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NECESSARY OPTIMALITY CONDITIONS FOR INFINITE
HORIZON VARIATIONAL PROBLEMS ON TIME SCALES
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ABSTRACT. We prove Euler—Lagrange type equations and transversality con-
ditions for generalized infinite horizon problems of the calculus of variations
on time scales. Here the Lagrangian depends on the independent variable, an
unknown function and its nabla derivative, as well as a nabla indefinite integral
that depends on the unknown function.

1. Introduction. In recent years, it has been shown that the behavior of many
systems is described more accurately using dynamic equations on a time scale or a
measure chain [1, 2, 8]. If the variational principle holds as a unified law [5], then the
above time scale differential equations must also come from minimization of some
delta or nabla functional with a Lagrangian containing delta or nabla derivative
terms [7, 10, 12]. Here we consider the following infinite horizon variational problem:

oo

J(x) = /L (t,2”(t), 2V (t), 2(t)) Vt —> extr, (1)

a
where “extr” means “minimize” or “maximize”. The variable z(t) is defined by

t

z(t) = /g (7', xp(T),xv (7')) A\

a

Integral (1) does not necessarily converge, being possible to diverge to plus or minus
infinity or oscillate. Problem (1) generalizes the ones recently studied in [6, 11].
The paper is organized as follows. In Section 2 we collect the necessary definitions
and results of the nabla calculus on time scales, which are necessary in the sequel.
In Section 3 we state and prove the new results: we prove necessary optimality
conditions to problem (1), obtaining Euler-Lagrange type equations in the class of
functions x € C}; (T, R") and new transversality conditions (Theorems 3.4 and 3.5).

2010 Mathematics Subject Classification. Primary: 49K05; Secondary: 34NO05.

Key words and phrases. Time scales, calculus of variations, Euler—Lagrange equations,
transversality conditions, infinite horizon.

Part of first author’s Ph.D., which is carried out at the University of Aveiro under the Doctoral
Programme in Mathematics and Applications of Universities of Aveiro and Minho.

145


https://core.ac.uk/display/19771896?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://dx.doi.org/10.3934/naco.2013.3.145

146 M. DRYL AND D. F. M. TORRES

2. Preliminaries. In this section we introduce basic definitions and theorems that
are needed in Section 3. For more on the time scale theory we refer the reader to
[1, 2, 13]. A time scale T is an arbitrary nonempty closed subset of R. All the
intervals in this paper are time scale intervals with respect to a given time scale T
(for example, by [a, b] we mean [a,b] N'T).

Definition 2.1 (e.g., Section 2.1 of [13]). The forward jump operator ¢ : T — T
is defined by o(t) := inf{s € T : s > t} for t # supT and o(supT) = supT if
supT < +oo. Similarly, the backward jump operator p : T — T is defined by
p(t) :=sup{se€T:s <t} fort#infT and p(inf T) = inf T if inf T > —o0.
Definition 2.2 (e.g., Section 2.1 of [13]). The backward graininess function v :
T — [0, 00) is defined by v(t) :=t — p(t).

A point t € T is called right-dense, right-scattered, left-dense or left-scattered
if o(t) =t, o(t) > t, p(t) = ¢, p(t) < t, respectively. We say that ¢ is isolated
if p(t) <t < o(t), that ¢ is dense if p(t) = ¢ = o(t). If T has a right-scattered
minimum m, then define T,, := T — {m}; otherwise, set T, := T. To simplify the
notation, let f*(t) := f(p(t)).

Definition 2.3 (e.g., Section 2.2 of [13]). We say that function f : T — R is nabla
differentiable at t € T, if there is a number fV (¢) such that for all € > 0 there exists
a neighborhood U of t such that

F2(t) — £(5) — £ ()(plt) — 9)] < elp(t) — 5] for all s € U.
We call fV(t) the nabla derivative of f at t. Moreover, f is nabla differentiable on
T provided fV(t) exists for all t € T,.
Theorem 2.4 (e.g., Theorem 8.41 of [1]). Assume f,g: T — R are nabla differen-
tiable at t € T. Then:

1. The sum f+g:T — R is nabla differentiable at t with

(F+9)7(0) = F7(0) +97(0).
2. For any constant o, aof : T — R is nabla differentiable at t and
(@7 (1) = af (1),
3. The product fg: T — R is nabla differentiable at t and the following product
rules hold:
(F9)7 (1) = F7(0a(t) + F97 () = F¥ ()" (0) + F(1)g” (1)
4. If g(t)gP(t) # 0, then f/g is nabla differentiable at t and the following quotient

rule hold:
(i)v@ _ Y (Wg) = F(g” (1)
9 g(t)g*(t) '
Definition 2.5 (e.g., Section 3.1 of [2]). Let T be a time scale, f : T — R. We
say that function f is ld-continuous if it is continuous at left-dense points and its
right-sided limits exist (finite) at all right-dense points.

Definition 2.6 (e.g., Definition 9 of [13]). A function F : T — R is called a nabla
antiderivative of f : T — R provided FV (t) = f(t) for all t € T,. In this case we
define the nabla integral of f from a to b (a,b € T) by

b
/ FOVE = F(b) — Fla).
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The set of all ld-continuous functions f : T — R is denoted by C;q = Cj4(T,R),
and the set of all nabla differentiable functions with ld-continuous derivative by
Ciy = Cly(T. R).

Theorem 2.7 (e.g., Theorem 8.45 of [1] or Theorem 11 of [13]). Ewvery ld-continuous
function f has a nabla antiderivative F. In particular, if a € T, then F defined by

t
F(t)= / f(r)Vr, teT,
is a nabla antiderivative of f.

Theorem 2.8 (e.g., Theorem 8.47 of [1] or Theorem 12 of [13]). Ifa,b€ T, a < b,
and f,g € Ci(T,R), then
b b

b
1 [+ 909 = [ 19+ [gwve

a

2. 7f(t)w = 0;

b b
5. [ 105" ®9t = f090li - [ 70
a a b

4. If f(t) >0 for all a <t <b, then [ f(t)Vt > 0;

5. Ift €Ty, then t f(MVT=v)f(t).
p(t)

Definition 2.9. If a € T, sup T = 400 and f € Cjy([a, +o0[, R), then we define the
improper nabla integral by

+oo b
/f(t)Vt = lim /f(t)w,

b—+o0

provided this limit exists (in R := R U {—o00, +00}).

Theorem 2.10 (e.g., [4]). Let S and T be subsets of a normed vector space. Let f
be a map defined on T x S, having values in some complete normed vector space.
Let v be adherent to S and w adherent to T'. Assume that

1. lim f(t,x) exists for each t € T;
T—v

2. tlirn f(t,x) exists uniformly for x € S.
—w

Then, lim lim f(¢t,x), im lim f(¢,2) and  lim  f(¢,x) all exist and are equal.

t—wxr—v rx—vt—w (t,z)ﬁ)(wﬁy)

The next result can be easily obtained from Theorem 4 of [11] by using the
delta-nabla duality theory of time scales [3, 9, 10].

Theorem 2.11. Suppose that z, is a local minimizer or local mazximizer to problem

b
L(z) = /L (t,xp(t),xv(t),z(t)) Vt — extr,
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where the variable z is the integral defined by

in the class of functions x € C,(T,R™) satisfying the boundary conditions x(a) = «
and x(b) = B. Then, z, satisfies the Euler—-Lagrange system of equations

v

b
0:(2) (1) / L.z, (VT — | gula) (1) / L.fz, 2)(r)Vr

+ L[z, 2](t) — LY[x, z](() =0

for all t € [a,b),, where L, L, and L, are, respectively, the partial derivatives of
L(-,-,-, ) with respect to its second, third and fourth argument, g, and g, are, respec-
tively, the partial derivatives of g(-,-,-) with respect to its second and third argument,
and the operators [-,-] and () are defined by [x,2](t) = (t,z*(t),zV (t),2(t)) and

() () := (t, xP(t), xv(t)).

3. Main Results. Let T be a time scale such that sup T = 4+oc0. Suppose that a,
T,T' € T are such that T > a and T’ > a. The meaning of L[z, z|(t), g{z)(t) and
that of partial derivatives L[z, z](t), L[z, 2](t), L.[z, 2](t), g{x)(t) and g,{x)(t)
is given in Theorem 2.11. Let us consider the following variational problem on T:

oo

T(@) :z/ooL[;v,z](t)Vt:/ L(t,a?(t), 2% (1), 2(8)) V¢ —s max  (2)

subject to x(a) = z,. The variable z is the integral defined by

z(t) :z/ glx)(T)VT :/ g(T, $p(T),$V(T)) V.

We assume that z, € R", n € N, (u,v,w) — L(t,u,v,w) is a C}(R?"*1 R) and
(u,v) = g(t,u,v) a C}(R?",R) function for any ¢ € T, and functions ¢t — L[z, 2](t)
and t — g, (z)(t) are nabla differentiable for all z € C},(T,R").

Definition 3.1. We say that x is an admissible path for problem (2) if z €
ClL (T,R") and z(a) = z,.
Definition 3.2. We say that z, is a weak maximizer to problem (2) if z, is an
admissible path and, moreover,
T/
. . _ <
T1—1>r£oo Tl/ng (L[z, 2](t) — L]zw, 24](t)) VE <0

for all admissible path x.

Lemma 3.3. Let g € Ci4(T,R). Then,
T/
lim inf /g(t)np(t)Vt =0

TS00 T/>T
a

for all n € Cyy (T, R) such that n(a) = 0 if, and only if, g(t) = 0 on [a, +ool.
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Proof. The implication < is obvious. Let us prove the implication = by contra-
diction. Suppose that g(t) # 0. Let tg be a point on [a, +00[ such that g(tg) # 0.
Suppose, without loss of generality, that g(tg) > 0. Two situations may occur: tg
is left-dense (case I) or tg is left-scattered (case II). Case I: if t is left-dense, then
function g is positive on [t1, tg] for t1 < tg. Define:

o (to—t)(t—tl) for t € [tl,to],
n(t) = { 0 otherwise.

Then,
- { B0 et
If p(t) € [t1,to], then n(p(1)) = (to — p(1))(p(t) — t2) > 0. Thus,
T’ to
lim inf /g(t)np(t)Vt:/g(t)n(p(t))vt >0

T 5 Yoo T'ST
a t1

and we obtain a contradiction. Case II: ty is left-scattered. Two situations are then
possible: p(to) is left-scattered or p(ty) is left-dense. If p(tg) is left-scattered, then
p(p(to)) < p(to) < to. Let t € [p(to),to]. Define

)= { g(to) for t = p(to),

n(t 0 otherwise.

Then,
n(p(to)) = { g(to) for plto) = p(p(to)),

0 otherwise.

It means that n(p(to)) = g(to) > 0. From point 5 of Theorem 2.8, we obtain

T’ to

i - p — p
i nt [ gom@ve= [ g eve
a p(to)
= g(to)n(p(to))v(to) = g(to)g(to)(to — p(to)) > 0,

which is a contradiction. It remains to consider the situation when p(tg) is left-dense.
Two cases are then possible: g(p(to)) # 0 or g(p(to)) = 0. If g(p(tg)) # 0, then

we can assume that g(p(to)) > 0 and g is also positive in [t2, p(to)] for t2 < p(to).
Define

o= { = <t

Then,
_§ (p(to) = p(t)) (p(t) — t2) for p(t) € [t2, p(to)],
n(p(t) = { 0 otherwise.
On the interval [ta, p(t9)] the function n(p(t)) is greater than 0. Then,

T p(to)

; ; P _ P
L ik [ g0 (Ve / g(tm" )Vt > 0,
a to

which is a contradiction. Suppose that g(p(to)) = 0. Here two situations may occur:
(1) g(t) = 0 on [ts, p(to)] for some t3 < p(to) or (ii) for all t3 < p(to) there exists



150 M. DRYL AND D. F. M. TORRES

t € [ts, p(to)] such that g(t) # 0. In case (i) t3 < p(to) < to. Let us define

g(to) fort = p(to),
n(t) =4 () fort e [ts, p(to)l,
0 otherwise,

for function ¢ such that ¢ € Ciq, ¢(t3) = 0 and ¢(p(to)) = g(to). Then,
9(to) for p(t) = p(to),
n(p(t)) = e(p(1)) for p(t) € [ts, pto);

0 otherwise.

It follows from point 5 of Theorem 2.8 that

T’ to to

i int [ g0 ©9e= [oww 9= [ gomweve

T tooT'>T
a ts p(to)

= v(to)g(to)n(p(to)) = (to — p(to))g(to)n(p(to)) > 0,

which is a contradiction. In case (ii), t3 < p(to) < to. When p(ty) is left-dense,
then there exists a strictly increasing sequence S = {s; : k € N} C T such that
klim sk = p(to) and g(sg) # 0 for all k € N. If there exists a left-dense s, then we
—00

have Case I with ty := si. If all points of the sequence S are left-scattered, then
we have Case IT with tg := s;, i € N. Since p(tp) is a left-scattered point, we are in
the first situation of case II and we obtain a contradiction. Therefore, we conclude
that g =0 on [a, +0oo]. O

Corollary 1. Let h € Cj4(T,R). Then,
T/

. . v o
Th_r)nOO Tlng/h(t)n )Vt =0 (3)

a

for allm € Ciq (T,R) such that n(a) = 0 if, and only if, h(t) = ¢, c € R, on [a, +o0].

Proof. Using integration by parts (third item of Theorem 2.8),

T’ T’ T
[ ramT@ve= nonoliL ~ [0 @O =) - [ 0w o

holds for all € Cj4(T,R). In particular, it holds for the subclass of n with n(T") = 0
and (3) is equivalent to

T/
. . v o _
Th_r)mOO 7“1’ng RY (t)nf (t)Vt = 0.
Using Lemma 3.3, we obtain Y (t) = 0, i.e., h(t) = ¢, ¢ € R, on [a, +00]. O

Theorem 3.4. Suppose that a weak mazimizer to problem (2) exists and is given
by x,. Let p € CL (T,R™) be such that p(a) = 0. Define

’

A(E,T’) — / L (tvxf(t) + Epp(t)vx*v (t) + ipv(t), Z*(t,p)) - L [.’L'*, Z*] (t)

vt,

a
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where

~

ot p) = / (s + ep) (1) VT,

s}

w(t) = / o(e.) (1) VT,

and

V(e,T):= inf cA(e, T"),

T'>T
V(e) = lim V(e,T).
T—o00
Suppose that
1. lir% V(ijT) exists for all T;
e—
2. lim YEI eqists uniformly for €;

T—o0 €

3. for every T" > a, T > a, ¢ € R\ {0}, there exists a sequence (A(e,T},)),cn
such that ILm A(e,T)) = Ti/I;fT A(e, T") uniformly for e.

Then, z, satisfies the Euler—Lagrange system of n equations

T’ T’ v
Jim i 30,(0)(0) [ LoV~ | 9a)0) [ Lile sl
p(t) p(t)

+ L[z, 2)(t) — LY [2,2](t) =0 (4)
for all t € [a,+oo[ and the transversality condition

lim inf {z(T")- [Ly[z, 2)(T") + go(a)(T")v(T") L. [z, 2](T")]} = 0. (5)
To00 T'>T
Proof. If z, is optimal, in the sense of Definition 3.2, then V(¢) < 0 for any € € R.
Because V(0) = 0, then 0 is a maximizer of V. We prove that V is differentiable at
0, thus V/(0) = 0. Note that

T T
0= v/(0) = tim Y& — i pim YED - iy i YT
e=0 € e=0T—o0 15 T—o0 e—0 IS
= lim lim inf A(e,T') = lim lim lim A(e,T,)
T—ooe—=0T'>T T—o00 e—0n—00
= lim lim lim A(e,7,) = lim inf lim A(e,T")
T—o00 n—o0 e—=0 T—o0T'>T e—0
T/
T L) e, 27 (1) + 7 (1), 24 (41) — Ll ) (1)
= lim inf lim Vit
T—ooT'>T e—=0 3
T/

vt,

. . / . L (tu (Ei(t) + Epp(t)u CEY (t) + Epv (t)7 Z*(tvp)) — L [ZC*, Z*] (t)
= lim inf lim
T—o0o T'>T

e—0 €
a
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that is,
T/

35 P / le [y 20 27 (8) + Lol 2.)(8) -7 ()

t

+ L[y, 2(1) / (92 () (7) - p7(7) + gol)(r) - p¥ (7)) VT

a

Vi=0. (6)

Using the integration by parts formula given by point 3 of Theorem 2.8, we obtain:

T T
/ Lofee, 2)(8) - (V= Lyfa, (1) - p(t) /=7 — / LY e, 2)(1) - P (D) VE

.
= Ll () 1) = [ LYfonz)0) - (07

Next, we consider the last part of equation (6). First we use the third nabla differ-

entiation formula of Theorem 2.4:
v

T’ t
[/ Lefay, z](r)Vr / (92 (@) (1) - P (7) + gu () (7) - p¥ (7)) VT

o, 2] / Ge (@) () - PP(7) + ol () - ¥ (7)) V7

T/
+ (/ L[z, Z*](T)VT) (92 (20)(8) - P7(8) + go (@) (1) - PV (1)) -
)
Integrating both sides from ¢t = a to t = T”,

v

T rT t
/ [ / La[e., 2)(r)Vr / (g () () - P7() + gula)(r) - p¥ (1) Vr |t

a

:_/[ [, 2]( /tgm (@) (1) - P (7) + gl )(7) - pV (7)) VT | Vit
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The left-hand side of above equation is zero,

T rT t v
/ [ [ el 2097 [ (e 0) 0) + g le)(7) 57 (0) V7|
a tTl a t e
= [ Lo )97 [ (g0 0) 07 (0) + auln0) 57 () V7| =
and, therefore, -
T t
/ [Lz[xm(w [ (@@ (0) + gt )(r) 57 () I | 9
a T T a
— [ [ 2l 2097 (a0 270 + g0 )05 1) | 92
p(t)
T . (7)
:/ gz<x*>(t)~p”(t)/Lz[:zr*,z*](T)VT \V47
a p(t)
T T
+f {p%-gmxw [ Lelazdmyvr| v
a p(t)
Using point 3 of Theorem 2.8 and the fact that p(a) = 0,
T T
/{pv(t)-gv@*)(t)/Lz[:v*,z*](T)VT Vvt
a p(t)
-
=p(T") - gu{@)(T") | Lafws, 2] (1)VT
p(T")
T T’ v
—/ (gv<$*>(t)/LZ[JJ*,Z*](T)VT) pP(t)Vit
a p(t)
Then, from (6),
T’ T’

diminf [ Lol 2] (627 () Vit Lofas, 5)(T') p(T') - / LY [, 2] (1)1 () VE

—i—/ Qé L[z, 2 (T)VT (9o () () - PP () + go (@) () -pv(t))) vt
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»
= / Lalaa, 2 () - 9 (6)VE + Ly [, 2)(T) - p(T")
T ’ T
- / LY e, (1) - p(8) + / Lafra 2)(1)Virga (2)(6) - (1) b Vit
a p(t)
.
+9u(@)(T) | Lfwe, 2)(r)Vr - p(T")
p(T")
T T v
—/ gU<I*>(t)/LZ[{E*,Z*](T)VT p’(t)Vt
a p(t)

T T v
—I—gx(x*}(t)/Lz[x*,z*](T)VT— gv<x*>(t)/Lz[x*,z*](7’)V7’ Vit
p(t) p(t)
.
FLofe, 2T - p(T) + | ol )(T) / Lafes, 2)(1)V7 | - p(T) $ =0,
p(T")
(s)

We know that equation (8) holds for all p € C}, such that p(a) = 0, then, in
particular, it also holds for the subclass of p with p(T”) = 0. Therefore,

v I
lim inf /pp(t)- Lo [zy, 24 (t) — va[x*,z*](t) + gu{x)(t) / L.y, 2] (T)VT
T00 T'>T
a p(t)
, v
T

| gole () / Lo, 2)(0)Vr | | vE=0.

p(t)
Choosing p = (p1,...,pn) such that ps =--- = p, =0,

T T
Jim it [ 50) | Loyl 200 + 02, (0)0) [ Lofow ()97
a p(t)
.
LY [ 2 (1) — | gon (2 (0) / Loz, 2](nvr | | vt =0

p(t)
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Using Lemma 3.3,

T’ T’ v

g () (1) / Lefre, )0V — | gu @) (®) / L.[t, 2)(r)Vr
p(t) p(t)
Lo e, 2)(t) — LY [0 2](8) = 0

for all ¢ € [a,+oo[ and all T/ > t. We can do the same for other coordinates. For
all i =1,...,n we obtain the equation

T T v
g2 (8) / Lafre, )0V — | gtz t) / L.[z., 2)(r)Vr
p(t) p(t)

+ Ly, [2e, 2 (t) — LY [2, 2(t) = 0
for all ¢ € [a, +oo[ and all 77 > ¢. These n conditions can be written in vector form
as

T’ T’ v

G (T ) (t) / L[, 2] (T)VT — | go{xe)(t) / L. |2, 24)(7)VT
p(t) p(t)
+ Lofae, 2(t) — Ly [wa, 2](t) =0 (9)
for all t € [a,+oo[ and all T” > ¢, which implies the Euler-Lagrange system of n
equations (4). From the system of equations (9) and equation (8), we conclude that
T/

. . / / / _
Jim it & | Lofow 2 () 4 9ue)(T) [ Lelen 2]V | p(T') b =0,
p(T7)

(10)

Next, we define a special curve p: for all ¢ € [a, 00|

p(t) = at)z.(t), (11)

where « : [a, 00[— R is a C}, function satisfying a(a) = 0 and for which there exists
To € T such that a(t) = 8 € R\{0} for all ¢ > Tj. Substituting p(T") = a(T" )z, (T")
into (10), we conclude that

T’

Jim it § Lolwe, 2] (1) Baa(T') + go(w)(T') / La[rs, 2](T) VT - fara(T')

p(T")
vanishes and, therefore,
T/
i nf S (1) | Lafi, 2(T) + o) (T) / Lofon, 2 (1)Vr| b =0,
p(T")

From item 5 of Theorem 2.8, z, satisfies the transversality condition (5). (|
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In contrast with Theorem 3.4, the following theorem is proved by manipulating
equation (6) differently: using integration by parts and nabla differentiation formu-
las, we transform the items which consist of p” into pV¥. Thanks to that, we apply
Corollary 1 instead of Lemma 3.3 to obtain the intended conclusions.

Theorem 3.5. Under assumptions of Theorem 3.4, the Euler-Lagrange system of
n equations

T T’ T
lim juf / g2 (@2)(7) / L.lre, 2:)(8)VSVT + gola)(8) / L.fte, 2)(r)V7
TS00 T'ST

t p(7) p(t)

t
b Loz, 2](t) — /Lw[x*,z*](T)vT —e (12)
holds for all t € [a, 0], ¢ € R™, together with the transversality condition
T/
lim inf < z,(T")- /Lx[x*, 2] (T)VT 3 = 0. (13)

TS00 T'>T
a

Proof. We use the necessary optimality condition (6) found in the proof of Theo-
rem 3.4. Using point 3 of Theorem 2.4,

t v
p0) [ Lilon2)(0)0r
’ t t v
=pV(t)- /Lm[x*, 2 (T)VT + pP (1) - /Lx[x*, 2| (T)VT

=pV(t)- /Lm [T, 2] (T)VT 4+ pP (1) + Ly [Xs, 2] (1).

a

Then, integrating both sides from t = a to t = T”,
v

T’ t T’
:/ pv(t) /LI[ZE*,Z*](T)VT Vt—l—/p”(t)-Lz[x*,z*](t)Vt
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T/
Since p(a) = 0, we obtain that p(T") - /Lm [+, 2] (T)VT is equal to

a

T t T
/pv(t) . /Lx[x*,z*](T)VT Vit + /pp(t)  Lp[zy, 24 (£) Vi,

that is,

T’

/pp(t) « Lp[zy, 2] (6) Vi

a

- _ 7/pv(t) : /th[x*, 2](T)VT | Vt+p(T') - /T/Lm [Ty, 24](T)VT.

Making the same calculations as in the proof of Theorem 3.4, we obtain (7). Using
again point 3 of Theorem 2.4,

T’ T’
|?9(t)-/ gm<$*>(7)/Lz[w*,Z*](s)Vs \Ya

t p(T)

\Y%

T’ T
— () / gu () (7) / Lo[es, 2](s)Vs | V7
¢ p(7)
T T v
+ p?(¢) / gx<3:*>(7')/Lz[:17*,z*](s)Vs AV
/ pir)
T T
:pv(t)/ gz<x*>(7)/Lz[x*,z*](s)Vs \Ves
t p(7)
.
) gaw)t) [ Ll zlr)Vr
p(t)

Integrating both sides from ¢ = a to t = T”, and because of point 2 of Theorem 2.8
and p(a) =0,

T’ T T/ v
/ p(t) / Gz {(Ty)(T) / L.[zy, 2|(8)Vs | V1| Vit
a t p(7)
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Then,
T T’
/pp(t)- gz<x*>(t)/Lz[x*,z*](s)Vs Vit
a p(t)
T’ T’ T’
= [170 | [{led@) [ Lelowzlisws | 97| v
a t p(7)

From (7) and previous relations, we write (6) in the following way:

TS00 T/>T

T’ t T’
lim inf {_ / PV (1) - / Lofte, 2] (1) VFVE + p(T") - / Lofes, 2] (r)Vr

a a a

T’ T T’ T

—I—/Lv[a:*,z*](t) ~pv(t)Vt+/pv(t)~/ 9 {Xs) (T) / L.[zy, 2](s)Vs | VTVt
a a t p(7)
T’ T’

+/gv<:17*>(t)~ pY () / L.[zy, 2] (7)VT | Vt
a p(t)

TS00 T'>T

T’ t
= lim inf {/pv(t)- /—Lx[x*,z*](T)VT—|—Lv[x*,z*](t)
T’ ' T’ '
+/ G () () / L.[zy, 2](s)Vs | VT

t p(7)

T’ T’
+gv () (1) / L.[z., 2)(T)VT| Vt +p(T") - / Lx[x*,z*](T)VT} = 0.

p(t) a
(14)

Because (14) holds for all p € Cjq with p(a) = 0, in particular it also holds in the
subclass of functions p € Cjq with p(a) = p(T’) = 0. Let i € {1,...,n}. Choosing
p = (p1,...,pn) such that all p; =0, j # 4, and p; € Ciq with p;(a) = p;(T") =0,
we conclude that

T t
Jim it [5Y(0 [ Lol 20V + Lufow 200
T’ i i

+ / Go () (7) / Lo e, 2] () VSV + g, (2)(8) / L.[es, 2] (1) b Vit = 0.

t p(T) p(t)
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From Corollary 1 we obtain the equations

t T T
Lo [0, 2] () — / Lo [0, 2] (7)VT + / o (@) () / Lo[es, 2](s)Vs | V7
a t P(T)
.
+oule)® [ Lelew )97 =ci (15)
p(t)

ci€R,i=1,...,n,forallt € [a,+oo[ and all T’ > t. These n conditions imply the
Euler-Lagrange system of equations (12). From (14) and (15), we conclude that
T/
lim inf < p(77)- /Lw [y, 2] (T)VT p = 0. (16)

To00 T'>T
a

Using the special curve p defined by (11), we obtain from equation (16) that

T/
. . !/ —
Tlgréo Tlng ﬁ,f*(T)'/Lw[,T*,Z*](T)VT =0.
Therefore, x, satisfies the transversality condition (13). O
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