direct measurement of soil erosion rates on control and treated plots. Therefore, 

the symposium concluded to the need for standardization of treatment assessment 

methods, including a clear definition of time scale and of the potential effects being 

evaluated, to provide land-use managers with better information to sustain their decisions 

(MacDonald, 1989). This author draw special attention to the fact that treatment 

effectiveness - i.e. increase in ground cover - is not necessarily the same as achieving the 

goal of the treatment – i.e. (reduction of post-fire sediment yields). 

During the 1990s and the 2000s, research on post-fire erosion mitigation concerned 

seeding (e.g. Beyers, 2004; Fernández-Abascal et al., 2003; Groen and Woods, 2008; 

Peppin et al., 2010; Pinaya et al., 2000; Robichaud et al., 2006), log barrier construction 

(Robichaud et al., 2008; Wagenbrenner et al., 2006), straw mulching (Bautista et al., 

1996; Badía and Martí, 2000; Wagenbrenner et al., 2006) and several combination of two 

or more techniques (seeding + log erosion barriers + straw mulch in Dean, 2001 and  

seeding + mulch in Badía and Martí, 2000). In a nutshell, these studies found seeding to 

be effective in some cases but not in others, log barriers construction to be ineffective 

unless rain events are few and small, and mulching to be highly effective (Figure 6). The 

effectiveness of mulching is also well-established for agriculture lands (Harris and Yao, 

1923; Meyer et al., 1970; Lyles et al., 1974; Jordán et al., 2010), and cut slopes and 

unpaved roads (Grismer and Hogan, 2005; Jordán et al., 2008).  

The effectiveness of straw mulches for mitigating post-fire erosion has been tested 

more exhaustively in field trials than that of mulches composed of woody plant materials 

(Fernández et al., 2011; Kim et al., 2008; Riechers et al., 2008). Often-cited advantages of 

straw mulches are their wide availability, low costs and low specific weights. Nonetheless, 

the availability of straw mulches may be limited in many parts of the world (Foltz and 

Wagenbrenner, 2010). Furthermore, the low specific weights can also be a disadvantage, 

especially in areas prone to strong winds during the period between straw application and 

the first heavy rainfall events (Robichaud et al., 2000). Negative ecological effects of straw 

mulches were pointed out by Kruse et al. (2004), such as the reduction of the density of 

conifer seedlings and the involuntary introduction of non-native seeds. Whilst woody 

mulches are (potentially) widely available in forest-dominated areas such as north-central 

Portugal, their effectiveness under field conditions remains unclear. Wood chips were 
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found to have little effect in reducing post-fire soil losses in various studies (Fernández et 

al., 2011; Kim et al., 2008; Riechers et al., 2008). This could be due to the shape and size 

of the chips. Laboratory rainfall simulation experiments found that wood shreds and 

strands (Figure 7) were as effective as straw, whilst wood chips were not (Smets et al., 

2008; Foltz and Dooley, 2003; Yanosek et al., 2006). The first field experiments carried 

out in Portugal with the application of different quantities of logging litter found positive 

results (Shakesby et al., 1996).  
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Figure 6. Literature-based overview of treatments for mitigation soil erosion following 

wildfire at the slope and catchment scale as well as for road networks. 
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Figure 7. Detail of wood strand mulch used in soil erosion mitigation following the 2007 

School wildfire, Idaho, USA. 

A recent variant of mulching is that of hydromulching (Figure 8), involving the 

application of an aqueous mixture of organic fibres with seeds, nutrients, soil binding 

agents, green colorant and seeds from a jet hose (Naveh, 1975). Hydromulching is a 

relatively expensive technique, with a cost of $2300 to $7400 per ha for ground and aerial 

spreading, respectively (MacDonald and Larsen, 2009) as compared to $400-2900 for 

ground to $600-2300 for aerial straw mulch spreading (de la Fuente and Blond, 2010; 

MacDonald and Larsen 2009; Napper, 2006). Hydromulching is typically used in 

restoration of degraded landscapes such as quarries, road banks, and highway cut slopes 

(Benik et al., 2003; Emanual, 1976; Robichaud et al., 2010), but has not been extensively 

used or tested in recently burnt areas (Hubbert et al., 2011; Wohlgemuth et al., 2011). 

Hubbert et al. (2011) found hydromulching to be effective in reducing post-fire erosion but, 

at the same time, noted a quick breakdown. By contrast, Wohlgemuth et al. (2011) found 

it to be ineffective for high-intensity rainfall storms.   
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Figure 8. Details of the hydromulch applied by the authors in the Colmeal field trial (left) 

and of the forest residue mulch applied in the Ermida experiment (right). 

Also polyacrylamides (PAM) - a family of flocculant agents developed by the agro-

chemical sector - were recently introduced for post-fire erosion mitigation (Rough 2007, 

Wohlgemuth and Robichaud, 2007). Especially in the form of dry granulate (Figure 8), it 

can be applied easily. During the last two decades, PAM has become widely accepted as 

for soil erosion control in intensive agriculture with furrow irrigation as well as on steep 

road embankments (Agassi and Ben-Hur, 1992; Ben-Hur, 2001, 2006; Ben-Hur and 

Keren, 1997; Ben-Hur and Letey, 1989; Lentz et al., 2002; Levy et al., 1991; Sojka et al., 

2007). Since PAM is a generic term for a broad class of hundreds of polymers with 

differing functional groups and chain lengths, different formulations have been tested to 

achieve optimal binding of PAM with the soils’ specific clay particles, through direct ionic 

attractions or cation bridges (Theng 1982, Vacher et al., 2003). So far, few field trials have 

assessed the effectiveness of PAM in recently burnt areas, and these studies have 

reported opposing results. Whilst Davidson et al. (2009), Riechers et al. (2008) and Inbar 

(2011) found PAM to be effective in reducing post-fire erosion, Rough (2007), 

Wohlgemuth and Robichaud (2007) and Macdonald and Larsen (2009) did not. 

In Portugal, post-fire emergency treatments have rarely been employed so far, 

although this may now be changing with the emergency stabilization measures funded by 

PRODER (under sub-Action 2.3.2.1) for selected, 2010-burnt areas. Likewise, at the start 

of the studies presented here, field trials on the effectiveness of post-fire soil conservation 

measures had received surprisingly little research attention, being limited to a single case 

(Shakesby et al., 1996). 
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Figure 9. Illustration of the application of the treatments assessed in this study: eucalypt 

chopped bark mulch (Pessegueiro do Vouga and Ermida, Chapters 3 and 4; top left), 

eucalypt logging slash mulch (Pessegueiro do Vouga, Chapter 3; top right), dry 

polyacrylamide (Ermida, Chapter 4; bottom left) and jet-hose hydromulching (Colmeal, 

Chapter 5; bottom right).  

The authors assessed the effectiveness of logging residues for a eucalypt as well as a 

Maritime Pine plantation. For various reasons, however, the study was somewhat 

unconventional in that: (i) the treatments were applied two years after the wildfire; (ii) 

involved different application rates rather than replicate plots; (iii) were evaluated by 

comparing the erosion rates before and after treatment rather than concurrent erosion 

rates at treated and untreated plots. According to MacDonald (1994), monitoring of the 

effectiveness of post-fire rehabilitation measures should ideally involve: (i) application of 

the treatment as soon as possible after the wildfire, to avoid missing especially the large, 

initial  rainfall events; (ii) a long-term measurement period to assess any decrease in 

effectiveness during the window-of-disturbance; (iii) inclusion of replicated plots for the 

control situation (burnt but untreated) as well as for each one of the treatments.  
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1.3 Tools for measuring soil erosion  

A treatment effectiveness monitoring program as suggested by MacDonald (1994; see 

1.2) implies major efforts. This is especially true when using runoff plots, due to the large 

number of runoff samples that need to be analyzed in terms of sediment load. Standard 

laboratory methods to determine sediment concentration are all rather time- and energy-

consuming (APHA, 1998). For example, a site with 10 runoff plots will produce in a typical 

read-out around 10 runoff samples of 1.5l. Evaporation (hours-days) or filtration (minutes-

hours) are time-consuming methods that must invariably be followed by: a weighting, a 

drying period of 24 h at 105 ºC, a cooling and finally a weighting of the dry sediments 

(APHA, 1998). In total, 10 samples will demand between 2 to 3 days of laboratory 

processing besides the storage space. Thus, turbidity sensors have much potential to 

speed up the process and lower its costs. Turbidity sensors such as the “OBS-3+ 

Suspended Solids and Turbidity Monitor” (Downing, 2006; Campbell et al., 2005; Figure 

10) are available for over two decades now but are poorly suitable for laboratory 

measurements, especially also due to the large sample volume that is required. They are, 

however, now widely used for automatic monitoring of stream flow sediment 

concentrations. Even so, their use is frequently not without problems, since the sensors 

require complex installations and have a life span that is limited by their electronic parts. 

Furthermore, the current turbidity sensors (as well as the associated data retrieval and 

storage systems) have elevated costs, so that hydrometric stations typically involve a 

single turbidity sensor and, thus, are susceptible to data loss in case of sensor 

malfunctioning and to bias due to the sensor’s position in the water column.   
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Figure 10. Two optic-based turbidity sensors for sediment concentration determination: 

the commercial OBS-3+ (below) and the new proto-type (above) co-developed by the 

author.  

Fibre-optics-based sensors and, in particular those using plastic optical fibres (POFs) 

are now widely recognized to offer various important advantages over traditional methods 

of sensing (Zienmann, 2008). Besides being inexpensive and easy to handle, they are 

flexible, small and immune to electromagnetic interferences, and, in general, allow 

measuring any phenomenon without physically interacting with it. Further advantages that 

are of special interest for field monitoring of surface water quantity and quality, are the 

suitability of POFs to operate in a multisensory scheme, to permit monitoring in-situ or 

remotely, and to be employed under harsh conditions without significant sensor 

performance deterioration (Yeo, 2008). Fibre-optics-based sensors have, in fact, already 

been employed in earlier studies to measure turbidity of surface water. Ruhl et al. (2001) 

focused on low sediment concentrations, whilst Campbell et al. (2005) did not follow-up on 

his encouraging initial results. More recently, Postolache et al. (2007) also obtained very 

promising results but the data processing of their multi-beam optical system seems too 

complex for field monitoring applications. In their recent review on fibre-optical turbidity 

sensors, Omar and MatJafri (2009) concluded there was a need for more extensive 

testing, especially with respect to the dependence on particle diameter. 
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1.4. Aim and objectives of the thesis 

The main aim of this thesis was to contribute to a better knowledge of the effectiveness 

of selected soil conservation methods to reduce runoff and soil erosion following wildfires, 

with a special emphasis of the principal forest types in north-central Portugal. The specific 

objectives were the following: 

1) to quantify overland flow generation and the associated losses of 

sediments for recently burnt eucalypt and Maritime Pine plantations, with a high 

temporal resolution (weekly to monthly) to account for the typically rapid 

changes in fire-affected ecosystems and at spatial scales from micro-plots of 

less than 1 m2 to “regular” plots of 10 m2 and more;  

2) to assess how post-fire runoff and soil erosion at eucalypt and Maritime 

Pine plantations are modified by the application of: (i) woody mulch composed of 

chopped eucalypt bark and eucalypt logging slash; (ii) dry polyacrylamide (PAM) 

and (iii) hydromulching;  

3) to identify the key factors that can explain post-fire runoff and erosion in 

eucalypt and Maritime Pine plantations with and without the four soil 

conservation measures mentioned under point 1);  

4) to determine the potential and limitations of a plastic-fibre-optics-based 

turbidity sensor for estimating soil erosion rates at runoff plots in recently burnt 

areas.  

1.5. Thesis structure  

This thesis can be divided into three parts, based on the specific objectives being 

addressed.  

Part 1. Runoff generation and soil erosion in recently burnt Portuguese forest 

plantations  

The data collected in this study helped to evaluate the factors that triggered runoff and 

soil erosion in six different burnt slopes in north-central Portugal through different 

approaches.  In Chapter 2 the use of rainfall simulation experiments (rse´s) in eucalypt 

stands burned in the 2005 Açores wildfire allowed us to determine the key factors for 

runoff and soil erosion under fixed rainfall. A total of 46 rse´s were carried out during two 
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years following the fire using two rainfall intensities (high- 45 mm h-1 and extreme 85 mm 

h-1) for two eucalypt stands that were unploughed and ploughed before the fire. The 

independence of the high variability of the natural rainfall led us to depend purely on soil-

dependent factors. Non parametric tests were run to infer the significance of key factors 

for runoff and soil erosion.   In the case of Chapter 3, 4 and 5 the datasets were created at 

high temporal and spatial resolution (weekly intervals in 38 plots with sizes between 0.25 

until 16 m2 in four different burnt slopes), but also for the more important soil properties: 

soil cover, soil water repellence, soil moisture and soil resistance. This represented a high 

value to compare the effects of wildfires over the hydrologic processes in central Portugal, 

and allowed comparison with other regions of the world. Additionally, this body of data 

served to determine the specific weight of each key factor on the hydrologic, erosive and 

organic matter losses responses in each wildfire under both control and treatment 

conditions. This was done with the SAS statistical program (Littell et al., 1996), through 

the construction of multiple regression models after transformation of the variables for 

achieving normality of the residuals. 

Additionally, the differences between these six burnt slopes had been evaluated.  While 

in Chapter 2 the set up took into account two study areas in order to allow for inferences 

about land use, such as pre-fire ploughing activities, in Chapter 3 the two study areas 

provided more information on the effect of fire severity. In Chapters 4 and 5 the set up 

involved a unique hillslope, and factors such as hillslope position and plot size were also 

tested.      

Part 2. Evaluation of selected post-fire soil erosion mitigation techniques in 

Portuguese forest plantations.  

In Chapters 3, 4 and 5 four new post-fire soil erosion control treatments were 

assessed. After a thorough review of soil erosion treatments worldwide, mulching 

appeared as the most effective technique. However, the well documented straw mulch 

was found not to be highly available in Portugal, and this was the main reason in favour of 

trying out other materials, i.e., the forest residue mulches in Chapter 3 and 5 provided 

kindly by SOCASCA, S.A. The more recent use of PAM and hydromulch were possible 

throughout the support of Quimitecnica S.A. and Serraic Lda., respectively, who kindly 

provided the treatments for the experiments of Chapter 4 and 5. To the best of our 

knowledge, these treatments have not been tested before for post-fire soil erosion 

reduction (with exception of the USA), and the results will provide useful data for cost-

benefit analyses for post-fire emergency treatments in Mediterranean regions.  
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All the experiments were monitored at weekly intervals during, at least, the first year 

after the fire. The forest residue and PAM experiences (Chapters 3 and 4) were carried 

out over 1.5 years after the fire. In contrast, the hydromulch experiment (Chapter 5) 

accounted for the second, the third and the beginning of the fourth post-fire year, despite it 

was not initiated immediately after the wildfire. These differences were due to the 

difficulties in applying the experimental set-up at the same time that logging activities were 

being carried out after the 2008 Colmeal fire. 

The analysis of variance of repeated measures was used to assess statistically the 

differences between each treatment and their controls for runoff, soil erosion, organic 

matter content and also soil cover. Additionally, in the case of Chapters 3 and 5, the effect 

of the treatment was also tested over some soil properties such as soil moisture, soil 

water repellence and soil shear strength.  

Part 3. Soil erosion measurement tools. 

Although direct measurement of hillslope runoff and erosion is expensive, complex, 

and labour-intensive, it is the only way to guide adequate future responses to post-fire 

stabilization and rehabilitation and also to develop and refine predictive models 

(Robichaud, 2009). In Chapter 6, some of the runoff samples of the 2008 Colmeal wildfire 

(Chapter 5) were used to check the utility of a new optic-based turbidity sensor as a new 

and economic measurement tool. This proto-type was developed after the “Laboratorio I” 

and “Laboratorio II”, both disciplines of the PROMAR PhD-program. The logistic support 

was provided by direct collaboration between the Instituto de Telecomunicações (IT), the 

Instituto de Nanotecnologia (I3N) and the Departamento de Ambiente e Ordenamento

(DAO) of the University of Aveiro. The proto-type sensor was tested in the laboratory 

against a commercial sensor provided by the EROSFIRE-II project. The potential of this 

new tool consists of the substitution of the evaporation-based, time- and energy-

consuming classic method. It can also be used for manual measurement of the runoff 

from field erosion plots as well as for continuous readings of stream flow in a hydraulic 

channel. 
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CHAPTER 2

Post-fire overland flow generation and inter-rill erosion under 

simulated rainfall in two eucalypt stands in north-central Portugal
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a b s t r a c t

The aim of this study was to improve the existing knowledge of the runoff and inter-rill erosion

response of forest stands following wildfire, focusing on commercial eucalypt plantations and

employing field rainfall simulation experiments (RSE’s). Repeated RSE’s were carried out in two

adjacent but contrasting eucalypt stands on steep hill slopes in north-central Portugal that suffered a

moderate severity fire in July 2005. This was done at six occasions ranging from 3 to 24 months after the

fire and using a paired-plot experimental design that comprised two pairs of RSE’s at each site and

occasion. Of the 46 RSE’s: (i) 24 and 22 RSE’s involved application rates of 45–50 and 80–85 mm hÿ1,

respectively; (ii) 22 took place in a stand that had been ploughed in down slope direction several years

before the wildfire and 24 in an unploughed stand.

The results showed a clear tendency for extreme-intensity RSE’s to produce higher runoff amounts

and greater soil and organic matter losses than the simultaneous high-intensity RSE’s on the

neighbouring plots. However, there existed marked exceptions, both in space (for one of the plot pairs)

and time (under intermediate soil water repellency conditions). Also, overland flow generation and

erosion varied significantly between the various field campaigns. This temporal pattern markedly

differed from a straightforward decline with time-after-fire and rather suggested a seasonal

component, reflecting broad variations in topsoil water repellency. The ploughed site produced less

runoff and erosion than the unploughed site, contrary to what would be expected if the down slope

ploughing had occurred after the wildfire instead of several years before it. Finally, sediment losses at

both study sites were noticeably lower than those reported by other studies involving repeat RSE’s, i.e.

in Australia and western Spain. This possibly reflected a history of intensive land use in the study

region, including in more recent times after the widespread introduction of eucalypt plantations.

& 2010 Elsevier Inc. All rights reserved.

1. Introduction

As thoroughly discussed by Shakesby and Doerr (2006),

through their effects on soil properties as well as on vegetation

and litter cover, wildfires can lead to considerable changes in

geomorphologic and hydrological processes. Previous studies in

various parts of the world, including Portugal (e.g. Shakesby et al.,

1993, 1996; Walsh et al., 1992, 1995; Ferreira et al., 2005b, 2008),

have revealed strong and sometimes extreme responses in runoff

generation and associated soil losses following wildfire, especially

during the earlier stages of the so-called ‘‘window-of-distur-

bance’’. Besides wildfire itself, post-fire forestry practices can

strongly influence overland flow and erosion in recently burnt

areas (e.g. Shakesby et al., 1994; Walsh et al., 1995; Fernández

et al., 2007). For example, rip-ploughing during the window-of-

disturbance was far more damaging in terms of soil loss than fire

(Shakesby et al., 1994).

The need for a model-based tool for assessing erosion risk

following wildfire and, ultimately, for guiding post-fire land

management, like the Erosion Risk Management Tool (ERMiT) for

the Western USA (Robichaud et al., 2007), is overtly evident in the

case of Portugal. Over the past decades, wildfires in Portugal have

devastated on average around 100.000 ha each year, with

dramatically higher figures for dry years like 2003 and 2005

(Pereira et al., 2005). Furthermore, the frequency of wildfires in

Portugal is expected to remain the same or to increase in the

future (Pereira et al., 2006). In relation to fire occurrence, the

widespread introduction of commercial eucalypt plantations

(principally of Eucalyptus globulus Ait.) in central Portugal

(including in the study area) in combination with their proneness

to fire deserves special reference. Furthermore, post-fire erosion

risk is expectedly higher in eucalypt stands than, for example,
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Maritime Pine forest, another common and fire-prone forest type

in central Portugal, namely, eucalypt stands are typically

associated with pronounced soil water repellency (Doerr et al.,

1996, 1998; Keizer et al., 2005b, 2008; Leighton-Boyce et al.,

2005), on the one hand, and on the other, water repellency is

widely considered one of the main factors in enhancing runoff

generation and the associated soil losses following wildfire

(e.g. Shakesby and Doerr, 2006; Leighton-Boyce et al., 2007;

Sheridan et al., 2007).

Following the dramatic wildfire season of summer 2003, the

EROSFIRE project (Keizer et al., 2006, 2007) set out to develop

such an erosion prediction tool tailored to the specificities of post-

fire conditions in Portugal’s forests. Field rainfall simulation

experiments (RSE’s) were selected as principal method for

gathering the data required for initial calibration of the process-

based model MEFIDIS (Nunes et al., 2005) for post-fire conditions,

much along the lines of the approach applied in Nunes et al.

(2009a, 2009b). In spite of the well-know limitations of RSE’s in

terms of reproducing natural rainfall events and emulating runoff/

erosion processes beyond small spatial scales (e.g. Rickson, 2001),

they have been widely used for studying hydrological and erosion

processes in recently burnt woodland areas, especially at spatial

scales of 1 m2 and less (e.g. Imeson et al., 1992; Kutiel et al., 1995;

Sevink et al., 1989; Benavides-Solorio and MacDonald, 2001;

Johansen et al., 2001; Cerd�a and Doerr, 2005; Coelho et al., 2005;

Ferreira et al., 2005a; Rulli et al., 2006; Leighton-Boyce et al.,

2007; Sheridan et al., 2007). However, the bulk of these studies

concerned singular moments in time-after-fire, not addressing for

example the seasonal component in post-fire runoff and erosion

that is often observed in longer-term plot monitoring studies

under natural rainfall conditions (e.g. Shakesby et al., 1993, 1994).

Also, the individual studies generally involved a single rainfall

intensity. As far Portugal is concerned, surprisingly few field RSE

studies have been carried out in recently wildfire-burnt stands of

eucalypt (Leighton-Boyce et al., 2007) or, for that matter, in other

prevailing forest types (Walsh et al., 1998; Coelho et al., 2004;

Ferreira et al., 2005a).

The main aim of the present work was to explore repeated

field campaigns of RSE’s for a better knowledge and under-

standing of overland flow generation and associated sediment

losses in recently burnt commercial eucalypt plantations. To this

end, RSE’s were carried out in two eucalypt stands on four

occasions during the first year following wildfire and on two

additional occasions during the second year. Two adjacent sites

were selected for expectedly representing contrasting risks of

post-fire erosion, with the site that had been rip-ploughed

presenting a greater risk than the neighbouring unploughed site.

The specific objectives were to determine how overland flow

generation and sediment losses varied at the micro-plot scale

with (i) high vs. extreme simulated rainfall intensity (45–50 and

80–85 mm hÿ1); (ii) time since fire and associated changes in

initial conditions, in particular soil water repellency; (iii) within-

and between-site characteristics at a ploughed vs. unploughed

slope.

2. Materials and methods

2.1. Study area and sites

The present study was carried out in two adjacent commercial eucalypt

(Eucalyptus globulus Ait.) plantations in the Ac-ores locality of the Albergaria-a-

Velha municipality of north-central Portugal (Fig. 1). The two study sites were

located at approximately 401420N, 81290W and 60–70 m elevation, and comprised

steep but short slopes bounded by paths (Table 1).

The study sites burned during early July 2005 in a wildfire that affected a total

area of about 16 km2, which was largely covered by eucalypt plantations. The

complete consumption of the litter and herb cover, together with the partial

consumption of the shrub layer and tree crowns, suggested that fire severity at

both sites had been moderate (Shakesby and Doerr, 2006; Table 1). Judging by

remaining tree stumps, the two sites had undergone at least two eucalypt

(re)growth cycles prior to the fire. The two sites were selected for their contrasting

land management practices and, as mentioned above, expectedly distinct risks of

post-fire soil erosion. At the unploughed Ac-ores1 site, trees had been planted

without apparent evidence of mechanical ground operations, resulting in an

undisturbed soil profile. At the ploughed Ac-ores2 site, a clear pattern of shallow

ridges and furrows (up to 20 cm high) running down the slope was present. Rip-

ploughing (i.e. mechanical ploughing using a ripper with one to three teeth that

rupture the upper soil horizons in a vertical plane without altering their

disposition) in preparation for planting is a common practice in this region and,

judging by the stand age, would have taken place around 5 years prior to the fire.

The study area is situated at the transition of the region’s two major

physiographic units, the Littoral Platform dominated by Ceno-Mesozoic deposits

and the Hesperic Massif dominated by pre-Ordovician schists and greywackes and

Hercynian granites (Ferreira, 1978; Pereira and FitzPatrick, 1995). The soils are

mapped – at a scale of 1:1,000,000 – as a complex of Humic Cambisols and, to a

lesser extent, Dystric Litosols (Cardoso et al., 1971, 1973). At both the study sites,

two soil profiles were excavated in the middle and at the bottom of the study

slopes. The soils corresponded to Umbric or Dystric Leptosols (FAO, 1988),

depending on the depth of their A horizons. They were shallow (5–40 cm depth)

soils developed over schists and had sandy loam textures and high organic matter

contents (8.8–10.4%). These soil characteristics differed little between the two

sites, which also agreed with the fact that rip-ploughing supposedly does not alter

the disposition of the soil layers. Even so, the observed soil differences were duly

considered in the discussion of the RSE results.

The climate of the study area can be characterised as humid meso-thermal,

with a prolonged dry and warm summer (Köppen Csb) DRA-Centro (1998). Fig. 1

shows the locations of the study sites as well as of the nearest climate station

(Estarreja: 401470N, 81350W, 26 m; 17.5 km distance) and the nearest rainfall

station (Albergaria-a-Velha: 401420N, 81290W, 131 m; 4 km distance). The long-

term mean annual temperature at the Estarreja station is 13.9 1C and the mean

monthly temperatures range from 8.8 1C in December to 19.1 1C in July (DRA-

Centro, 1998). The annual rainfall at the Albergaria-a-Velha station is, on average,

1229 mm and varies between 750 and 2022 mm (DRA-Centro, 1998). Fig. 1 also

depicts the stations’ seasonal variations in average monthly temperature and

rainfall, and the monthly rainfall amounts at the study sites during the first year

following wildfire. These latter data were obtained with a tipping-bucket rainfall

gauge (Pronamic Professional Rain Gauge) linked to a Hobo Event Logger of Onset

Computer Corporation, and were verified using the data from two totaliser rainfall

gauges. All three gauges were installed at the foot of the study sites on September

24, 2005. These data were used in this paper to calculate the antecedent daily

rainfall for the different field sampling days.

2.2. Rainfall simulation experiments

Between September 2005 and July 2007, a total of 46 rainfall simulation

experiments (RSE’s) were carried out in the field using two portable simulators as

originally designed by Calvo et al. (1988) and later improved by Cerd�a et al. (1997).

One simulator was equipped with the original nozzle and was calibrated in the

laboratory to produce artificial rain with an intensity of approximately 45 mm hÿ1.

The second simulator was equipped with a modified nozzle, using cone nozzle

HARDI-1553-14 instead of HARDI-1553-10, to produce intensities of around

80 mm hÿ1. The former intensity is comparable to the maximum hourly rainfall

for a 100-year return period of the Aveiro rainfall station (Brand~ao et al., 2001). The

latter is similar to the maximum hourly rainfall ever recorded in Portugal (Brand~ao

et al., 2001) but a prior RSE study in Portuguese eucalypt forests like Leighton-Boyce

et al. (2007) applied still higher intensities (100 mm hÿ1) and found infiltration

capacities exceeding this value. Hereafter, the two intensities will be referred

to as ‘‘high’’ and ‘‘extreme’’, respectively. Other modifications to the original

simulator design involved the use of a battery-driven pump system with pressure

vat and of an approximately square plot (consisting of a square area of

0.50 m�0.50 m and an outlet area of 0.03 m2), both of which were introduced by

De Alba (1997).

The 46 RSE’s were carried out during four separate field campaigns in the first

year after the wildfire, and two more campaigns in the second year (Table 2).

Before every campaign (with the exception of the second) the two standard and

two spare nozzles were (re-)calibrated in the laboratory. Each campaign involved

four RSE’s on both the ploughed and unploughed site, except in the case of the

October 2006 campaign when only the high-intensity RSE’s were carried out at the

unploughed site due to failure of the extreme-intensity pump system. The four

RSE’s at a particular site were in general performed on the same day and within

less than a week of those carried out at the other study site. Exceptions were the

first campaign on the ploughed site and the October 2006 campaign, which took

place on September 20 and 22, 2005, and October 12 and 31, 2006, respectively.

The four RSE’s at each site and date were carried out using a pair-wise

sampling design. High- and extreme-intensity RSE’s were run almost
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simultaneously on two neighbouring plots located at about the same elevation on

the slope but separated across the slope by 3–5 m. The two pairs of neighbouring

plots on each site were placed randomly by installing them halfway the slope’s

upper and lower half. This was done in a horizontal section of the slope that was

specifically reserved for the RSE’s. The slope was further divided in a section that

was equipped with erosion plots and a section that was used to describe topsoil

characteristics at regular intervals (see Keizer et al., 2008). According to their

spatial lay-out, the RSE-plots at each site were designated as follows: 1 and 2 were

located on upper slope sections, 3 and 4 on the lower slope sections; 1 and 3

concerned high-intensity RSE’s, 2 and 4 extreme-intensity RSE’s. The prefixes ‘‘U’’

and ‘‘P’’ were used to indicate the plots on the unploughed and ploughed site,

respectively.

The RSE’s of the first campaign were immediately followed by destructive

sampling of the plots as soon as the runoff had stopped. The RSE’s of the second

and subsequent campaigns, however, were carried out on permanent plots, with

the repeat experiments on each plot involving the same intensity as established

randomly in October 2006. Each pair of RSE’s involved a third ‘‘control’’ plot for

destructive measurements and sampling of the initial conditions, in particular
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regarding soil water repellency and moisture content at various depths. Non-

destructive characterisation of the RSE-plots was done prior to all experiments and

involved a standard procedure of quantifying the frequency of various cover

classes by recording their presence/absence in the 5 cm�5 cm cells of a

50 cm�60 cm grid laid out over the plots. Photographs were taken and used to

check the frequency estimates and convert them into decimal cover classes from

0 to 10.

The destructive sampling of the initial RSE-plots and control plots concerned

first and foremost the moisture content and water repellency of the topsoil at 2–3

and 7–8 cm depth. This involved the same methods, equipment and water

repellency severity ratings as described in Keizer et al. (2008). In a nutshell, soil

moisture content was measured using an ML2 ThetaProbeTM connected to a HH2

ThetaMeter (Delta T-Devices Ltd.) or, in case of probe failure, gravimetrically and

then converted based on Saxton et al. (1986) and Costa (1999). Water repellency

severity was measured using the ‘Molarity of an Ethanol Droplet’ (MED) test (e.g.

King, 1981; Doerr, 1998), by applying three droplets of increasing ethanol

concentration and employing their median ethanol concentration (%vol) as test

result. The following nine ethanol classes and corresponding ethanol concentra-

tions were used: 0–0%; 1–1%; 2–3%; 3–5%; 4–8.5%; 5–13%; 6–18%; 7–24%;

8–Z36%. Random roughness was determined using a pin profile metre and the

PMPPROJ software (developed by J. Kilpelainen, Agricultural Research Centre,

Jokioinen, Finland) for processing the photographs.

All RSE’s were carried out using a pre-established protocol and standard field

forms that were derived, with some modifications, from those employed in the

MEDAFOR project (Shakesby et al., 2002). The protocol’s principal elements were

the application of artificial rain from a height of 2 m during 1 h, runoff

measurements at 1-min intervals and the collection of up to five runoff samples

(i.e. one from the start of the runoff till its approximate stabilisation; one from the

end of the rainfall till the end of the runoff; three at the start, middle and end of

the remaining period). The collected runoff samples were later analysed in the

laboratory for their sediment and organic matter loads using the classical

evaporation protocol (APHA, 1998) and loss-on-ignition at 550 1C. Soil texture

classes were determined by the Soil Laboratory of the Coimbra Higher School of

Agriculture, using a combination of mechanical sieving and the pipette method.

2.3. Data analysis

Data analysis was carried out using STATISTICA for Windows Version 9.0, by

StatSoft Inc. Rank-based descriptive statistics and non-parametric statistical tests

were preferred, in particular because of the limited number of samples and the

resulting difficulties in verifying key assumptions underlying the parametric

equivalents. The Mann-Whitney U-test and the Kruskal–Wallis test were

employed to test overall differences, whereas the Wilcoxon’s signed-ranks test

and the Friedman test were used to assess differences in paired observations,

either neighbouring plots or repeat-RSE’s on the permanent plots. Besides

differences between individual RSE’s, also differences in average values of

concurrent high-/extreme-intensity RSE’s were included in the analyses for being

less susceptible to possible noise due to spatial variability. In the case of the

temporal patterns, only differences between consecutive campaigns were tested.

This was done to restrict the number of multiple, unplanned comparisons to a

minimum. Also the significance of the between-site differences of the individual

RSE’s was assessed using the standard type I error a¼0.05 and not using the

comparison-wise type I error a0
¼0.025 following the Dunn–Šidák method for 2

unplanned comparisons (Sokal and Rohlf, 1981).

3. Results and discussion

3.1. Overall runoff and erosion rates

Table 2 summarises the overall runoff and erosion figures

obtained over the six field campaigns between September 2005

and July 2007. Direct comparison of the presented values is

hampered by the lack of extreme-intensity data at the un-

ploughed site for the October 2006 campaign. Nonetheless, the

main differences observable in Table 2 are similar to those for the

five common campaigns (explained below).

The two simulated rainfall intensities had a negligible effect on

the relative amounts of overland flow generation at the two study

sites; runoff coefficients were rather determined by site-specific

differences. For the five ‘‘common’’ periods, the overall runoff

coefficients amounted to 57–58% and 38–39% for the unploughed

and ploughed site, respectively. In terms of absolute runoff

amounts, the extreme-intensity RSE’s at each site therefore

produced, on average, about 70% more overland flow than the

high-intensity RSE’s on the same site. The extreme-intensity

values for the five ‘‘common’’ campaigns were 231 and 154 mm

for the unploughed and ploughed site, respectively; the corre-

sponding high-intensity values were 133 and 91 mm.

Total losses of soil and organic matter were determined by a

combined effect of site-specific factors and rainfall intensity. The

losses at the unploughed site exceeded those at the ploughed site.

For the five ‘‘common’’ campaigns, the total soil losses were 25

and 89 g mÿ2 vs. 14 and 21 g mÿ2, respectively, and the

corresponding total organic matter losses were 18 and 56 g mÿ2

vs. 10 and 14 g mÿ2. The between-site differences for the separate

rainfall intensities were more pronounced. The losses at the

unploughed site were almost twice as high in the case of the high-

intensity RSE’s and more than four times as high in the case of the

extreme-intensity RSE’s. The intensity-related differences in total

losses were bigger at the unploughed than ploughed site. The

extreme-intensity RSE’s produced, on average, roughly three

times more soil and organic matter loss than the high-intensity

RSE’s at the unploughed site but only 40–50% higher losses at the

ploughed site.

The intensity-related differences in total soil and organic

matter losses can in the case of the unploughed site be partly

attributed to higher specific losses. The specific losses were about

twice as high for the extreme- than high-intensity RSE’s. By

contrast, at the ploughed site the specific losses were basically the

same for the two intensities. The contribution of the specific

losses to the between-site differences was also not consistent.

They were of minor influence in the case of the high-intensity

Table 1

General terrain characteristics and fire severity indicators at an unploughed and a

ploughed eucalypt site.

Variable Unploughed Ploughed

Physiognomy

Slope section length (m) 20–25 30–40

Slope angle (deg.) 20 15

Aspect SE NE

Fire severity indicators

Eucalypt crown damage Partial Partial

Height of eucalypt stem scorching (m) r9 r12

Combustion of litter/herbs layer Total Total

Combustion shrub layer Partial Partial

Ash colour Black Black

Table 2

Overview of high- and extreme-intensity RSE’s (n� intensity in mm hÿ1) and their

average runoff and erosion results at an unploughed and a ploughed eucalypt

stand during the first 2 years following a wildfire.

Campaign Period Unploughed Ploughed

High Extreme High Extreme

1 20–22–27/09/2005 2�46 2�84 2�46 2�84

2 10–15/11/2005 2�46 2�84 2�46 2�84

3 30/03–04/04/2006 2�48 2�80 2�48 2�80

4 20–25/07/2006 2�46 2�80 2�46 2�80

5 12–31/10/2006 2�47 2�81 2�47 –

6 03–09/07/2007 2�44 2�76 2�44 2�76

Variables

Slope angle permanent plots (deg.) 23 23 17 17

Total simulated rainfall (mm) 277 485 277 404

Total runoff (mm) 150 265 94 154

Overall runoff coefficient (%) 54 55 34 38

Total soil loss (g mÿ2) 26 93 14 21

Total organic matter loss (g mÿ2) 18 57 10 14

Specific soil loss (g mÿ2 mmÿ1 runoff) 0.17 0.35 0.15 0.15

Specific o.m. loss (g mÿ2 mmÿ1 runoff) 0.12 0.21 0.11 0.09
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RSE’s, but contributed with roughly a factor two in the case of the

extreme-intensity RSE’s.

The present results were perhaps most surprising in that the

ploughed site produced, on average, less runoff and lower total

sediment losses than the unploughed site. In a nearby area, down

slope rip-ploughing was found to substantially enhance overland

flow responses and sediment loss rates during the first three years

after ploughing (Shakesby et al., 1994; Walsh et al., 1995). These

results are not directly comparable to those presented here,

namely, they concerned much bigger plots (16 m2) and lower,

natural rainfall intensities. Even so, the overall sediment loss rates

of the high-intensity RSE’s of this study (0.09–0.16 g mÿ2 mmÿ1

rainfall) were much more similar to those reported by Shakesby

et al. (1994) for ‘‘natural recovery’’ post-burn sites (0.05–0.10 g

mÿ2 mmÿ1 rainfall) than for a recently rip-ploughed site do

(3.27 g mÿ2 mmÿ1 rainfall; see also Terry (1996)).

The lower-than-expected sediment losses at the ploughed site

could be related to the fact that ploughing took place several years

before the wildfire. Shakesby et al. (1994) estimated that sediment

losses decline rapidly following rip-ploughing. They attributed this

to the formation of a protective stone lag, particularly in the early

stages, and to the subsequent development of vegetation and litter

cover. There was, however, no evidence that surface stone cover in

the RSE-plots was noticeably higher at the ploughed than

unploughed site. Walsh et al. (1995) further suggested that rip-

ploughing ultimately decreased soil erodibility through selective

removal of the fine soil fraction by initial erosion events. This fits in

with the lower specific soil losses at the ploughed than unploughed

site, especially in the case of the extreme-intensity RSE’s. The topsoil

(0–5 cm) at the ploughed site has, in fact, somewhat smaller clay

and loam fractions than that at the unploughed site (median values

of 3 samples: 7 and 20 vs. 13% and 24%, respectively). Nonetheless,

the lower specific soil losses at the ploughed site could also be due

to its smaller runoff amounts as well as to the expectedly lower flow

velocities due to its less steep slope angle. Between-site differences

are further analysed below.

The overall runoff and erosion values are not easily compared with

those from literature, namely, the bulk of the field RSE studies

following recent forest wildfires concerned singular moments in time

(e.g. Sevink et al., 1989; Kutiel et al., 1995; Benavides-Solorio and

MacDonald, 2001; Johansen et al., 2001; Rulli et al., 2006). Focusing

on Portugal, only Leighton-Boyce et al. (2007) seem to have carried

out RSE’s in a recently burnt eucalypt plantation as well. In terms of

rainfall intensity (100mmhÿ1) and pre-fire ploughing, their RSE’s

compare best with the extreme-intensity RSE’s at the ploughed site.

Compared with these RSE’s, both the mean runoff coefficient and

mean specific sediment loss of Leighton-Boyce et al. (2007) were

roughly twice as high (70% and 0.90 gmÿ2 mmÿ1 runoff).

RSE data are also scarce for recently burnt stands of another

common and fire-prone forest type in Portugal, that of Maritime

Pine. Using basically the same experimental set-up as here,

Coelho et al. (2004) and Ferreira et al. (2005a) found runoff

coefficients of 55–65%, which is comparable to the overall figure

for the high-intensity RSE’s at the unploughed site. The specific

sediment losses in Coelho et al. (2004), however, were 3–4 times

higher (0.90–1.20 g mÿ2 mmÿ1 runoff) than the corresponding

values of the present study. Walsh et al. (1998) reported lower

runoff coefficients (19–25%) but this was 2 years after a wildfire

and involved lower application rates (33–35 mm hÿ1) as well as

larger plots (1 m2).

Outside Portugal, wildfire-affected eucalypt stands were stu-

died in a particularly exhaustive manner in Australia by Sheridan

et al. (2007). This included eight subsequent campaigns of field

RSE’s but, unlike in this study, using different plots during each

campaign. With rainfall intensities of 100 mm hÿ1 applied (during

30 min) on unploughed soils, these RSE’s are best compared with

the extreme-intensity RSE’s at the unploughed site. Over the first

2 years after fire, Sheridan et al. (2007) found a somewhat lower

runoff coefficient (41%) than reported here but an almost six times

higher specific sediment loss (3.26 g mÿ2 mmÿ1 runoff), possibly

reflecting their larger plot size (3 m2).

Organic matter constituted an important fraction of the

sediment losses observed in the present study. It amounted, on

average, to some 40% and varied little between the two sites and

the two intensities (38–42%). This is held to reflect the export of

litter and especially ash particles, since the organic matter content

of the 0–5 cm topsoil at both sites was only some 10%

(unploughed site¼10.3%; ploughed site¼9.0%; median value of

three samples). Unfortunately, comparison with the other studies

cited in this section is not possible, since they do not present

separate data on organic matter losses.

3.2. Variation with rainfall intensity

Overall differences between the high- and extreme-intensity

RSE’s tended not to be statistically significant (Table 3). The

absolute runoff amounts constituted an exception, with signifi-

cant differences in three of the four tests. The extreme-intensity

RSE’s only did not produce significantly more runoff than the

high-intensity RSE’s in the case of the ploughed site. This can be

attributed to a greater spatio-temporal variability in the site’s

hydrological response, namely, the difference in median runoff

amounts is of the same of order of magnitude for the ploughed

site as for the unploughed site (approximately 20 vs. 25 mm).

The effect of rainfall intensity was more apparent from the

Wilcoxon’s Test results, i.e. when eliminating the variability due

to differences between the campaigns as well as between the plot

pairs. Besides runoff amounts, total soil and organic matter losses

revealed statistically significant differences. The significance of

these differences and their sign can be perceived from Fig. 2. Thus,

extreme-intensity RSE’s tended to produce significantly stronger

Table 3

Statistical comparison of runoff and erosion by high- vs. extreme-intensity RSE’s at an unploughed and a ploughed eucalypt stand. The comparison concerns the two study

sites together (‘‘U&P’’) as well as separately, and the site-wise average values (‘‘mean’’) as well as the values of the individual RSE-pairs (‘‘Indiv.’’). The statically significantly

outcomes (a¼0.05) of the MW U-test and Wilcoxon S–R test are indicated with ‘‘M’’ and ‘‘W’’.

Tests and variables U&P U&P Unploughed Ploughed

Mean Indiv. Indiv. Indiv.

Total runoff (mm) M/W M/W M/W –

Overall runoff coefficient (%) – – – –

Total soil loss (g mÿ2) W M/W W –

Total organic matter loss (g mÿ2) W W W –

Specific soil loss (g mÿ2 mmÿ1 runoff) W W – –

Specific o.m. loss (g mÿ2 mmÿ1 runoff) – – – –
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runoff and erosion responses than the simultaneous high-

intensity RSE’s on the neighbouring plots. This especially applied

to (i) absolute as opposed to relative measures; (ii) the two sites

together and the unploughed site alone as opposed to the

ploughed site alone. The runoff values at the ploughed site

revealed a suspicious pattern in Fig. 2, with an equal number of

points situated above and below the 1:1 line. Therefore, the

Wilcoxon’s tests were also applied to the site’s separate plot pairs,

even though the numbers of paired observations are small (n¼5).

For both plot pairs total runoff was significantly different.

However, whilst total runoff was significantly higher for the

extreme- than high-intensity RSE’s in one case (plots P1 and P2 on

the upper section of the slope), it was significantly lower in the

other case (plots P3 and P4). In the case of the former plot pair, the

extreme-intensity RSE’s also produced significantly higher total

soil and organic matter losses.

The deviant behaviour of especially one of the plot pairs on the

ploughed site could be related to the pre-fire ploughing, leading to

more heterogeneous micro-topographic and topsoil conditions in

comparison to the undisturbed soil profiles of the neighbouring

site. This could involve a combination of factors rather than a

single factor per se. For example, the slope angle of the high-

intensity plot on the lower slope section (P3: 201) was slightly

steeper than that of the adjacent extreme-intensity plot (P4: 181)

Fig. 2. Runoff and soil and organic matter losses of neighbouring pairs of high- and extreme-intensity RSE’s at an unploughed (diamonds) and a ploughed (squares)

eucalypt site.
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and, at the same time, its random roughness was somewhat

smaller (1.1 vs. 1.7). Also, spatial variability in topsoil water

repellency (0–5 cm) during the first year following the wildfire

tended to be more pronounced in the case of the ploughed than

unploughed site (Keizer et al., 2008). Litter cover could play a role

as well, since the P4 plot had a much higher litter cover than the

P3 plot from the second campaign onwards (Fig. 6). This was due

to the fall of leaves from scorched eucalypt crowns, which then

slowly decomposed in situ. Shakesby et al. (1994) also mentioned

this phenomenon in burnt eucalypt stands but expected its role in

limiting erosion to be short lived. The role of such a litter cover

could be direct – through interception storage and protection

against rain drop impact – or indirect – by increasing the

resistance to overland flow and/or by changing soil moisture as

well as water repellency (e.g. Imeson et al., 1992; Lavee et al.,

1995; Walsh et al., 1998; Doerr et al., 2000; Pannkuk and

Roubichaud, 2003; Leighton-Boyce et al., 2007).

3.3. Temporal patterns

The timing of the RSE’s had a significant influence on runoff

response in general (Table 4). Overland flow generation varied

significantly between the five and six campaigns: (i) in absolute as

well as relative amounts; (ii) equally so for the average and

individual values of the two sites together as for the values of the

ploughed and unploughed site separately; (iii) in terms of both plot-

specific and overall differences. The same applied to the total soil

and organic matter losses. In the case of the specific losses, however,

only the individual values of the two sites together and of the

ploughed site separately varied significantly with time-since-fire.

Comparison of the consecutive campaigns revealed that sig-

nificant changes in hydrological and erosion processes principally

occurred between campaigns 2 (November 2005) and 3 (March/

April 2006) as well as between campaigns 5 (October 2006) and 6

(July 2007) (Table 4). These last two campaigns differed significantly

for all the variables studied here. Total runoff stood out amongst the

various variables in that the differences between campaigns 2 and 3

as well as between campaigns 5 and 6 were only statistically

significant on a plot-wise basis and not also in general. This probably

reflected the significant differences in runoff amounts between the

extreme- and high-intensity RSE’s (see Table 3), adding to campaign-

wise variability.

In close agreement with the above-mentioned statistical

results, the temporal variation in runoff and erosion revealed

two distinctive patterns (Fig. 3). First, the median values were

clearly higher for the first two and the last campaigns than for the

third to fifth campaigns. Second, median values of the first five

campaigns were noticeably lower than that of the last campaign.

The first pattern applied to the absolute and relative runoff

amounts as well as to the absolute sediment losses, whilst the

second pattern concerned the relative sediment losses. A

consistent element in the first pattern was further that the

median value of the fourth campaign (July 2006) was lower than

those of the third and fifth campaigns).

The temporal patterns in soil water repellency and other

potential explanatory variables are shown in Fig. 4. The significant

decrease in overland flow and total sediment losses between 4 and 9

months after the wildfire agreed well with a pronounced drop-off at

both sites in topsoil water repellency from extremely hydrophobic

to hydrophilic. The significant increase in runoff and erosion

between 16 and 24 months after the wildfire, however, was less

consistent with differences in repellency. Whilst at the ploughed site

median ethanol classes were higher in July 2007 than October 2006,

at the unploughed site they were basically the same. The limited

hydrological impact of the very strong repellency of the unploughed

soil in October 2006 could be due to the antecedent rainfall (10 mm

in the two preceding days), enhancing the spatial variability in

repellency and, thereby, opportunities for re-infiltration of overland

flow (e.g. Shakesby et al., 2000; Keizer et al., 2005a).

The results of the summer 2006 campaign also casted doubt on

the role of soil water repellency, with the ploughed site

presenting the most puzzling case. All four RSE’s at this site then

produced the least runoff, even though repellency was equally

strong as during the first two campaigns and also rather

homogeneous (range of ethanol classes: 6–8; n¼10). In the case

of the unploughed site, the reduced runoff production in July 2007

could be due to the moderate median repellency level as opposed

to the very strong/extreme level during fall 2005 and summer

2007. The discrepancy in water repellency between the un-

ploughed and ploughed site during the July 2006 campaign can be

explained by the 15 mm of rainfall that fell on July 19, 2006,

Table 4

Statistical comparison of runoff and erosion for various RSE campaigns together as well as for consecutive RSE campaigns. The overall comparison concerned the two sites

together (‘‘U&P’’) as well as separately, and the site-wise average values (‘‘mean’’) as well as the values of the individual RSE-pairs (‘‘Indiv.’’). The statically significantly

outcomes (a¼0.05) of the Kruskal–Wallis test, Friedman test, MW U-test and Wilcoxon S–R test are indicated with ‘‘K’’, ‘‘F’’, ‘‘M’’ and ‘‘W’’.

Data sets and variables

Campaigns together U&P Unploughed Ploughed

Mean Indiv. Indiv. Indiv.

Total runoff (mm) K/F K/F K/F K/F

Overall runoff coefficient (%) K/F K/F K/F K/F

Total soil loss (g mÿ2) K/F K/F K/F K/F

Total organic matter loss (g mÿ2) K/F K/F K/F K/F

Specific soil loss (g mÿ2 mmÿ1 runoff) K/F K/F

Specific o.m. loss (g mÿ2 mmÿ1 runoff) K/F K/F

Consecutive campaigns Campaign i/i+1

1/2 2/3 3/4 4/5 5/6

Total runoff (mm) W

Overall runoff coefficient (%) M/W M/W

Total soil loss (g mÿ2) M/W M/W

Total organic matter loss (g mÿ2) M/W M/W

Specific soil loss (g mÿ2 mmÿ1 runoff) M/W

Specific o.m. loss (g mÿ2 mmÿ1 runoff) M/W M/W
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i.e. one vs. six days before the RSE’s at the unploughed and

ploughed site, respectively. On July 10 and July 24, 2006,

repellency was very strong at both sites (Keizer et al., 2008).

The overall importance of vegetation recovery in limiting

erosion during the study period was minor, as can be inferred

from the comparatively high soil and organic matter losses of the
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Fig. 3. Box-plots of runoff and soil and organic matter losses by individual RSE’s at an unploughed and a ploughed eucalypt site for six field campaigns.
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last RSE campaign. Recovery of the ground vegetation was in fact

limited during these 2 years following the wildfire (Fig. 4). By July

2006, vegetation cover was less than 20% in seven out of eight

plots; by July 2007, it was less than 40% in all except the two plots

depicted in Fig. 4. Shakesby et al. (1994) also indicated that

ground vegetation in eucalypt stands recovered too slowly after

Fig. 4. Antecedent rainfall, initial soil moisture content and water repellency, and vegetation, ash and stone cover at an unploughed (diamonds) and a ploughed (squares)

eucalypt site for six RSE campaigns.
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fire to be effective within the first 2 years. The possible role of

vegetation cover at the scale of individual plots is addressed next.

The RSE’s by Sheridan et al. (2007) revealed a better overall

agreement between the temporal patterns in runoff coefficient and

soil water repellency than found here. Their highest runoff values

were not restricted to the first fewmonths after the wildfire but also

occurred some 3 years later. Even so, differences in runoff could not

be entirely attributed to water repellency, in particular the almost

twice as high runoff coefficient 3 years compared to 1 month after

fire under equally strongly repellent conditions. Clearly distinct from

the current results was Sheridan’s et al. (2007) finding of markedly

higher sediment concentrations during the first year after fire. Such

a decrease suggests a transition from transport- to sediment-limited

conditions, as is also commonly observed in post-fire erosion plot

studies under natural rainfall (see Shakesby and Doerr, 2006). Their

specific sediment losses during the first post-fire year (2.26–

7.19 g mÿ2 mmÿ1 runoff) clearly exceeded the present values. Their

values for the subsequent 2 years (0.13–1.59 g mÿ2 mmÿ1 runoff),

however, were comparable.

The only other study involving a time series of RSE’s in wildfire-

affected forests is that of Cerd�a and Doerr (2005) in Aleppo Pine

stands in eastern Spain. They employed the same simulator as in this

study (application rate of 55 mm hÿ1) and also permanent plots.

During the first 3 years following fire, their RSE’s produced higher

runoff coefficients under wet than under dry conditions. This

contrasting hydrological response could be explained by the low

water repellency levels during this initial post-fire period, likely as a

direct effect of fire. The erosion results of Cerd�a and Doerr (2005)

were also distinct from the present ones. The specific sediment

losses dropped sharply from the first to the second year after fire

and then more gradually afterwards. Only from the sixth year

onwards the specific losses in Cerd�a and Doerr (2005) fell below

0.40 g mÿ2 mmÿ1 runoff, thus becoming comparable to the bulk of

the high-intensity values presented here. Their values for the first

post-fire year (2.50–5.25 g mÿ2 mmÿ1 runoff) were not widely

different from Sheridan’s et al. (2007) above-mentioned figures for

the first post-fire year, even though application rate and plot size

were much smaller (55 vs. 100 mm hÿ1; 0.25 vs. 3 m2).

3.4. Spatial variability

Within-site differences. Overall differences between the same-

intensity plots were not significant for any of the sites or variables

(Table 5). This can be attributed to the above-mentioned,

significant temporal variability between the various RSE cam-

paigns. Campaign-specific differences, on the other hand, were

significant in various instances, all of which involving extreme-

intensity plots. The latter suggested that extreme events en-

hanced the inherent spatial variability in plot characteristics and,

consequently, erosion processes. These significant differences,

however, had different origins at the two sites. In the case of the

ploughed site, the runoff response of the two extreme-intensity

plots differed widely (Fig. 5). In turn, this discrepancy in runoff

caused significant different total soil and organic matter losses,

since the specific losses differed in the opposite sense. In the case

of the unploughed site, by contrast, significant differences in

specific soil losses contributed markedly to the significant

differences in total soil losses.

As discussed before, the significantly lower amount of over-

land flow generated at one of the extreme-intensity plots at the

ploughed site (plot P4) could be explained by its high litter cover

(Fig. 6), possibly in combination with other factors. The sig-

nificantly higher specific soil losses at plot U4 at the unploughed

site were more difficult to explain, also because plot-specific data

related to soil erodibility were not available. Post-fire vegetation

recovery could play a role, since it was basically lacking at plot U4

but pronounced at plot U2 (Fig. 6). It would especially help

explain why the plots’ specific losses differed considerably less in

July 2007 than in November 2005 (with a factor 3 and 6,

respectively).

In particular during the campaigns of November 2005 and July

2007, the specific sediment losses recorded at plot U4 stood out

amongst the present values. Compared to other studies, however,

these values (1.7 and 1.1 g mÿ2 mmÿ1 runoff) were hardly

suspicious. Leighton-Boyce et al. (2007) reported a mean value

of 2.3 g mÿ2 mmÿ1 runoff for an unburnt eucalypt site where the

litter was removed prior to the RSE’s. Specific sediment losses in

Table 5

Statistical comparison of within-site and between-site variation in runoff and erosion by high- and extreme-intensity RSE’s. The within-site comparison concerned the

same-intensity plots at each study site; the between-site comparison concerned the same-intensity plots at different sites, either the site-wise average values (‘‘mean’’) or

the values of the individual RSE’s. The statically significantly outcomes (a¼0.05) of the MW U-test and Wilcoxon S–R test are indicated with ‘‘M’’ and ’’W’’ or, in the case of

the between-site comparison of individual plots, with the codes of the unploughed plots (U1–U4) that are significantly different from the ploughed plots (P1–P4).

Variability and variables

With-in site Unploughed Ploughed

High Extreme High Extreme

Total runoff (mm) W

Overall runoff coefficient (%) W

Total soil loss (g mÿ2) W W

Total organic matter loss (g mÿ2) W

Specific soil loss (g mÿ2 mmÿ1 runoff) W

Specific o.m. loss (g mÿ2 mmÿ1 runoff)

Between-site Means Individual plots

High Extr. High Extreme

Ploughed P1 P3 P2 P4

Total runoff (mm) W W U1 U4 U4

Overall runoff coefficient (%) W W U1 U4 U4

Total soil loss (g mÿ2) W U1 U4 U4

Total organic matter loss (g mÿ2) W U4 U4

Specific soil loss (g mÿ2 mmÿ1 runoff) U2

Specific o.m. loss (g mÿ2 mmÿ1 runoff) U2
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Cerd�a and Doerr (2005) and Sheridan et al. (2007) equally

exceeded 2 g mÿ2 mmÿ1 runoff. Also the present spatial varia-

bility in specific sediment losses in concurrent RSE’s was not

extraordinary in comparison to these latter two studies (Cerd�a

and Doerr, 2005: 2.50–4.46 g mÿ2 mmÿ1 runoff; Sheridan et al.,

2007: 7.2–24.3 g mÿ2 mmÿ1 runoff).
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The credibility of the relatively high losses at plot U4 was

further corroborated by the strong increase in the plot’s stone

cover (Fig. 6). It remained unclear, however, if this stone lag

already existed before the wildfire, becoming increasingly

exposed by the subsequent removal of the ash layer and the lack

of vegetation recovery, or whether it developed during the study

period. The former explanation is perhaps most likely, namely,

Shakesby et al. (1993) and Terry (1996) reported a much higher

specific sediment loss (11.9 g mÿ2 mmÿ1 runoff) for the initial

phase of stone lag formation in an eucalypt stand.

Between-site differences. The unploughed site revealed a

significantly stronger average runoff response than the ploughed

site (Table 5). This was true for both the absolute and relative

runoff amounts and for both the high- and extreme-intensity

RSE’s, as is also easily perceived from Fig. 7. By contrast,

significant differences in average sediment losses were restricted

to the total soil and organic matter losses of the extreme-intensity

RSE’s, again with the values at the unploughed site being highest.

Nonetheless, also the high-intensity RSE’s revealed some ten-

dency towards higher average soil losses at the unploughed site,

namely, the values at the unploughed site were highest in five out

of the six RSE campaigns.

Although the Wilcoxon’s test results for the individual plots

were indicative only, they allowed further insight in the average

between-site differences (Table 5). This especially applied to the

extreme-intensity RSE’s, namely, the significant difference in the

average extreme-intensity values was due to pronounced spatial

variation at the ploughed site and, more specifically, the deviant

behaviour of plot P4, as also readily appreciated in Fig. 5. Plot P4

not only produced, as mentioned above, consistently less sedi-

ment and/or runoff than the other extreme-intensity plot at the

ploughed site and even the neighbouring high-intensity plot but

also then the two extreme-intensity plots at the unploughed site.

Thus, the extreme-intensity results of this study were strongly

influenced by a highly localised and rather accidental factor like

litter fall from scorched crowns.

4. Conclusions

The main conclusions from this study include the following:

� Extreme-intensity RSE’s (80–85 mm hÿ1) tended to generate

larger amounts of runoff and, thereby, higher losses of soil and

organic matter than high-intensity RSE’s (45–50 mm hÿ1);

however, this tendency was not invariable either in space or, at

a certain location, through time.

� Within-site variability in runoff and erosion response was

more pronounced in the case of the extreme- than high-

intensity RSE’s, so that their modelling will require greater

efforts in terms of model calibration and/or obtaining plot-

specific information.

� Runoff and associated sediment losses varied significantly with

time-after-fire; however, this temporal pattern did not

correspond to a simple decrease with time but had a marked

seasonal component, which broadly agreed with the role of

topsoil water repellency in enhancing overland flow genera-

tion under dry antecedent weather conditions.

� The risk of enhanced runoff generation and erosion in recently

burnt eucalypt stands does not necessarily disappear with the

first significant rains after the wildfire but can persist through

most of the first autumn and also re-appear after subsequent

dry spells as long as 2 years later; this could be attributed to

the typically pronounced water repellency of eucalypt forest

soils combined with an often slow post-fire vegetation

recovery.

� Contrary to expected, the unploughed site produced more

runoff and erosion than the adjacent unploughed site. Besides

soil properties altered by ploughing, the difference in slope

angle between the two sites could play a role. These possible

explanations will be further explored using the MEFIDIS

erosion model as research tool.

� The sediment losses at the two study sites were low compared

to those obtained with similar methodologies (i.e. field rainfall

simulation experiments on small plots) following wildfires in

other parts of the world. Nonetheless, they need to be

evaluated against the typically shallow soil depths on the

steep hill slopes in the study area, with the elevated organic

matter fractions in the observed sediment losses requiring

special attention.
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River Basin, Portugal. GeoÖko Plus 3, 15–36.
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Fire-enhanced runoff generation and erosion are an important concern in recently burnt areas worldwide but

their mitigation has received little public and scientific attention in Portugal. The present study addressed

this knowledge gap for the two principal fire-prone forest types in Portugal, testing the effectiveness of a

type of mulch that is widely available in the study region but has been little utilized and poorly studied so

far. For logistic reasons, two somewhat different forest residue mulches were tested in a eucalypt plantation

(eucalypt chopped bark) and a nearby Maritime Pine stand (eucalypt logging slash). Arguably, however,

more important differences between the two study sites were those in fire severity, resulting in an elevated

litter cover prior to mulching at the pine site but not at the eucalypt site, and in experimental design, with

eight bounded erosion plots of 16 m2 installed at the eucalypt site as opposed to only four at the pine site

(due to its limited size). Mulching was applied four months after the wildfire and two months after installa-

tion of the plots. Rainfall, runoff and sediment and organic matter losses were measured on a 1- to 2-weekly

basis. Mulching proved highly effective at the eucalypt site, on average reducing the runoff coefficient from

26 to 15% and sediment losses from 5.41 to 0.74 Mg ha−1. This mulching effect was also statistically signifi-

cant, albeit only for the more important runoff and erosion events, and corresponded to a significant role of

litter cover in explaining the variation in runoff and erosion. At the pine site, by contrast, mulching had no

obvious effect. In all probability, this was first and foremost due to the comparatively small amounts of runoff

and sediments produced by the untreated pine plots (5% and 0.32 Mg ha−1) and, as such, due to the exten-

sive needle cast following a low severity fire.

© 2012 Elsevier B.V. All rights reserved.

1. Introduction

Wildfires are a common phenomenon in present-day Portugal,

having affected on average 110,000 ha of rural lands per year between

1980 and 2010 (AFN, 2011). This can be attributed, besides climate

conditions, to a combination of socio-economic factors, in particular

the large-scale replacement of native Portuguese forest by commercial

plantations of fire-prone tree species such as pine and eucalypt and

the decline in traditional practices like grazing and coppicing that re-

duced the accumulation of flammable materials (Pereira et al.,

2006a; Radich and Alves, 2000; Shakesby et al., 1996). The frequency

of forest fires in Portugal is also not expected to diminish substantially

in the next decades, in part due to an increase in meteorological con-

ditions propitious to wildfires (Pereira et al., 2006a,b).

Wildfires are well documented to increase runoff generation and

soil erosion, as mentioned in various studies in Portugal (e.g. Coelho

et al., 2004; Ferreira et al., 2008; Malvar et al., 2011; Shakesby et al.,

1996). Apart from heating-induced changes in soil properties such

as soil water repellency and aggregate stability (Shakesby and

Doerr, 2006; Varela et al., 2010), removal of the protective vegetation

and litter cover is a key factor in fire-enhanced runoff and sediment

losses (Shakesby, 2011). For this precise reason, a commonly applied

emergency treatment for reducing post-fire erosion risk, such as

mulching, is based on the principle of applying materials that provide

an effective ground cover (Cerdà and Doerr, 2008; Robichaud et al.,

2000). In Portugal, however, mulching or other types of emergency

treatments have rarely been employed in landmanagement of recently

burnt areas, although this is changing due to the implementation of

PRODER-funded measures (under sub-Action 2.3.2.1) in selected areas

that were affected by wildfires during the summer of 2010.

In Portugal, post-fire emergency treatments have also received

little research attention. Prior to the present work, the only field study

into the effectiveness of post-fire soil conservation measures was that
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reported by Shakesby et al. (1996) and Walsh et al. (1994). Similar to

this study, mulch composed of forest residues from loggingwas applied

in a eucalypt and a pine plantation.However,mulchingwas done two to

three years after the wildfire rather than within the first few months—

as was the case in this study—when soil erosion risk is supposedly at

its maximum (Shakesby and Doerr, 2006).

Outside Portugal, the effectiveness specially of straw mulches

has been exhaustively studied under field conditions (e.g. Badía and
Martí, 2000; Bautista et al., 1996; Fernández et al., 2011; Groen and
Woods, 2008; Riechers et al., 2008; Rough, 2007; Wagenbrenner
et al., 2006). This is particularly true in comparison with mulches
from woody plant material and, more specifically, wood chips
(Fernández et al., 2011; Kim et al., 2008; Riechers et al., 2008).
Often-cited advantages of straw, besides its elevated effectiveness in
reducing soil erosion, are its wide availability, low costs and low spe-
cific weight. Whilst the availability of straw may be limited in many
parts of the world (Foltz and Wagenbrenner, 2010), including Portu-
gal, the low specific weight can become a disadvantage in areas with
strong winds, especially during the period between straw application
and the first rainfall events (Robichaud et al., 2000). In recent years,
forest residues have become increasingly harvested in Portugal
for use in biomass energy plants and, as such, can be a viable alterna-
tive to straw, in spite of the logistic implications of its higher specific
weights. Nonetheless, the effectiveness of woody mulches under
field conditions remains unclear. Namely, Shakesby et al. (1996)
found their forest residue mulch to be ineffective at one of the two
study sites, whilst Fernández et al. (2011) and Riechers et al. (2008)
reported wood chip mulch to be less effective than straw mulches.
Evidence from rainfall simulation experiments suggested that the
shape of the woody materials could be of critical importance, with
wood shreds and strands rather than wood chips being as effective
as straw (Foltz and Dooley, 2003; Yanosek et al., 2006).

The present study had as it main aim to contribute to a better
knowledge and understanding of hydrological and erosion processes
following wildfire and, in particular, how they are influenced by
mulching. More specifically, the following research gaps were
addressed: (i) short- to medium-term post-fire conditions, i.e. the
first 1.5 years of the fire-induced window-of-disturbance; (ii) high-
resolution temporal patterns (approximately weekly) in post-fire
runoff and erosion as well as in key explanatory variables, including
soil water repellency (for its supposed role in eucalypt stands, espe-
cially after Leighton-Boyce et al., 2007; Malvar et al., 2011; Sheridan
et al., 2007); (iii) effectiveness of forest residue mulching in the two
principal fire-prone forest types in Portugal, i.e. eucalypt and mari-
time pine plantations.

2. Materials and methods

2.1. Study area and sites

The study area was located in north-central Portugal, in the local-
ity of Pessegueiro do Vouga, municipality of Sever do Vouga (40° 43′
05″N; 8° 21′15″W; 100 m.a.s.l. of elevation). On 10 August 2007, a
wildfire destroyed a relatively small area (approximately 10 ha).
The burnt area was predominantly covered by plantations of eucalypt
(Eucalyptus globulus Labill.) but included a few, comparatively small
stands of maritime pine (Pinus pinaster Ait.). Although this situation
allowed the study of the two predominant fire-prone forest types in
Portugal, the limited number and size of the available pine stands
implied compromises in terms of site selection as well as experimen-
tal design (see Section 2.2). The eucalypt study site was selected for
its steep slope and comparatively higher fire severity, as indicated
by the total consumption of the canopies. The pine site was chosen
for its closeness, comparative slope and exposition to the eucalypt
site, although it presented a markedly lower fire severity, with the
canopies only partially consumed by the fire (Table 1).

The climate can be classified as humid meso-thermal with a moder-
ate but extended dry summer (Köppen: Csb; DRA-Centro, 1998). Mean
annual temperature at the nearest climate station (Castelo-Burgães:
40° 51′10″N, 8° 22′44″W, 306 m.a.s.l., 1977–2009) is 14.8 °C, while
mean monthly temperatures range from 8.9 °C in January to 21 °C in
July (SNIRH, 2011). Annual rainfall at the nearest rainfall station
(Bouça-Pessegueiro do Vouga: 40° 41′36″N , 8° 22′24″W; 152 m.a.s.l.,
1977–2005) is 1546 mm on average but varies strongly from 843 mm
in dry years to 2151 mm in wet years (DRA-Centro, 1998).

The soils at both study sites were shallow, 25–30 cm deep Umbric
Leptosols (FAO, 1988) developed over Pre-Cambrian schist from
the Hespheric Massif (Pereira and FitzPatrick, 1995), as verified by
digging out two soil profiles at each site. From the upper 15 cm of
these profiles, a total of nine samples were collected in February
2008 and later analysed, using standard laboratory methods (me-
chanical sieving and loss-on-ignition), to determine the fractions of
stones, sand, silt and clay, and organic matter. The topsoil at both
study sites was very coarse, with a stone content of over 50% and a
sandy texture (Table 1). The between-site differences in the soil frac-
tions were minor but nonetheless statistically significant (pb0.05,
pair-wise t-test).

2.2. Experimental design, field and laboratory measurements

Because of the small size of the maritime pine stands in the burnt
area, it was impossible to implement exactly the same experimental
design at both study sites. While the eucalypt site was instrumented
with eight erosion plots of 2 m wide by 8 m long, only four could be
installed at the pine site. The installation of all the plots was complet-
ed by 02 October 2007 but the treatment with mulch was not carried
out until 10 December 2007. Mulch was applied manually to half of
the plots at each site, which were selected randomly. For logistic rea-
sons, somewhat different forest logging residues were used at the two
sites (Table 1). For the treatment of the eucalypt plots, chopped bark
mulch was obtained at a depot 20 km from the study area, where eu-
calypt logs are debarked before their transport to a paper pulp factory
and the bark is chopped into 10–15 cm wide 2–5 cm long fibers
before their transport to a biomass energy plant. On the pine site, in
line with Shakesby et al. (1996), the mulch consisted of logging
slash residues collected from the soil after clearcutting of an adjacent

Table 1

General description of the two study sites and of the experimental design. Values fol-

lowed by different letters are statistically different (pb0.05, pair-wise t-test).

Site Eucalypt Pine

General characteristics

Tree Eucalyptus globulus
Labill.

Pinus pinaster Aiton.

Age and plantation cycle 15; 3rd re-growth 30

Slope angle (°)—average±sd 25o±3.6 24o±3.6

Fire severity indicators (Aug. 2007) Moderate Low

Ash color Black, grey Black

Tree canopy consumption Total Partial

Tree scorch height (m) 9 7

Mean litter cover (%) b10 60

Soil characteristics (0–15 cm) n=9 n=9

Stoniness (%) 54.4±9.3a 64.7±4.4b

Sand fraction (%) 39.8±8.3a 31.6±3.7b

Silt and clay fraction (%) 5.9±1.3a 3.6±1.6b

Soil organic matter (%) 12.2±2.9a 9.9±2.7b

Experimental design

Number of control/treated plots 4/4 2/2

Projected plot surface

(m2)—average±sd

15.8±1.0 14.3±0.7

Mulching type Eucalypt chopped

bark

Eucalypt logging

slash

Application rate (kg m−2) 0.87 1.75

Increase in ground cover by

mulch (%)

67 76
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unburned eucalypt stand (300 m distance from the pine site). Due to

the differences in material, a higher application rate of the mulch

was needed at the pine treated plots to achieve a ground cover com-

parable to the eucalypt treated plots (i.e. 70–80%, Table 1).

The erosion plots were delimited using metal sheets of 60 cm long

by 15 cm high that were inserted into the soil to a depth of 5 to 10 cm.

All the plots had a rhomboid shape, with a trench dug at the upper

limit to avoid run-on into the plots. Following the design of

Shakesby et al. (1991), a modified gerlach trap (Gerlach, 1967) was

installed at the base of each plot to intercept the runoff and retain

the coarser material using a net with a mesh width of 0.5 mm. The

runoff was routed to a tipping-bucket device using a garden hose,

and then to a set of three interconnected 70-liter tanks. The main pur-

pose of the tipping-bucket devices was to verify and correct the run-

off measurements. From October 2007 onwards, on a weekly basis,

runoff was measured and 1500 ml samples were gathered from all in-

dividual tanks. Also the sediments accumulated in the gerlach traps

were collected. The runoff and sediment samples were subsequently

analyzed using standard laboratory procedures (APHA, 1998) to

determine sediment and organic matter loads.

During each field trip, rainfall at the two study sites was measured

using two automatic rainfall gauges (sensitivity 0.1 and 0.2 mm) in

combination with seven totalizer rain gauges for validation purposes.

The moisture content of the topsoil was monitored in two dis-

tinct manners. Within the plots, soil moisture was measured with

a non-destructive method, using pultrusion tubes inserted into the

soil in which a TDR-type Delta-T® PR2-probe is lowered to carry
out readings at different depths (including at 0–10 cm, analyzed
in this study). Between 22 October and 20 November 2007, one pul-
trusion tube was installed in each of the twelve plots, and readings
were carried out during 37 fieldtrips. Unfortunately, the two tubes
of the pine control plots, one in a eucalypt control and one in a eu-
calypt treated plot malfunctioned most of the time, so the data were
not included here. Destructive measurements of soil moisture con-
tent were taken outside the plots, in a slope section that was specif-
ically reserved for that purpose and considered representative of
the control conditions. In these slope sections, a 20-m long transect
comprising three equidistant points was laid out at shifting posi-
tions on a total of 31 sampling occasions between October 2007
and December 2008. At each transect point, soil moisture was
then measured three times at two depths (0–5 and 5–10 cm),
using a Delta-T® ML2-sensor. For technical but especially logistic
reasons, destructive moisture readings were not possible on 7
dates in the case of the pine site.
Besides soil moisture, soil water repellency was measured along

the above-mentioned transects on each possible sampling occasion
following the ‘Molarity Ethanol Drop test’ (Doerr, 1998). In each tran-
sect point, three replicate measurements at four different sampling
layers were carried out (soil surface and 0–5, 5–10 and 10–15 cm
soil depth). Each measurement involved applying three droplets of
increasing ethanol concentration to fresh parts of the soil until infil-
tration of at least two of three droplets of the same concentration
within 5 s. Like in Keizer et al. (2005, 2008), the following nine volu-
metric ethanol percentage concentrations and, in between brackets,
corresponding ethanol classes were used: 0 (0), 1 (1), 3 (2), 5 (3),
8.5 (4), 13 (5), 18 (6), 24 (7), 36 (8). In this study, the overall
frequency of the two highest ethanol classes measured in all the
depths was analyzed as a combined indicator of repellency severity
and homogeneity.
The ground cover within the 12 erosion plots was measured eight

times at regular intervals between 31 October 2007 and 2 June 2008,
and again at the end of the study period. A grid of 1×1 m divided in
rows and columns of 10 cm wide was placed at three fixed positions
in the lower, middle and upper parts of each plot. At the 100 inter-
section points between rows and columns, the ground cover was
recorded in the field according to the following four categories:

“stones” (rock outcrop and stones bigger than 2 mm); “bare soil”
(which included ashes and charcoal); “litter” (including the applied
mulch) and vegetation.

2.3. Data analysis

The effect of mulching in overland flow and sediment losses was
tested by means of a two-way repeated measures analysis of variance
(Ott and Longnecker, 2001). The number of days since wildfire and
the read-out dates were used as periods of repeated measurements
for runoff amount, runoff coefficient, sediment losses and organic
matter losses. The underlying assumptions of normality and homo-
scedacity were verified, and both the runoff and erosion values had
to be transformed, by taking the square and fourth roots, respectively,
for the Kolmorogonov–Smirnov test not to reject normality at
α=0.05. In addition, the three smallest rainfall events (b3.6 mm)
had to be excluded for the transformed data to meet the normality
assumption.
Multiple regression models were constructed to determine how

well the observed runoff and erosion could be explained by selected
independent variables. This was done using a stepwise forward se-
lection procedure, i.e. the REG procedure (Littell et al., 1996), in
which the independent variables were selected in order of their sig-
nificant contribution (pb0.05) to the explained variance. As in the
repeated measures ANOVA, the square and fourth roots, for runoff
amount and sediment losses were used, since model residuals met
the normality assumption without exception. Due to missing data,
various data sets comprising different combinations of read-outs
and sets of independent variables were analysed. The complete
data set involved 32 read-outs and six independent variables, i.e.
rainfall amount and intensity, and the above-mentioned four
ground cover classes. The “limited” data set involved 5 fewer read-
outs but one more independent variable (i.e. soil moisture as mea-
sured with the PR-probe); whilst the “partial” data set involved 12
fewer read-outs but two more independent variables (i.e. soil mois-
ture as measured with the ML2-sensor and frequency of extreme
repellency).

3. Results

3.1. Overall rainfall, runoff and erosion values

In terms of total rainfall, the treatment period agreed well with
average climate conditions. Between 10 December 2007 and 23 De-
cember 2008 1546 mm of rainfall were registered in the study area,
exactly the same as the above-mentioned, long-term mean annual
rainfall at the nearby Bouça station. Rainfall was much less during
the pre-treatment period (138 mm) and even insignificant between
the occurrence of the wildfire on 10 August 2007 and the completion
of the plot installation on 02 October 2007 (approximately 10 mm,
Fig. 1).
Prior to mulching, the control and the to-be-treated plots at the

eucalypt site produced, on average, basically the same runoff
amounts as well as sediment and organic matter losses (Table 2). At
the pine site, by contrast, the control plots generated, on average,
40% less runoff and 55–60% less sediment and organic matter than
the to-be-treated plots. As for between-site comparability, the to-
be-treated pine plots differed little from the eucalypt plots in average
runoff amounts (5–10% less) but noticeably more in average sedi-
ment losses (34–40% less).
Following mulching, the control and treated plots at the eucalypt

site revealed marked differences in runoff and especially erosion,
with the treated plots producing 43% and even 86% lower amounts
of overland flow and sediment losses, respectively (Table 2). In the
case of the pine site, on the other hand, the average differences be-
tween the control and treated plots were almost inexistent, but still
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the control plots produced less runoff and sediments (10% and 16%,
respectively) than the treated ones. Even so, the runoff ratios of
post- to pre-treatment phases suggested that mulching was effective
at the pine site as well. Namely, because those ratios were noticeably
higher in the case of the control plots than of the treated plots, for
runoff (4.1 vs. 2.6) and also for sediment losses (5.8 vs. 2.8). Similarly,
the differences that existed between the control plots at the two
study sites during the pre-treatment period were markedly amplified
during the subsequent study period. Compared to the concurrent
values at the eucalypt site, overland flow generation at the pine con-
trol plots dropped, on average, from 55% to 20%, and sediment and
organic matter losses from roughly 30% to just over 5%.

3.2. Temporal patterns in rainfall, runoff and erosion

Despite the fact that the control and treated plots at the eucalypt
site differed strongly in their overall runoff and erosion figures, the
repeated measures ANOVAs did not reveal an unequivocal role of
the mulching with chopped eucalypt bark. This was due to the pres-
ence of significant interactions between treatment and time-since-
fire effects (pb0.05). The runoff coefficient constituted an exception
(p=0.3), varying significantly with both factors individually
(pb0.05). In the case of the absolute runoff response, the significant
interaction could be attributed to the smaller rainfall events. Removal
of the 11 read-outs with less than 17.5 mm rainfall from the original
data set of 32 read-outs turned the interaction effect insignificant

(albeit only just: p=0.05), such that both the treatment and the
time-since-fire came to have a separate significant effect on runoff
amounts. In the case of the sediment and organic matter losses, on
the other hand, the bulk of the read-outs (27) needed to be removed
from the data set to eliminate the significant interaction effect,
reflecting the fact that sizeable sediment losses occurred much less
frequently than substantial runoff amounts (Fig. 2).
In the case of the pine site, the repeated measures ANOVAs did

not even hint at significant interaction effects, either for runoff
amounts and coefficients or for sediment and organic matter losses
(p=0.8). From the individual factors, mulching with eucalypt logging
slash did not play a significant role in the case of any of these four pa-
rameters (p=0.3) but time-since-fire did in all four instances
(pb0.05).
The pronounced temporal variation in rainfall, runoff and sedi-

ment losses was summarized by season (Table 2), and so were the
corresponding temporal patterns in treatment effectiveness (Fig. 3).
The overland flow generated by the untreated eucalypt plots exhib-
ited a strong seasonal variation. It varied with roughly a factor 3
from around 50 mm during the driest seasons (autumn 2007 and
summer 2008) to about 150 mm during winter 2007/08 and autumn
2008, whilst the rainiest season (spring 2008) assumed an intermedi-
ate position with 110 mm. Spring 2008 also stood out for producing
comparatively little runoff in the case of the untreated pine plots,
its mean runoff coefficient being at least twice as low as that of the
other four seasons. Amongst these other seasons, autumn 2007 or,
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Fig. 1. Rainfall total and intensity of the individual measurements periods during the first 16 months after the wildfire in August 2007.

Table 2

Pre- and post-treatment and season-wise runoff and erosion for the control plots (EC and PC) and treated plots (ET and PT) at the Eucalypt and Pine study sites.

No. of read-outs Rainfall amount Total runoff (mm) Mean runoff

coefficient (%)

Total sediment losses

(Mg ha−1)

Total organic matter

losses (Mg ha−1)

(mm) EC ET PC PT EC ET PC PT EC ET PC PT EC ET PC PT

Pre-treatment (autumn 2007) 5 138 41 43 23 39 30 31 16 28 0.21 0.22 0.06 0.13 0.11 0.11 0.03 0.08

Post-treatment (winter 2007–autumn 2008) 35 1546 466 267 93 102 30 17 6 7 5.41 0.74 0.32 0.37 2.47 0.32 0.17 0.13

Winter 2007–2008 11 434 158 98 42 57 36 23 10 13 1.40 0.22 0.09 0.15 0.65 0.10 0.05 0.05

Spring 2008 12 565 110 42 12 12 19 7 2 2 2.07 0.12 0.03 0.03 0.95 0.06 0.02 0.01

Summer 2008 6 135 48 36 11 10 36 26 8 8 0.26 0.10 0.08 0.09 0.14 0.04 0.04 0.03

Autumn 2008 6 412 150 92 28 24 36 22 7 6 1.69 0.30 0.12 0.10 0.72 0.12 0.06 0.03
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in other words, the first season following the wildfire was exceptional
for precisely the opposite reason but only in the case of the untreated
plots at the pine site.
Unlike runoff, sediment losses at the untreated eucalypt plots

closely followed the seasonal pattern in rainfall. They were, on aver-
age, a factor 10 higher during spring 2008 than during autumn 2007
(2.07 vs. 0.21 Mg ha−1). The discrepancy between the hydrological
and erosion response of the untreated eucalypt plots was to a large
extent due to two extreme events of roughly 150 mm that occurred
during April 2008 and produced 80% of the season's sediment losses
as opposed to 50% of the season's runoff. In the case of the untreated
pine plots, the seasonal variation in sediment losses neither agreed
well with that in runoff nor with that of rainfall. Instead, specific
sediment losses were clearly lower during the first three seasons
(averaged to 0.22 g m−2mm−1 runoff) than during autumn and
especially summer 2008 (0.41 and 0.76 g m−2mm−1 runoff,
respectively).
The effectiveness of mulching with eucalypt chopped bark varied

between the four seasons in much the same manner as rainfall did
(Fig. 3). The relative reductions in both runoff and sediment losses
at the eucalypt site were at their minimum during the driest season
(summer 2008) and at their maximum during the rainiest season
(spring 2008). Throughout the treatment period, mulching was con-
sistently more effective in reducing erosion than overland flow at
the eucalypt site, and markedly so. Mulching effectiveness revealed
completely distinct patterns at the pine site compared to the eucalypt
site. First, effectiveness contrasted sharply between the first post-
treatment season and the three subsequent seasons (i.e. between

markedly negative and roughly zero to marginally positive) and sec-
ond, effectiveness differed little between runoff and erosion.

3.3. Temporal patterns in ground cover, soil moisture and water
repellency

In November 2007, the plots at the two study sites differed mark-
edly in their ground cover (Fig. 4). Whilst the mean litter cover of the
control and to-be-treated eucalypt plots was around 10%, that of
the pine plots was roughly 50%, mainly due to needle cast from the
scorched pine canopies (which continued until late January 2008).
At the same time, a major discrepancy also existed in the total cover
of bare soil and ashes, amounting to 70% at the eucalypt plots vs.
40% at the pine plots. These site differences were by and large elimi-
nated by mulching, resulting in a mean litter cover of about 70% for
the treated plots at the pine as well as eucalypt site. One year later,
however, the mean litter cover was basically the same at the treated
pine plots but had decreased noticeably at the treated eucalypt
plots (20%). Also in the case of the untreated plots, the pine site
revealed less pronounced cover changes than the eucalypt site,
where an increase in average stone cover of roughly 20% occurred
at the expense of a decrease in particular in ash cover. Worth special
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mention is perhaps the very limited recovery of the vegetation, even
by December 2008.
Soil moisture content varied markedly in the course of this study

but revealed straightforward temporal patterns. As shown for the
PR2-probe values (Fig. 5), the mean moisture content tended to:
(i) increase—more or less gradually—from minimum values during
autumn 2007 to maximum values during spring 2008; (ii) decrease
again during the summer of 2008, albeit to higher values than at the
start of the measurement period; (iii) attain higher values towards
the end of the study than one year earlier. The PR-probe data also
suggested that mulching significantly increased soil moisture content
at the eucalypt site (repeated measures ANOVA: n=32, pb0.05),
with the overall mean value being 15 and 20% vol. for the control
and treated plots, respectively. In spite of the above-mentioned tech-
nical problems with the PR-tubes in the pine control plots, such a
treatment effect could also be inferred for the pine site. Namely, the
mean PR-probe values did not differ significantly between the treated
pine and the treated eucalypt plots (repeated measures ANOVA:
n=32, p=0.3), on the one hand, and on the other, the mean ML2-
sensor values—measured in untreated slope parts—did not differ sig-
nificantly between the pine and eucalypt site (pair-wise Student t-
test: n=29, p=0.06). Although the two sensors gave distinct results
in terms of absolute values, they did produce broadly similar tempo-
ral patterns, as evidenced by the strong relationship between PR-
probe and ML-sensor on the untreated conditions at the eucalypt
site (Pearson correlation coefficient: 0.70, n=29, pb0.05).
The frequency of extreme repellency (%FR) revealed more irregular

temporal patterns than soil moisture (Fig. 5). Even so, both study sites

revealed a broad tendency at their untreated slope parts for %FR to:
(i) increase from October 2007 to maximum values in December
2007; (ii) decrease subsequently to minimum values during spring
2008; (iii) again increase towards the summer of 2008, most notably
so at the pine site. The actual %FR values, however, tended to be
noticeably lower at the pine compared to the eucalypt site. Extreme re-
pellency was also found to be significantly less frequent at the pine site
than at the eucalypt site during the winter of 2007/2008 (pair-wise
Student t-test: 42 vs. 81%, n=10, pb0.05) as well as during the spring
of 2008 (pair-wise Student t-test: 18 vs. 49%, n=7, pb0.05).

3.4. Key factors explaining runoff and erosion

The hydrological and erosion response of the 12 plots throughout
the treatment period could be clearly explained the two rainfall and
the four ground cover variables included in the forward selection
procedure (Table 3). Almost 60% of the variation in (square-root
transformed) runoff could be accounted for by four of the variables,
whilst three variables sufficed to explain 70% of the variation in
(fourth-root transformed) sediment losses. In both instances, the
principal covariate concerned rainfall; however, it corresponded to
rainfall intensity in the case of sediment losses as opposed to rainfall
total in the case of runoff. Amongst the cover-related variables, litter
cover was the most important factor, explaining roughly a third less
variance than rainfall total and rainfall intensity, respectively for run-
off and sediment losses models.
The regression results for the eucalypt site alone were similar to

those for both sites together. This equally applied for the treatment
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period as a whole as well as for the “limited” data set. Even so, the re-
moval of the four pine plots increased somewhat the importance of
the principal, rainfall-related covariate, in absolute terms but espe-
cially compared to the subsequent covariates (explaining at least
twice as much variance). The relationship of sediment losses to the
principal covariate—rainfall intensity—was shown in Fig. 2. Further-
more, litter cover was substituted by soil moisture as the second
most important factor explaining runoff at the eucalypt site. This
was not the case, however, for the site's sediment losses.
The regression results for the pine site alone differed in two im-

portant aspects from those for the eucalypt site (Table 3). First, rain-
fall intensity was the principal factor explaining not just sediment
losses (Fig. 2) but also runoff. Second, litter cover did not explain a

significant fraction of the variance in either runoff or sediment losses
(and neither did any of the other cover categories). This was in line
with the above-mentioned finding that there was no significant treat-
ment effect at the pine site.
Soil water repellency and, in particular, the frequency of extreme

repellency was found to have a significant effect on runoff at the
two study sites but not on sediment losses (Table 3). Nonetheless,
the role of extreme repellency of enhancing overland flow generation
was clearly secondary compared to that of rainfall total, explaining
roughly 50% less variance. Sediment losses varied significantly not
just with rainfall total but also with litter cover, notwithstanding
the fact that only the untreated plots were included in the analysis.

4. Discussion

The present findings coincided in many aspects (including in
terms of plot design) with the results of Shakesby et al. (1996). This
was especially true for the post-treatment periods of both studies, dif-
fering much less in rainfall amounts than the pre-treatment periods
(1546 vs. 1470 mm as opposed to 138 vs. 645 mm). As far as the con-
trol plots were concerned, key points of agreement were: (i) the
overall runoff coefficients of the eucalypt plots (30 vs. 20%); (ii) the
overall sediment losses of the eucalypt plots (5.4 vs. 4.9 Mg ha−1);
(iii) the specific sediment loss rates of the eucalypt plots (0.35 vs.
0.33 g m−2mm−1 rainfall); (iv) the markedly lower sediment losses
of the pine compared to the eucalypt plots (amounting to only 6 vs.
16% of the eucalypt plots). Shakesby et al. (1996) suggested various
factors that could contribute to the contrast in sediment losses be-
tween their pine and eucalypt plots, of which especially the presence
of a pine needle “carpet” would seem relevant in the present context.
Pannkuk and Robichaud (2003) equally found needle cast to be effec-
tive in reducing post-fire erosion rates. The regression results of the
present study also supported that, even in the case of the control
plots, litter cover played a significant role in reducing sediment losses.
Worth nothing in this respect was that the mean litter cover at the
untreated pine plots was approximately 60%, i.e. a commonly accept-
ed threshold for mulch cover to be effective (Robichaud et al., 2000).
As far as the effectiveness of mulching with forest residues was

concerned, the results of this study and those of Shakesby et al.
(1996) coincided in two aspects: (i) a major decrease in overall sed-
iment losses at the eucalypt site (with 86 vs. 91%); (ii) the lack of
such an obvious reduction at the pine site, with sediment losses actu-
ally being higher at the control than at the treated plots (16 vs. 50%).
Shakesby et al. (1996), however, did not assess treatment effective-
ness in the same way as was done here (or in the other post-fire
treatment studies listed in Table 4), comparing pre- to post-
treatment values instead of the values of treated and untreated
plots. Furthermore, Shakesby et al. (1996) opted for testing various
mulch application rates at single plots rather than for testing one sin-
gle rate at various replicate plots. Also in the case of the present study,
the limited number of replicate plots implied special caution in inter-
preting the effectiveness figures for the pine site in particular. The
suggestion of an erosion-enhancing effect of mulching at the pine
site might well be due to the comparatively low runoff and sediment
losses of the untreated pine plots, on the one hand, and, on the other,
a marked variability amongst the plots in their hydrological and ero-
sion response, implying a need for more replicate plots.
Even the untreated eucalypt plots did not produce excessive sedi-

ment losses during the first 1.5 year after wildfire when compared to
the figures reported by some of the other studies on post-fire erosion
treatment listed in Table 4. This fitted in well with the well-
established tendency for erosion rates to be low in Mediterranean re-
gions, in particular in cases—like the present one and those of Badía
and Martí (2000) and Bautista et al. (1996)—where shallow soils
and elevated surface stone cover bear witness to a long history of
land use (Shakesby, 2011). Nonetheless, the large fraction of organic

Table 3

Multiple regression models of runoff and sediment losses for various combinations of ero-

sion plots (treated and untreated plots at the two study sites together and separately, and

untreated plots at both study sites), measurement periods (32, 27 and 20 read-outs) and

sets of independent variables (6, 7 and 8 covariates).

Selected

variable

Runoff (mm) Sediment losses (g m−2)

Parameter

estimate

Variable

name

Partial

r2

Parameter

estimate

Variable

name

Partial

r2

Global model: all 4 pine and all 8 eucalypt plots

Complete dataset: 32 read-outs

Covariates: 6—rainfall total (P_tot) and intensity (I_30), covers of bare soil, stones,

litter and vegetation

Intercept 3.39 1.04

1st var. 0.02 P_tot 0.33 0.04 I_30 0.37

2nd var. −0.04 Litter 0.20 −0.01 Litter 0.28

3rd var. 0.05 I_30 0.05 0.00 P_tot 0.05

4st var. −0.03 Stones 0.01

Cum. r2 0.59 0.70

Eucalypt model: all 8 eucalypt plots

Complete dataset: 32 read-outs

Covariates: 6—rainfall total (P_tot) and intensity (I_30), covers of bare soil, stones,

litter and vegetation

Intercept 3.02 0.92

1st var. 0.03 P_tot 0.47 0.04 I_30 0.47

2nd var. −0.04 Litter 0.09 −0.01 Litter 0.21

3rd var. 0.05 I_30 0.04 0.01 P_tot 0.08

4th var. −0.03 Stones 0.01

Cum. r2 0.61 0.76

Pine model: all 4 pine plots

Complete dataset: 32 read-outs

Covariates: 6—rainfall total (P_tot) and intensity (I_30), covers of bare soil, stones,

litter and vegetation

Intercept 0.39 0.50

1st var. 0.01 I_30 0.36 0.03 I_30 0.42

2nd var. 0.06 P_tot 0.04

Cum. r2 0.41 0.42

Eucalypt model: all 8 eucalypt plots

Limited dataset: 27 read-outs

Covariates: 7—rainfall total (P_tot) and intensity (I_30), covers of bare soil, stones,

litter and vegetation, and soil moisture (PR2-probe).

Intercept 2.52 1.05

1st var. 0.03 P_tot 0.51 0.04 I_30 0.48

2nd var. −0.07 Moisture 0.10 −0.01 Litter 0.24

3rd var. −0.02 Litter 0.04 0.01 P_tot 0.04

4th var. 0.07 I_30 0.02 −0.01 Moisture 0.01

5th var. 0.03 Veget. 0.02

Cum. r2 0.68 0.77

Untreated plots model: all 6 untreated plots

Partial dataset: 20 read-outs

Covariates: 8—rainfall total (P_tot) and intensity (I_30), covers of bare soil, stones,

litter and vegetation, soil moisture (ML2-sensor) and frequency of extreme

repellency (

Intercept 0.09 0.93

1st var. 0.03 P_tot 0.44 0.01 P_tot 0.55

2nd var. 0.03 Repellency 0.24 −0.01 Litter 0.21

3rd var. −0.02 Litter 0.03 0.03 I_30 0.02

Cum. r2 0.73 0.79
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Table 4

Compilation of field studies into the effectiveness of mulching-based treatments in reducing post-fire runoff and erosion. The meaning of the abbreviations are as follows: C, control; Effect., effectiveness; Euc., Eucalypt; GT, gerlach trap; LEB,

log erosion barrier; mod., moderate; –, not reported; p., pine; PAM, polyacrilamide; plant., plantation; RS, rainfall simulation; sev., severity; SF, silt fence; PW, paired watershed; T, treated.

Treatment type

(Mg/ha−1, % cover)

Location, forest type Fire

sev.

Slope

(%)

Method/

plot size

(m2)

n of plots Study period Annual

rainfall

Total

ground

cover (%)

Runoff/rainfall (%) Soil erosion

(Mg ha−1)

Reference

C T year, month mm yr−1 C T C T Effect. (%) C T Effect. (%)

Forest residue mulch
Chopped bark (8.7; 67) C Portugal, Euc. plant. Mod. 56 GT/16 4 4 yr0 1546 31 77 30 17 41 5.4 0.7 86 This study

Logging slash (17.5; 76) C Portugal, P. plant. Low 53 GT/16 2 2 yr0 1546 68 80 6 7 −10 0.3 0.4 −16

Euc. Logging (46; 89) C Portugal, Euc. plant. Mod. 44 GT/16 2 1 yr2 1471 48 95 20 19 3 4.9 0.4 91 Shakesby et al. (1996)

Pine logging (18; 8) C Portugal, P. plant. Low 44 GT/16 2 2 yr3 2027 76 78 22 16 28 0.8 1.2 −50

Wood chip mulch
Wood chip (4; 45) NW Spain, shrub High 40 SF/500 4 4 yr0 1520 19 56 – – – 35.0 33.0 6 Fernandez et al.

(2011)

Wood chip (17; 70) W Korea, Japanese p. Mod. 51 GT/30 3 3 yr3 1115 43 80 19 11 42 7.6 3.8 51 Kim et al. (2008)

Wood chip (–; 70) AR USA, Ponderosa p. High 27 SF/4100 1 1 mth3 487 42 86 – – – 65.6 15.9 76 Riechers et al. (2008)

Straw mulch
Straw (2.5; 80) NW Spain, shrub High 40 SF/500 4 4 yr0 1520 19 84 – – – 35.0 12.0 66 Fernandez et al.

(2011)

Straw+seeds (1; 53) NE Spain, semi-arid

shrub

Mod. 45 GT/8 4 4 yr1 268 38 99 – – – 2.6 0.4 83 Badía and Martí

(2000)

Mod. 45 GT/8 4 4 yr2 268 47 69 – – – 3.5 1.4 59

Straw+seeds (1; 27) NE Spain, semi-arid

shrub

Mod. 45 GT/8 4 4 yr1 268 70 100 – – – 1.0 0.4 59

Mod. 45 GT/8 4 4 yr2 268 73 85 – – – 2.0 0.7 64

Straw (2; 42) E Spain, semi-arid p. Mod. 42 GT/16 3 3 yr1 293 67 89 5 0 91 1.1 0.1 89 Bautista et al. (1996)

Straw (2.2; 78) CO USA, Ponderosa p. High 29 SF/16,000 8 3 yr0 198 33 74 – – – 6.2 8.8 −42 Wagenbrenner et al.

(2006)High 29 SF/16,000 12 4 yr1 198 50 75 – – – 9.5 0.5 95

High 29 SF/16,000 12 4 yr2 198 68 89 – – – 1.2 0.0 98

High 29 SF/16,000 12 4 yr3 198 88 89 – – – 0.7 0.0 100

Straw (2.2; 100) MO USA, spruce-fir p. High 15 RS/0.5 10 10 yr1 480 1 100 47 36 23 7.2 1.0 86 Groen and Woods

(2008)

High 15 RS/0.5 4 3 yr2 480 38 34 27 27 0 4.2 2.2 48

Straw+seeds (2.2; 94) CO USA, Ponderosa p. High 22 SF/2830 4 4 yr1 402 32 55 – – – 13.2 0.7 95 Roughs, (2007) (unp.)

High 22 SF/2830 4 4 yr2 402 58 72 – – – 11.0 2.5 77

Straw rice (4.5; –) AR USA, Ponderosa p. High 27 SF/4100 1 1 mth3 487 42 88 – – – 48.4 9.1 81 Riechers et al. (2008)

Straw+seeds NM USA – 24 SF/25 6 6 yr0 52 – – – – – 8.3 2.5 70 Dean 2001 (unp.)

– 24 SF/25 6 6 yr1 156 – – – – – 12.6 0.7 95

Hydromulch – – –

Aerial (2.4; 94) CO USA, Ponderosa p. High 22 SF/2830 4 4 yr1 402 32 56 – – – 7.2 0.4 94 Roughs,(2007) (unp.)

High 22 SF/2830 4 4 yr2 402 58 57 – – – 4.5 2.3 49

Hand (2.4; 88) CO USA, Ponderosa p. High 22 SF/2830 4 4 yr1 402 32 54 – – – 10.2 8.5 17

High 22 SF/2830 4 4 yr2 402 58 53 – – – 8.5 6.9 19

Aerial (−; 50) CA USA, Chaparral High 23 PW/55,000 1 1 yr0 415 – 50 – – – 15.0 21.0 −40 Wohlgemut et al.

(2006)Aerial (−; 100) High 23 PW/55,000 1 1 yr0 415 – 100 – – – 15.0 7.0 53

PAM Pellets AR USA, Ponderosa p. High 27 SF/4100 1 1 mth3 487 42 71 – – – 59.2 30.4 49 Riechers et al. (2008)

Barriers
Shrub barriers (10 m) NW Spain, shrub High 40 SF/500 4 4 yr0 1520 19 24 – – – 35.0 30.0 14 Fernandez et al. (2011)

LEB (2–2 m ) W Korea, Japanese p. Mod. 51 GT/30 3 3 yr3 1115 43 – 19 18 7 7.6 7.5 2 Kim et al. (2008)

LEB+straw+seeds NM USA – 24 SF/25 6 6 yr0 52 – – – – – 8.3 1.9 77 Dean (2001) (unp.)

– 24 SF/25 6 6 yr1 156 – – – – – 12.6 0.5 96
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matter observed in the sediment losses should be noted, not only for
the implications for medium- to long-term land-use sustainability
(e.g. Ferreira et al., 2008; Malvar et al., 2011; Thomas et al., 1999)
but also for off-site pollution with pyrolitic toxic organic compounds
(Vila-Escalé et al., 2007).

In comparison with other field studies that tested the effective-
ness of wood chips mulches (Table 4), the eucalypt chopped bark
was highly effective. Riechers et al. (2008) and Kim et al. (2008)
reported substantial reductions of 76 and 51% respectively, while
Fernández et al. (2011) found that wood chips decreased erosion by
a mere 6%. These discrepancies can be due not only to the differences
in the application rates, but also, as noted by the last two studies, to
the fact that the 5–2 cm long chips pieces floated and were removed
along with the sediments. This did not occur with the 10–15 cm long
fibres of the chopped bark mulch. In fact, the mulching effectiveness
at the eucalypt site can be compared more favourably with the
range of values compiled for straw mulch in Table 4 (48–100%).

Arguably, the present results justified the decision to measure
runoff and erosion with a high temporal resolution to compensate a
possible lack of replicate plots. The repeated measures experimental
design allowed valuable statistical inferences on treatment effective-
ness as well as on the role therein of selected explanatory variables.
An important insight was that even in the case of the eucalypt site
the effectiveness of mulching was not time-invariant, being statisti-
cally significant only for the larger runoff and erosion events. This
reflected the presence of thresholds, below which runoff amounts
and sediment losses were too low for the mulching effect to prevail
over the inherent variability in the plots’ runoff generation and sedi-
ment transport processes. Litter cover played a more important role
in sediment losses than runoff amounts. This coincided with the
effects of mulching described by Smets et al. (2008), decreasing run-
off generation by increasing surface storage as well as soil moisture
content, on the one hand, and, on the other, decreasing sediment
transport by decreasing splash erosion (sediment availability) as
well as by increasing resistance to flow (transport capacity). Visual
inspection of the treated and untreated eucalypt plots indeed sug-
gested that mulching not only decreased splash erosion (pedestal
formation) but also enhanced deposition of ashes and fines. From
the few prior studies that assessed mulching effects in terms of both
overland flow and erosion, Groen and Woods (2008) and Shakesby
et al. (1996: eucalypt site) found a clearly greater impact on sediment
losses than runoff. Bautista et al. (1996) and Kim et al. (2008), on the
other hand, reported comparable reductions in runoff and erosion,
notwithstanding the fact that the effectiveness varied greatly be-
tween these studies (42 to 91%).

The role of litter cover, whilst significant, was secondary com-
pared to that of rainfall. With one exception, both rainfall total and
rainfall intensity explained significant fractions of the variations in
runoff and sediment losses, as was also observed by Bautista et al.
(1996). The relative importance of the two rainfall variables, howev-
er, tended to differ for runoff and erosion, with rainfall total explain-
ing better runoff amounts and rainfall intensity explaining better
sediment losses. The former agreed with the findings of Kim et al.
(2008), whereas the latter was in accordance with Wagenbrenner
et al. (2006) but not with Fernández et al. (2011). This discrepancy
could be due to differences in rainfall regime. The rainfall intensities
in the present study were in fact more similar to those in
Wagenbrenner et al. (2006) than to those in Fernández et al.
(2011), notwithstanding the fact that the former study was carried
out in the Colorado Front Range, USA, and the latter in Galicia,
north-east Spain.

Following rainfall, soil water repellency was the most important
variable explaining overland flow generation but this was only
assessed for the untreated conditions. The role of water repellency
in enhancing overland flow has often been inferred for burnt as well
as unburnt eucalypt stands in particular (e.g. Coelho et al., 2005;

Ferreira et al., 2005a; Malvar et al., 2011; Sheridan et al., 2007). How-
ever, it has rarely been established in an unequivocalmanner, especially
due to the destructive nature of repellencymeasurements and the rela-
tionship of repellency with other potential explanatory variables
(Shakesby and Doerr, 2006), except perhaps by Leighton-Boyce et al.
(2007) using surfactants in rainfall simulation experiments. Even so,
water repellency could have been of minor importance at the mulched
plots, since mulchingwas found to increase the soil moisture content at
the eucalypt plots.

5. Conclusions

The principal conclusions of this study into the short- to medium-
term effects of mulching with forest residues on runoff generation
and sediment losses in a recently burnt eucalypt as well as maritime
pine plantation in north-central Portugal were:

– whilst sediment losses at the untreated eucalypt plots were not
excessively high for post-fire conditions worldwide, those at the
untreated pine plots were low even by Mediterranean standards;

– mulching with eucalypt chopped bark was, on average, highly
effective at the eucalypt site, with an increase in litter cover
from 10 to 70% resulting in a decrease in 45% of runoff amount
and in 85% of sediment losses;

– the effect of mulching at the eucalypt site was statistically signifi-
cant, albeit for noticeably more runoff than erosion events due to
the latter's highly irregular nature, and coincided with the signifi-
cant role that litter cover played in explaining runoff and especial-
ly sediment losses;

– mulching at the pine site did not result in less runoff and erosion
at the treated plots compared to the untreated plots, probably
due to the already elevated effectiveness of the “natural”mulching
by needle cast from the scorched pine canopies in combination
with a marked variability in hydrological and erosion response
amongst the plots;

– rainfall total and intensity explained runoff and sediment losses
markedly better than any of the other six variables included in
this study, but, besides litter cover, also soil moisture and soil
water repellency could explain a significant fraction of the varia-
tion in overland flow generation.
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• The effectiveness of two soil erosion control treatments was contrasted after a wildfire.

• Chopped bark mulch reduced runoff and soil erosion, whereas dry polyacrylamide did not.

• Rainfall amount and soil cover were key factors respectively for runoff and soil erosion.

• Fire intensity across the burnt slope also affected soil erosion and organic matter content on the eroded sediments.
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For several years now, forest fires have been known to increase overland flow and soil erosion. However, mitiga-

tion of these effects has been little studied, especially outside the USA. This study aimed to quantify the effective-

ness of two so-called emergency treatments to reduce post-fire runoff and soil losses at the microplot scale in a

eucalyptus plantation in north-central Portugal. The treatments involved the application of chopped eucalyptus

barkmulch at a rate of 10–12 Mg ha−1, and surface application of a dry, granular, anionic polyacrylamide (PAM)

at a rate of 50 kg ha−1. During the first year after a wildfire in 2010, 1419 mm of rainfall produced, on average,

785 mmof overland flow in the untreated plots and 8.4 Mg ha−1 of soil losses. Mulching reduced these two fig-

ures significantly, by an average 52 and 93%, respectively. In contrast, the PAM-treated plots did not differ from

the control plots, despite slightly lower runoff but higher soil erosion figures. When compared to the control

plots, mean key factors for runoff and soil erosion were different in the case of the mulched but not the PAM

plots. Notably, the plots on the lower half of the slope registered bigger runoff and erosion figures than those

on the upper half of the slope. This could be explained by differences in fire intensity and, ultimately, in pre-

fire standing biomass.

© 2013 Elsevier B.V. All rights reserved.

1. Introduction

In the last few decades, wildfires have become a common andwide-

spread phenomenon in Portugal (Pereira et al., 2005; Shakesby, 2011).

One of the principal effects of wildfires is widely held to be a partial or

total loss of vegetation and litter cover (e.g. Soto and Diaz-Fierros,

1997; Shakesby, 2011). The resulting reduction in both rainfall inter-

ception and plant transpiration enhances runoff generation as well as

soil exposure to the direct impact of raindrops (Soto et al., 1998;

Wagenbrenner et al., 2006; Ben-Hur et al., 2011; Fernández et al.,

2011). Direct effects of wildfires due to soil heating, such as breakdown

of aggregates and increased soil water repellency, are generally

considered to be key factors in the strong and sometimes extreme hy-

drological and erosion responses of recently burnt areas (e.g. Coelho

et al., 2004; Doerr et al., 2006; Ferreira et al., 2008; Keizer et al., 2008;

Varela et al., 2010; Malvar et al., 2011). Fire-enhanced generation of

runoff and the associated export of sediments, organicmatter, nutrients

and pollutants not only have negative consequences for on-site land-

use sustainability, but also can endanger downstream aquatic and

flood-zone habitats and associated human infrastructures (Shakesby

and Doerr, 2006; Ferreira et al., 2008; Robichaud, 2009).

It is generally accepted that fire-enhanced erosion rates aremaximal

immediately after the wildfire (e.g. 35 Mg ha−1 during the first post-

fire year in Fernández et al., 2011) and decrease with time to back-

ground levels at the end of the so-called window of disturbance (up to

10 years after the wildfire as reported in Swanson, 1981 and in

Shakesby and Doerr, 2006). However, the intensity and extent of this

period, which depends on fire severity and post-fire climate conditions,
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are still highly uncertain and difficult to quantify (Neary et al., 1999;

Cerdà and Doerr, 2005; Cerdà and Lasanta, 2005; Robichaud, 2009).
A variety of measures have been identified that can effectively re-

duce post-fire soil erosion (e.g. Miles et al., 1989; MacDonald and
Larsen, 2009; Robichaud et al., 2013). Arguably, themostwidely accept-
ed measure is mulching, i.e., the application of a cover of organic com-
pounds on the soil surface to modify energy and water fluxes and to
protect the soil from direct raindrop impact (Bautista et al., 2009).
Mulching has been found to successfully control post-fire runoff and
soil erosion in many field trials (e.g. Miles et al., 1989; Bautista et al.,
1996; Wagenbrenner et al., 2006; Fernández et al., 2011; Prats et al.,
2012). Amulch cover of 60% is widely considered theminimum thresh-
old for a significant reduction in soil loss (Pannkuk and Robichaud,
2003; Cerdà and Doerr, 2008; Robichaud et al., 2010). In the case of
straw mulch, this threshold cover is typically achieved by applying
2 Mg of straw per ha (Miles et al., 1989; Bautista et al., 1996; Badía and
Martí, 2000; Wagenbrenner et al., 2006; Groen and Woods, 2008;
Fernández et al., 2011), with costs ranging from 600 to 1200 USD ha−1

for aerial and manual application, respectively (Napper, 2006).
Although burnt areas are commonly mulched with straw, this has

various disadvantages: high cost, potential introduction of non-native
plants, and susceptibility towind-scattering (Bautista et al., 2009). In re-
cent years, there has been increasing interest in alternativemulch types
derived from forest residues, using fibers of different shapes and sizes
(Yanosek et al., 2006; Smets et al., 2008). In laboratory experiments,
6-cm long wood strands applied at rates of 4 to 8 Mg ha−1 were
found to be highly effective, reducing erosion rates by 80% (Foltz and
Copeland, 2009; Foltz and Dooley, 2003; Foltz and Wagenbrenner,
2010). Infield trials, mulchingwith 10- to 15-cm long chopped eucalyp-
tus bark fibers markedly reduced post-fire erosion during the first year
after the fire (Prats et al., 2012), while mulching with wood chips did
not (Fernández et al., 2011). The mulch employed by Prats et al. (2012)
had the further advantages of being readily available in the study region
(due to the widespread occurrence of eucalyptus plantations in north-
central Portugal), not being susceptible to removal by wind, decaying
more slowly than straw, and not introducing invasive weeds. The cost
of applying the chopped bark mulch, however, differed little from that
of applying straw, as the lower costs per Mg were offset by the higher
application rates needed to achieve the 60% cover threshold.

Amore recentmeasure to control post-fire erosion is the application
of polyacrylamides (PAMs; Rough, 2007; Robichaud et al., 2010). PAMs
refer to a family of flocculant agents, comprising a broad class of chem-
ical compounds with different chain lengths, charge types and charge
densities. Different PAM formulations have been developed to ensure
effective binding with clay particles through direct ionic attractions or
cation bridges (Theng, 1982; Vacher et al., 2003). The application of
PAMs constitutes a remarkable soil- andwater-management technique,
due to their extremely low cost (~3 USD per kg), their safety, and their
capacity to influence physicochemical processes (Sojka et al., 2007).
During the last two decades, the use of PAMs has proven effective for
erosion control in furrow irrigation in intensive agriculture (Ben-Hur,
2006; Sojka et al., 2007). Application rates as low as 1 to 50 kg ha−1

have been found to noticeably reduce soil losses from agricultural fields
as well as from steep road embankments (Agassi and Ben-Hur, 1992;
Ben-Hur, 2001; Ben-Hur and Keren, 1997; Ben-Hur and Letey, 1989;
Lentz et al., 2002; Levy et al., 1991). The effectiveness of PAMs in reduc-
ing post-fire erosion, however, is poorly established. The few studies
which have been carried out have produced inconsistent results.
Davidson et al. (2009), Riechers et al. (2008) and Inbar (2011) found
PAM to be effective, whereas Rough (2007) and Wohlgemuth and
Robichaud (2007) did not.

The main objective of the present study was to evaluate the effec-
tiveness of two erosion-mitigation techniques – mulching with forest
residues (chopped bark) and surface application of a dry granular an-
ionic PAM – during the first year after a wildfire in a eucalyptus planta-
tion in north-central Portugal. The specific objectives were to: (i) assess

the performance of both techniques at a high temporal resolution (mon-
itoring every 1 or 2 weeks); (ii) determine the spatial variation in
overland-flow generation and soil losses from the base to the top of a
40-m long slope; and (iii) determine the key factors explaining overland
flow and soil losses for the treatments, together and separately.

2. Material and methods

2.1. Study area

The study area was located near the Ermida hamlet in the Sever do
Vouga municipality of north-central Portugal. The area was affected by
a wildfire that consumed 295 ha between 26 and 28 July 2010 (AFN,
Autoridade Florestal Nacional, 2012). The burnt area not only consisted
mainly of eucalyptus (Eucalyptus globulus Labill.) plantations, but also
included some maritime pine (Pinus pinaster Ait.) plantations and a
stand of cork oak (Quercus suber L.). The eucalyptus trees in the region
are typically planted as monocultures for paper pulp production, and
harvested every 7–14 years. After logging, the eucalyptus trees are left
to regrow from the stumps two or three times, after which a new plan-
tation cycle is begun (Ferreira et al., 1997; Leighton-Boyce et al., 2005;
Prats et al., 2012).

The climate of the study area canbe classified as humidmesothermal
(Csb in the Köppen classification), with moderately dry but extended
summers (DRA-Centro, Direcção Regional do Ambiente do Centro,
1998) when the bulk of the wildfires occurs. The mean annual temper-
ature at the nearest weather station of “Castelo Burgães” (40°51′16″N,
8°22′55″W, 306 m a.s.l.; 1990–2010; SNIRH, Serviço Nacional de
Informação dos Recursos Hídricos, 2011) was 14.9 °C, while mean
monthly temperatures ranged from 9.0 °C in January to 21.1 °C in
July. Annual rainfall at the nearest rainfall station of “Ribeiradio”
(40°44′39″N, 8°18′05″W; 228 m a.s.l.; 1990–2010; SNIRH, Serviço
Nacional de Informação dos Recursos Hídricos, 2011) varied between
960 and 2530 mm, with an average of 1609 mm.

The study area is situated in one of the region's major physiographic
units, the Hespheric Massif. The area consists mainly of pre-Ordovician
schists and graywackes, but includes Hercynian granites at several loca-
tions (Ferreira de Brum, 1978). Within the study area, a steep (25°) but
short (40 m) slope with southwest aspect was selected for this study
(40°44′05″N, 8°21′18″W, 200 m a.s.l.; Fig. 1). The eucalyptus trees in
the study site had been cut just before the fire, as evidenced by the
tree logs that were piled up at the base of the slope and were partially
charred by the wildfire. Judging from the remaining tree stumps (with
diameters of roughly 1 m), the stand had undergone three prior
harvestings, and had originally been planted some three decades before
the 2010wildfire. The overall severity of the 2010wildfire was estimat-
ed to be moderate, as inferred from the complete consumption of the
logging slash residues, the understory vegetation and the litter layer,
as well as from the prevalence of a 1- to 4-cm thick layer of black ash
(Table 1). At the base of the slope, however, the presence of gray and
white ashes suggested moderate to high severity.

2.2. Experimental setup

At the end of August 2010, before any significant rainfall events
(Fig. 2), the study site was instrumented with two rainfall gauges (one
tipping-bucket gauge with a resolution of 0.2 mm and one storage
gauge for validation purposes), and 12 square erosion plots of approxi-
mately 0.28 m2 were established (Fig. 1). The 12 plots were organized
into four sets (blocks) that were located at about equal distances from
the base to the top of the slope (Table 1), while the three plots of each
blockwere placed at 1- to 3-mdistance fromeach other. The plot outlets
were connected to tanks with a storage capacity of 30 l for overland-
flow collection. The spatial variation in soil properties across the study
slope was examined in February 2011 by excavating a soil profile in
each block, measuring soil depth, and collecting two samples from
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each of two soil depths (0–5 and 5–10 cm). These 16 samples were

analyzed in the laboratory for bulk density (Porta et al., 2003),

granulometric composition (Guitian and Carballas, 1976) and organic

matter content (Botelho da Costa, 2004) (Table 1). Whereas soil depth

tended to decrease in the upslope direction, the other soil parameters

revealed less straightforward spatial patterns. The upper 10 cm of the

soils overlying pre-Ordovician schists of the Hespheric Massif (Pereira

and FitzPatrick, 1995) had a sandy loam texture and high contents of

stones (50–55%) and organic matter (7.9–11.6%).

A randomized block designwas employed to assess the effectiveness

of the two erosion-mitigation techniques. The two treatmentswere ran-

domly allocated to two of the three plots in each block, leaving the last

plot untreated (control). The forest residue mulch consisted of chopped

eucalyptus bark and was purchased from the Socasca S.A., at the stan-

dard market price of 30 € per Mg. The mulch was applied manually on

15 Sep 2010 at a rate of 10–12 Mg ha−1, which provided 80–90%

ground cover (Table 1). A dry granular anionic PAMwith highmolecular

weight (Superfloc 110-c Series N/A-100) was chosen for this study, be-

cause of its effectiveness in prior studies (Chaudhari and Flanagan,

1998; Flanagan et al., 2002; Yu et al., 2003; Ajwa and Trout, 2006), in-

cluding in a recently burnt area (Inbar, 2011). It was spread out manu-

ally over the soil surface on 4 October 2010 at a rate of 50 kg ha−1. The

delay in the PAM application relative to the mulching was due to diffi-

culties in obtaining the Superfloc 110-c polymer. As a consequence of

this delay, rainfall prior to the PAM applicationwas considerably higher

than that prior to the mulching (81 mm vs. 25 mm, respectively).

Therefore, the present study does not include the initial post-fire period

up until 4 October 2010.

2.3. Field data collection and laboratory analyses

From 1 September 2010 to 7 September 2011, the rainfall accumu-

lated in the storage gauge and the overland flow collected in the tanks

were measured at 1- to 2-week intervals, depending on the occurrence

of rainfall. Whenever there was more than 250 ml of runoff in a tank, a

samplewas collected (in a 1.5-l bottle) and transported to the laborato-

ry for analysis. In total, some 400 runoff samples were collected during

34 readouts. The sediment concentration of these samples was deter-

mined in the laboratory by filtration, using a paper filter with a pore di-

ameter of 12 μm, followed by drying at 105 °C for 24 h. Subsequently,

the organicmatter content of the filtered and dried sedimentswasmea-

sured by loss-on-ignition method (550 °C for 4 h).

The ground cover of the 12 erosion plots was determined on six

occasions during the study period, i.e., immediately before and after

applying the treatments (on 1 Sep and 3 Nov 2010), and then at 2- to

4-month intervals until November 2011. The following five cover cate-

gories were recognized: bare soil, stones (including rock outcrop), litter

(including the applied mulch), ash (including charred plant material),

and vegetation. Ground cover was quantified by laying a square grid

of 0.5 m × 0.5 m at a fixed position over the plots, and recording the

Fig. 1. Overview of the hillslope during the installation of the microplots.

Table 1

General description of the study site and details of the studied treatments. The ground

cover corresponds to the average values of the three plots at each slope position,

whereas the values of bulk density, stoniness, texture fraction and organic matter

content correspond to the average values of the indicated samples collected at 0–5 cm

and 5–10 cm depth.

Block number

I II III IV

General characteristics

Position (m from base of slope) 11 18 27 36

Slope angle (degrees) 26 25 24 27

Projected plot area (m2) 0.22 0.23 0.23 0.22

Ground cover immediately after wildfire (01 September 2010)

Black ashes (%) 82 88 91 92

Gray and white ashes (%) 8 6 2 0

Stones (%) 5 5 4 2

Litter (%) 5 2 3 5

Soil characteristics

Soil depth (cm) 74 43 35 35

Bulk density (g cm−3) 1.1 1.1 1.2 1.0

Stoniness (N2 mm, %) 53.1 55.3 54.8 50.9

Sand fraction (%) 62.7 66.9 69.6 58.8

Silt fraction (%) 20.5 18.2 16.7 22.7

Clay fraction (%) 16.7 14.8 13.6 18.5

Organic matter content (%) 10.9 11.6 7.9 11.1

Treatments

PAM application rate (Mg ha−1) 0.05 0.05 0.05 0.05

Mulch application rate (Mg ha−1) 11.2 11.6 10.4 10.1

Mulch cover (%; on 04 October 2010) 86 89 80 78
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cover category at the 100 points of intersection between the grid's 10

equidistant rows and 10 equidistant columns.

2.4. Data analysis

The SAS system (Littell et al., 1996, 2006) was used to carry out the

following statistical analyses: (i) one-way ANOVA, to assess whether

the three treatments (control, PAM, and mulching) resulted in signifi-

cant differences among their overall values of runoff (specific), soil

losses and organic matter content of the eroded sediments over the en-

tire study period (4 October 2010–7 September 2011) as well as in the

cover of the five cover categories immediately after the wildfire (Sep-

tember 2010) and 1 year later; (ii) two-way ANOVA, to determine the

(combined) effects of the three treatments and of the plots' four posi-

tions across the slope on the overall values of runoff (specific), soil

losses and organic matter content of the eroded sediments; (iii) two-

way repeated-measures ANOVA, to assess the (combined) effects of

the three treatments and the time-since-treatment on the 1- to 2-

weekly values of runoff (specific), soil losses and organicmatter content

of the eroded sediments; (iv) post-hoc tests of least squares differences

(LSDs) adjusted by the Tukey–Kramer method (Tukey, 1953; Kramer,

1956), to assess whether the plots treated with mulch and PAM pro-

duced significantly different overall or 1-/2-weekly values of runoff,

(specific) soil losses and organic matter content compared to the

untreated plots; and (v) multiple linear regression, using the REG step-

wise forward selection procedure in combination with the collinearity

test to select, among a set of 10 independent variables, those that

explained a significant (p ≤ 0.05) fraction of the variation in the 1- to

2-weekly values of runoff, (specific) soil losses and organic matter con-

tent and, at the same time, had a condition index below 30 (Belsley

et al., 1980; Littell et al., 1996). The 10 independent variables included

in the REG procedure consisted of two rainfall-related variables

(“rain” — rainfall amount; “i30” — maximum rainfall intensity in

30 min), the five cover categories and three time-invariant variables

(“depth” — soil depth, “position” — position of the plots across the

slope, “angle” — slope angle of the individual plots).

In the case of the two-way repeated-measures ANOVAs, the assump-

tion of normality of the residuals was rejected for the original values of

runoff (mm), soil loss (g m−2) and specific soil loss (g m−2 mm−1 run-

off) (Kolmogorov–Smirnov test: p b 0.05). To remediate this, the runoff

and (specific) soil loss data were log10 fourth root transformed, respec-

tively, and the six readouts with the least rainfall (b6 mm) were elimi-

nated from the data set. The resulting data sets were also used in the

multiple linear regression analyses. The variance–covariance structure

of the repeated-measures ANOVAs was modeled with the heteroge-

neous auto-regressive variance, because it gave the smallest values for

the Akaike Information Criterion (AIC; Akaike, 1987) and the −2 re-

stricted log likelihood (Littell et al., 2006).

3. Results

3.1. Overall rainfall, runoff and erosion values

Total rainfall during the entire study period from 1 September 2010

until 7 September 2011 amounted to 1500 mm, closely approximating

the long-term mean annual rainfall at the nearest Ribeiradio station

(1609 mm). From the 1481 mm of rain that fell during the post-

treatment period (i.e. after 4 October 2010), more than half (55%)

was, on average, converted to overland flow over the untreated plots

(control treatment) and produced 848 g m−2 of soil loss (Table 2).

This soil losswas accompanied by an evengreater loss of organicmatter,

as the sediments eroded from the control plots had an average organic

matter content of 61%. Mulching had a significant and prominent im-

pact on runoff generation, but in particular on soil loss (one-way

ANOVA: p b 0.05 and p b 0.01, respectively). The runoff in the mulched

plots was, on average, 52% lower than in the control plots, whereas the

associated soil losses were 93% lower. The effect of PAM, on the other

hand, was less marked and not significant (one-way ANOVA: p = 0.3)

and, at the same time, opposite for runoff and erosion, reducing the av-

erage runoff by 16% while increasing the average soil losses by 23%.

Thus, the overland flow generated by the PAM plots transported, on av-

erage, 50% more soil per unit of runoff than the overland flow produced

by the control plots (1.58 vs. 1.05 g m−2 mm−1 runoff), and this differ-

ence was statistically significant (one-way ANOVA: p b 0.05). The same

was not applied to the organic matter losses, as they made up equiva-

lent fractions of the sediments eroded from the PAM, mulched and con-

trol plots (51 vs. 61%).

Overall (specific) soil losses over the entire post-treatment period

differed significantly among the three treatments as well as among

the four slope positions (Table 3). In contrast, overall runoff volumes

did not differ significantly among treatments or among slope positions.

Overall organic matter contents in the eroded sediments also did not

differ significantly among the treatments but they did among the

slope positions. The specific contrasts of the treated (mulching/PAM)

vs. control plots were in line with the above-reported one-way

ANOVA results. Mulching resulted in reductions in overall (specific)

soil losses and runoff that were highly (p b 0.001) and marginally

(p = 0.05) significant, respectively. Applying PAM, on the other hand,

only produced a significant change in specific soil losses (p b 0.01)

and this corresponded to an increase rather than a reduction.

The significant role of slope position was more obvious for the over-

all soil losses compared to the specific soil losses, especially for the con-

trol and PAM plots compared to the mulched plots (Fig. 3). From the

base to the top of the slope, overall soil losses of the control and PAM

plots decreased from 1800 to 1300 g m−2, respectively, to roughly

400 g m−2. Albeit not significant, a similar trend of decreasing values

in the upslope direction was also observed for the runoff volumes of

the control and PAM plots in particular. In contrast, the organic matter

contents in the eroded sediments revealed a clear tendency toward an

increase in the upslope direction.

3.2. Temporal patterns in rainfall, runoff and erosion

During the study period from 1 September 2010 to 7 September

2011, rainfall was measured on a total of 34 occasions (Fig. 2). In three

instances, rainfall exceeded 100 mm, twice during the autumn of

2010 (159 and 184 mm) and once during the winter of 2010/11

(138 mm). These highest rainfall totals coincidedwith the highestmax-

imum rainfall intensities, with i30 values amounting to 31, 26, and

22 mm h−1, respectively. The most extreme rainfall events in autumn

2010 produced the two principal peaks in runoff and soil losses in the

control and PAM plots, but only in runoff in the mulched plots (Fig. 4).

The two-way repeated-measures ANOVAs of the 1- to 2-weekly run-

off volumes and (specific) soil losses revealed significant effects for both

factors – treatments and time-since-treatment – but also for their

Table 2

Average values of total runoff volumes, total and specific soil losses, and organic matter

contents in the eroded materials for control (untreated), polyacrylamide (PAM) and

mulched plots over the entire post-treatment period (4 October, 2010–7 September,

2011). PAM and mulch effectiveness exhibits positive and negative signs in order to high-

light the enhancing or reducing effect of the treatment. Significant differences between the

untreated and treated plots, according to one-way ANOVA, are in bold (p b 0.05) or

underlined and bold (p b 0.01).

Runoff Soil losses Organic matter

content

Volume

(mm)

Total

(g m−2)

Specific

(g m−2 mm−1)

(% w/w)

Control 785 848 1.05 61

PAM 657 1047 1.58 51

Mulch 378 63 0.17 63

PAM effectiveness (%) −16 +23 +50 −16

Mulch effectiveness (%) −52 −93 −84 +3
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interaction (Table 4). Thus, the role of the treatments in overland flow

generation and soil erosion was not unequivocal during the entire

post-treatment period. Nonetheless, the specific contrasts of the

mulched vs. control plots revealed significant differences in runoff as

well as (specific) soil losses (p b 0.01). Furthermore, the interaction

terms could be rendered insignificant by removing the readouts with

the smallest rainfall amounts from the data set, while the individual fac-

tors continued to be significant. In the case of runoff, this could be

achieved by eliminating the 11 readouts with less than 22 mm rainfall;

in the case of (specific) soil losses, however, it required excluding all but

4 of the 28 readouts. The two-way repeated-measures ANOVA of the or-

ganic matter contents revealed a significant role of time-since-

treatment but not of the treatments themselves. For all plots together,

there was an overall decrease of 4% in the organic matter contents of

the sediments eroded during the autumnof 2010 and those eroded dur-

ing the summer of 2011. This decrease was most pronounced for the

PAM plots (5.2%) and least pronounced for the control plots (2.6%).

For the individual readouts, LSDs between control and mulched

plots were usually statistically significant, both in terms of runoff (23

readouts) and soil loss (27 readouts) (Fig. 4). In contrast, LSDs between

control and PAM plots were only significant on one occasion for runoff

and soil losses. Fig. 4 illustrates the importance of the interaction term

between treatments and time-since-treatment for the soil losses. In

the first two readouts after thewildfire, the PAM plots produced notice-

ably more erosion than the control plots, whereas the oppositewas true

in early spring 2011 (Fig. 4).

The reduction in average runoff and soil losses in the treated (PAM

and mulching) vs. untreated plots was plotted (as percentage of the

untreated plot values) against the weekly maximum rainfall intensities

(i30; Fig. 5). The reduction in runoff decreased in a clear and similar

manner with increasing i30 for both treatments, although mulching

was consistently more effective than PAM at reducing runoff. The

effectiveness of PAM in reducing soil loss also appeared to diminish

with increasing i30, although variability between readouts was more

pronounced than for runoff. In contrast, the effectiveness of mulching

in decreasing soil losses was basically unaffected by i30.

3.3. Statistical modeling of the temporal runoff and erosion patterns

The hydrological and erosion response of all 12 treated and

untreated plots together could be explained by the 10 independent var-

iables included in the forward selection procedure (Table 5: 70–80% of

the total variance). This was clearly less valid for the organic matter

contents in the eroded sediments (40% of the total variance being

explained). In the case of the (log-transformed) runoff volumes, 66%

of the variation could be explained by a single variable—rainfall amount.

In the case of the (fourth-root-transformed) soil losses, on the other

hand, 61% of the variation was explained by two factors of similar

importance—maximum rainfall intensity (i30) and litter cover.

Runoff, soil losses and organic matter contents were plotted against

the principal explanatory variables (Fig. 6).

The multiple regression models explaining runoff were basically the

same for each of the three treatments separately as well as for the 12

plots together, showing a consistent prevalence of the role of rainfall

amount (Table 5). The treatment-specific models explaining soil losses

were also similar for the three treatments. However, they differed

markedly from the model for all 12 plots together, as litter cover was

no longer a key explanatory variable. In a similar fashion, bare soil

cover was no longer an important factor in explaining the organic mat-

ter contents in the individual treatments. The separate models

explaining organic matter contents lacked a clear consistency, including

the range of the explained variation from27% in the case of themulched

plots to roughly twice as much (56%) in the case of the PAM plots.

The important role of litter cover in the erosionmodel for all 12 plots

together reflected a conspicuous difference in the mulched vs. PAM and

control plots. Even at the end of this study, in September 2011, this dif-

ference was, on average, about 65% (Fig. 7). Aside from litter cover, the

concurrent stone, ash and bare soil covers differed significantly among

the treatments (one-way ANOVA: p b 0.01), being, for obvious reasons,

lower in the mulched vs. PAM and control plots.

4. Discussion

4.1. Post-fire erosion risk in recently burnt eucalyptus plantations

The soil losses in the control plots plainly justified the application of

emergency measures immediately after the wildfire. The roughly

8 Mg ha−1 yr−1 clearly exceeded the range of values compiled by

Shakesby (2011) for recently burnt Mediterranean ecosystems

(0.3–3 Mg ha−1 yr−1), as well as the threshold of 1 Mg ha−1 yr−1 for

tolerable soil loss proposed by Verheijen et al. (2009). The present fig-

ures were also somewhat higher than those reported by Shakesby et al.

(1996): 4.9 Mg ha−1 yr−1, and Prats et al. (2012): 5.4 Mg ha−1 yr−1,

for recently burnt eucalyptus stands in north-central Portugal. An expla-

nation for these latter differences could be a scaling effect (e.g., Boix-

Fayos et al., 2007; Ferreira et al., 2008), since Shakesby et al. (1996)

and Prats et al. (2012) employed much larger plots than those in the

present study (16 vs. 0.25 m2). However, recent studies (Cerdà et al.,
2013; Garcia-Estringana et al., 2013) showed that the scaling effect
would influence first and foremost the generation of overland flow,
but not so clearly the soil erosion. Furthermore, the specific soil losses
in the control plots of the present study (1.05 g m−2 mm−1 runoff)
were lower than those in Prats et al. (2012) and especially Shakesby
et al. (1996) (1.15 and 1.68 g m−2 mm−1 runoff, respectively). It is
worth stressing that, aside from mineral soil, organic matter was also
eroded in large quantities from the control plots, on average some
5 Mg ha−1 yr−1. The implications of these organic matter losses are
not restricted to on-site soil fertility (e.g., Malvar et al., 2011;
Shakesby, 2011), but extend to off-site impacts of ash-loaded runoff,
which has been recently shown to induce eco-toxicological effects
(Campos et al., 2012).

4.2. Effectiveness of mulching

The present results on mulching's overall effectiveness agreed well
with those of the two previous studies that tested the effectiveness of

Table 3

Two-way ANOVA of the effects of control (untreated), polyacrylamide (PAM), and mulch treatments and slope position on total runoff volumes, total and specific soil losses, and organic

matter contents in eroded materials over the entire post-treatment period (4 October, 2010–7 September, 2011). Significant F-values and t-values – in the case of the specific contrasts

between treated and untreated plots – are in bold (p b 0.05) or underlined and bold (p b 0.01). Abbreviation “DF num, den” are degrees of freedom for numerator and denominator.

Source of variation DF num, den Runoff Soil losses Organic matter content

(% w/w)
Volume

(mm)

Total

(g m−2)

Specific

(g m−2 mm−1)

Between effects Treatment 2.6 2.72 46.33 186.33 1.96

Slope position 1.6 2.70 8.89 5.53 8.17

Treatment × slope 2.6 0.19 1.73 2.58 1.12

Specific contrasts Control vs. PAM 6 0.67 −0.80 −4.01 1.54

Control vs. mulch 6 2.27 7.91 14.35 −0.31
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forest residue mulching in recently burnt eucalyptus stands (Shakesby

et al., 1996; Prats et al., 2012). All three studies found an overall reduc-

tion in soil losses on the order of 90% (Fig. 8: studies 1, 2 and 3). More-

over, the overall reduction in runoff was similar in this study (52%) and

in Prats et al. (2012; 41%), whereas it was markedly lower in Shakesby

et al. (1996; 3%). The slightly greater reduction in runoff found here

compared to Prats et al. (2012) could be due to the slight difference in

mulch-application rates (10–12 vs. 9 Mg ha−1), possibly combined

with the aforementioned scaling effect. Themajor difference in runoff re-

duction compared to Shakesby et al. (1996) is more difficult to explain,

but could involve methodological aspects. The mulch in Shakesby et al.

(1996) was applied at a much higher rate (46 Mg ha−1) but was com-

posed of eucalyptus residues that came directly from logging, i.e. they

were not chopped like the residues applied in this study and by Prats

et al. (2012). As a result, the mulch in Shakesby et al. (1996) might

have acted principally as a low-vegetation cover rather than as a litter

layer, intercepting rainfall but not slowing down overland flow or en-

hancing its (re-)infiltration.

Mulching with forest residue, as described in this study, seems to

constitute a more effective post-fire treatment than mulching with

wood chips (e.g., Kim et al., 2008; Riechers et al., 2008; Fernández

et al., 2011; Fig. 8: studies 4, 5 and 6). A key factor was probably the

greater size of the fibers, promoting adherence to the soil surface.

Riechers et al. (2008) found that an initial 80% cover of wood chips is

drastically reduced as the chips float off under sufficient overland flow.

The temporal patterns of mulching effectiveness throughout this

study also fit well with other studies with comparable data sets

(Bautista et al., 1996; Badía and Martí, 2000; Prats et al., 2012). The dif-

ferences in mulch type (straw or forest residue) and experimental de-

sign (especially monitoring intervals) notwithstanding, these three

prior studies and the present one agreed in that: (i) mulch effectiveness

was not unequivocal due to a significant interaction between treatment

and time-since-treatment; (ii) mulch effectiveness was more often sig-

nificant for large and intense compared to small and weak rainfall

events; (iii) mulch effectiveness was greater in terms of reducing soil

erosion compared to overland flow; (iv) soil erosion produced by

mulched plots was less easily explained than soil erosion produced by

untreated, control plots. Furthermore, in the case of the present study,

the short monitoring intervals (1 to 2 weeks) highlighted the fact that

runoff reduction by mulching is dependent on rainfall characteristics

(intensity and amount), whereas soil erosion reduction was basically

constant throughout the post-treatment period. The two last readouts

with elevated maximum rainfall intensities (~20 mm h−1) suggested

a decrease in the mulch's effectiveness in reducing soil losses, which

could be due to decomposition of the chopped bark mulch. Even so,
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Fig. 3. Overall values of runoff, (specific) soil losses and organic matter content of the eroded sediments for the individual microplots over the entire post-treatment period (4 October

2010–7 September 2011).

0

20

40

60

80

100

120

140

R
u
n
o
ff
 (

m
m

)

Control

PAM

Mulch

0

20

40

60

80

100

120

140

160

180

1
1
-O

c
t-

1
0

3
1
-O

c
t-

1
0

2
0
-N

o
v
-1

0

1
0
-D

e
c
-1

0

3
0
-D

e
c
-1

0

1
9
-J

a
n
-1

1

0
8
-F

e
b
-1

1

2
8
-F

e
b
-1

1

2
0
-M

a
r-

1
1

0
9
-A

p
r-

1
1

2
9
-A

p
r-

1
1

1
9
-M

a
y
-1

1

0
8
-J

u
n
-1

1

2
8
-J

u
n
-1

1

1
8
-J

u
l-
1
1

0
7
-A

u
g
-1

1

2
7
-A

u
g
-1

1

S
o
il 

lo
s
s
e
s
 (

g
 m

-2
) 

Fig. 4. Temporal patterns in average runoff and soil loss values for the three treatments

(control, PAM and mulch) during the post-treatment period (4 October 2010–7 Septem-

ber 2011). Significant LSD's (p b 0.05) between the control plots and the mulched and

PAM plots for the individual readouts are marked with an asterisk (*) and a cross (+),

respectively.

469S.A. Prats et al. / Science of the Total Environment 468–469 (2014) 464–474



the mulch cover was found to decrease in a roughly linear fashion, by

some 2% per month. These results are in close agreement with the

value reported by Prats et al. (2012) for eucalyptus residue mulch, but

markedly lower than the 4–5% found by Badía and Martí (2000) and
Fernández et al. (2011) for straw mulch. This indicates a clear advantage
of applying forest residue vs. straw mulch, especially when the window
of disturbance is prolonged due to slow recovery of the spontaneous
vegetation.

4.3. Effectiveness of PAM

As mentioned above, only a few field trials have assessed the effec-
tiveness of PAM in reducing post-fire erosion, giving contradictory re-
sults. Comparisons are difficult, mainly due to the differences in PAM
type and experimental design in each study (Fig. 8: studies 7 to 12).
The greatest reduction was reported by Rough (2007; 80%), but this in-
volved applying PAM mixed into an amended slurry. Riechers et al.
(2008) found a 50% reduction in post-fire erosion, but they only mea-
sured thefirst few rainstorms after thefire. The authors applied PAM at-
tached to dry pellets of compressed straw, so that the effect of PAM
could not be separated from the effect of the 80–90% ground cover
provided by the pellets. Similarly, Davidson et al. (2009) reported
a 40% reduction in post-fire erosion by applying PAM attached to
compressed paper pellets for a ground cover of 50%. Of the prior studies
that also applied PAM in dry granular format, Inbar (2011) found

23% and 50% reductions in post-fire erosion at application rates of 25
and 55 kg ha−1, respectively. However, whereas Inbar (2011) used
the exact same type of PAM as we did, they removed the ashes before
applying it, differing from all of the other studies referred to here.
Rough (2007) and Wohlgemuth and Robichaud (2007) reported that
applying 5.6 kg ha−1 of dry granular PAM does not reduce post-fire
soil erosion.

The above-mentioned divergent findings on the effectiveness of
PAM in reducing post-fire runoff and erosion could be the result of a
number of factors, such as not only type of PAM, its application rate
and method, but also soil type and texture. PAM is widely held to be
most suitable for soils with high clay contents, high cation exchange ca-
pacities and divalent, exchangeable cations (Ben-Hur, 2001, 2006; Sojka
et al., 2007). Nevertheless, selection of the most suitable PAM formula-
tion for a specific soil is rather complex, since the many PAM formula-
tions have distinct properties due to differences in molecular weight,
charge type and charge density. Moreover, the selection of optimal ap-
plication rate and method is not straightforward either, as clearly dem-
onstrated by Theng (1982), McLaughlin and Brown (2007) and Inbar
(2011). At present, the best option for applying PAM in recently burnt
areas would appear to be in combination with paper/straw pellets;
nevertheless, the added value of adding PAM to the pellets remains
questionable, including in economic terms.

The mechanisms by which PAMs reduce post-fire soil erosion are not
completely understood, but some aspects have become clear. The pres-
ent results suggest that poor effectiveness of PAM in recently burnt
areas could involve a combined effect of ashes and soil water repellency.
PAM might preferentially bind the ashes instead of the soil (Rough,
2007), and both materials might then be removed after the first rainfall
events by the repellency-enhanced overland flow (Wallace and
Wallace, 1986). The study site exhibited strong to extreme soil water re-
pellency during the initial post-fire period, as is common in recently
burnt eucalyptus stands in north-central Portugal (Keizer et al., 2008;
Malvar et al., 2011; Prats et al., 2012). A substantial reduction in the
ash cover was also observed during the three first rainfall events after
the PAM application.

4.4. Key factors in post-fire erosionwith andwithout emergency treatments

In this study, litter cover – mainly composed of mulch – was slightly
more important than rainfall total or intensity in explaining the differ-
ences in soil loss among the 12 plots. A crucial role for protective soil
cover in post-fire erosion was also found by Pietraszek (2006), analyz-
ing the evolution of the spontaneous ground cover in a large data
set comprising 10 different wildfires of varying ages (0–10 post-fire
years). In Pietraszek's (2006) case, bare soil cover explained more
than 50% of the variation in erosion rates. As in this study, other multiple
linear regression models have been carried out in the north-central Ibe-
rian Peninsula, with post-fire mulched and control (Prats et al., 2012),
prescribed burnt and unburnt (Vega et al., 2005), and agriculture
plowed and vegetated field (Nunes et al., 2011) plots. As in the present
study, rainfall intensity was identified as the key factor for soil erosion.
This was especially true for the “bare” plots in their experimental de-
signs. For the “cover-protected” plot data sets (mulched, unburnt or

Table 4

Two-way repeated-measures ANOVA of the effects of treatment and time-since-treatment on the 1- to 2-weekly values of runoff, (specific) soil losses and organic matter contents during

the post-treatment period (4 October 2010–7 September 2011: 28 readouts). Significant F-values and t-values – in the case of the specific contrasts between treated and untreated plots –

are in bold (p b 0.05) or underlined and bold (p b 0.01). Abbreviation “DF num, den” are degrees of freedom for numerator and denominator.

Source of variation DF num, den Runoff

(mm)

Soil losses Organic matter content

(% w/w)
(g m−2) (g m−2 mm−1)

Within effects Treatment 2.9 15.45 73.40 68.52 3.96

Time 27,243 209.52 38.07 6.57 2.82

Treatment × time 54,243 2.98 2.79 2.37 1.27

Specific contrasts Control vs. PAM 9 1.77 −0.9 −2.03 2.2

Control vs. mulch 9 5.45 10.45 8.97 −0.41
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vegetated), the soil erosion models tended to be weaker, with restricted
dependency on rainfall intensity and a smaller number of contributing
variables. Those findings can be attributed to the buffer effect exerted
by an organic cover relative to bare soil. Aside from the provision of
higher rainfall interception, Smets et al. (2008) reported that mulching
reduces the amount of runoff due to higher storage capacity and soil
moisture content, and reduces soil erosion due to both decreased splash
erosion and an increased resistance to flow.

Rainfall did not have a significant effect on the organic matter con-
tents of the eroded materials, either in the entire data set or for any of
the three treatments alone. In contrast, protective soil cover (or, rather,
the lack of it) was a key explanatory variable but only when analyzing
all plots together. At the same time, however, time-since-treatment
had a significant effect on organic matter contents, whereas treatment
did not. These rather complex results probably reflect an increase in
bare soil cover in the control and PAM plots combined with an overall

Table 5

Stepwise multiple linear regression models of the 1-to 2-weekly values of runoff, soil losses and organic matter contents of eroded sediments during the post-treatment period (4 October

2010–7 September 2011), for the three treatments together as well as separately. The full names of the variables are given in Section 2.4.

All plots (n = 12) Control plots (n = 4) PAM plots (n = 4) Mulched plots (n = 4)

Param.

estimate

Variable

name

Partial

r2

Param.

estimate

Variable

name

Partial

r2

Param.

estimate

Variable

name

Partial

r2

Param.

estimate

Variable

name

Partial

r2

Runoff (mm)

Intercept −0.01 0.93 0.53 0.03

1st var 0.01 Rain 0.66 0.01 Rain 0.68 0.01 Rain 0.70 0.01 Rain 0.76

2nd var 0.01 Stones 0.07 −0.01 Position 0.07 0.02 Litter 0.05 0.02 i30 0.04

3rd var 0.02 i30 0.02 0.02 i30 0.02 0.02 i30 0.02 −0.02 Veg 0.03

4th var 0.00 Depth 0.01 −0.01 Position 0.02 0.06 Stones 0.02

Total r2 0.77 0.77 0.79 0.85

Soil losses (g m−2)

Intercept 1.75 1.76 1.93 0.47

1st var −0.01 Litter 0.32 0.04 i30 0.45 0.05 i30 0.46 0.04 i30 0.44

2nd var 0.04 i30 0.29 −0.02 Position 0.08 −0.03 Position 0.14 −0.03 Veg 0.04

3rd var −0.03 Position 0.04 0.01 Rain 0.06 0.01 Rain 0.06

4th var 0.00 Rain 0.03

5th var −0.03 Veg 0.01

Total r2 0.70 0.59 0.66 0.48

Organic matter content (% of sediments)

Intercept 47.8 64.3 18.3 82.9

1st var −0.54 Bare 0.30 −1.55 Depth 0.40 1.40 Position 0.56 −1.76 Stones 0.18

2nd var 0.67 Position 0.11 −0.28 Depth 0.04

3rd var −3.53 Bare 0.04

Total r2 0.41 0.40 0.56 0.27
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minor decrease in organic matter content from 56 to 53%. A similar de-
crease in organic matter content was observed by Thomas et al. (1999),
although this was during the second year after a wildfire. Overall, post-
fire organic matter losses have been poorly studied but the few existing
data clearly point to their importance and consequently, the urgent
need for further studies into the transport of ashes as the principal
source of such high organic matter contents, well above that in the
topsoil.

The observed spatial pattern of decreasing runoff and erosion in the
upslope direction was unexpected, especially since soil depth did tend
to decrease in this direction as well. Moreover, the other soil properties
measured in this study offered no plausible explanations, as they re-
vealed no obvious spatial patterns. An exception was the cover of
gray-white ash, even though it differed only little across the slope
(from 0 to 8%). The role of gray-white ash was probably indirect,
reflecting differences in soil burn severity and the associated changes
in soil properties (e.g. Shakesby and Doerr, 2006; Varela et al., 2010).
The hydrological response at the base of the slope – even seen in the
mulched plots – was due to higher fire severity, as suggested by the
presence of white ash. Bodí et al. (2011a) also found that soils covered
with white ash produce a stronger hydrological and erosive response
than those covered with black ash. Another possible explanation for
the role of gray-white ash is related to its apparently greater susceptibil-
ity to being blown away by the wind, giving rise to bare spots. Various
studies, such as Leighton-Boyce et al. (2007), Woods and Balfour
(2010) and Bodí et al. (2011b) have shown that the presence of ash
can decrease the generation of overland flow.

5. Conclusions

The main conclusions of the present study on the short-term effec-
tiveness of chopped bark mulch and dry anionic PAM during the
first year after a wildfire in a eucalyptus plantation in north-central
Portugal were the following:

- a litter cover of 80% provided by the chopped eucalyptus bark was
highly effective in reducing runoff and especially soil losses through-
out the first post-fire year. These results warrant follow-up studies
with longer temporal and spatial scales, as well as with different ap-
plication rates;

- PAM application did not result in a significant reduction of either
runoff or soil losses, except for a very few isolated rainfall events.
However, its potential advantages do warrant further research, es-
pecially in combination with mulching;

- soil losses from the untreated plots during the first year after the
wildfire were comparatively high, both for the study region and for
the Mediterranean Basin;

- post-fire runoff and soil losses could be well explained by rainfall-
and cover-related variables, opening perspectives for the prediction
of treatment effectiveness with a temporal resolution compatible
with weather predictions;

- post-fire overland flow generation on a microplot scale depended
first and foremost on rainfall amount, whereas the associated
interrill soil losses were best related to maximum rainfall intensity.
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ABSTRACT

Forest fires can greatly increase runoff and surface erosion rates. Post-fire soil erosion control measures are intended to minimize this response and
facilitate ecosystem recovery. In a few recent cases, hydromulch has been applied, and this consists of a mixture of organic fibers, water and seeds.
The objectives of this research were to (i) analyze the effectiveness of hydromulch in reducing post-fire runoff and sediment production and
(ii) determine the underlying processes and mechanisms that control post-fire runoff and erosion. After a wildfire occurred in August 2008,
14 plots ranging in size from 0·25 to 10m

2
were installed on a 25 degree slope in a burnt pine plantation that had also been subjected to salvage

logging. Half of the plots were randomly selected and treated with hydromulch. One of two slope strips adjacent to the plots was also hydromulched
and used for monitoring some soil properties. Measurements made in each of the first 3 years following the wildfire included (i) the plot-scale runoff
volumes and sediment yields; (ii) soil shear strength, soil moisture, and soil water repellency; and (iii) surface cover. The hydromulch reduced over-
land flow volume by 70% and soil erosion by 83%. The decrease in runoff was attributed to the increase in soil water retention capacity and the
decrease in soil water repellency, whereas the reduction in soil erosion was initially attributed to the protective cover provided by the hydromulch
and lately to an enhanced vegetative regrowth in the third year after burning. Copyright © 2013 John Wiley & Sons, Ltd.

keywords: wildfire; post-fire erosion; overland flow; soil water repellency; ash

INTRODUCTION

Soil erosion is a key process in the functioning of

Mediterranean ecosystems (Cantón et al., 2001; Ceballos

et al., 2003; Cerdà et al., 2010), and wildfires represent

one of a number of disturbances in forests and shrublands

that can greatly increase soil and fertility losses (Cerdà,

1998a, 1998b; Shakesby & Doerr, 2006; Shakesby,

2011). The consumption of the vegetation and litter layer

by fire increases both overland flow—because of the

reduction of rainfall interception and resistance to flow—

and sediment losses by increasing the splash erosion by rain-

drops (Soto & Diaz-Fierros, 1997; Llorens & Domingo,

2006). Additionally, the fire-induced heating of the soil can

reduce aggregate stability, decrease porosity, and increase soil

water repellency (SWR), and these changes can decrease

infiltration and increase soil erodibility (DeBano, 2000;

Ferreira et al., 2008; Keizer et al., 2008; Malvar et al., 2011;

Prats et al., 2012).

The association of wildfire with on-site soil erosion and

downstream flooding and massive sediment deposition has

become increasingly recognized (Kraebel, 1934) and, in

the early part of the last century, led to the first systematic

soil erosion control treatments following wildfires (Munns,

1919). The first post-fire rehabilitation efforts consisted of

building engineering structures (check dams) in stream

channels to trap the sediments and of seeding hillslopes to

increase ground cover (Wohlgemuth et al., 2009). However,

it was proved to be unrealistic to build check dams in the

short periods between the occurrence of the wildfires and

the occurrence of the erosion-producing rains; also, various

studies started to question the effectiveness of seeding to

reduce soil erosion during the 1980s (Gautier, 1983; Taskey

et al., 1989).

During the 1990s and the 2000s, research on post-fire

erosion mitigation concerned seeding (e.g., Pinaya et al.,

2000; Fernández-Abascal et al., 2003; Beyers, 2004;

Robichaud et al., 2006; Groen & Woods, 2008; Peppin

et al., 2010), construction of erosion barriers by using logs

(Wagenbrenner et al., 2006; Robichaud et al., 2008), and

straw mulching (Bautista et al., 1996; Badía & Martí,

2000; Wagenbrenner et al., 2006). In a nutshell, these

studies found seeding to be effective in some cases but not

in others, log erosion barriers to be ineffective unless

rain events are few and small, and mulching to be

highly effective. The effectiveness of mulching was also

well-established for agriculture lands (Harris & Yao,

1923; Meyer et al., 1970; Lyles et al., 1974; Meyer et al.,

1999; Wilson et al., 2004; García-Orenes et al., 2009,

2010; Giménez-Morera et al., 2010; Jordán et al., 2010),

cut slopes, and unpaved roads (Grismer & Hogan, 2005;

Jordán & Zavala, 2008).

Post-fire straw mulching at rates of c.a. 2Mg ha�1 has

been proved to reduce sediment yields by more than 80%
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(Bautista et al., 1996; Badía & Martí, 2000; Wagenbrenner

et al., 2006; Groen & Woods, 2008; Fernández et al.,

2011; Robichaud et al., 2013b). However, straw may be

available in only limited quantities in certain regions,

including Portugal (Prats et al., 2012), and may be

redistributed by strong winds as a result of its low weight

(Robichaud et al., 2000). Straw application can also

introduce invasive weeds and inhibit native species recovery

(Kruse et al., 2004). Despite the increased application costs,

other mulches of higher specific weight have also been

tested. Forest residues, at application rates of 8 Mg ha�1 in

Prats et al. (2012) and 46 Mg ha�1 in Shakesby et al.

(1996), or wood strands mulch, at rates of 4–12 Mg ha �1

in Robichaud et al. (2013a), were found to be as effective

as straw mulch, whereas wood chips mulch was found to

be much less effective (Kim et al., 2008; Fernández

et al., 2011).

Mulching is effective against erosion because it

reduces runoff and erosion rates by two mechanisms.

First, it increases interception storage capacity, which

reduces the amount of rain available for producing

runoff, it reduces runoff velocity, and it increases soil

moisture (Bautista et al., 2009). Second, mulch protects

the soil surface against the kinetic energy of rainfall

drops and decreases the hydrodynamic power of flowing

water (Smets et al., 2008).

A recent variant of mulching is that of hydromulching,

which refers to the application of a water-based mixture

of organic fibers, seeds and a green colorant. It is easily

applied because it can be sprayed onto slopes by a jet hose

(Naveh, 1975). It also tends to bind strongly to the soil

surface by the action of the soil-binding agent, so it is

particularly useful on steep slopes and strongly modified

areas such as quarries, construction sites, and cut and fill

slopes along roads (Emanual, 1976; Benik et al., 2003;

Robichaud et al., 2010). Runoff and soil erosion will be

reduced because the hydromulch increases interception

storage and protects the soil surface. Additionally, the

introduced seeds are intended to increase the vegetative

cover, especially when the mulch starts decompose. In

burnt areas, seeding requires careful selection of species

that are adapted to the target environment, both to guaran-

tee that the seeding produces an adequate cover and to

avoid that the introduced species come to behave as inva-

sive weed (Kruse et al., 2004). An important disadvantage

of hydromulching is its elevated costs, which can range

from $3,700.00 to $10,300.00 per ha for aerial application

(Hubbert et al., 2012). By contrast, the costs for straw

mulching are on the order of $600.00 and $1,200.00 per

ha for application by helicopter and by hand-spreading,

respectively (Napper, 2006). Despite this greater expense,

hydromulching has been used especially in the USA after

some fires when access was difficult, the slopes were too

steep or subject to wind to use straw mulch and when

there were particularly important ‘values at risk’, such as

water reservoirs, cultural or natural heritage sites, or

industrial plants.

The effectiveness of hydromulching in reducing post-fire

runoff and erosion has not yet been fully established.

Although Robichaud et al. (2013b) found no marked

decrease in post-fire runoff, Hubbert et al. (2012), Rough

(2007), and Robichaud et al. (2010, 2013a) did report

substantial reductions in erosion rates (with 65–95%).

However, these reductions were restricted to the first year

after hydromulching, which the authors attributed to the

rapid breakdown of the mulch layer. Wohlgemuth et al.

(2011) also found hydromulching to markedly reduce

overall erosion rates (by 60–80%) but not the sediment

losses produced by high-intensity storms. Robichaud et al.

(2010) suggested that hydromulching would be most effec-

tive on short slopes (10–20 m), where interrill erosion is

the dominant process and the hydromulch mat is less likely

to be detached by rill incision. However, Rough (2007)

found aerial hydromulching to be highly effective on long

hillslopes with elevated rill densities (0·1 rill m�2).

Given the elevated potential of hydromulching for post-

fire rehabilitation, there is a clear need to test its effective-

ness in geographical regions outside the USA. Although

hydromulch can include surfactants, the effectiveness of

hydromulching has been poorly assessed for vegetation

types associated with strong or extreme SWR, such as the

eucalypt and pine plantations that dominate in north-central

Portugal (Ferreira et al., 2008, Keizer et al., 2008; Prats

et al., 2012). Also, the effectiveness of hydromulching after

post-fire salvage logging is poorly known in spite of being

perhaps the most common practice following wildfires in

north-central Portugal. Salvage logging was typically being

used to recover timber values and reduce the risk of insect

infestation (McIver & Starr, 2000), but it can trigger runoff

and soil erosion through soil alteration and forest floor

disturbances (Rab, 1994; Castillo et al., 1997; Edeso et al.,

1999; Fernández et al., 2004, 2007).

The overall aim of the present research was to study the

effectiveness of hydromulching to reduce runoff and

erosion over a three-year period in a recently burnt and

logged pine plantation in north-central Portugal. The

specific objectives were to (i) assess the effectiveness of

hydromulching in reducing runoff volumes and sediment

yields at the plot scale; (ii) analyze the changes in runoff

and soil erosion over time and across plot size (0·25, 0·5,

and 10 m2 plots); and (iii) determine the effect of

hydromulching on key soil properties, surface cover, and

vegetative recovery, and the extent to which these

mulching-induced changes can explain the observed differ-

ences in runoff and erosion between the hydromulched and

untreated plots.

MATERIAL AND METHODS

Study Area and Site

This study was conducted near the village of Colmeal in the

Góis municipality of north-central Portugal (N 40º08′42″, W

7º59′16″; 490 m asl). On 27 August 2008, a wildfire burnt

68 ha of forest lands. A west-facing 25 degree steep hillslope

S. A. PRATS ET AL.
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was selected to study post-fire vegetation recovery (Maia

et al., 2012a, 2012b), and, at a later stage, also for this study.

The hillslope had been planted with maritime pine (Pinus

pinaster Ait.) some 25 years before the wildfire, at a density

of 2,600 saplings per ha. The undergrowth was composed of

a mixture of Mediterranean and Atlantic shrubs and was

dominated by Calluna vulgaris I. and Arbutus unedo L.

(Maia et al., 2012b). The study area has a Mediterranean

climate with a mean annual temperature of 10–12·5°C

(according to Köppen; APA, 2011). The annual precipita-

tion as recorded by the nearest weather station (Cadafaz, N

40º08′02″, W 8º32′40″; 12 kmW�1 from the study area;

25 years of data) was, on average, 1,130mm but varied from

717mm to 1,872mm (SNIRH, 2012). The soils were

shallow, 30- to 35-cm deep Humic Cambisols (WRB,

2007), overlying schist, as was observed from four soil pits

dug during November 2008 (Table I). A soil sample was

collected at 0–5 cm depth in each pit, and later analyzed,

using standard laboratory methods, for bulk density (Porta

et al., 2003), porosity, and grain-size distribution (Guitian

& Carballas, 1976). Percent organic carbon was determined

by a carbon analyzer (Flash EA 1112 series by Thermo

Finnigan, USA) and multiplied by the van Bemmelen factor

(1·724) in order to obtain the organic matter content on the

soil (Jackson, 1958).

Experimental Design, Field Data Collection, and

Laboratory Analyses

At the location selected for this experiment, the 2008

wildfire had completely consumed the pine crowns, so

there was basically no needle cast after the fire (Table I).

On 11 December 2008, 106 days after the fire, more than

half of the soil surface corresponded to black ashes, a

third to stones, and less than 10% to bare soil. The fire

severity was classified as moderate according to various

severity indices described in Maia et al. (2012b) at

locations some 5–10m distance from the present experi-

ment. For example, the maximum temperature reached

(Guerrero et al., 2007) by the soil at 0–3 cm depth, esti-

mated with near-infrared spectroscopy, was, on average,

78°C; the twig diameter index ( Maia et al., 2012a),

which ranged between 0 (unburnt) and 1 (very intense

wildfire) was, on average, 0·4 (Table I).

Because the National Forestry Authority had decided to

log the stand as soon as possible because of the risk of

nematode infestation, the experimental set up of this study

involved four phases. The first phase comprised the installa-

tion of a tipping-bucket rain gage (Pronamic professional

rain gauge with an event logger) in combination with a

storage gage for validation purposes. This was carried out

on 15 September 2008, prior to any rainfall following

the wildfire. After that, the rainfall was measured weekly

from the storage gage, and the maximum weekly or

monthly 30-min rainfall intensity (‘I30’, in mm h�1)

was calculated for each period from the tipping-bucket

rain gage data series.

On 5 November 2008, the pretreatment period started

with the installation of four plots bounded with metal sheets.

Two were micro-plots of approximately 0·5 × 0·5m,

whereas the other two were small plots of approximately

0·5m wide and 1·0m long. The outlets of each plot were

connected, using garden hose, to 30 L tanks, where the run-

off was collected. The runoff volume in each tank was mea-

sured at 1- to 2-weekly intervals, depending on rainfall, from

5 November 2008 to 12 October 2010, except during March

2008 when the runoff measurements had to be interrupted

because of the logging activities. This 23-month period

was divided in a pretreatment and posttreatment period, as

further specified in Table II. Whenever runoff exceeded

250ml, a sample was collected for determination of

sediment and organic matter contents by using standard

laboratory methods (filtration at 14μm, drying for 24 h at

105°C and loss-on-ignition for 4 h at 550°C; APHA, 1998).

The third phase began on 30 March 2009, after the log-

ging had been completed, when two more micro-plots

and two more small plots were installed at close distances

from the previous micro-plots (<5m) along with six sedi-

ment fences (Robichaud & Brown, 2002) that had been

set up at some 10–20m distance in the upslope direction.

Following the design by Fernández et al. (2011), these

sediment fence plots (‘SF plots’) of roughly 2-m wide

and 5-m long were bounded by means of a geotextile fabric

and delimited by metal sheets to avoid run-on into the

plots. The geotextile fabric filtered the runoff, and only

the sediments accumulated at the bottom of the SF plots

were collected at monthly intervals from 31 March 2009

to 12 October 2010. Afterwards, the SF plots were emptied

Table I. Indicators of fire severity, ground cover, and mean soil
properties from 0- to 5-cm depth (n= 4)

Site characteristics Average ± SD

Overall fire severity Moderate
Tree canopy consumption Total

TDI 0·4 ± 0·1
MTR (°C) 78 ± 30

Ground cover in December 2008 (%)
Litter 2 ± 1·3
Black ashes 56·6 ± 9·7
Bare soil 7·2 ± 3·7
Stones (>2mm) 34·2 ± 8·3

Soil properties
Soil depth (cm) 35·3 ± 4·3
Slope (º) 24·5 ± 3·4
Bulk density (g cm

�3
) 0·8 ± 0·1

Porosity (cm
3
cm

�3
) 0·5 ± 0·1

Organic matter (%) 16·4 ± 1·6

Soil texture
Clay (%) 8·4 ± 1·9
Silt (%) 35·8 ± 9·0
Sand (%) 55·8 ± 12·8

Stoniness (>2mm) (%) 36 ± 15·0
USDA soil texture class Sandy loam

TDI, twig diameter index; MTR, maximum temperature reached, following
Maia et al. (2012a, 2012b); SD, standard deviation; USDA, United States
Department of Agriculture.

POST-FIRE HYDROMULCHING REDUCED RUNOFF AND SEDIMENT LOSSES
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on a single occasion, on 28 November 2011, comprising

the fourth phase of this study. The collected sediments

were later analyzed for their moisture and organic matter

contents by using standard laboratory methods (drying for

24 h at 105°C and loss-on-ignition for 4 h at 550°C;

APHA, 1998).

On 31 March 2009, the hydromulch was applied to two of

the four micro-plots, two of the four small plots, and three of

the six SF plots, all of which were selected randomly. In

addition, it was applied to one of two adjacent soil strips

of 5-m wide and 10-m long, which had been delineated for

monitoring of selected soil properties by using destructive

techniques. The hydromulch was provided and applied by

Serraic, Lda. by using a jet hose operated by a person on

foot. It consisted of an aqueous mixture of wood fibers,

seeds, a surfactant, nutrients, a natural bio-stimulant and a

green colorant applied at a nominal ratio of 3.5 Mg ha-1.

The formulation is confidential, but the company guaranteed

that the components are nontoxic for humans or the environ-

ment. The seed composition was also confidential, but

detailed descriptions of the floristic composition in the SF

plots suggested that it included grass (e.g., Lolium perenne L.)

as well as shrub species [Cytisus striatus (Hill), Ulex

minor Roth.].

Ground cover was measured at seven occasions be-

tween 31 March 2009 and 12 October 2010 and finally

on 11 November 2011. The ground cover was recorded

at each intersection point of a 5 × 5-cm grid in the case

of the micro-plots and small plots, and of a 10 × 10-cm

grid in the case of the SF plots, that is, at 100, 200, and

400 points, respectively. Each recording involved classify-

ing the ground cover according to seven categories: stones

bigger than 2mm (‘Stone’), bare soil (‘Bare’), ashes

(‘Ash’), litter (‘Litter’), hydromulch (‘Hm’), native

vegetation (‘Natveg’), and vegetation introduced by

hydromulch (‘Introveg’). The data also were grouped into

two lumped categories: total vegetation (‘Tveg’) and total

protective ground cover (‘Hlv’), with the latter being the

sum of hydromulch, litter, and vegetation.

The soil strips were sampled at monthly intervals from

22 April 2009 to 11 August 2010 for a total of 17 occa-

sions. Sampling involved destructive measurements of soil

shear strength, using a torvane (vane tester, Eijkelkamp),

and of SWR, using the molarity ethanol drop (Doerr,

1998). At the bottom of each 50m2-strip, 15 equally

spaced measurements were made along a horizontal tran-

sect, and this transect was then shifted approximately

0·5m upslope for the next sampling occasion. Before mea-

suring shear strength or repellency, any hydromulch,

stones, litter, or ashes were removed. The molarity ethanol

drop test was slightly modified in accordance with our

prior studies (e.g., Keizer et al., 2005a, 2005b, 2008). In

this study, three drops of pure water were applied to the

soil surface, and, if two of the three drops did not infiltrate

within 5 s, three drops with successively higher ethanol

concentrations were applied until two of the three drops

infiltrated within 5 s. The nine ethanol concentrations used

were 0, 1, 3, 5, 8·5, 13, 18, 24, and 36%. In data analysis,

the overall median of the relative frequency of any ethanol

concentrations higher than 0%, calculated over the total

measurements in each strip, was called SWR frequency.

Volumetric soil moisture content was monitored at a

depth of 0–5 cm at eight locations: four within the untreated

SF plots and four within the hydromulched SF plots. This

Table II. Overall figures of rainfall, overland flow, soil losses, and effectiveness of hydromulching during the first 3 years after a wildfire in a
maritime pine plantation

Year 1 Year 2 Year 3
Period Pre Post Post Post
Start date 5 November 2008 31 March 2009 21 September 2009 12 October 2010
End date 11 February 2009 21 September 2009 12 October 2010 28 November 2011
Rainfall (mm) 609 282 1464 1527
Overland flow
Number of plots (C/Hm) 4/0 4/4 4/4 —

Runoff (mm) C 363 140 691 —

Hm — 61 152 —

Runoff coefficient (%) C 60 50 47 —

Hm — 22 10 —

Erosion
Number of plots (C/Hm) 4/0 7/7 7/7 3/3
Soil loss (gm

�2
) C 86 217 361 247

Hm — 36 63 109
Specific soil loss
(gm

�2
mm rain

�1
)

C 0·14 0·77 0·25 0·16
Hm — 0·13 0·04 0·07

Organic matter content (%) C 48 50 52 —

Hm — 57 57 —

Effectiveness of
hydromulching (% change)

Runoff — �56 �78 —

Soil losses — �83 �83 �56
OM % — 15 10 —

C, control; Hm, hydromulching; OM, organic matter.
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was carried out using eight EC-5 sensors linked to two

Em5b data loggers (Decagon Devices, Inc.) and recording

data at 10min intervals. For each read-out period, initial soil

moisture content (‘Sm’) was calculated as the soil moisture

at the start of the largest rainfall event during that 1- to 2-

weekly period by using the data of the automatic rainfall

gage to identify this event.

Data Analysis

For the statistical analyses described in the succeeding text,

runoff volumes and (specific) soil losses were fourth-root

transformed so that the residuals did not fail the assumption

of normality according to the Kolmogorov–Smirnov test at

α≤ 0·05, whereas runoff coefficients were square-root

transformed for the same reason. Furthermore, 16 read-outs

with low rainfall amounts (less than 6mm) had to be

removed from the data set to prevent non-normality of the

residuals.

The effects of hydromulching, plot size, and time-since-

hydromulching on the dependent variables (runoff volume,

runoff coefficient, soil losses, specific soil losses, and

organic matter content of the eroded sediments) were

assessed by means of a three-way repeated measures analy-

sis of variance (ANOVA) (Ott & Longnecker, 2001). The

variance–covariance structure of each dependent variable

was selected according to the lowest values of the Akaike

information criterion and the restricted maximum likelihood

(REML) fit (Littell et al., 2006). The heterogeneous first-

order auto-regressive variance–covariance structure was

selected for all dependent variables except runoff coefficient,

for which a spatial power structure was selected. In addition,

specific contrasts between the treated and control plots, for

each individual read-out as well as between the three plot

sizes, were tested by means of the least squares means and

adjusted by the Tukey–Kramer method (Kramer, 1956).

Repeated measures ANOVA was also used to test the treat-

ment and time effects on the seven ground cover categories

and the initial soil moisture content. In the case of soil

resistance and SWR frequency, however, the treatment effect

could only be tested using a nonparametric test, that is, the

Mann–Whitney U-test (α≤ 0·05).

Stepwise multiple linear regressions using the REG

procedure in SAS (Littell et al., 1996) were used to determine

how well the weekly runoff volumes (n = 35) and the

monthly soil losses (n= 17) could be explained by a set of

independent variables. These variables were selected

sequentially in a forward selection procedure, in order of

decreasing significance by using a minimum p value of

0·05. The 16 independent variables were plot size (‘Plotsz’),

rainfall amount (‘Rain’), 30-min maximum rainfall intensity

(‘I30’), days since the last rainy day (‘Drain’), the seven

individual (‘Stone’, ‘Bare’, ‘Ash‘, ‘Litter‘, ‘Hm’, ‘Natveg’,

and ‘Introveg’), the two lumped categories (‘Tveg’ and

‘Hlv’), soil shear strength (‘Storv’), SWR frequency, and

initial soil moisture content (‘Sm’). Especially because the

various cover categories can be expected to reveal strong

correlations, collinearly tests were included in the stepwise

procedure, removing independent variables with a condition

index higher than 30 (Belsley et al. 1980) from the regres-

sion models.

RESULTS

Rainfall Amount and Intensity

Rainfall was considerably lower during the first year after

the wildfire (1,014mm) than during the two subsequent

years (1,464 and 1,527mm, respectively; Table II). Even

though this study did not commence until 8 December

2008 and had to be interrupted, because of the salvage

logging, during March 2009, the present analysis covered

almost 90% of the rainfall during the first post-fire year

(891mm; Figure 1). From these 891mm, 609mm fell before

the logging and the hydromulch application (designated here

as ‘pretreatment period’), and 282 were measured until the

end of post-fire year 1. The highest rainfall amounts were

measured during winter, in January 2009 and 2010 with

244 and 262mm, respectively. The highest rainfall intensi-

ties, however, occurred during different times of the first
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Figure 1. Monthly rainfall (mm) and maximum monthly 30-min rainfall intensity over the study period. Black columns represent total rainfall where no rainfall
intensity data were collected. Arrows indicate the date of the fire, logging, and the hydromulch application (Hm), respectively.
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post-fire year, during May 2009 and September 2009 with

maximum I30 of 29mmh�1 and 21mmh�1. During the

second post-fire year, I30s of 15mmh�1 occurred at least

once a month from October 2009 to April 2010.

Ground Cover

At the start of this study, in December 2008, half of the soil

surface was covered by ashes, and less than 10% was bare

(Figure 2; Table I). By 26 March 2009, after the logging

had been completed, ash cover had decreased to 28%, the

bare soil cover had increased to 17%, and the stones had

become the predominant cover category with, on average,

42%. The recovery of the vegetation was very slow on the

control plots, as vegetative cover continued to be near zero

1 year after the fire (August 2009), but reached 30% after

the second year (October 2010) and a mere 36% at the

beginning of the fourth post-fire year (November 2011).

Immediately after its application, on 31 March 2009, the

hydromulch provided a cover of 80% on average, but this

cover was significantly higher at the two micro-plots and

two small plots (90% ± 4%) than at the three SF plots

(64%± 2) (ANOVA, p< 0·05). This difference was no

longer significant after five months (August 2009), even

though the hydromulch cover continued higher at the four

runoff plots (64%± 12) than at the three SF plots (47%± 7;

ANOVA, p = 0·06). There was a marked decrease (5·3%

per month) in the average of the hydromulch cover during

the first 5months after its application. After 1 year from

the application (1 April 2010), the hydromulch cover

decreased to 27% on average (an annual decay rate of

4·6% per month). This decrease in hydromulch cover was,

by and large, compensated by an increase in protective soil

cover due to the native and introduced vegetation (including

the litter it produced). The cover of the introduced vegeta-

tion was at its maximum (22%) in June 2010 and became

practically zero by November 2011. The native vegetation

recovered slowly on the hydromulched plots as well but by

November 2011 did attain a clearly higher cover than at

the control plots (52% vs. 36%). The total protective ground

cover (lumped into the ‘hlv’ category) was around 75%

through all the post-treatment period. When the stone cover

is included, a protective layer consistently covered 90% of

the surface.

Soil Properties

The monthly values of soil shear strength, frequency of

SWR, as well as the soil moisture content over the post-

treatment period are depicted in Figure 3. The three

variables oscillated across the monitoring period according

to the rainfall amounts. Soil shear strength and soil moisture

varied in the wake of the rainfall variations. By contrast,

SWR showed the lowest values during the rainiest months.

Overall, soil resistance to detachment was lower at the

untreated than treated strip (2·4 ± 0·7 kg cm�2 vs.

2·8 ± 0·5 kg cm�2; U-test: Z=�5·04; p< 0·01). Shear

strength was clearly lowest at the control strip during 12

out of 17months as opposed to 2months at the

hydromulched strip, when shear strength was also greater

than during the remaining months.

The hydromulched strip, overall, was less repellent than

the control (15% vs. 35% SWR frequency; U-test:

Z=�6·07; p< 0·01) and consequently had higher soil mois-

ture (18·1% volume ± 9·7 vs. 14·3%± 6·7; ANOVA: F= 7;

p< 0·05). In certain periods, however, the opposite was true,

as is well-illustrated by Figure 3. In the case of soil moisture

content, these periods were confined to the dry season of

summer 2009; in the case of SWR, it also happened during

summer 2010.

Overall Runoff and Soil Losses

Roughly half of the rainfall was converted into runoff on

the control plots (Table II). This corresponded to 360mm

of runoff [runoff coefficient (rc) = 60%] during the pre-

treatment period, 140mm during the post-treatment

0

10

20

30

40

50

60

70

80

90

100

1
1
-D

e
c
-0

8

2
6
-M

a
r-

0
9

3
1
-M

a
r-

0
9

1
3
-A

u
g
-0

9

1
2
-N

o
v
-0

9

0
1
-A

p
r-

1
0

1
7
-J

u
n
-1

0

0
1
-O

c
t-

1
0

2
8
-N

o
v
-1

1

G
ro

u
n
d
 c

o
v
e
r 

(%
)

H
m

1
1
-D

e
c
-0

8

2
6
-M

a
r-

0
9

3
1
-M

a
r-

0
9

1
3
-A

u
g
-0

9

1
2
-N

o
v
-0

9

0
1
-A

p
r-

1
0

1
7
-J

u
n
-1

0

0
1
-O

c
t-

1
0

2
8
-N

o
v
-1

1

Bare soil

Ash

Hm.

Hm veg.

Native veg.

Litter

Stones

Figure 2. Mean ground cover (%) of the seven categories analyzed in the seven control plots (left) and seven hydromulched plots (right). The arrow indicates
the date of the hydromulch application (Hm).

S. A. PRATS ET AL.

Copyright © 2013 John Wiley & Sons, Ltd. LAND DEGRADATION & DEVELOPMENT, (2013)



period of the first post-fire year (rc = 50%), and 691mm

during the second post-fire year (rc = 47%). These

differences coincided with the variations in rainfall amount.

However, the same was not true in the case of soil losses.

The control plots produced, on average, 86 gm�2 during the

pre-treatment period, 217 gm�2 during the post-treatment

period of the first post-fire year, and 361 gm�2 during the

second post-fire year. There was a fivefold increase in the spe-

cific soil losses between the pre-treatment and post-treatment

periods (from 0·14 to 0·77 gm�2mm rain�1), and after that,

the specific soil losses decreased progressively until reaching

values similar to those prior to the logging during the third

year (0·16 gm�2mm rain�1; Table II).

Hydromulching was highly effective in reducing overland

flow, with, on average, 56% during the first post-fire year

and even 78% during the subsequent year (Table II).

Hydromulching effectiveness in decreasing soil losses

exceeded the effectiveness at reducing overland flow to a

marked extent, amounting to 83% during both years. During

the third post-fire year, however, the effectiveness in

mitigating erosion reduced to 56%. Hydromulching did,

however, increase somewhat the relative amounts of organic

matter in the eroded sediments to 57% as opposed to 50%

and 52%.

The ANOVA analysis of Table III showed that the treat-

ment effect strongly influenced all the variables, especially
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Figure 3. Monthly average values of soil shear strength (top), frequency of soil water repellency (middle) and initial soil moisture content (i.e., prior to rainfall
events) and rainfall (bottom) for the control and hydromulched strips.

Table III. Summary of the three-way repeated measures analysis of variance of the 1- to 2-weekly runoff amounts (fourth-root transformed),
runoff coefficients (square-root transformed), as well as of the monthly soil losses, specific soil losses (fourth-root transformed) and organic
matter contents of the eroded sediments during the posttreatment period (31 March 2009–12 October 2010)

Variable
Df num,

den

Runoff amount
Runoff
coeffient

Df num,
den

Soil losses
Specific soil

losses
Organic matter

content
Unit mm % gm

�2
gm

�2
mm

�1
rain %

n 35 35 17 17 17

Treatment 1,4 80·2 176·3 1,8 71·7 63·7 9·3

Size 1,4 1·0 0·0 2,8 3·3 2·6 2·7
Size*treatment 1,4 3·2 3·9 2,8 1·7 1·4 0·3
Time 34,136 116·6 17·3 16,124 27·8 21·2 3·0

Treatment*time 34,136 8·4 3·2 16,124 5·0 4·5 1·9

Size*time 34,136 2·1 0·7 30,124 3·8 3·6 1·7

Size*treatment*time 34,136 2·1 1·1 30,124 3·1 3·0 1·5

Df, degrees of freedom; num, numerator; den, denominator.
The F values in bold, or both in bold, and underlined were statistically significant at α= 0·05 and 0·01, respectively.
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in the case of runoff coefficient (F value of 176) and less

important in the case of the organic matter content (F= 9).

The strong treatment effect, especially in the case of runoff

coefficient as highlighted by the big F value (176),

contrasted with the lack of effect of the plot size.

In Figure 4 it can be observed that the differences in

runoff between plot sizes were very low (in the order of

12–20%, for micro-plots and small plots, respectively).

The runoff on the control plots decreased with increasing

plot size mainly because of the low runoff amount of one

of the small plots (684mm), whereas the same was true

but in the opposite sense in the case of one small

hydromulched plot (309mm). These opposite tendencies

resulted in a higher hydrological effectiveness of

hydromulching for the micro-plots compared with the small

plots (on average, 80% vs. 68%). Plot size also did not play

a clear-cut role in soil losses, but the variance increased,

especially in the case of the control SF plots (up to 70%).

Consequently, the overall reduction in soil losses on the

micro-plots and small plots was somewhat higher compared

with the SF plots (90%, 89%, and 76%, respectively).

Temporal Patterns in Overland Flow and Soil Losses

The average monthly runoff amounts produced by the

untreated plots revealed a marked seasonal pattern in which

peak runoff values appeared to antecede the maximum

monthly rainfall values during the winter season (Figure 5a).

As a result, runoff coefficients were highest during the

autumn months, varying between about 80% to 90% in

December 2008, November 2009, and October 2010. High

runoff coefficients were also observed during late spring

and early summer, when rainfall amounts were compara-

tively small (<53mm), attaining 62% in July 2009 and

81% in June 2010. The average monthly soil losses at the

untreated plots revealed a less obvious temporal pattern

(Figure 5b). The four peak losses of 50 gm�2month�1 or

more occurred during autumn (December 2008, September

and November 2009) and spring (May 2009). Apparently,

the latter peak was associated with the elevated maximum

rainfall intensity (I30 = 29mmh�1), whereas the December

2008 and November 2009 ones were rather related to runoff

peaks. The average specific soil losses suggested a contrast

between the two months with the highest maximum rainfall

intensities—that is, May and September 2009—and the

remaining months. The specific losses during these two

months amounted to 0·8 and 1·2 gm�2mm rain�1, respec-

tively, as opposed to the baseline monthly average of

0·25 gm�2mm rain�1 for the rest of the study period.

The hydromulched plots produced, on average, consis-

tently lower amounts of monthly runoff as well as monthly

soil losses than the untreated plots (Figure 5a and 5b). In

the case of runoff, these monthly differences were statistically

significant from July 2009 onwards, with the exception of the

summer 2009 and 2010 months with little to no rainfall. In the

case of soil losses, however, the monthly differences were

also statistically significant for the first 2months following

hydromulching and, thus, for basically all of the 19months

with noticeable rainfall. Even so, the three-way ANOVA

results indicated that hydromulching did not have an unequiv-

ocal statistically significant effect on monthly soil losses, as

the triple interaction term of treatment x time-since-mulching

x plot size was statistically significant (Table III). The same

applied to the corresponding specific soil losses as well as

to the 1- to 2-weekly runoff volumes and mutatis mutandis

(i.e., because of a significant treatment x time-since-mulching

interaction) to the runoff coefficients and the organic matter

content of the eroded sediments.

Hydromulching failed to produce significant reductions in

overland flow generation (average 1- to 2-weekly values)

across the whole range of maximum rainfall intensities

(Figure 6). There was, however, a tendency for the hydrolog-

ical effectiveness of hydromulching to decrease with maxi-

mum rainfall intensity, reflecting first and foremost the

comparatively low effectiveness (<50%) for the two more

intense measurement periods that happened in May and

September 2009. Also, the effectiveness of hydromulching

to reduce average monthly soil losses was comparatively

low for these two highest maximum rainfall intensities, albeit

it still amounted to some 80% and corresponded to a statisti-

cally significant difference between the hydromulched and

untreated plots. In overall terms, however, the reduction in soil

losses lacked an obvious relationship with rainfall intensity.
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Key Factors Explaining Runoff and Soil Losses

Stepwise multiple linear regression with all eight

hydromulched and untreated runoff plots together (‘global

model’) revealed that the total protective ground cover

(‘hlv’) stood out as the principal factor in overland flow

generation, explaining more than twice as much of the

variation in fourth-root transformed runoff amount than the

second factor, I30 (31% vs. 13%; Table IV). The hydrolog-

ical response of the untreated plots alone, however, could

clearly be explained best by rainfall amount (41% of

variance), whereas that of the hydromulched plots alone

was mainly controlled by maximum rainfall intensity, albeit

to a lesser degree (19% of variance). Initial soil moisture

content was the second most important (and significant)

explanatory variable of the runoff produced by the untreated

but not the hydromulched plots. The negative sign of its

coefficient suggested that the role of initial soil moisture

was indirect, with SWR increasingly enhancing overland

flow generation as soils dry out. Figure 7 illustrated well that

the hydrological response of the untreated plots was stronger

under drier than wetter soil conditions. A similar tendency

was suggested for the hydromulched plots but just for rain-

fall amounts below 60mm, as higher rainfall amounts were

associated with wetter soils at the hydromulched than

untreated strips.

The predominant role of total protective ground cover

(‘hlv’) was even more pronounced in the case of the global

model for soil losses than that for runoff volumes,

explaining over half of the variation (55%; Table IV). The

most conspicuous contrast between the erosion and runoff
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Figure 5. Average monthly values of rainfall (mm) and overland flow (mm) (5a) and of 30-min maximum rainfall intensity (I30; mmh
�1

) and soil losses
(gm

�2
) (5b) for the untreated and hydromulched plots from the fourth through the twenty-sixth month after the wildfire. Asterisks denote significant least

squares mean differences between hydromulched and control plots (p< 0·05).
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Table IV. Multiple regression models for 1- to 2-weekly runoff amounts (n= 35) and monthly soil losses (n= 17) for all plots together (‘Global’) and for the untreated (‘Control’) and
hydromulched plots separately

Selected variable

Global models Control models Hydromulching models

Parameter
estimate

Variable
name

Partial
r
2

Parameter
estimate

Variable
name

Partial
r
2

Parameter
estimate

Variable
name

Partial
r
2

Runoff amount (mm; 4th root
transformed)

Intercept 1·86 1·97 0·40
1
st

variable �0·01 Hlv 0·31 0·01 Rain 0·41 0·05 I30 0·19
2
nd

variable 0·02 I30 0·13 �0·03 Sm 0·11 0·01 Hm 0·05
3
rd

variable �0·02 Sm 0·06 �0·01 Tveg 0·03
4
th

variable 0·01 Rain 0·03
Cumulative r

2
0·53 0·54 0·24

Soil losses (gm
�2

;
4th root transformed)

Intercept 1·65 1·58 0·76
1
st

variable �0·01 Hlv 0·55 0·03 Bare 0·26 0·08 Bare 0·35
2
nd

variable 0·03 Bare 0·07 0·03 I30 0·11 0·02 I30 0·08
3
rd

variable 0·03 I30 0·05 �0·01 Hlv 0·06
Cumulative r

2
0·68 0·43 0·43

The independent variables selected (statistically significant at α= 0·05) were: Rain, rainfall amount; I30, 30-min rainfall intensity, total protective ground cover; Hlv, the sum of hydromulch, litter, and vegetation cover;
Hm, hydromulch cover; Tveg, total vegetation cover; Bare, bare soil cover; Sm, initial soil moisture.
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results, however, was evidenced by the treatment-specific

models. Bare soil cover clearly outranked rainfall amount/

intensity as the prime factor explaining soil losses, not only

at the untreated plots (26% vs. 11% of variance) but also at

the hydromulched plots (35% vs. 8% of variance).

DISCUSSION

Post-Fire Hydrological and Erosion Response in Pine Sites

of Central Portugal

Post-fire runoff coefficients as high as observed here were

also reported by previous studies in north-central Portugal,

such as Ferreira et al. (2008) and Malvar et al. (2011) by

using rainfall simulation experiments. Both prior studies

related their strong hydrological response to extreme SWR.

In the present study, however, the role of SWR would be

limited to the first year after the wildfire, when repellency

was moderate, and mostly hydrophilic after November

2009. This reduced importance of SWR was also suggested

by the multivariate linear regression model that was fitted to

the runoff data from the control plots. The global regression

model attested that it was rather ground cover that played a

key role in overland flow generation. Pierson et al. (2009)

likewise argued that ground cover exerted a greater

influence on post-fire hydrological response than SWR.

Various studies in Portugal (Shakesby et al., 1996; Ferreira

et al., 2008; Prats et al., 2012) have furthermore attributed

low post-fire runoff coefficients in pine stands to needle cast

from scorched tree crowns (Shakesby et al., 1996; Cerdà &

Doerr, 2008; Ferreira et al., 2008; Prats et al., 2012).

The soil losses from the control plots during the first post-

fire year (302 gm�2) were higher than the range of

80–220 gm �2 year�1 reported by other studies in burnt pine

plantations (Shakesby et al., 1996; Fernández et al., 2007;

Ferreira et al., 2008; Prats et al., 2012). This could be due

to the salvage logging activities that took place during late

winter/early spring 2009, as was also suggested by the

markedly higher specific soil losses immediately after log-

ging than during the pretreatment period. Logging-enhanced

erosion rates were also reported by Inbar et al. (1997) and

suggested by Malvar et al. (2013) but not by Fernández

et al. (2007). The latter authors attributed their findings to

the low severity of the fire, the low rainfall erosivity, and

the reduced perturbations of the soil by the machinery

employed. To minimize the erosion effects of post-fire

logging, it is widely recommended to delay the logging

activities until litter fall from scorched tree canopies has

provided a ‘natural’ mulching (Rab, 1994; Castillo et al.,

1997; Edeso et al., 1999; Fernández et al., 2004, 2007;

Cerdà & Doerr, 2008).

The soil losses during the first post-fire year fitted in well

with the low values that were reported by Shakesby (2011)

for moderate severity on field plots in the Mediterranean

region (321 gm�2 year�1), which was attributed to an

intensive land-use history. By contrast, in regions of lower

forest interventions such as North America, post-fire erosion

rates can be one order of magnitude higher, amounting to

2,500 gm�2 year�1 (Spigel & Robichaud, 2007). The

discrepancy between these two geographical regions seems

to be much smaller for organic matter losses, with values

of 200 and 150 gm�2 year�1. High losses of organic matter

are of particular relevance as they can easily compromise

soil fertility and, thus, on-site land-use sustainability and

downstream surface water quality through pollution with

toxic pyrogenic organic compounds (Vila-Escalé et al.,

2007; Campos et al., 2012).

A protective ground cover was also the most important

factor explaining the monthly soil losses observed in this

study and the differences therein between the treated and

untreated plots. This agreed well with the bulk of post-fire

soil erosion studies (e.g., Benavides-Solorio & MacDonald,

2001; Pannkuk & Roubichaud, 2003; Benavides-Solorio &

MacDonald, 2005; Fernández et al., 2008; Larsen et al.,

2009). At the same time, bare soil cover played a key role

in the differences in soil losses among the hydromulched

plots, as well as among the control plots. Pietraszek (2006)

equally attested to the relevance of bare soil cover for soil

losses from untreated areas. It could explain 50% of the

variability in soil erosion produced by ten sites that had

burnt from less than one up to 10 years earlier.
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Effectiveness of Hydromulching in Reducing Runoff and

Soil Losses

The hydromulch was a complex mixture which contained

water, wood fibers, seeds, surfactants, seed-growing bio-

stimulants, nutrients and a green colorant. It is intended that

each component affected some of the pieces of the post-fire

runoff erosion process.

Runoff was highly reduced at the treated plots, between

56% and 73%, which is higher than in other post-fire

mulching experiments, both with straw (Bautista et al.,

1996; Groen & Woods, 2008) and forest residues (Shakesby

et al., 1996; Prats et al., 2012). Probably, this high effective-

ness could be related to the effect of the wood fibers,

because it increases the surface water storage capacity, but

also due to the effect of the surfactants, a wetting agent that

reduces SWR and increases soil infiltration (Leighton-Boyce

et al., 2007; Madsen et al., 2012).

Soil losses were highly reduced in the hydromulch plots

during the 3 years after the wildfire. Ground cover was

pointed out as the main factor controlling soil losses, but the

hydromulch mat showed a rapid decay during the first year

after the application. This was identified as one of the

disadvantages of hydromulchings (MacDonald & Robichaud,

2007). In the present study, the decayment rates of the

hydromulch ranged between 4% and 6% per month, very

similar to other research with hydromulch (Hubbert et al.,

2012; Robichaud et al., 2013a). In contrast to those sites,

our hydromulch was highly conducive to germination and

growth of plants from seeds. Thus, the introduced seeds

compensated for the loss of hydromulch with progressively

more plant and litter cover, which resulted in more than

70% protective ground cover since the hydromulch applica-

tion until the third post-fire year (Figure 2).

Besides the composition, the application technique can

influence the hydromulch effectiveness. In this study, the

area was already logged and the plots were small, which a

priori will facilitate the spread of the hydromulch from a

jet hose operated on foot. However, the hydromulch cover

was significantly lower on the SF plots despite being suffi-

cient to reduce soil erosion. Rough (2007) and Robichaud

et al. (2010) reported that the hydromulch sprayed from

vehicles was intercepted by the standing trees, and they

recommended special caution when applying the mixture

in areas with a high density of dead trees and from long dis-

tances. Aerial hydromulch can be a better and less expensive

option, but Hubbert et al. (2012) checked that the intended

application rates of 50% and 100% hydromulch cover

resulted in only 20–26% and 56%.

Unsuccessful hydromulch experiences were first attrib-

uted to extreme rainfall events (Wohlgemuth et al., 2011)

or to the long length of the plots (Napper, 2006). Robichaud

et al. (2010) pointed out that hydromulch effectiveness

depended on slope length, only being effective at slopes

shorter than 10–20m, when interrill erosion was the

dominant process instead of rill erosion. The former authors

hypothesized that in their long slope sections, the smooth

and dense hydromulch mat had little resistance against the

sheer force of concentrated flow. But on the other hand,

the research of Rough (2007) showed that aerial

hydromulching was highly effective and was carried out at

the hillslope scale (2,500m�2, on average), where rills were

frequent (0·1 rills m�2) and after extreme rainfall events

(I30 = 40mmh�1). Many other hydromulch formulations

are available and are being evaluated for their capacity to

reduce soil losses. As concluded by Robichaud et al.

(2013a), the differences in hydromulch components,

application techniques, and application rates can greatly

impact hydromulch effectiveness. However, Napper (2006)

referred that one of the major problems is the difficulty in

knowing the specific chemical composition that was applied

in a given situation because most of the hydromulch formu-

lations are kept confidential.

Hydromulching Effects in Soil Properties

Soil properties in agriculture had been typically improved

by mulching (Smets et al., 2008) by materials such as

manure, stones, straw, forest residue, and wood shreds

(Harris & Yao, 1923; Mulumba & Lal, 2008; Foltz &

Copeland, 2009). Regarding post-fire soil shear strength,

the results are not conclusive. Bautista et al. (1996) and

Fernández et al. (2011) found no differences between

control and straw mulch plots. Fernández et al. (2007)

found lower figures in logged compared to unlogged

plots. They related these lower values to the absence of

roots, once that the logged plots showed a much lower

vegetation cover. Agreeing with them, the statistically

higher soil shear strength measured on the hydromulch

strip could be related to a higher vegetation cover

compared to the control strip. Regarding soil water prop-

erties, our results are consistent with other mulch experi-

ments (Smets et al., 2008; Bautista et al., 2009; Prats

et al., 2012) in which higher soil moistures were found

on the mulched areas. The hydromulching layer acted

as a water adsorbent dense mat, which effectively

increased the soil water retention capacity. It prevented

sunlight from reaching the soil surface and thereby

decreased soil temperatures. Still, the surfactants included

on the hydromulch could have a role in increasing soil

infiltration and improve the seed germination (Madsen

et al., 2012). Besides the positive impacts over plant

recovery and soil microbial activity (Bautista et al.,

2009), a major insight suggested by Prats et al. (2012)

supported the fact that mulching affected the SWR

regime of the burnt forest, promoting the hydrophilic soil

conditions. However, this was not true during the dry

seasons. Probably, the higher plant cover of the

hydromulch (13% vs. 3% during the first post-fire

summer) could increase the transpiration and thus lower-

ing soil moisture and increasing SWR. Brainard et al.

(2012) reported a higher water demand of plants during

water stress periods in agriculture, and Soto & Diaz-

Fierros (1997) found lower soil moisture on the vegetated

areas as compared with bare and burnt plots during the

first post-fire summer.
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CONCLUSIONS

The main conclusions of this study in the effectiveness of

hydromulching to reduce runoff and erosion in a recently

burnt and logged pine plantation were as follows: (i)

hydromulching, providing coverage of 80%, produced

marked changes in SWR and soil moisture, especially in

the soil cover. Despite a decrease of up to 30% after 1 year

from the application, the treatment induced a highly protec-

tive ground cover because of an increase of both vegetative

and litter cover; (ii) hydromulching was highly effective

during the first 19months after its application, reducing total

runoff volumes by 70% and total soil losses by 83%, and

continued effectively during the third year following the

wildfire, reducing erosion by 56%; ( iii) hydromulching

was less effective in reducing runoff (around 30%) but not

in reducing soil losses (80%) for the more intense storms

(I30 higher to 20mmh�1); (iv) the protective soil cover

provided by hydromulch, in combination with litter and

vegetation, explained runoff and soil losses better than any

other variable, however, rainfall intensity and soil moisture

explained a considerable portion of the variation in runoff

generation; (v) the application of hydromulch was lower

than expected on the larger plots (only a 64% hydromulch

cover as compared with 90% in the smaller plots), despite

both applications having significantly reduced soil losses.

Further research will be needed to determine the effective

ground cover in order to match hydromulch decayment rate

and vegetative cover increase over time, especially to mini-

mize application costs; and (vi) soil losses were similar

across the range of plot sizes studied here (0·25–10m 2).

This, plus the small size of the plots, indicates that interrill

erosion was the dominant erosion process. Further research

is needed to determine how the effectiveness of hydro-

mulching may vary with increasing slope length when rill

erosion is more likely to occur.
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Abstract

A turbidity sensor based on a plastic optical fibre is presented. The sensor is based on

transmission and 90◦ scattering variations with the total suspended particles in a solution.

Transmitted and scattered output signals were characterized and evaluated for different

configurations for a large range of clay concentrations. The developed system, in comparison

with the OBS-3+ standard system, is more robust, of low cost and has a user-friendly design.

A good correlation between the systems was accomplished.

Keywords: turbidity sensor, plastic optical fibres, transmittance, nephelometry, management

of sediments, risk assessment

(Some figures in this article are in colour only in the electronic version)

1. Introduction

Turbidity sensors are becoming increasingly used in soil

erosion studies and operational water quality monitoring

programs for continuous measurement of suspended sediment

concentrations. However, the costs of commercially available

sensor systems for continuous monitoring of soil losses

constitute an important constraining factor. Automatic

samplers, for measurements of sediment fluxes at the slope

and especially at the catchment’s scale, have existed for a

couple of decades but can only gather limited numbers of

samples, whereas the more recent turbidity sensors continue

to be rather costly and, therefore, are generally employed

to produce single readings at a fixed height of the water

column [1]. However, a low-cost turbidity meter system

would allow the employment of multiple sensors across the

channel section and with the depth of the water column.

Furthermore, as has been proposed by EPA (Environmental

Protection Agency) guidance manual, turbidity measurement

systems require complex installation and extensive calibration,

and present some durability problems because of the electronic

parts involved [2].

Fibre-optic-based sensors are suitable to be used in

an environment of a potentially hazardous nature without

significant sensor performance deterioration and also in

situations where multi-sensor operation and in situ and remote

monitoring are required and offer a new approach to the

measurement problems of conventional sensors [3]. In

spite of important advances in the last couple of years, the

deployment of fibre-optic-based sensors in field research or

operational environmental monitoring programs is a largely

unexplored area of research. In the literature, some studies

can be found which report turbidity sensors, namely for

underwater applications [4] and wine industrial processes [5]

but mainly for low concentration of suspended sediments,

typically 2–4 g l−1. Campbell et al presented a fibre optic in-

stream transmissometer for high-concentrationmeasurements;

however, the authors did not address the scattering dependence

0957-0233/10/107001+04$30.00 1 © 2010 IOP Publishing Ltd Printed in the UK & the USA



Meas. Sci. Technol. 21 (2010) 107001 Technical Design Note

Figure 1. Schematic design of the sensor.

on the concentration of the suspended particles [6]. More

recently, Postolache et al obtained very promising results,

but the data processing of their multi-beam optical system

seems too complex for field monitoring applications and the

performance was studied for only four turbidity calibration

solutions [7].

The turbidity of a medium is directly dependent on its

transparency. Suspended matter in a liquid results in the

scattering and absorption of light rays. The attenuation

and scattering of a light beam passing through a suspension

depends on several parameters, namely particle concentration,

particle sizes, size distribution and refractive indices of the

particle and medium. Here we report on the first design

and performance assessment of a plastic optical fibre (POF)

turbidity sensor for different clay particle concentrations and

thus make a proof of concept.

2. Description

As can be seen in figure 1, the intensity-based POF system

design presented here is used to quantify both the amount of

light transmitted through a liquid and the amount scattered

at an angle of 90◦ from the incident beam (nephelometry).

The system is based on a LED (IF-E96), with a centre

wavelength of 660 nm, connected to the emitter optical

fibre (HFBR-RUS100), and on two receiver fibres placed

at 90◦ (scattered light) and 180◦ (transmitted light), each

connected to a photodetector (IF-D91). Both output signals

were acquired using a NI DAQ board (USB 6008) with a

2 Hz frequency. Experimental results were obtained through

a time average procedure of a 3 min acquisition and error

bars refer to their SD. A simple application in LabViewTM

was developed as a user interface, allowing (i) the control of

USB 6008, (ii) visualization of the collected data and (iii) data

storage.

The system performance was evaluated to empirically

determine the best configuration with respect to longitudinal

separation of two fibres, L, using several single clay

suspensions with a large range of concentrations, up to 10 g l−1,

with the particle size distribution between 0.001 and 0.002 mm.

Three distances were tested: 2, 5 and 10 mm. Validation

of the method was accomplished through the comparison

of the selected configuration with a standard commercial

system (Campbell OBS-3+) using samples of overland and

stream flow collected from the burned study area of Colmeal

(Central Portugal). The homogeneity of all suspensions was

accomplished by means of a magnetic agitator.

3. Results

For the three established distances between emitter and

receiver fibres, the transmitted output signal decreases

with increasing concentration of suspended clay particles

(figure 2(a)). Moreover, in accordance with the Beer–

Lambert law, exponential models provided an excellent

fit to the measurement results for all three materials (all

correlation coefficients were 0.999). Comparing the different

configurations, it can be seen that a distance of 2 mm provides

higher resolution and range of operation when compared with

the distances 5 mm and 10 mm. This is due to the dependence

of the light coupling on the axial distance of the fibres. The

noise level (4.22 mV) is achieved at 5 g l−1 and 9 g l−1 for

10 mm and 5 mm, respectively, and extrapolating data are

expected to be attained 40 g l−1 for 2 mm. However, the 5 mm

spacing was preferred for being less susceptible to clogging up

under field conditions, especially by the coarser ash and plant

particles that are commonly eroded from hill slopes during the

initial phases after wildfire.

The scattered output signal (figure 2(b)) revealed similar

behaviour for all configurations because the scattering receiver

was always kept at the same position: as close as possible to

the emitting fibre but avoiding direct light. It can be seen that

the scattered light only starts to be detected at 1 g l−1. After

this threshold, a strong linear correlation (R2
= 0.995) with

clay concentration is accomplished, at least up to 10 g l−1

(figure 2(b)). Trials to place the scattering receiver at greater

distances resulted invariably in the total loss of the scattered

signal.

Due to the dependence of both the output signals on

other variables than the particle concentration, results shown

in figure 2 cannot be understood as global calibration curves

of each design, being valid only for the specific conditions of

this test: clay particles with a size range of 0.001–0.002 mm

suspended in water (RI ∼ 1.33). However, results suggest that

the transmitted and scattered output signals can be used for

low and high clay particle concentrations, respectively.

Figure 3 shows the results obtained for 29 runoff samples

collected in a Colmeal fire, which were analysed with

a commercial backscatter sensor, OBS-3+, and the new

developed plastic optical sensor. Scattering results were

not used because the concentration of suspended particles in

runoff samples was within the threshold. The POF-sensor

values (figure 3(a)) agree well with those obtained in the

initial test with similar concentrations of clay for 5 mm

configuration. However, the runoff sample with the highest
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Figure 2. Transmitted (a) and scattered (b) output signal with varying concentrations of clay for three configurations.
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Figure 3. (a) Transmitted output signal ± SD of the 29 runoff samples; (b) correlation between sensors: POF-sensor measurements
displayed in light losses (obtained from 1 − Vtrans/V0 g l−1 ) and OBS-3+ measurements in NTU.

sediment concentration (1.09 g l−1) did not follow the same

tendency. The higher-than-expected transmitted output signal

of this sample was confirmed by OBS-3+ with a comparatively

low turbidity. A possible explanation is suggested by the fact

that the sample’s POF-sensor values are more variable than

the values of the other runoff samples. This greater variability

could be due to the larger suspended particles, which were

detected by visual inspection, suggesting sensitivity of the

sensor to the particle size. In fact, particles of larger

dimensions can more easily interrupt the coupling of light

between the emitter and receiver fibres when passing between

them, increasing signal variability. This study will be

addressed in further work. With respect to the validation of

the proposed method, the POF-sensor values for the runoff

samples are closely related to the corresponding OBS-3+

values (figure 3(b)). This relationship can be fitted very well

by a linear regression equation.

4. Discussion

A new low-cost and robust POF-based system for turbidity

evaluation of suspended particle solutions was presented

and showed viability on the determination of sediment

concentration. From the three configurations tested, a distance

of 5 mm between the emitter and transmitted light receiver

was selected because it presented the best balance between

the sensitivity of the sensor and its capacity to operate with

suspended particles of large dimensions. The proof of concept

of our system is accomplished but, for the accurate estimation

of particle concentration with the proposed sensor, other

variables have to be considered and studied, namely particle

size. As indicated by this study, preliminary results on this

matter suggest that, not only the average transmitted output

signal is dependent on the particle size class, but also the

output signals variability.

By comparing OBS-3+ and POF-based system

performance, a good correlation was obtained. Nonetheless
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the operation mode is easier with the newly developed system

since the homogenization of samples is more difficult with

OBS-3+ because measurements have to be performed in 3L

tanks (sensor output depends on the tank used). The output of

the POF does not depend on the tank, support or specific

position and it is cost-effective. The small-sized optical

systems make it highly mobile for field measurements. It must

be emphasized that the developed system is cost-effective,

opening new opportunities for soil erosion and operational

water quality monitoring studies.

Further investigation will also be focused in the study

of the effect on the system performance of several sediment

properties, such as reflectivity, sediment colour and optical

properties of the medium, in different field conditions.
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7. Final discussion, conclusions and recommendations 

7.1. Final discussion 

7.1.1. Post-fire overland flow and soil erosion rates in central Portugal 

One of the major advantages of this research was to intensively monitor the overland 

flow and soil erosion on six different slopes during the first post-fire year, with different plot 

sizes under artificial and natural rainfall. However, the comparison of post-fire overland 

flow data with other studies was difficult due to the absence of similar datasets. The few 

studies that monitored the runoff during the first post-fire year in central Portugal used 16 

m-2 plots (Ferreira et al., 2008; Shakesby et al., 1996 ), and exhibited runoff coefficients in 

the same range as our Pessegueiro plots (12 to 20 % versus 6 to 30 %). However, these 

studies differed also in time-since fire or surface cover. Other researchers in Eastern 

Iberian Peninsula have also shown low runoff rates (Bautista et al., 1996; Cerdà et al., 

1995; Cerdà, 1998a; Cerdà, 1998b; Cerdà & Lasanta, 2005; Cerdà & Doerr, 2007) but 

conditions such as the bigger plot sizes, calcareous parent material and the more arid 

rainfall regime make the comparison of results difficult.  

In the case of soil erosion, this research can be compared with both the Portuguese 

post-fire scenario and other studies around the world (Figure 1). The soil erosion on the 

untreated plots was low, especially when compared with other studies in North America 

and NW Iberian peninsula, but more comparable to the Mediterranean figures of Portugal 

and East Spain, except in the case of Ermida, which reported soil erosion rates as high as 

10 Mg ha-1. The low rates were attributed first and foremost to a long history of human 

landscape impact up to the present days (Shakesby, 2011). This was especially true in 

the case of the ploughed site of the Açores wildfire (Figure 2; cross “+” symbols). The 

lower-than expected erosion rates could be related to the fact that ploughing took place 

several years before the wildfire. The soil erosion could firstly be enhanced immediately 

after ploughing (as referred to by Ferreira et al., 1997) and decreased several years later, 

once the soils became depleted and exhausted. On the other hand, the low erosion rates 

in the Pessegueiro pine plots (Figure 2; triangles) were attributed to lower fire intensity, 

especially when compared to the Ermida site. In terms of runoff, the effect of pre-fire 

ploughing seemed not to be as important as fire intensity. In Figure 2 it can be confirmed 
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Figure 1. Post-fire  soil erosion rates measured on control and mulched treated areas around the 

world (AR, Arizona; CA, California; NM, New Mexico; CO, Colorado; K, Korea; ES, Spain; PT, 

Portugal). Treatment abbreviations are: cbm,chopped bark mulch; hm,hydromulch; hm50 and 

hm100, hydromulch at 50 and 100 % ground cover application; barriers, log or shrub erosion 

barriers; lsm, logging slash mulch; PAMd, PAMp and PAMw , polyacrylamide dry, pellets and wet 

formulations; straw, straw mulch; s+straw, seeding and straw mulch; wcm, wood chip mulch. 

Author abbreviations are: Riechers, Riechers et al. (2008); WR., Wohlgemtu and Robichaud 

(2007); Wohlg., Wohlgemut et al. (2006, 2010); Hubbert, Hubbert et al. (2011); De., Dean (2001); 

Wag, Wagenbrenner et al. (2006); Rough, Rough (2007); Kim, Kim et al. (2008); Fdez., Fernández 

et al. (2011); Badia, Badía and Martí (2000); Bau., Bautista et al. (1996); Shakes., Shakesby et al. 

(1996); Pess, Prats et al. (2012); Erm, Prats et al. (2013b); Col, Prats et al. (2013a).   

that the runoff coefficient remained very low at the Pessegueiro pine plots, while the 

ploughed Açores plots did not show differences within the mean tendencies. Plot size 

seemed to affect the overland flow in the range of plots tested. Runoff coefficient tended 

to decrease with increasing plot size, however that effect was not visible on soil erosion. 

Given that rill erosion was not observed, interrill erosion was assumed to be the main 

process across plot sizes.  
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Some considerations can be derived about soil fertility when analyzing the organic 

matter percentage in the eroded sediments. This fraction -composed mostly of particulate 

pieces of charcoal and black ashes- was almost invariable around 50 % and contains a 

substantial part of the nutrient stocks of the forest (Ferreira et al., 2008; Soto, 1993). 

Compared with other studies in Galicia (Soto and Diaz-Fierros, 1998) and North America 

(Spigel and Robichaud, 2007), the annual organic matter losses were in the same range 

(1 to 5 Mg ha-1), despite the fact that they reported soil erosion rates to be an order of 

magnitude higher (13 to 20 Mg ha-1 at slope scale plots up to 100 m2) compared to this 

research.  Soto (1993) found that the main factor influencing soil nutrient losses after 

wildfires was the soil erosion rates. From this point of view, mulching was able to fix 

carbon and nutrient on post-fire forest ecosystem and also to prevent off-site pollution with 

pyroxitic toxic organic compounds (Vila-Escalé et al., 2007; Campos et al., 2012). In the 

medium- and long-term land-use sustainability context, mulching can be of major concern, 

since the velocities of soil formation are known to be extremely low (Alexander 1985; 

Alexander 1988). Shakesby (2011) summarized that “the post-fire nutrient losses in mono-

specific plantations of pine and, particularly eucalypt on already degraded soils seem to 

be most at risk because post-fire nutrient depletion exacerbates an already considerable 

loss of nutrients caused by clear-felling and timber removal alone”. 

Figure 2. Runoff coefficient and soil erosion versus plot size measured during the first year after 

the treatment for the entire plot studied in this thesis. 
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The quantification of the probability of damaging runoff and erosion events after a 

wildfire cannot be determined as easily as the mitigation treatments or the values at risk. 

One of the main goals of the soil erosion models was to overcome these uncertainties, but 

if there are no real data to contrast the model results, the hydrologic and erosive 

predictions can be highly unrealistic. In the case of the USA, the first steps in post-fire risk 

assessment -carried out during the 1970s- had to rely on the collective experience and the 

perceptions of interdisciplinary teams of specialists (Robichaud, 2009). Forty years of 

research resulted in the creation of a large body of post-fire soil erosion data as well as of 

post-fire scientific assessment on treatment effectiveness (such as Wagenbrenner et al., 

2006). This large body of data permitted the development of specific assessment tools 

(such as soil burnt severity assessing with hyperspectral satellite imaging, in Robichaud et 

al., 2007a)  and post-disturbance erosion risk prediction tools (such as the probabilistic 

ErMiT model, in Robichaud et al., 2007b) in order to be less subjective when determining 

the likelihood of post-fire runoff and soil erosion. In the Portuguese context, post-fire soil 

erosion studies for periods longer than a year is spectacularly scarce. Consequently, the 

models predictions can be highly uncertain, once these models were not calibrated or 

developed for scenarios different to the Portuguese burnt forest. Some FCT-founded 

research projects tried to solve this lack of information (for example, the IBERLIM, 

EROSFIRE, EROSFIRE-II, FIRECNUTS and RECOVER project, mainly at the University 

of Aveiro) and are still gathering or processing soil erosion data. The EROSFIRE project 

(POCI/AGR/60354/2004), aimed to compare the INAG soil erosion predictions for 

Portugal, based on the USLE model, against measured values. The preliminary results of 

the EROSFIRE decision-support tool for post-fire land management revealed that the 

measured soil erosion can be much lower compared to the predicted figures (Keizer et al. 

2012). Recently, the ICNF soil erosion predictions for the Tavira wildfire, which destroyed 

a total of 24000 ha in the Algarve region (Catraia Technical Report MAMAOT and ICNF, 

2012), ranged between less than 5 to more than 200 Mg ha-1year-1, which is much higher 

than the bulk of figures reported on this thesis and also on the extensive review of 

Shakesby (2011). Far to be optimistic, these results lead to think that soil erosion already 

happened, and that the Portuguese soils started to get exhausted. It is necessary to 

consider that the funding for post-fire rehabilitation can be as high as several dozens of 

millions of euros (€4 millions in the Catraia 2012 wildfire) or dollars ($72 millions in the 

Cerro Grande 2000 wildfire; Wagenbrenner et al., 2006). It is compulsory to be effective 

and reach the goals of the post-fire rehabilitation policies. If the runoff and the soil erosion 

remains unknown, thus the efforts to restore will be inadequate or inappropriate. The “no 
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intervention strategy” could be a realistic technique, but undoubtedly, it is compulsory 

measuring and checking the extent of the post-fire hydrologic and erosive response. In 

order to overcome these uncertainties, and until the Portuguese soil erosion dataset can 

be large enough to feed the models in an adequate manner, a close collaboration 

between researchers and forest managers must be enhanced, especially when designing 

post-fire managements strategies or applying technical measures.  

7.1.2. The effectiveness of selected post-fire erosion mitigation treatments.  

The effectiveness of mulching for reducing post-fire soil erosion has been studied most 

exhaustively with respect to straw (Badía et al., 2000; Bautista et al., 1996; Dean, 2001; 

Fernández et al., 2011; Groen and Woods, 2006; MacDonald and Larsen, 2009; Riechers 

et al., 2008; Robichaud et al. 2010; Rough, 2007; Wagenbrenner et al., 2006), to a lesser 

extent with respect to wood chips (Fernández et al., 2011; Kim et al., 2008; Riechers et 

al., 2008) as well as hydromulch (Wohlgemuth et al., 2006; 2011; Hubbert et al., 2012; 

Prats et al., 2013a) and only rarely with regard to forest residues (Shakesby et al., 1996; 

this thesis, Chapters 3 and 4; Figure 1). Chopped eucalypt bark mulch providing an initial 

ground cover of 70-80 % was found here to reduce post-fire runoff and erosion to a similar 

extent as straw was reported to do by the bulk of the existing literature. At the same time, 

the chopped eucalypt bark mulch had the important advantages of being readily available, 

of not being susceptible to removal by wind, and of decaying at slow rates. Reductions in 

both overland flow and soil losses were somewhat lower at the eucalypt plantation in the 

Pessegueiro than Ermida study area (40 % vs. 50 % and 85 % vs. 90%, respectively), 

possibly due to the higher application rate in the latter case (8.7 vs. 10.8 Mg ha-1). 

The logging slash mulch applied at the Pessegueiro pine site, however, appeared to 

resort little effect on post-fire runoff and erosion. The same applied to the nearby pine site 

that Shakesby et al. (1996) treated with logging slash mulch (Figure 1). This reduced 

effectiveness was probably due to the “natural” mulching of the untreated plots by leaf and 

needle cast from the scorched tree canopies, resulting in low runoff and erosion figures 

under control conditions. A marked reduction in erosion by post-fire needle cast was also 

reported by Cerdà and Doerr (2008). Arguably, however, the main disadvantage of 

mulching with logging slash is the elevated application rate of 18 to 47 Mg ha-1) that is 

needed to achieve the widely-recommended ground cover of 70 %.  
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The hydromulching applied at the Maritime Pine plantation in Colmeal was highly 

effective, reducing runoff in 70 % and soil losses with 80 %. These figures were somewhat 

better than those reported by the three prior studies evaluating hydromulching in recently 

burnt areas (Rough, 2007; Hubbert et al., 2012; Wohlgemuth et al., 2011); possibly due to 

the lower-than-hoped application rates in these three studies as a result of the interception 

of the spraying jet by the burnt but still upright trees. The observed decrease in 

hydromulch cover was pronounced (4 - 5 % per month) but comparable to the three 

above-mentioned field trials. In this study, this decay was by and large compensated by 

the introduced seeds which did not happened on the previous USA studies. Beyers (2004) 

pinpointed to the risks of introducing invasive weeds but the plants introduced at the 

Colmeal plots with the hydromulch had almost disappeared two years later. Despite the 

elevated costs of hydromulching, its use could be justified where “values at risk” are high, 

whether in economic, cultural or safety terms, or where recuperation of the spontaneous 

vegetation is strongly compromised. 

The dry granular polyacrylamide applied here was ineffective to decrease post-fire 

runoff or the associated soil losses. This was possibly due to the preferential binding of 

the PAM to the ashes in combination with the subsequent removal of the bulk of these 

ashes by the runoff, similar to what was reported by Rough (2007) and Wallace and 

Wallace (1986a). Future testing of PAM in recently burnt areas should perhaps focus on 

find if it could be advantageous when combined with mulching (Davidson et al, 2009; 

Riechers et al., 2008). On the other hand, the possibility exists that other PAM 

formulations could be more appropriate for the soils studied here (with their relatively low 

clay contents) (Sojka et al., 2007) and/or in the presence of a noticeable ash layer. Whilst 

PAM is a very promising product, including in terms of costs, its successful application in 

recently burnt areas is thus far from straightforward, as also found by Rough, (2007) and 

Wohlgemuth and Robichaud (2007). 

Several considerations must be taken into account when selecting a treatment to 

reduce the risk of post-fire soil erosion. First and foremost, the selected treatment must be 

effective in reducing runoff and erosion. Far from being obvious, innumerous examples 

exist in which treatment effectiveness was confounded with treatment goal. For example, 

citing Wagenbrenner et al. (2006): “Studies on the effectiveness of seeding have tended 

to measure changes in cover rather than erosion rates”. Second, the potential treatment 

should be cost-effective compared to alternative treatments. Table 1 shows a cost-benefit 

analysis for the most commonly applied post-fire soil erosion control treatments not only in 
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Portugal but also in the USA (following Napper, 2006 and Wagenbrenner et al., 2006). 

The difference in the application rates between straw and forest residues (2.2 vs. 8 Mg ha-

1) will largely compensate their differences in price per unit of weight (roughly 150 vs. 30 € 

per Mg). Mulching with straw and chopped bark were the most cost-effective, especially 

when compared to the hydromulching, which despite to be effective was very expensive.  

The choice between these two alternatives will easily come to depend on the availability of 

the straw and chopped bark in sufficient quantities. In north-central Portugal, this will most 

likely be chopped eucalypt bark. However, in the case of recently burnt pine, oak or 

shrublands the application of chopped eucalypt bark seems less recommendable than 

chopped bark from native tree or shrub species.  

Table 1. Estimated costs of the forest residue mulches, PAM and hydromulch used in this study. 

The values between brackets were averaged from Napper et al. (2006). In order to allow 

comparisons, the costs of straw mulch, seeding and barriers were also calculated for Portugal and 

compared to Wagenbrenner et al. (2006) between brackets. The costs of materials, manpower and 

transportation are approximate and can vary largely depending on material availability, wildfire 

accessibility, and country regions.  

Treatment

Effectiveness Material Manpower Transportation Other
Final cost per 

hectare

% 

reduction 

in soil 

erosion 

Cost 
Application 

rate persons    

ha day-1

€  

ha-1 

day -1

Vehicle 

type 

€  

ha-1  

day -1
€ 

€ 

ha-1

$  

ha-1€  

Mg-1

Mg 

ha-1

€  

ha-1

Chopped 

bark mulch 
86 30 8 240 3 150 truck 40 50 480 (na) 

Logging 

slash mulch
-16 0 17-47 0 4 200 jeep 30 50 280 (1500) 

PAM -23 20000 0.05 1000 1 50 jeep 30 50 1130 (na) 

Hydromulch 83 na na 2500 2 100 truck 100 50 2750 (6200) 

Straw 

mulch 
(95) 150 2 300 2 100 truck 40 50 490 (1000) 

Seeding (-26) 20 0.05 1 1 50 jeep 30 50 131 (220) 

Barriers 

(shrub, LEB)
(40) 0 0 0 6 300 jeep 30 50 380 (1000) 
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The log and shrub erosion barriers have been used extensively, mostly because the 

materials (logs, stems, shrubs) are already on the field. However, their efficacy has 

proved to be much lower, dependent on log storage capacity and the occurrence of small 

rainfall events, whilst the costs are similar to the mulching (Wagenbrenner et al., 2006). In 

this sense, the study of the Lourizán Forestry Research Center (Fernández et al., 2011) 

illustrates very well the low effectiveness of shrub erosion barriers when compared to 

straw (see Figure 1). In the words of Susana Bautista: “It is very difficult to fail in applying 

mulch, but it is very easy to fail in installing log erosion barriers”. In fact, Robichaud et al. 

(2008) verified that 32 % of their log erosion barriers did not have good contact with the 

ground surface, and 38 % were moved off contour. More precise measurements showed 

that less than half of the total length of the contour-felled logs effectively stored the runoff 

and the sediments.  

Some labor intensive treatments as contour trenches across the slope with a bulldozer, 

channel stabilization structures, side slope stabilizations (Rice et al., 1965) and 

scarification of the soil surface (MacDonald and Larsen, 2009) have been shown to be 

ineffective for reducing soil erosion. Some of these ground disturbing measures altered 

the sediment fluxes across the slope and continue to persist long after the emergency is 

over (Wohlgemuth, 2003). In Portugal, post-fire ground interventions such as ploughing 

and rip-ploughing increased dramatically the runoff and the soil erosion (Ferreira et al., 

1997; Shakesby et al., 2002).  

In regions such as the USA, with a large experience in post-fire soil erosion control, the 

use of mulched based treatments has increased as seeding and erosion barriers have 

decreased (Robichaud, 2009). This shift in the selection of the treatments was supported 

by the big bulk of post-fire research compiled by Robichaud (2010). Innovative mulches 

such as chopped bark, wood strands and the in-situ tree chopping mulching as well as 

wood and strand mulching were successfully applied during the 2000s (Napper, 2006; 

Riechers et al. 2008). The aerial application methods were found to be very useful for 

reaching inaccessible areas by roads, and in these situations they can be more economic 

compared to hand or ground applications (Napper, 2006). In the Iberian Peninsula 

context, the first straw helimulch had been carried out by the Lourizán Forestry Research 

Center (www.vtelevision.es) and applied after the 2010 wildfire seasons in Galicia (NW 

Spain). However, land managers are still unaware about the advantages of the mulch. 

Frequently, other treatments different than mulch, are being still applied for post-fire soil 
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erosion control all over Europe, and, worst of all,  most of the times its effectiveness in soil 

erosion reduction is not being assessed. 

7.1.3. Key factors for post-fire runoff and soil erosion  

The rainfall simulations experiments came to highlight the predominant role of rainfall 

intensity (measured at 45 and 80 mm h-1) followed by a combination of site-specific factors 

– such as vegetation and litter, stone cover and soil water repellence - as significant 

factors for the untreated runoff and soil erosion. It was found that soil water repellence 

affected the hydrologic response of all our burnt areas, despite the difficulties in 

comparing it between studies.  For example, the soil water repellence measured at the 

burnt and untreated Colmeal site (“0” median MED class; i.e., hydrophilic during post-fire 

year 2) was lower than other burnt pine sites in Portugal (“6” annual median in the 

Pessegueiro pine site and “6” to “8” median MED class in Coelho et al., 2004; Ferreira et 

al., 2005a and Ferreira et al., 2008, despite to be measured punctually after the wildfire), 

but still much lower than other burnt eucalypt sites (“8” annual median MED class in both 

Açores and Pessegueiro wildfires; in Keizer et al., 2008a and Prats et al., 2012 

respectively).  However, the runoff coefficients in the Colmeal control plots were as high 

as in the other studies. The highest seasonal runoff coefficient (90 % in autumn of post-

fire year 2) coincided with the highest soil water repellence measured in the area 

(seasonal median value of 3 MED class). Summer and specially the early autumn 

accounted for the highest repellency levels and the highest runoff coefficients, whereas 

during winter, accordingly with the lower soil water repellence, runoff coefficient reached 

minimum values. The broad seasonal variations of soil water repellence and runoff still 

coincided with other research in Australia (Sheridan et al., 2007) and also in unburnt 

eucalypt forest (Leighton-Boyce et al., 2007) as well in lignite mines in Germany (Lemnitz 

et al. 2008).  

However, the tests on the relative contribution of each individual factor on the 

Pessegueiro and Colmeal wildfires datasets coincided also with Larsen et al. (2009) and 

confirmed that soil water repellence was secondary for runoff amount and that soil cover 

was the mean factor for soil erosion. Furthermore, our findings revealed valuable data 

about the proportions at which each factor explained the variation in runoff and soil 

erosion. With slight differences between sites, half of the variation on runoff was explained 

by rainfall amount, and between 20 to 5 percent by litter cover. No more than 10 % was 
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explained inversely by soil moisture, which confirmed the secondary role of soil water 

repellence. In the case of soil erosion, rainfall intensity explained a third of the variability, 

while the presence of an organic cover explained between 30 to 50 % of the variation, 

independently of the cover consisting of litter, treatment or vegetation. Other site-specific 

factors accounted for lower amounts (<5 %) in the models. Regarding the organic matter 

content in the sediments, it was proven that plot-specific factors such as fire intensity, 

through the changes in some soil cover variables, were more important than rainfall 

characteristics. The organic matter content tended to decrease with increasing bare soil 

and stone cover, despite the resulting models performing worse compared to the runoff 

and soil erosion models. 

The effect of mulch, in a pool including all the control and treated plots, consisted of a 

shifting to, or strength of rainfall intensity (as also confirmed by Nunes et al., 2010 on their 

unburnt bare versus vegetated and abandoned areas) on both runoff and soil erosion. The 

importance of litter increased, explaining from a third to half of soil erosion. The physical 

factors (rainfall characteristics, soil water repellence, soil moisture and time-invariant soil 

properties) may not be as important for the treatments that provide immediate ground 

cover, (chopped bark mulch, slash logging mulch and hydromulching) due to the 

protection that the organic cover provided over soil detachment and increased soil water 

storage, and thereby immediately reduce overland flow and soil erosion. However, this 

was not true for the PAM because it did not affect the ground cover. The beneficial effect 

of an organic layer has long been studied by many researchers (Harris and Yao, 1923; 

Morgan, 2005) and is still being developed (Smets et al., 2008; Foltz and Dooley, 2003; 

Jordan et al., 2010, Wagenbrenner et al., 2006). The strongest position of litter as a key 

factor for soil erosion was achieved by the most effective treatments (i.e., 93 % reduction 

for the chopped bark mulch in Ermida, during 12 months) but also by the longest 

monitoring period (i.e., 80 % reduction on the hydromulch during two years). Similarly to 

Pietraszek (2006), these findings revealed the importance of having long term series of 

data and enough replications for a clear picture of the key explanatory factors. The major 

advantage of this research was to assess with enough replications the spatial and 

temporal variability of runoff, soil erosion and also organic matter within the same slope, 

under different fire severities in six different slopes, monitored at short time intervals, 

which made this dataset especially valuable. 
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7.1.4. Development of a turbidity sensor. 

The knowledge about soil losses other than on small spatial and short temporal scales 

continues to be rather poor. In part, this can be attributed to the difficulties and expense in 

measuring sediment fluxes at the slope and especially the catchment’s scale (Shakesby 

and Doerr, 2006). The development of a new POF-based turbidity sensor for the 

determination of sediment concentration took place under the Lab I and Lab II disciplines 

of the PhD PROMAR program (Prats et al. 2009a). The good correlation obtained 

between the commercial OBS-3+ and the POF-based system for a first set of runoff 

samples opened new opportunities for soil erosion and operational water quality 

monitoring studies. The new sensor can allow the monitoring of more experimental units 

and effectively assess the high spatial variability in soil erosion not only on the catchment 

scale but also on the slope and plot scale. The main constraints in soil erosion monitoring 

projects pointed out by MacDonald (1994), – to have enough replicates and long time 

series- can be overcome with the use of this new tool.  

The proof of concept of our system is accomplished but, for accurate estimation of 

sediment concentration, other variables have to be considered and studied, namely 

particle size and colour. The same is true in the case the optic OBS sensor (Optical 

Backscatter Sensor; Downing, 2006) where particle size, aggregation and fouling were 

found to be sources of inaccurate OBS data (Downing, 2006). In burned areas, the 

presence of ashes deserves special mention. Prats et al. (2010a) realized that the ashes 

will behave as perfect black bodies absorbing all the light and resulting in anomalous 

turbidity series. The new prototype has the advantage of measure turbidity in two ways: 

the 90º scattering output (in which light losses are calculated from the light reflected from 

the particles in an angle of 90º between emitter and the receiver fibres) and also a direct 

output (in which the light losses are produced by the particles inside the space between 

the emitter and the confronting-180ºreceiver fibres). While the scattering output presented 

the same difficulties in calibration as the OBS-3+, with the A,B, and C regions of 

measurement (Downing, 2006), the direct light was less dependent on particles reflectivity 

and  could be calibrated through linear or polynomial correlations. As a result of this, 

turbidity measurements in recently burned areas based on direct light loss will be more 

robust, given that the scatter series will need complex calibrations, for both the OBS-3+ 

(Prats et al. 2009b) and the new POF-based turbidity sensor (Bilro et al. 2011). 
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7.2. Final conclusions 

The main conclusions of this thesis on the effectiveness of four selected post-fire 

mulching techniques in reducing runoff and soil erosion in central Portugal are as follows:  

1. The chopped bark mulching was the most cost-effective treatment, 

reducing runoff by 40 % and soil erosion by 85 % through an increase in ground 

cover of 70%;  

2. The slash logging mulch at the pine site was not effective, probably due to 

the elevated effectiveness of the needle cast on the untreated plots from the 

scorched pine canopies. However, it is hardly recommendable as post-fire 

emergency treatment especially because of the heavy loads (17 Mg ha-1) needed 

to achieve the recommended ground cover of over 70 %; 

3. The polyacrylamides that were applied in dry form did not markedly reduce 

soil erosion and, thus, cannot be recommended for mitigating post-fire soil erosion.  

Because of PAM’s elevated potential and low costs, however, further work seems 

justified, especially to diminish the possible preferential biding to ash rather than 

soil particles; 

4. The hydromulch was basically as effective in reducing post-fire runoff and 

erosion as the chopped bark mulch, but its much higher costs would seem to limit 

its applications to situations in which the “values at risk” are high and especially 

vulnerable; 

5. the observed soil losses suggested that in north-central Portugal erosion 

rates during the first year after wildfire tend to be relatively low when compared 

with other parts of the world, including Mediterranean Europe; nonetheless, the 

Ermida study site illustrated well that this tendency is not without exceptions;  

6. the losses of organic matter observed during the first year after wildfire in 

particular  were comparable to the highest figures reported across the globe, 

suggesting that wildfire effects on soil fertility losses may be more important for 

future land-use sustainability than soil losses per se;   

7. after rainfall total or intensity, ground cover was found to be the main factor 

explaining runoff and soil erosion differences between mulched and untreated 

plots.  

8. a newly developed fibre-optics-based turbidity sensor produced 

encouraging results for estimating sediment concentrations of runoff samples, 

including from recently burnt areas. 
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7.3. Final considerations 

From a land management point of view, this research can conclude that certain field 

indicators can trigger non tolerable post-fire soil erosion rates in north-central Portugal. 

Wildfires on slopes up to 20 º, with less than 10 % of litter and leaves covering the soil and 

complete canopy combustion will result in soil erosion rates up to 5 Mg ha-1. Furthermore, 

if the ashes colour is white, grey or red in more than 10 % of the soil surface, the risk of 

soil erosion can rise as far as 10 Mg ha-1. These findings can be used as indicators to 

correctly implement post-fire emergency soil erosion control treatments but only if the 

wildfire can trigger on-site and off-site effects that can compromise important values at 

risk. In situations where the previous conditions were not meet (such as the Pessegueiro 

pine site or the Açores sites) the “no intervention” option would be preferred (Robichaud, 

2009; Bautista et al., 2009). In the case of an urgent intervention, mulching will become 

the more advantageous technique. Stakeholders, land managers, governments and 

forestry institutions must be aware of these improvements. More divulgation in post-fire 

soil erosion control (www.phoenixefi.org/uploads/tecnicas_rel.pdf) is needed in order to 

save time, efforts and money. In the case of the USA, the most recent development on 

research is on-line each year through the General Technical Reports (GRT´s, United 

States Department of Agriculture) and land managers can access it. But the same is not 

true in the Iberian Peninsula. However, there are several points that require further 

development.   

The next steps with chopped bark mulching could be addressed in order to find lighter 

materials. Forest residue mulch was highly effective, but lighter materials will allow faster 

and cheaper implementations. It could be possible to find an optimum of soil erosion 

control by selecting the longer fibres and removing the shorter ones, or by restricting the 

application to the spots that presented the field indicators described above. In light of the 

good results with post-fire mulching all over the world, we strongly recommend to direct 

the future research towards experimenting with different mulches (needles, agricultural 

residues, long wood chips) and with spread methods (hand, blowing, aerial, chopping in 

situ). 

The next steps with chopped bark mulching could be addressed in order to find lighter 

materials. New formulations with hydromulch can be especially valuable in the case of 

highly sensible ecosystems. The slurry can be modified to include some native seeds that 

are of interest to the managers. In this way, the hydromulch has a strong potential for 

restoration of highly degraded areas, as is the case of recurrent burnt slopes, arid and 
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extreme conditions, exotic species, etc. Moreover, the most important constraint would be 

the expense of the technique. The major advantage of the lightness on the application of 

PAM will empower future research with this technique. However, it would be necessary to 

develop new formulations capable of supporting ash-covered sites. The success of soil 

erosion control with chemical polymers depends on a large number of factors (PAM 

characteristics, soil texture, soil clay, bedrock, presence of ashes, etc.) and a dichotomic 

manual or a treatment protocol will be needed in order to identify the specific PAM for the 

specific burnt site. 

Long term series were pointed out by MacDonald (1994) as one of the requisites for 

monitoring post-fire soil erosion, and research efforts must be directed to evaluate the 

extent of the “window-of-disturbance”. The first line of a burnt areas emergency strategy 

must be directed to control soil erosion, but once the immediate risk is controlled, other 

issues such as forest ecosystem functions, will need further assessment for at least 5 

years. 

There is an important gap that still needs to be addressed: the upscaling of runoff and 

soil erosion at the catchment scale. With the range of plots tested, it was possible to test 

on-site changes in the hydrological and erosive processes, but not the off-site effects. 

Future studies must check the effect of wildfires and emergency treatments on runoff peak 

flows, soil and nutrient transportation and deposits in streams and reservoirs. In other 

words, to develop further researches with the main aim of determine the extent at which 

wildfires can increase the hydrologic and erosive connectivity of the watersheds, and thus, 

affect the downstream values at risk. Off-site effect such as water quality degradation, 

nutrient exportations and loss of volume storage in dams and reservoirs are still unknown. 

For example, in the “Rias Baixas” region (Galicia, Spain), the ash and sediment deposits 

ruined the mollusc collection economic activities after the 2006 wildfire season. In a 

similar manner, roads and structures such as fluvial beaches can be completely destroyed 

(Lourenço, 2010). 

The management of post-fire areas constitutes a delicate compromise between the 

costs of the treatment and the benefit that the technique will provide. The large body of 

data of this thesis can serve for develop, calibrate and validate a robust and useful 

management tool for Portugal. The first steps are currently being developed, and the MMF 

model has being applied to the Pessegueiro wildfire. Runoff and soil erosion were 

successfully predicted, differentiating accurately not only the low and high soil erosion 

rates related to the different burnt severity at the pine and eucalypt sites respectively, but 
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also the reduction in soil erosion between control and forest residue mulch treatments. In 

that sense, to have a robust model that had been calibrated from real data has 

undoubtedly a strong potential to save economic and human resources in future similar 

scenarios.    

Further investigation with the new turbidity sensor will be focused on the study in 

continuum of several sediment properties, such as concentration, reflectivity or sediment 

colour, particle size, and nutrients, in different field conditions. Currently, the ongoing 

QREN-founded TRANSFIBRA project has as its main aim the development and further 

calibration of a low-cost and robust prototype. The next steps will be directed to linking of 

the sensor to a logger for automatic measuring and storage of turbidity data. The ease of 

replication can be a major advantage, not only for measuring turbidity at different heights 

in the water column in a stream, but also in a group of plots. A wireless prototype has 

been tested in the laboratory and can be of interest to complement the monitoring of the 

plots. The turbidity sensor has also demonstrated its potential in the case of waste water 

monitoring and other applications.  
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Outputs and Publications 

�

- Patents  

Bilro L., Prats. S.A., Ferreira R.X.G., Nogueira R., Keizer J.J., 2012. Patent nº 106279, 

“Sensor and Method for Turbidity Measurement” N/Ref.:PPP44961-11”. 

Universidade de Aveiro & Instituto de Telecomunicações. 

- Book chapters  

Prats S.A., Ferreira A.J.D., Coelho C.O.A., Keizer J.J. (in preparation). Post-fire mulching: 

revisiting an effective and easy method for reducing runoff and erosion. In: 

Restauración de ecosistemas forestales quemados en la península ibérica. Entre la 

investigación y la gestión: experiencias de restauración post-incendio. Editores: 

Jorge Mataix-Solera y Montserrat Díaz-Raviña. 

Coelho C.O.A., Keizer J.J., Nunes J.P., Rial M.E.R., Varela M.E.T., Faria S.R., Ferreira 

R.S.V., Maia P.A.A., Malvar M.C., Prats S.A., Valente S., Vasques A.R.P.F., Vieira 

D.C.S., 2011. Fire Effects on Soil and Water Resources, and Their Mitigation. In: 

Forest fires research: beyond burnt area statistics. Amorim J.H., Keizer J.J., 

Miranda A.I., Monaghan K. (eds) Aveiro.  

Ferreira A.D., Prats S., Carvalho T., Silva J.S., Pinheiro A.Q., Coelho C., 2010. 

Estratégias e técnicas de conservação do solo e da água após incêndios.Capitulo 

X. In: Ecologia do Fogo e Gestão de Áreas Ardidas. Lisboa. Pp.229-252 (ISBN:978-

972-8669-48-5). 

 Ferreira, A.J.D., Prats, S., Ferreira, C.S.S., Malvar, M.C., Coelho, C.O.A., Carreiras, M., 

Esteves, T., 2009. Los incendios forestales en Portugal. Aportes para la 

comprensión del impacto en la degradación de suelos y aguas. In: Cerdà, A., 

Mataix-Solera, J. (Eds.), Efectos de los Incendios Forestales Sobre los Suelos en 

España. Universitat de València, Cátedra Divulgación de la Ciencia, pp. 79–103. 

(ISBN:978-84-370-7653-9). 

- Papers in international scientific periodicals with referees 

In preparation: 
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Prats S.A., Martins M.A.S., Keizer J.J. (in prep.). Post-fire forest residue mulching for 

runoff and soil erosion mitigation at micro-plot and slope scale in central Portugal. 

Malvar M.C., Prats S.A., Keizer J.J. (in prep.). Overland flow and inter-rill erosion in two 

recently burnt eucalypt plantations in North-Central Portugal. 

Submitted: 

Vieira D.C.S., Prats S.A., Nunes J.P., Ferreira A.J.D., Coelho C.O.A., Keizer J.J. 

(Submitted 5 September 2013).Evaluation of the revised Morgan-Morgan-Finney 

model application, in burnt forest areas and after rehabilitation treatments, North 

Central Portugal. Forest Ecology and Management. 

Martins M.A.S., Machado A.I., Serpa D., Prats S.A., Faria S.R., Varela M.E.T., Gonzalez-

Pelayo O., Keizer J.J. (2013 Submitted). Runoff and inter-rill erosion in a Maritime 

Pine and a eucalypt plantation following wildfire and terracing in north-central 

Portugal. Catena (Submitted in August 2013). 

Ferreira A.J.D., Prats S.A., Shakesby, R.A., Páscoa F.M., Coelho C.O.A., Ferreira, 

C.S.S., Keizer J.J., Ritsema, C.J., (submitted March 2012). Tackling degradation: 

strategies and techniques to remediate potential damage to soils in burned areas in 

the Mediterranean. Catena Special Issue. 

Published/In press 

Prats S. A., Martins M.A.S., Malvar M.C., Ben-Hur, M., Keizer, J.J., 2013b (Accepted 21 

August). Polyacrylamide application versus forest residue mulching for reducing 

post-fire runoff and soil erosion. Science of the Total Environment. 

http://dx.doi.org/10.1016/j.scitotenv.2013.08.066 

Prats S. A., Malvar, M.C., Vieira, D.C.S., Keizer, J.J., 2013a (Accepted 4 July). 

Effectiveness of hydromulching to reduce runoff and erosion in a recently burnt and 

logged Maritime Pine stand in north-central Portugal. Land Degradation and 

Development. DOI: 10.1002/ldr.2236. 

Prats S.A., MacDonald, L.H., Monteiro M., Ferreira A.J.D., Coelho C.O.A., Keizer J.J., 

2012. The effectiveness of forest residue mulching in reducing overland flow 
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generation and associated soil losses following wildfire in north-central Portugal. In: 

Geoderma 191, 115-124. 

Malvar, M., Prats S.A., Nunes, J.P., Keizer, J.J.,  2011. Post-fire overland flow generation 

and inter-rill erosion under simulated rainfall in two eucalypt stands in north-central 

Portugal. Environmental Research 111, 222–236. 

Bilro, L., Prats, S.A., Pinto, J.L., Keizer, J.J., Nogueira, R.N., 2011. Turbidity sensor for 

determination of concentration, ash presence and particle diameter of sediment  

suspensions. In: Wojtek J. Bock, Jacques Albert, Xiaoyi Bao (Eds.) 21st 

International Conference on Optical Fibre Sensors. Proceedings of SPIE Vol. 7753 

(SPIE, Bellingham, WA 2011), 775356 1/775356-4. 

Bilro L., Prats S.A., Pinto J.L., Keizer J.J., Nogueira R.N., 2010. Design and performance 

assessment of a POF based sensor for measuring water turbidity. Measurement 

Science and Technology. 21, 10, 107001. Link: http://dx.doi.org/10.1088/0957-

0233/21/10/107001

- Papers in national scientific periodicals with referees 

Submitted 

Martins M.A.S., Prats S.A., Keizer J.J., (Submitted September 2013). Avaliação dos 

efeitos do mulching e PAM na resposta hidrológica e de erosão no solo após o fogo. 

Silva Lusitana. 

Published/In press 

Boogert F.J., Martins M.A.S., Bilro L., Prats S.A., Nogueira R.N., Keizer J.J. 2013. 

Assessing the potential of a newly-developed turbidity sensor for estimating 

sediment yields from recently burnt catchments. Flamma, 4,139-141. (ISSN 2171-

665X). 

Martins M.A.S., Prats S.A., Ben-Hur, Keizer J.J., 2013. Evaluation of two emergency 

treatments for reducing post-fire runoff and sediment losses. Flamma, 4, 1-4. 

(ISSN:2171-665X). 
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Malvar, M., Prats S.A., Boulet A.K., Nunes, J.P., Keizer, J.J., 2012. Resposta hidrológica 

e erosão do solo a partir de simulações de chuva em eucaliptais ardidos. Revista 

Recursos Hidricos, vol33, n1, 29-46.DOI: 10.5894/rh33n1-3. 

- Papers in Conference Proceedings 

Prats, S.A., Bilro L., Pinto, J.L., Nogueira, R.N., Keizer, J.J. 2010. Comparison of a new, 

fiber-optical sensor with a classical turbidity sensor, with special emphasis on 

recently burnt areas. In: Avances de la Geomorfología en España, 2008-2010. XI 

Reunión Nacional de Geomorfología, pp.267-270. (ISBN: 978-84-693-4551-1).  

Solsona, Spain, September 20-24 2010.  

Prats, S.A., Bilro, L.*, Pinto, J. L., Nogueira, R. N., Keizer, J.J., 2009. Development of a 

POF based sensor for measuring water turbidity in recently burnt forest fires. In:The 

18th International Conference on Plastic Optical Fibers. Dockside, Cockle Bay 

Wharf, on Darling Harbour, Sydney, Australia. Pp: 4. September 9-11, 2009 

Pinheiro A. *, Prats, S.A., Carvalho T.C., Boulet A.K., Ferreira A.D.J., Coelho C.O.A. 

2009.Comparação da efectividade de diferentes técnicas de conservação do solo e 

da água, após incêndios florestais, baseada em pesquisa bibliográfica. In: Book of 

Abstracts of UMS 09 – III Congreso sobre Uso y Manejo del Suelo pg. 15-16, (ISBN: 

978-84-692-5311-3), Lugo, Spain, July 6-7, 2009.  

Keizer J.J., Nunes J.P., Fernandes I.A., Ferreira R.S., Pereira L.M., Varela M.E., Pereira 

V.M., Santos A.S., Malvar M.C., Maia P.A., Fernandes H., Faria S., Coelho C.O., 

Vieira D.C., Prats S.A., Benali A., Sande Silva J., Magalhães M.C., Ferreira A.D.J. 

(2009). Erosão do solo após incêndios florestais a multiplas escalas espaciais, 

Actas do 6.º Congresso Nacional Florestal, pp. 193-201 (Ponta Delgada, Portugal, 

6-9 October, 2009). 

Keizer J.J. *, Nunes J.P., Palacios E., Beekman W., Malvar M.C., Prats S.A., Ferreira 

R.S.V. & Varela, M.E., 2008.Soil erosion modelling for two recently burnt eucalypt 

slopes - comparing USLE, MMF and initial MEFIDIS results In: Proceedings of the 

15th International Congress of ISCO (Budapest, 18-23/05/2008) (CD) 
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- Oral Presentations 

Prats S.A.*, Martins M.A.S., Malvar M.C., Ben-Hur M., Keizer J.J. 2013. Does 

polyacrylamide reduce post-fire runoff and inter-rill erosion as effectively as forest 

residue mulching? In: Geophysical Research Abstracts EGU2013-1605, 

proceedings of the European General Assembly. Session SSS9.6/GM6.7/HS12.6, 

room B6 (Vienna, Austria, 8-12 Apr 2013). 

Faria S.R.*, Varela M.E., Pinto R., Caria M., Skulska I., Prats S.A., Esteves V., Keizer J.J. 

2012. Soil carbon stocks and losses in a recently burnt forest area in north-central 

Portugal. In: EUROSOIL2012, 4th Int.Congress of the ECCS “Soil science for the 

benefit of mankind and environment” (Bari, Italy, 2-6 July 2012). 

Nunes J.P.*, Wahren F.T., Santos J.M., Gosch L., Malvar M.C., Wahren A., Rial-Rivas 

M.E., Schwärzel  K., Bernard-Jannin L., Hawtree D., Vieira D.C.S., Prats S.A., van 

Hall I., van Beersum S., Boulet A.K., Schumacher F., Pinto R., Cuco A., Petzold R.,  

Keizer J.J., Feger K-H. 2012.Soil and water interactions in Iberian eucalypt and pine 

forest plantations. In: EUROSOIL2012, 4th Int.Congress of the ECCS “Soil science 

for the benefit of mankind and environment” (Bari, Italy, 2-6 July 2012). 

Keizer J.J.*, Nunes J.P., Abrantes N., Campos I., Caria M.M.P.F., Cerqueira M.M.A., 

Esteves V.I., Faria S., Ferreira R.S.V., Machado A.I., Maia P.,  Malvar M.C., Martins 

M.A.S.,  Nunes M.I.S., Pinto R., Prats S., Skulska I., Varela M.E.T., Vasques 

A.R.P.F., Vieira D.C.S. 2012. Soil erosion assessment & mitigation following 

wildfires in Portugal: the state-of-affairs of the EROSFIRE decision-support tool for 

post-fire land management and impact assessment of future scenarios. In: Climate 

change & forest fires in the Mediterranean basin: management & risk reduction (Nir 

Etzion, Israel, 24-26/01/2012). 

Coelho C.O.A.*, Prats S.A., Pinheiro A, Carvalho T., Boulet, A-K., Ferreira A.D.J., Soares 

J. 2011. Effectiveness of two mulch treatments controlling soil erosion and water 

conservation. In: Conferences Proceedings of FESP-III (Guimaraes, Portugal, 15-19 

March 2011). 

ttp://www.lasics.uminho.pt/ocs/index.php/nigp/fesp2011/paper/view/2802 

Keizer J.J.*, Nunes J.P., Faria S.R., Ferreira R.S.V., Malvar M.C., Prats S.A., Rodrigues 

J., Varela M.E.T., Vieira D.C.S. 2011.Runoff generation across spatial and temporal 

scales following wildfire in north-central portuguese forest plantations. In: Managed 
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forest in Future Landscapes: Implications for water and Carbon Cycles (Santiago de 

Compostela, Spain, 8-11 May 2011). 

Keizer J.J.*, Nunes J.P. , Rial-Rivas M.E. , Varela M.E.T. , Abrantes N.J. , Vasques 

A.R.P.F., Vieira D.C.S., Campos I.M.A.N. , Malvar M. , Maia P.A.A. , Ferreira 

R.S.V., Prats S.A., Boulet A.K. , Pedrosa E.T., Fernandes I.A.C., Faria S.R. 

2010.Land degradation risk assessment following wildfire in Portugal - the challenge 

of an integrated approach. In: FUEGORED 2010; Research and post-fire 

management: Soil protection and rehabilitation techniques for burnt forest 

ecosystems (Santiago de Compostela, Spain, 6-8 October 2010). 

Keizer J.J.*, Nunes J.P., Malvar M.C., Prats S.A., Ferreira R.S.V., Vieira D.C.S., Varela 

M.E., Fernandes I., Faria S., 2010.Runoff generation across spatial and temporal 

scales following wildfire. In: COST Action FP 0601 FORMAN - 7th Science 

Workshop_Helsinki (Helsinki, 6-9 September 2010). 

Keizer J.J.*, Malvar C., Prats S.A., Nunes J.P., 2010 (solicited contribution) Repeat rainfall 

simulation experiments for assessing the evolution of overland flow generation and 

inter-rill erosion following wildfire. In: Geophysical Research Abstracts Vol. 12, 

EGU2010-6800, proceedings of the EGU 2010 General Assembly (Vienna, Austria, 

May 2010). Prats S.A., MacDonald L.H., Ferreira A.J.D., Keizer J.J.2010. Runoff, 

Erosion, and Effects of Mulching on Burned Pine and Eucalyptus Plantations, 

Central Portugal. AGU Hydrology Days Proceedings, March 22 - March 24, 2010 

http://hydrologydays.colostate.edu/ 

Prats, S.A.; Bilro, L.; Ferreira R.S.V.; Nogueira, R. N.; Keizer, J.J., 2009. Estimating 

sediment exports from recently burnt areas using turbidity sensors: comparison of a 

new, fibre-optic-based sensor versus a classical optical backscatter sensor. In: 

FUEGORED 2009 International Meeting, Seville, Spain, November 2009. 

Keizer, J.J., Nunes J.P., Vieira D.C.S., Varela M.E.T., Prats S.A., Pereira L.M.G., Malvar 

M.C., Maia P.A.A., Ferreira R.S.V., Fernandes I.A.C., Faria S., dos Santos A.S. 

2009. Runoff and erosion from micro-plot to catchment-scale in a recently burnt 

forest area in central Portugal In: FUEGORED 2009 International Meeting, Seville, 

Spain, November 2009.  

Fernandez C., Vega JA, Vieira D.C.S., Prats S.A. 2009. Assessing soil erosion after fire in 

NW Spain: Performance of RUSLE and revised Morgan-Morgan-Finney models in 
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contrasting fire severity levels and post-fire erosion control treatments. In: 

FUEGORED 2009 International Meeting, Seville, Spain, November 2009. 

 Ferreira A.J.D.*, Coelho C.O.A., Ferreira C.S.S., Shakesby R.A., Walsh R.P.D., Prats, 

S.A. & Keizer J.J. 2009. Towards a theory of soil degradation processes following 

forest fires. Processes and thresholds from 20 years of experiments in Portugal. 

Keynote lecture in: 2nd International Conference BIOHYDROLOGY 2009: A 

changing climate for biology and soil hydrology interactions. Bratislava, Slovakia, 

September 21–24, 2009. 

Prats S.A.*, Amaral L.P., Coelho C.O.A., Ferreira A.J.D, Boulet A.-K., Pinheiro A. 

2008.Comparing the effectiveness of two different mulch treatments for soil erosion 

and water conservation after forest fires. FUEGORED International  Meeting, 

Valencia, November 2008.   

Prats S. A.*, Amaral L.P., Coelho C.O.A., Ferreira A.D.J., Boulet A.K., Pinheiro A. 2008. 

Comparing hydrological and erosive response of two different mulch treatments for 

soil and water conservation, immediately after forest fires. 2008. In: PHOENIX 

Conference. Lisbon  11-July 2008 

Prats S.A.*, Malvar M.C., Ferreira R.S.F., Nunes J.P., Keizer J.J. 2008. Post-fire erosion 

measurements and modelling using repeat rainfall simulations in two eucalypt 

stands in Portugal.  In: Abstract Book of Final COST634 International Conference 

“On- and Off-site Environmental Impacts of Runoff and Erosion”, pp.100; (Aveiro, 

Portugal, June 30-July 4, 2008). 

Prats S.A.*, Amaral L.P., Coelho C.O.A., Ferreira A.J.D, Pinheiro A., Barragán F., Boulet 

A.-K. 2008. Mitigation techniques and strategies to reduce soil and water 

degradation immediately after forest fires.  In: Abstract Book of Final COST634 

International Conference “On- and Off-site Environmental Impacts of Runoff and 

Erosion”, pp.106; (Aveiro, Portugal, June 30-July 4, 2008). 

Ferreira, A.J.D.*, Coelho C.O.A., Shakesby RA, Boulet AK., Prats S., Stoof C., Keizer JJ. 

2008. Connectivity and thresholds in water and sediment transport in burned areas, 

Portugal. In: Abstract Book of Final COST634 International Conference “On- and 

Off-site Environmental Impacts of Runoff and Erosion”, pp.66; (Aveiro, Portugal, 

June 30-July 4, 2008). 

*: current presentation. 
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- Posters in Conferences 

Malvar C.M., Prats A.S., Martins M.A.S., Vieira D.C.S., Machado A.I., Sherpa D., 

Gonzalez-Pelayo O., Valente S., Ferreira A.J.D., Coelho C.O.A., Keizer J.J. 2013. 

Scientific steps through a sustainable forest management in north-central Portugal: 

Assessing the impacts of pre- and post-fire ground preparations, logging and 

mitigation treatments on post-fire runoff and erosion. In: Participar no rumo e no 

cuidar da floresta portuguesa: um repto para todos? Conferência nacional do 

projeto Forestake. Universidade de Aveiro (Aveiro, 20-21/09/2013).  

Prats S.A., Martins M.A.S., Malvar M.C., Coelho C.O.A., Ferreira A.J.D., Keizer J.J., 2013. 

Post-fire mulching: revisiting an effective method for reducing runoff and erosion. In: 

Research Day in the University of Aveiro (Aveiro, 20-06-2013). 

Sequeira, F.R.C., Boulet, A.K., Prats, S., Nogueira, R., Keizer, J.J., Bilro, L. 2013. 

Experimental assessment of a plastic optical fibre based turbidity sensor. In: RIAO-

OPTILAS conference (Porto, 22-26/07/2013). 

 Keizer J.J., Bilro L., Martins M.A.S., Machado A.I., Vieira D.C.S., Prats S.A., Boulet A.K., 

Sequeira F.R.C., Nogueira R. 2013. The suitability of plastic optical fiber turbidity 

sensors to estimate sediment and organic matter loads in runoff from recently burnt 

areas. EGU 2013 General Assembly EGU2013-13288 (Vienna, 10/04/2013). 

Martins M.A.S., Machado A.I., Serpa D., Prats S.A., Faria S., Varela M.E., Keizer J.J., 

2013. Runoff and inter-rill soil erosion following wildfire and terracing in north-central 

Portugal. EGU 2013 General Assembly EGU2013-1606 (Vienna, 10/04/2013). 

Boogert F.J., Martins M.A.S., Bilro L., Prats S.A., Nogueira R.N., Keizer J.J., 2012. 

Comparing turbidity sensors performance for TSS evaluation in field measurements. 

In: IV FUEGORED International Meeting (Tenerife, Spain, 24-27/10/2012)  

Martins M.A.S., Prats S.A., Keizer J.J., 2012. Evaluation of two stabilization treatment in 

reducing soil erosion after fire. IV FUEGORED International Meeting (Tenerife, 

Spain, 24-27/10/2012). 

Martins M.A.S., Serpa D., Machado A.I., de Lenne R.F.H., Linden A.G.v.d., Faria S.R., 

Ferreira R.S.V., Skulska I., Prats S.A., Varela M.E.T., Keizer J.J., 2012. Effects of 
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terrace construction on runoff and erosion in a recently burnt forest area in north-

central Portugal. IV FUEGORED International Meeting (Tenerife, Spain, 24-

27/10/2012) 

Martins M.A.S., Machado A.I. , Serpa D., Prats S.A., Rial M.E.R., Keizer  J.J., 2012. 

Impacts of human activities on the hydrological and erosion processes in a burnt 

catchment area in north-central Portugal ERB2012, 14th Biennal Conference, 

“Studies of Hydrological Processes in Research Basins: Current Challenges and 

Prospects” (St. Petersburg, 14-20/09/2012). 

Faria S.R,Varela M.E., Pinto R., Caria M.M.P.F., Prats S.A., Ferreira R.S.V., Machado 

A.I., Martins M.A.S., Esteves V., Keizer J.J., 2012. Wildfire effects on soil organic 

carbon and losses in a burnt forest area, north-central Portugal 9th International 

Symposium on Environmental Geochemistry (Aveiro, 15-21/07/2012). 

Keizer J.J., Pinto R., Varela M.E.T., Prats S.A., Nunes M.I.S., Nunes J.P., Martins M.A.S., 

Malvar M.C, Machado A.I., Ferreira R.S.V., Faria S.R., Esteves V.I., Cerqueira 

M.M.A., Caria M.M.P.F., Campos I.M.A.N., Abrantes N.J., 2012. FIRECNUTS - 

wildfire effects on carbon and nutrient losses by runoff EUROSOIL2012, 4th 

Int.Congress of the ECCS “Soil science for the benefit of mankind and environment” 

(Bari, 2-6/07/2012)  

Prats S.A., Malvar M.C., Vieira D.C.S., Maia P.A.A., Faria S.R., Vasques A., Keizer J.J., 

2012. Comparing soil wetting and runoff generation patterns at small scale in control 

and hydromulched areas in a burnt Maritime Pine stand in central Portugal 

EUROSOIL2012, 4th Int.Congress of the ECCS “Soil science for the benefit of 

mankind and environment” (Bari, 2-6/07/2012). 

Prats S.A., Martins M.A.S, Faria S.R., Keizer J.J., 2012. Runoff and soil erosion control 

with PAM and forest residue mulching after forest fires in Portugal.   

EUROSOIL2012, 4th Int.Congress of the ECCS “Soil science for the benefit of 

mankind and environment” (Bari, 2-6/07/2012). 

Vieira D.C.S. , Malvar M.C., Prats S.A., Nunes J.P., Keizer J.J. , 2012. MEFIDIS 

calibration for post-fire erosion at the micro-plot scale under simulated rainfall in 

eucalypt plantations in north-central Portugal EUROSOIL2012, 4th Int.Congress of 

the ECCS “Soil science for the benefit of mankind and environment” (Bari, 2-

6/07/2012). 
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Varela M.E., S.R. Faria, I.M.A.N. Campos, M.M.P.F. Caria, R.S.V. Ferreira, A.I. Machado, 

M.A.S. Martins, R. Pinto, S.A. Prats, V.I. Esteves, J.J. Keizer, 2012. Effects of 

wildfire on soil organic carbon export by runoff in Central Portugal. Geophysical 

Research Abstracts, Vol. 14, EGU2012-9971 (Vienna, 10/04/2012). 

Faria. S., Vieira D.C.S., Varela M.E., Prats S.A., Malvar M.C., Keizer J.J., 2011. Temporal 

variation in topsoil water repellency in recently burnt eucalypt and pine stands in 

north-central of Portugal. Geophysical Research Abstracts Vol. 13, EGU2011-8873; 

proceedings of the EGU 2011 General Assembly. April 2011, Vienna, Austria. 

Prats S.A., Malvar M.C., Faria S.R., Vieira D.C.S., Maia P.A.A., Vasques A., Albuquerque 

A., Xufeng Shen M., Vermin H., Keizer J.J., 2011. Effectiveness of hydro-mulching 

to reduce runoff and erosion in a recently burnt and logged Maritime Pine stand in 

north-central Portugal.  FESPIII 2011- International meeting of fire effects on soil 

properties, 3rd edition (Guimaraes, Portugal, 15-19 March 2011). 

http://www.lasics.uminho.pt/ocs/index.php/nigp/fesp2011/paper/view/2805/0 

Coelho C.O.A., Prats S.A., Pinheiro A, Carvalho T., Boulet, A-K., Ferreira ADJ., 2011. 

Immediate post-fire soil interventions in forested areas. FESPIII 2011- International 

meeting of fire effects on soil properties, 3rd edition (Guimaraes, Portugal, 15-19 

March 2011). 

http://www.lasics.uminho.pt/ocs/index.php/nigp/fesp2011/paper/view/2801 

Keizer J.J., Abrantes N.J., Campos I.M.A.N., Cerqueira M.M.A., Erny G., Esteves V.I.,  

Faria S.R., Ferreira R.S.V., Malvar M.C., Nunes J.P., Nunes M.I.S., Prats S.A., 

Varela M.E.T., Van den Heuvel S., Xufeng Shen M., 2011. Soil nutrients and organic 

matter stocks and their losses by runoff following wildfire in north-central Portugal.  

FESPIII 2011- International meeting of fire effects on soil properties, 3rd edition 

(Guimaraes, Portugal, 15-19 March 2011). 

http://www.lasics.uminho.pt/ocs/index.php/nigp/fesp2011/paper/view/2804 

Keizer J.J., Nunes J.P., Sande Silva J., Pereira L.M.G., Vieira D.C.S., Varela M.E.T., 

Prats S.A., Pinheiro J., Pereira V.M.F.G., Malvar M.C., Machado H..Maia P.A.A., 

Ferreira R.S.F., Faria S., Coelho C.O.A., Albuquerque A., Abrantes N.J., Benali A., 

Santos A.S. F., Magalhães M.C.F.S., Ferreira A.J.D., Fernandes I.A.C., Cambra S., 

2010. The study of soil, hydrological, erosion and vegetation processes following 
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wildfire in the Colmeal study area, central Portugal. VI International Conference on 

Forest Fire Research (Coimbra, 15-18/11/2010). DOI:http://www.adai.pt/icffr/2010/ 
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