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We obtain, by using the Leggett-Williams �xed point theorem, su�cient conditions that ensure the existence of at least three positive
solutions to some p-Laplacian boundary value problems on time scales.

1. Introduction

e study of dynamic equations on time scales goes back
to the 1989 Ph.D. thesis of Hilger [1, 2] and is currently
an area of mathematics receiving considerable attention [3–
7]. Although the basic aim of the theory of time scales is
to unify the study of differential and difference equations
in one and the same subject, it also extends these classical
domains to hybrid and in-between cases. A great deal of
work has been done since the eighties of the XX century in
unifying the theories of differential and difference equations
by establishing more general results in the time scale setting
[8–12].

Boundary value 𝑝𝑝-Laplacian problems for differential
equations and �nite difference equations have been studied
extensively (see, e.g., [13] and references therein). Although
many existence results for dynamic equations on time scales
are available [14, 15], there are not many results concern-
ing 𝑝𝑝-Laplacian problems on time scales [16–19]. In this
paper we prove new existence results for three classes of
𝑝𝑝-Laplacian boundary value problems on time scales. In
contrast with our previous works [17, 18], which make use
of the �rasnoselskii �xed point theorem and the �xed point
index theory, respectively, here we use the Leggett-Williams
�xed point theorem [20, 21] obtainingmultiplicity of positive

solutions.e application of the Leggett-Williams �xed point
theorem for proving multiplicity of solutions for boundary
value problems on time scaleswas �rst introduced byAgarwal
andO’Regan [22] and is now recognized as an important tool
to prove existence of positive solutions for boundary value
problems on time scales [23–28].

e paper is organized as follows. In Section 2 we
present some necessary results from the theory of time
scales (Section 2.1) and the theory of cones in Banach spaces
(Section 2.2). We end Section 2.2 with the Leggett-Williams
�xed point theorem for a cone-preserving operator, which
is our main tool in proving existence of positive solutions
to the boundary value problems on time scales we consider
in Section 3. e contribution of the paper is Section 3,
which is divided into three parts.e purpose of the �rst part
(Section 3.1) is to prove existence of positive solutions to the
nonlocal 𝑝𝑝-Laplacian dynamic equation on time scales

−𝜙𝜙𝑝𝑝 𝑢𝑢
Δ (𝑡𝑡)

∇
=

𝜆𝜆𝜆𝜆 (𝑢𝑢 (𝑡𝑡))

∫
𝑇𝑇
0 𝜆𝜆 (𝑢𝑢 (𝜏𝜏)) ∇𝜏𝜏

2 , 𝑡𝑡 𝑡 (0, 𝑇𝑇)𝕋𝕋, (1)

satisfying the boundary conditions

𝜙𝜙𝑝𝑝 𝑢𝑢
Δ (0) − 𝛽𝛽 𝜙𝜙𝑝𝑝 𝑢𝑢

Δ 𝜂𝜂 = 0,

𝑢𝑢 (𝑇𝑇) − 𝛽𝛽𝑢𝑢 𝜂𝜂 = 0,
(2)
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where 𝜂𝜂 𝜂 𝜂𝜂𝜂 𝜂𝜂𝜂𝕋𝕋, 𝜙𝜙𝑝𝑝𝜂⋅𝜂 is the 𝑝𝑝-Laplacian operator de�ned
by 𝜙𝜙𝑝𝑝𝜂𝑠𝑠𝜂 𝑠 𝑠𝑠𝑠𝑠𝑝𝑝𝑝𝑝𝑠𝑠, 𝑝𝑝 𝑝 𝑝, and 𝜂𝜙𝜙𝑝𝑝𝜂

𝑝𝑝 𝑠 𝜙𝜙𝑞𝑞 with 𝑞𝑞 the Holder
conjugate of 𝑝𝑝, that is, 𝑝/𝑝𝑝 𝑝 𝑝/𝑞𝑞 𝑠 𝑝. e concrete value
of 𝑝𝑝 is connected with the application at hands. For 𝑝𝑝 𝑠 𝑝,
problem (1)-(2) describes the operation of a device �owed by
an electric current, for example, thermistors [29], which are
devices made from materials whose electrical conductivity
is highly dependent on the temperature. ermistors have
the advantage of being temperature measurement devices
of low cost, high resolution, and �exibility in size and
shape. Constant 𝜆𝜆 in (1) is a dimensionless parameter that
can be identi�ed with the square of the applied potential
difference at the ends of a conductor,𝑓𝑓𝜂𝑓𝑓𝜂 is the temperature-
dependent resistivity of the conductor, and 𝛽𝛽 in (2) is a
transfer coefficient supposed to verify 𝜂 < 𝛽𝛽 < 𝑝. For
a more detailed discussion about the physical justi�cation
of (1)-(2) the reader is referred to [17]. eoretical analysis
(existence, uniqueness, regularity, and asymptotic results) for
thermistor problems with various types of boundary and
initial conditions has received signi�cant attention in the
last few years for the particular case 𝕋𝕋 𝑠 𝕋 [30–34]. e
second part of our results (Section 3.2) is concerned with the
following quasilinear elliptic problem:

𝑝𝜙𝜙𝑝𝑝 𝑓𝑓
Δ 𝜂𝑡𝑡𝜂

∇
𝑠 𝑓𝑓 𝜂𝑓𝑓 𝜂𝑡𝑡𝜂𝜂 𝑝 ℎ 𝜂𝑡𝑡𝜂 𝜂 𝑡𝑡 𝜂 𝜂𝜂𝜂 𝜂𝜂𝜂𝕋𝕋𝜂

𝑓𝑓Δ 𝜂𝜂𝜂 𝑠 𝜂𝜂 𝑓𝑓 𝜂𝜂𝜂𝜂 𝑝 𝑓𝑓 𝜂𝜂 𝑠 𝜂𝜂
(3)

where 𝜂𝜂 𝜂 𝜂𝜂𝜂 𝜂𝜂𝜂𝕋𝕋. �esults on existence of in�nitely many
radial solutions to (3) are proved in the literature using (i)
variational methods, where solutions are obtained as critical
points of some energy functional on a Sobolev space, with 𝑓𝑓
satisfying appropriate conditions [35, 36]; (ii) methods based
on phase-plane analysis and the shooting method [37]; (iii)
the technique of timemaps [38]. For𝑝𝑝 𝑠 𝑝, ℎ ≡ 𝜂, and𝕋𝕋 𝑠 𝕋,
problem (3) becomes a well-known boundary value problem
of differential equations. Our results generalize earlier works
to the case of a generic time scale 𝕋𝕋, 𝑝𝑝𝑝 𝑝, and ℎ not
identically zero. Finally, the third part of our contribution
(Section 3.3) is devoted to the existence of positive solutions
to the 𝑝𝑝-Laplacian dynamic equation

𝜙𝜙𝑝𝑝 𝑓𝑓
Δ 𝜂𝑡𝑡𝜂

∇
𝑝 𝜆𝜆𝜆𝜆 𝜂𝑡𝑡𝜂 𝑓𝑓 𝜂𝑓𝑓 𝜂𝑡𝑡𝜂 𝜂 𝑓𝑓 𝜂𝜔𝜔 𝜂𝑡𝑡𝜂𝜂𝜂 𝑠 𝜂𝜂

𝑡𝑡 𝜂 𝜂𝜂𝜂 𝜂𝜂𝜂𝕋𝕋𝜂

𝑓𝑓 𝜂𝑡𝑡𝜂 𝑠 𝜓𝜓 𝜂𝑡𝑡𝜂 𝜂 𝑡𝑡 𝜂 [𝑝𝑟𝑟𝜂 𝜂]𝕋𝕋𝜂

𝑓𝑓 𝜂𝜂𝜂 𝑝 𝐵𝐵𝜂 𝑓𝑓
Δ 𝜂𝜂𝜂 𝑠 𝜂𝜂 𝑓𝑓Δ 𝜂𝜂𝜂𝜂 𝑠 𝜂

(4)

on a time scale 𝕋𝕋 such that 𝜂𝜂 𝜂𝜂 𝜂 𝕋𝕋𝜅𝜅
𝜅𝜅, 𝑝𝑟𝑟 𝜂 𝕋𝕋 with 𝑝𝑟𝑟 𝑟 𝜂 <

𝜂𝜂, where 𝜆𝜆 𝑝 𝜂. is problem is considered in [39] where the
author applies the�rasnoselskii �xed point theorem to obtain
one positive solution to (4). Here we use the same conditions
as in [39], but applying Leggett-Williams’ theoremwe are able
to obtain more: we prove existence of at least three positive
solutions and we are able to localize them.

2. Preliminaries

Here we just recall the basic concepts and results needed in
the sequel. For an introduction to time scales the reader is
referred to [3, 8–10, 40, 41] and references therein; for a good
introduction to the theory of cones in Banach spaces we refer
the reader to the book [42].

2.1. Time Scales. A time scale 𝕋𝕋 is an arbitrary nonempty
closed subset of the real numbers 𝕋. e operators 𝜎𝜎 and 𝜌𝜌
from 𝕋𝕋 to 𝕋𝕋 are de�ned in [1, 2] as

𝜎𝜎 𝜂𝑡𝑡𝜂 𝑠 inf {𝜏𝜏 𝜂 𝕋𝕋 𝜏 𝜏𝜏 𝑝 𝑡𝑡} 𝜂 𝕋𝕋𝜂

𝜌𝜌 𝜂𝑡𝑡𝜂 𝑠 sup {𝜏𝜏 𝜂 𝕋𝕋 𝜏 𝜏𝜏 < 𝑡𝑡} 𝜂 𝕋𝕋
(5)

and are called the forward jump operator and the backward
jump operator, respectively. A point 𝑡𝑡 𝜂 𝕋𝕋 is le-dense, le-
scattered, right-dense, and right-scattered if 𝜌𝜌𝜂𝑡𝑡𝜂 𝑠 𝑡𝑡𝜂 𝜌𝜌𝜂𝑡𝑡𝜂 < 𝑡𝑡,
and 𝜎𝜎𝜂𝑡𝑡𝜂 𝑠 𝑡𝑡𝜂 𝜎𝜎𝜂𝑡𝑡𝜂 𝑝 𝑡𝑡, respectively. If 𝕋𝕋 has a right-scattered
minimum 𝑚𝑚, de�ne 𝕋𝕋𝜅𝜅 𝑠 𝕋𝕋 𝑝 {𝑚𝑚}; otherwise set 𝕋𝕋𝜅𝜅 𝑠 𝕋𝕋.
If 𝕋𝕋 has a le-scattered maximum𝑀𝑀, de�ne 𝕋𝕋𝜅𝜅 𝑠 𝕋𝕋 𝑝 {𝑀𝑀};
otherwise set 𝕋𝕋𝜅𝜅 𝑠 𝕋𝕋. Following [43], we also introduce the
set 𝕋𝕋𝜅𝜅

𝜅𝜅 𝑠 𝕋𝕋
𝜅𝜅 ∩ 𝕋𝕋𝜅𝜅.

Let 𝑓𝑓 𝑓 𝕋𝕋 𝑓 𝕋 and 𝑡𝑡 𝜂 𝕋𝕋𝜅𝜅 (assume 𝑡𝑡 is not le-scattered
if 𝑡𝑡 𝑠 sup𝕋𝕋), then the delta derivative of 𝑓𝑓 at the point 𝑡𝑡 is
de�ned to be the number 𝑓𝑓Δ𝜂𝑡𝑡𝜂 (provided it exists) with the
property that for each 𝜖𝜖 𝑝 𝜂 there is a neighborhood 𝑈𝑈 of 𝑡𝑡
such that

𝑓𝑓 𝜂𝜎𝜎 𝜂𝑡𝑡𝜂𝜂 𝑝 𝑓𝑓 𝜂𝑠𝑠𝜂 𝑝 𝑓𝑓Δ 𝜂𝑡𝑡𝜂 𝜂𝜎𝜎 𝜂𝑡𝑡𝜂 𝑝 𝑠𝑠𝜂 𝑟 𝑠𝜎𝜎 𝜂𝑡𝑡𝜂 𝑝 𝑠𝑠𝑠 ∀𝑠𝑠 𝜂 𝑈𝑈𝑠
(6)

Similarly, for 𝑡𝑡 𝜂 𝕋𝕋𝜅𝜅 (assume 𝑡𝑡 is not right-scattered if 𝑡𝑡 𝑠
inf𝕋𝕋), the nabla derivative of𝑓𝑓 at the point 𝑡𝑡 is de�ned in [44]
to be the number 𝑓𝑓∇𝜂𝑡𝑡𝜂 (provided it exists) with the property
that for each 𝜖𝜖 𝑝 𝜂 there is a neighborhood𝑈𝑈 of 𝑡𝑡 such that

𝑓𝑓 𝜌𝜌 𝜂𝑡𝑡𝜂 𝑝 𝑓𝑓 𝜂𝑠𝑠𝜂 𝑝 𝑓𝑓∇ 𝜂𝑡𝑡𝜂 𝜌𝜌 𝜂𝑡𝑡𝜂 𝑝 𝑠𝑠 𝑟 𝜌𝜌 𝜂𝑡𝑡𝜂 𝑝 𝑠𝑠 ∀𝑠𝑠 𝜂 𝑈𝑈𝑠
(7)

If 𝕋𝕋 𝑠 𝕋, then 𝑓𝑓Δ𝜂𝑡𝑡𝜂 𝑠 𝑓𝑓∇𝜂𝑡𝑡𝜂 𝑠 𝑓𝑓′𝜂𝑡𝑡𝜂. If 𝕋𝕋 𝑠 𝕋, then 𝑓𝑓Δ𝜂𝑡𝑡𝜂 𝑠
𝑓𝑓𝜂𝑡𝑡𝑝𝑝𝜂𝑝𝑓𝑓𝜂𝑡𝑡𝜂 is the forward difference operator while𝑓𝑓∇𝜂𝑡𝑡𝜂 𝑠
𝑓𝑓𝜂𝑡𝑡𝜂 𝑝 𝑓𝑓𝜂𝑡𝑡 𝑝 𝑝𝜂 is the backward difference operator.

A function 𝑓𝑓 is le-dense continuous (i.e., 𝑙𝑙𝑙𝑙-
continuous), if 𝑓𝑓 is continuous at each le-dense point
in 𝕋𝕋 and its right-sided limit exists at each right-dense point
in 𝕋𝕋. If 𝑓𝑓 is 𝑙𝑙𝑙𝑙-continuous, then there exists 𝐹𝐹 such that
𝐹𝐹∇𝜂𝑡𝑡𝜂 𝑠 𝑓𝑓𝜂𝑡𝑡𝜂 for any 𝑡𝑡 𝜂 𝕋𝕋𝜅𝜅. We then introduce the nabla
integral by


𝑏𝑏

𝜆𝜆
𝑓𝑓 𝜂𝑡𝑡𝜂 ∇𝑡𝑡 𝑠 𝐹𝐹 𝜂𝑏𝑏𝜂 𝑝 𝐹𝐹 𝜂𝜆𝜆𝜂 𝑠 (8)

We de�ne right-dense continuous (𝑟𝑟𝑙𝑙-continuous) functions
in a similar way. If 𝑓𝑓 is 𝑟𝑟𝑙𝑙-continuous, then there exists 𝐹𝐹
such that 𝐹𝐹Δ𝜂𝑡𝑡𝜂 𝑠 𝑓𝑓𝜂𝑡𝑡𝜂 for any 𝑡𝑡 𝜂 𝕋𝕋𝜅𝜅, and we de�ne the delta
integral by


𝑏𝑏

𝜆𝜆
𝑓𝑓 𝜂𝑡𝑡𝜂 Δ𝑡𝑡 𝑠 𝐹𝐹 𝜂𝑏𝑏𝜂 𝑝 𝐹𝐹 𝜂𝜆𝜆𝜂 𝑠 (9)
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2.2. Cones in Banach Spaces. In this paper 𝕋𝕋 is a time scale
with 0 ∈ 𝕋𝕋𝜅𝜅 and 𝑇𝑇 ∈ 𝕋𝕋𝜅𝜅. We use ℝ+ and ℝ+

0 to denote,
respectively, the set of positive and nonnegative real numbers.
By [0, 𝑇𝑇𝑇𝕋𝕋 we denote the set [0, 𝑇𝑇𝑇 𝑇 𝕋𝕋. Similarly, (0, 𝑇𝑇𝑇𝕋𝕋 =
(0, 𝑇𝑇𝑇 𝑇 𝕋𝕋. Let 𝐸𝐸 = 𝐸𝑙𝑙𝑙𝑙([0, 𝑇𝑇𝑇𝕋𝕋, ℝ𝑇. It follows that 𝐸𝐸 is a
Banach space with the norm ‖𝑢𝑢‖ = 𝑢𝑢𝑢[0,𝑇𝑇𝑇𝕋𝕋 |𝑢𝑢(𝑢𝑢𝑇|.

�e�nition 1. Let 𝐸𝐸 be a real Banach space. A nonempty,
closed, and convex set 𝑃𝑃 𝑃 𝐸𝐸 is called a cone if it satis�es
the following two conditions:

(i) 𝑢𝑢 ∈ 𝑃𝑃, 𝜆𝜆 𝜆 0, implies 𝜆𝜆𝑢𝑢 ∈ 𝑃𝑃;
(ii) 𝑢𝑢 ∈ 𝑃𝑃, −𝑢𝑢 ∈ 𝑃𝑃, implies 𝑢𝑢 = 0.

Every cone 𝑃𝑃 𝑃 𝐸𝐸 induces an ordering in 𝐸𝐸 given by

𝑢𝑢 𝑢 𝑢𝑢 iff 𝑢𝑢 − 𝑢𝑢 ∈ 𝑃𝑃𝑣 (10)

�e�nition 2. Let 𝐸𝐸 be a real Banach space and 𝑃𝑃 𝑃 𝐸𝐸 a cone.
A function 𝛼𝛼 𝛼 𝑃𝑃 𝛼 ℝ+

0 is called a nonnegative continuous
concave functional if 𝛼𝛼 is continuous and

𝛼𝛼 𝑢𝑢𝑡𝑡 + (1 − 𝑢𝑢𝑇 𝑦𝑦 𝜆 𝑢𝑢𝛼𝛼 (𝑡𝑡𝑇 + (1 − 𝑢𝑢𝑇 𝛼𝛼 𝑦𝑦 (11)

for all 𝑡𝑡, 𝑦𝑦 ∈ 𝑃𝑃 and 0 𝑢 𝑢𝑢 𝑢 1.

Let 𝑎𝑎, 𝑎𝑎, and 𝑟𝑟 be positive constants, 𝑃𝑃𝑟𝑟 = {𝑢𝑢 ∈ 𝑃𝑃 | ‖𝑢𝑢‖ 𝑢
𝑟𝑟𝑟, 𝑃𝑃(𝛼𝛼, 𝑎𝑎, 𝑎𝑎𝑇 = {𝑢𝑢 ∈ 𝑃𝑃 | 𝑎𝑎 𝑢 𝛼𝛼(𝑢𝑢𝑇, ‖𝑢𝑢‖ 𝑢 𝑎𝑎𝑟. e following
�xed point theorem provides the existence of at least three
positive solutions.e origin in 𝐸𝐸 is denoted by∅. e proof
of the Leggett-Williams �xed point theorem can be found in
Guo and Lakshmikantham [42] or Leggett andWilliams [45].

eorem 3 (Leggett-Williams’ eorem). Let 𝑃𝑃 be a cone in
a real Banach space 𝐸𝐸. Let 𝐺𝐺 𝛼 𝑃𝑃𝑐𝑐 𝛼 𝑃𝑃𝑐𝑐 be a completely
continuous map and 𝛼𝛼 a nonnegative continuous concave
functional on 𝑃𝑃 such that 𝛼𝛼(𝑢𝑢𝑇 𝑢 ‖𝑢𝑢‖ for all 𝑢𝑢 ∈ 𝑃𝑃𝑐𝑐. Suppose
there exist positive constants 𝑎𝑎, 𝑎𝑎, and 𝑙𝑙with 0 𝑢 𝑎𝑎 𝑢 𝑎𝑎 𝑢 𝑙𝑙 𝑢 𝑐𝑐
such that

(i) {𝑢𝑢 ∈ 𝑃𝑃(𝛼𝛼, 𝑎𝑎, 𝑙𝑙𝑇 | 𝛼𝛼(𝑢𝑢𝑇 𝑢 𝑎𝑎𝑟 𝑢∅ and 𝛼𝛼(𝐺𝐺𝑢𝑢𝑇 𝑢 𝑎𝑎 for all
𝑢𝑢 ∈ 𝑃𝑃(𝛼𝛼, 𝑎𝑎, 𝑙𝑙𝑇;

(ii) ‖𝐺𝐺𝑢𝑢‖ 𝑢 𝑎𝑎 for all 𝑢𝑢 ∈ 𝑃𝑃𝑎𝑎;
(iii) 𝛼𝛼(𝐺𝐺𝑢𝑢𝑇 𝑢 𝑎𝑎 for all 𝑢𝑢 ∈ 𝑃𝑃(𝛼𝛼, 𝑎𝑎, 𝑐𝑐𝑇 with ‖𝐺𝐺𝑢𝑢‖ 𝑢 𝑙𝑙.

en 𝐺𝐺 has at least three �xed points 𝑢𝑢1, 𝑢𝑢2, and 𝑢𝑢3 satisfying

𝑢𝑢1 𝑢 𝑎𝑎, 𝑎𝑎 𝑢 𝛼𝛼 𝑢𝑢2 , 𝑢𝑢3 𝑢 𝑎𝑎, 𝛼𝛼 𝑢𝑢3 𝑢 𝑎𝑎𝑣
(12)

3. Main Results

We prove existence of three positive solutions to different 𝑝𝑝-
Laplacian problems on time scales: in Section 3.1 we study
problem (1)-(2), in Section 3.2 problem (3), and �nally (4) in
Section 3.3.

3.1. Nonlocal ermistor Problem. By a solution 𝑢𝑢 𝛼 𝕋𝕋 𝛼 ℝ
of (1)-(2) wemean a delta differentiable function such that 𝑢𝑢Δ

and (|𝑢𝑢Δ|𝑝𝑝−2𝑢𝑢Δ𝑇
∇
are both continuous on 𝕋𝕋𝜅𝜅

𝜅𝜅 and 𝑢𝑢 satis�es
(1)-(2). We consider the following hypothesis:

(H1) 𝑓𝑓 𝛼 ℝ 𝛼 ℝ+ is a continuous function.

Lemma 4 (see Lemma 3.1 of [17]). Assume that hypothesis
(H1) on function 𝑓𝑓 is satis�ed. en 𝑢𝑢 is a solution to (1)-(2)
if and only if 𝑢𝑢 ∈ 𝐸𝐸 is a solution to the integral equation

𝑢𝑢 (𝑢𝑢𝑇 = −
𝑢𝑢

0
𝜙𝜙𝑞𝑞 𝑔𝑔 (𝑠𝑠𝑇 Δ𝑠𝑠 + 𝑠𝑠, (13)

where

𝑔𝑔 (𝑠𝑠𝑇 = 
𝑠𝑠

0
𝜆𝜆𝜆 (𝑢𝑢 (𝑟𝑟𝑇𝑇 ∇𝑟𝑟 − 𝑟𝑟,

𝑟𝑟 = 𝜙𝜙𝑝𝑝 𝑢𝑢
Δ (0𝑇 = −

𝜆𝜆𝜆𝜆
1 − 𝜆𝜆


𝜂𝜂

0
𝜆 (𝑢𝑢 (𝑟𝑟𝑇𝑇 ∇𝑟𝑟,

𝜆 (𝑢𝑢 (𝑢𝑢𝑇𝑇 =
𝜆𝜆𝑓𝑓 (𝑢𝑢 (𝑢𝑢𝑇𝑇

∫
𝑇𝑇
0 𝑓𝑓 (𝑢𝑢 (𝜏𝜏𝑇𝑇 ∇𝜏𝜏

2 ,

𝑠𝑠 = 𝑢𝑢 (0𝑇 =
1

1 − 𝜆𝜆


𝑇𝑇

0
𝜙𝜙𝑞𝑞 𝑔𝑔 (𝑠𝑠𝑇 Δ𝑠𝑠 − 𝜆𝜆

𝜂𝜂

0
𝜙𝜙𝑞𝑞 𝑔𝑔 (𝑠𝑠𝑇 Δ𝑠𝑠 𝑣

(14)

Lemma 5. Suppose (H1) holds. en a solution 𝑢𝑢 to (1)-(2)
satis�es 𝑢𝑢(𝑢𝑢𝑇 𝜆 0 for 𝑢𝑢 ∈ (0, 𝑇𝑇𝑇𝕋𝕋.

Proof. We have 𝑟𝑟 = −𝜆𝜆𝜆𝜆𝐴(1 − 𝜆𝜆𝑇 ∫𝜂𝜂0 𝜆(𝑢𝑢(𝑟𝑟𝑇𝑇∇𝑟𝑟 𝑢 0. en,
𝑔𝑔(𝑠𝑠𝑇 = 𝜆𝜆 ∫𝑠𝑠0 𝜆(𝑢𝑢(𝑟𝑟𝑇𝑇∇𝑟𝑟 − 𝑟𝑟 𝜆 0. It follows that 𝜙𝜙𝑝𝑝(𝑔𝑔(𝑠𝑠𝑇𝑇 𝜆 0.
Since 0 𝑢 𝜆𝜆 𝑢 1, we also have

𝑢𝑢 (0𝑇 = 𝑠𝑠

=
1

1 − 𝜆𝜆


𝑇𝑇

0
𝜙𝜙𝑞𝑞 𝑔𝑔 (𝑠𝑠𝑇 Δ𝑠𝑠 − 𝜆𝜆

𝜂𝜂

0
𝜙𝜙𝑞𝑞 𝑔𝑔 (𝑠𝑠𝑇 Δ𝑠𝑠

𝜆
1

1 − 𝜆𝜆
𝜆𝜆

𝑇𝑇

0
𝜙𝜙𝑞𝑞 𝑔𝑔 (𝑠𝑠𝑇 Δ𝑠𝑠 − 𝜆𝜆

𝜂𝜂

0
𝜙𝜙𝑞𝑞 𝑔𝑔 (𝑠𝑠𝑇 Δ𝑠𝑠

𝜆 0,

𝑢𝑢 (𝑇𝑇𝑇 = 𝑢𝑢 (0𝑇 − 
𝑇𝑇

0
𝜙𝜙𝑞𝑞 𝑔𝑔 (𝑠𝑠𝑇 Δ𝑠𝑠

=
−𝜆𝜆
1 − 𝜆𝜆


𝜂𝜂

0
𝜙𝜙𝑞𝑞 𝑔𝑔 (𝑠𝑠𝑇 Δ𝑠𝑠

+
1

1 − 𝜆𝜆

𝑇𝑇

0
𝜙𝜙𝑞𝑞 𝑔𝑔 (𝑠𝑠𝑇 Δ𝑠𝑠 − 

𝑇𝑇

0
𝜙𝜙𝑞𝑞 𝑔𝑔 (𝑠𝑠𝑇 Δ𝑠𝑠

=
−𝜆𝜆
1 − 𝜆𝜆


𝜂𝜂

0
𝜙𝜙𝑞𝑞 𝑔𝑔 (𝑠𝑠𝑇 Δ𝑠𝑠 +

𝜆𝜆
1 − 𝜆𝜆


𝑇𝑇

0
𝜙𝜙𝑞𝑞 𝑔𝑔 (𝑠𝑠𝑇 Δ𝑠𝑠

=
𝜆𝜆

1 − 𝜆𝜆


𝑇𝑇

0
𝜙𝜙𝑞𝑞 𝑔𝑔 (𝑠𝑠𝑇 Δ𝑠𝑠 − 

𝜂𝜂

0
𝜙𝜙𝑞𝑞 𝑔𝑔 (𝑠𝑠𝑇 Δ𝑠𝑠

𝜆 0𝑣
(15)
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If 𝑡𝑡 𝑡 𝑡𝑡𝑡 𝑡𝑡𝑡𝕋𝕋, then

𝑢𝑢 𝑡𝑡𝑡𝑡 = 𝑢𝑢 𝑡𝑡𝑡 − 
𝑡𝑡

𝑡
𝜙𝜙𝑞𝑞 𝑔𝑔 𝑡𝑠𝑠𝑡 Δ𝑠𝑠

≥ −
𝑡𝑡

𝑡
𝜙𝜙𝑞𝑞 𝑔𝑔 𝑡𝑠𝑠𝑡 Δ𝑠𝑠 𝑠 𝑢𝑢 𝑡𝑡𝑡 = 𝑢𝑢 𝑡𝑡𝑡𝑡

≥ 𝑡.

(16)

Consequently, 𝑢𝑢𝑡𝑡𝑡𝑡 ≥ 𝑡 for 𝑡𝑡 𝑡 𝑡𝑡𝑡 𝑡𝑡𝑡𝕋𝕋.

On the other hand, we have 𝜙𝜙𝑝𝑝𝑡𝑢𝑢
Δ𝑡𝑠𝑠𝑡𝑡 = 𝜙𝜙𝑝𝑝𝑡𝑢𝑢

Δ𝑡𝑡𝑡𝑡 −
∫𝑠𝑠𝑡 𝜆𝜆𝜆𝑡𝑢𝑢𝑡𝜆𝜆𝑡𝑡𝜆𝜆𝜆 𝜆 𝑡. Since 𝐴𝐴 = 𝜙𝜙𝑝𝑝𝑡𝑢𝑢

Δ𝑡𝑡𝑡𝑡 𝜆 𝑡, then 𝑢𝑢Δ 𝜆
𝑡. is means that ||𝑢𝑢|| = 𝑢𝑢𝑡𝑡𝑡, inf𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝕋𝕋 𝑢𝑢𝑡𝑡𝑡𝑡 = 𝑢𝑢𝑡𝑡𝑡𝑡.
Moreover, 𝜙𝜙𝑝𝑝𝑡𝑢𝑢

Δ𝑡𝑠𝑠𝑡𝑡 is nonincreasing, which implies with the
monotonicity of 𝜙𝜙𝑝𝑝 that 𝑢𝑢Δ is a nonincreasing function on
𝑡𝑡𝑡 𝑡𝑡𝑡𝕋𝕋. Hence, 𝑢𝑢 is concave. In order to applyeorem 3, let
us de�ne the cone 𝑃𝑃 𝑃 𝑃𝑃 by

𝑃𝑃 = 𝑢𝑢 𝑡 𝑃𝑃 𝑢 𝑢𝑢 is nonnegative𝑡

decreasing on [𝑡𝑡 𝑡𝑡]𝕋𝕋 and concave on 𝑃𝑃 .
(17)

We also de�ne the nonnegative continuous concave func-
tional 𝛼𝛼 𝛼 𝑃𝑃 𝛼 𝛼𝑠

𝑡 by

𝛼𝛼 𝑡𝑢𝑢𝑡 = min
𝑡𝑡𝑡𝜉𝜉𝑡𝑡𝑡−𝜉𝜉𝕋𝕋

𝑢𝑢 𝑡𝑡𝑡𝑡 𝑡 𝜉𝜉 𝑡 𝑡𝑡
𝑡𝑡
2
 𝑡 ∀𝑢𝑢 𝑡 𝑃𝑃. (18)

It is easy to see that problem (1)-(2) has a solution 𝑢𝑢 = 𝑢𝑢𝑡𝑡𝑡𝑡
if and only if 𝑢𝑢 is a ��ed point of the operator 𝐺𝐺 𝛼 𝑃𝑃 𝛼 𝑃𝑃
de�ned by

𝐺𝐺𝑢𝑢 𝑡𝑡𝑡𝑡 = −
𝑡𝑡

𝑡
𝜙𝜙𝑞𝑞 𝑔𝑔 𝑡𝑠𝑠𝑡 Δ𝑠𝑠 𝑠 𝑠𝑠𝑡 (19)

where 𝑔𝑔 and 𝑠𝑠 are as in Lemma 4.

Lemma 6. Let 𝐺𝐺 �e �e�ne� �y (19). en,

(i) 𝐺𝐺𝑡𝑃𝑃𝑡 𝐺 𝑃𝑃;

(ii) 𝐺𝐺 𝛼 𝑃𝑃 𝛼 𝑃𝑃 is completely continuous.

Proof. (i) holds clearly from above. (ii) Suppose that𝐷𝐷 𝐺 𝑃𝑃 is
a bounded set and let 𝑢𝑢 𝑡 𝐷𝐷. en,

|𝐺𝐺𝑢𝑢 𝑡𝑡𝑡𝑡| = −
𝑡𝑡

𝑡
𝜙𝜙𝑞𝑞 𝑔𝑔 𝑡𝑠𝑠𝑡 Δ𝑠𝑠 𝑠 𝑠𝑠

𝜆



−
𝑡𝑡

𝑡
𝜙𝜙𝑞𝑞 

𝑠𝑠

𝑡

𝜆𝜆𝜆𝜆 𝑡𝑢𝑢 𝑡𝜆𝜆𝑡𝑡

∫
𝑡𝑡
𝑡 𝜆𝜆 𝑡𝑢𝑢 𝑡𝜏𝜏𝑡𝑡 𝜆𝜏𝜏

2 𝜆𝜆𝜆 − 𝐴𝐴Δ𝑠𝑠



𝑠|𝑠𝑠|

𝜆 
𝑡𝑡

𝑡
𝜙𝜙𝑞𝑞 

𝑠𝑠

𝑡

𝜆𝜆 𝜆𝜆𝜆𝑢𝑢𝑡𝐷𝐷𝜆𝜆 𝑡𝑢𝑢𝑡

𝑡𝑡 inf𝑢𝑢𝑡𝐷𝐷𝜆𝜆 𝑡𝑢𝑢𝑡
2 𝜆𝜆𝜆 − 𝐴𝐴Δ𝑠𝑠 𝑠 |𝑠𝑠| 𝑡

|𝐴𝐴| = 
𝜆𝜆𝜆𝜆
1 − 𝜆𝜆


𝜂𝜂

𝑡
𝜆 𝑡𝑢𝑢 𝑡𝜆𝜆𝑡𝑡 𝜆𝜆𝜆

= 



𝜆𝜆𝜆𝜆
1 − 𝜆𝜆


𝜂𝜂

𝑡

𝜆𝜆 𝑡𝑢𝑢 𝑡𝜆𝜆𝑡𝑡

∫
𝑡𝑡
𝑡 𝜆𝜆 𝑡𝑢𝑢 𝑡𝜏𝜏𝑡𝑡 𝜆𝜏𝜏

2 𝜆𝜆𝜆




𝜆
𝜆𝜆𝜆𝜆
1 − 𝜆𝜆

𝜆𝜆𝜆𝑢𝑢𝑡𝐷𝐷𝜆𝜆 𝑡𝑢𝑢𝑡

𝑡𝑡 inf𝑢𝑢𝑡𝐷𝐷𝜆𝜆 𝑡𝑢𝑢𝑡
2 𝜂𝜂.

(20)

In the same way, we have

|𝑠𝑠| 𝜆
1

1 − 𝜆𝜆

𝑡𝑡

𝑡
𝜙𝜙𝑞𝑞 𝑔𝑔 𝑡𝑠𝑠𝑡 Δ𝑠𝑠

𝜆
1

1 − 𝜆𝜆

𝑡𝑡

𝑡
𝜙𝜙𝑞𝑞 

𝜆𝜆 𝜆𝜆𝜆𝑢𝑢𝑡𝐷𝐷𝜆𝜆 𝑡𝑢𝑢𝑡

𝑡𝑡 inf𝑢𝑢𝑡𝐷𝐷𝜆𝜆 𝑡𝑢𝑢𝑡
2 𝑠𝑠 𝑠

𝜆𝜆
1 − 𝜆𝜆

𝜂𝜂Δ𝑠𝑠.

(21)

It follows that

|𝐺𝐺𝑢𝑢 𝑡𝑡𝑡𝑡| 𝜆 
𝑡𝑡

𝑡
𝜙𝜙𝑞𝑞 

𝜆𝜆 𝜆𝜆𝜆𝑢𝑢𝑡𝐷𝐷𝜆𝜆 𝑡𝑢𝑢𝑡

𝑡𝑡 inf𝑢𝑢𝑡𝐷𝐷𝜆𝜆 𝑡𝑢𝑢𝑡
2 𝑠𝑠 𝑠

𝜆𝜆𝜂𝜂
1 − 𝜆𝜆

Δ𝑠𝑠 𝑠 |𝑠𝑠| .

(22)

As a consequence, we get

‖𝐺𝐺𝑢𝑢‖ 𝜆
2 − 𝜆𝜆
1 − 𝜆𝜆


𝑡𝑡

𝑡
𝜙𝜙𝑞𝑞 

𝜆𝜆 𝜆𝜆𝜆𝑢𝑢𝑡𝐷𝐷𝜆𝜆 𝑡𝑢𝑢𝑡

𝑡𝑡 inf𝑢𝑢𝑡𝐷𝐷𝜆𝜆 𝑡𝑢𝑢𝑡
2 𝑠𝑠 𝑠

𝜆𝜆𝜂𝜂
1 − 𝜆𝜆

Δ𝑠𝑠

𝜆
2

1 − 𝜆𝜆
𝜙𝜙𝑞𝑞 

𝜆𝜆 𝜆𝜆𝜆𝑢𝑢𝑡𝐷𝐷𝜆𝜆 𝑡𝑢𝑢𝑡

𝑡𝑡 inf𝑢𝑢𝑡𝐷𝐷𝜆𝜆 𝑡𝑢𝑢𝑡
2 

𝑡𝑡

𝑡
𝜙𝜙𝑞𝑞 𝑠𝑠 𝑠

𝜆𝜆𝜂𝜂
1 − 𝜆𝜆

Δ𝑠𝑠.

(23)

en 𝐺𝐺𝑡𝐷𝐷𝑡 is bounded on the whole bounded set 𝐷𝐷.
Moreover, if 𝑡𝑡1𝑡 𝑡𝑡2 𝑡 [𝑡𝑡 𝑡𝑡]𝕋𝕋 and 𝑢𝑢 𝑡 𝐷𝐷, then we have for a
positive constant 𝑐𝑐

𝐺𝐺𝑢𝑢 𝑡𝑡2 − 𝐺𝐺𝑢𝑢 𝑡𝑡1 𝜆 
𝑡𝑡2

𝑡𝑡1
𝜙𝜙𝑞𝑞 𝑔𝑔 𝑡𝑠𝑠𝑡 Δ𝑠𝑠 𝜆 𝑐𝑐 𝑡𝑡2 − 𝑡𝑡1 . (24)

We see that the right-hand side of the above inequality goes
uniformly to zero when |𝑡𝑡2 − 𝑡𝑡1| 𝛼 𝑡. en by a standard
application of the Arzela-Ascoli theorem we have that 𝐺𝐺 𝛼
𝑃𝑃 𝛼 𝑃𝑃 is completely continuous.
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We can also easily obtain the following properties.

Lemma 7. (i) 𝛼𝛼𝛼𝛼𝛼𝛼 𝛼 𝛼𝛼𝛼𝛼𝛼 𝛼 𝛼𝛼𝛼 𝛼 𝛼𝛼𝛼𝛼 for all 𝛼𝛼 𝑢 𝑢𝑢;
(ii) 𝛼𝛼𝛼𝛼𝛼𝛼𝛼𝛼 𝛼 𝛼𝛼𝛼𝛼𝛼𝛼𝛼𝛼𝛼 𝛼 𝛼𝛼𝛼;
(iii) 𝛼𝛼𝛼𝛼𝛼𝛼 𝛼 𝛼𝛼𝛼𝛼𝛼𝐺𝛼.

We now state the main result of Section 3.1.

eorem 8. Suppose that 𝛼𝐻𝐻𝐻𝛼 is veri�ed and there e�ist
positive constants 𝑎𝑎, 𝑏𝑏, 𝑐𝑐, and 𝑑𝑑 such that 𝐺 < 𝜁𝜁𝑎𝑎 𝛼 𝑎𝑎𝐻 < 𝑏𝑏 <
𝑑𝑑𝛼𝛼𝛼2𝑐𝑐𝑐𝑐𝑞𝑞(1/T𝛼 < 𝑑𝑑 < 𝜁𝜁𝑐𝑐 𝛼 𝑐𝑐𝐻, with 𝜁𝜁 𝛼 𝛼𝛼𝛼

2/𝛼𝐻 𝛼 𝛽𝛽𝛼𝛼 𝑐𝑐𝑞𝑞𝛼𝐻/𝛼𝛼𝛼.
One further imposes 𝑓𝑓 to satisfy the following hypotheses:

(H2) min𝐺𝛼𝛼𝛼𝛼𝑎𝑎𝐻𝑓𝑓𝛼𝛼𝛼𝛼 𝑓 𝑓𝑓
2/𝛼𝛼𝛼𝛼𝐻 𝛼𝛽𝛽𝛼𝑐𝑐𝑝𝑝𝛼𝑎𝑎𝛼𝛼 uniformly for all

𝑡𝑡 𝑢 𝑡𝐺𝑡 𝛼𝛼𝑡𝕋𝕋;

(H3) min𝐺𝛼𝛼𝛼𝛼𝑐𝑐𝐻𝑓𝑓𝛼𝛼𝛼𝛼 𝑓 𝑓𝑓
2/𝛼𝛼𝛼𝛼𝐻 𝛼 𝛽𝛽𝛼𝑐𝑐𝑝𝑝𝛼𝑐𝑐𝛼𝛼 uniformly for all

𝑡𝑡 𝑢 𝑡𝐺𝑡 𝛼𝛼𝑡𝕋𝕋;

(H4) min𝑏𝑏𝛼𝛼𝛼𝛼𝑑𝑑𝑓𝑓𝛼𝛼𝛼𝛼 𝑓 𝑐𝑐𝑝𝑝𝛼𝑏𝑏𝑏𝑏𝐻𝛼 uniformly for all 𝑡𝑡 𝑢 𝑡𝐺𝑡 𝛼𝛼𝑡𝕋𝕋,
where

𝑏𝑏𝐻 𝛼
𝐻 𝛼 𝛽𝛽
𝛽𝛽𝛼𝛼

𝑐𝑐𝑝𝑝 𝛼𝛼𝛼 𝛼 𝛼𝛼𝛼 𝑐𝑐𝑝𝑝 
𝑓𝑓

𝛼𝛼 𝑇𝑇𝑇𝑏𝑏𝛼𝛼𝛼𝛼𝑑𝑑𝑓𝑓 𝛼𝛼𝛼𝛼
2  . (25)

en the boundary value problem (1)-(2) has at least three
positive solutions 𝛼𝛼𝐻, 𝛼𝛼2, and 𝛼𝛼3, verifying

𝛼𝛼𝐻 < 𝑎𝑎𝑡 𝑏𝑏 < 𝛼𝛼 𝛼𝛼2 𝑡 𝛼𝛼3 > 𝑎𝑎𝑡 𝛼𝛼 𝛼𝛼3 < 𝑏𝑏.
(26)

Proof. e proof passes by several lemmas. We have already
seen in Lemma 6 that the operator 𝛼𝛼 is completely continu-
ous. We now show the following Lemma.

Lemma 9. e following relations hold:

𝛼𝛼𝑢𝑢𝑐𝑐𝐻 ⊂ 𝑢𝑢𝑐𝑐𝐻 𝑡 𝛼𝛼𝑢𝑢𝑎𝑎𝐻 ⊂ 𝑢𝑢𝑎𝑎𝐻 . (27)

Proof. Obviously, 𝛼𝛼𝑢𝑢𝑎𝑎𝐻 ⊂ 𝑢𝑢. Moreover, for all 𝛼𝛼 𝑢 𝑢𝑢𝑎𝑎𝐻 , we
have 𝐺 𝛼 𝛼𝛼𝛼𝑡𝑡𝛼 𝛼 𝑎𝑎𝐻. On the other hand we have

𝛼𝛼𝛼𝛼 𝛼𝑡𝑡𝛼 𝛼 𝛼 
𝑡𝑡

𝐺
𝑐𝑐𝑞𝑞 𝑔𝑔 𝛼𝑠𝑠𝛼 Δ𝑠𝑠 𝑠

𝐻
𝐻 𝛼 𝛽𝛽


𝛼𝛼

𝐺
𝑐𝑐𝑞𝑞 𝑔𝑔 𝛼𝑠𝑠𝛼 Δ𝑠𝑠

𝛼
𝛽𝛽

𝐻 𝛼 𝛽𝛽

𝜂𝜂

𝐺
𝑐𝑐𝑞𝑞 𝑔𝑔 𝛼𝑠𝑠𝛼 Δ𝑠𝑠𝑡

(28)

and for all 𝛼𝛼 𝑢 𝛼𝛼𝑢𝑢𝑎𝑎𝐻 we have 𝐺 𝛼 𝛼𝛼𝛼𝑡𝑡𝛼 𝛼 𝑎𝑎𝐻. en,

|𝛼𝛼𝛼𝛼| 𝛼
𝐻

𝐻 𝛼 𝛽𝛽

𝛼𝛼

𝐺
𝑐𝑐𝑞𝑞 𝑔𝑔 𝛼𝑠𝑠𝛼 Δ𝑠𝑠. (29)

We have

ℎ 𝛼𝛼𝛼 𝛼𝑡𝑡𝛼𝛼 𝛼
𝑓𝑓𝑓𝑓 𝛼𝛼𝛼 𝛼𝑡𝑡𝛼𝛼

∫
𝛼𝛼
𝐺 𝑓𝑓 𝛼𝛼𝛼 𝛼𝜏𝜏𝛼𝛼 ∇𝜏𝜏

2 𝑡

𝑔𝑔 𝛼𝑠𝑠𝛼 𝛼 
𝑠𝑠

𝐺
𝑓𝑓ℎ 𝛼𝛼𝛼 𝛼𝑟𝑟𝛼𝛼 ∇𝑟𝑟 𝑠

𝑓𝑓𝛽𝛽
𝐻 𝛼 𝛽𝛽


𝜂𝜂

𝐺
ℎ 𝛼𝛼𝛼 𝛼𝑟𝑟𝛼𝛼 ∇𝑟𝑟

𝛼 𝑓𝑓 𝑠
𝑓𝑓𝛽𝛽
𝐻 𝛼 𝛽𝛽


𝛼𝛼

𝐺
ℎ 𝛼𝛼𝛼 𝛼𝑟𝑟𝛼𝛼 ∇𝑟𝑟

𝛼
𝑓𝑓

𝐻 𝛼 𝛽𝛽

𝛼𝛼

𝐺
ℎ 𝛼𝛼𝛼 𝛼𝑟𝑟𝛼𝛼 ∇𝑟𝑟.

(30)

Using (H2) it follows that

𝑐𝑐𝑞𝑞 𝑔𝑔 𝛼𝑠𝑠𝛼 𝛼 𝑎𝑎𝛼𝛼𝑐𝑐𝑞𝑞 
𝐻
𝛼𝛼
 . (31)

en we get

|𝛼𝛼𝛼𝛼| 𝛼 𝑎𝑎𝐻𝑡 𝛼𝛼𝑢𝑢𝑎𝑎𝐻 ⊂ 𝑢𝑢𝑎𝑎𝐻 . (32)

Similarly, using (H3) we get 𝛼𝛼𝑢𝑢𝑐𝑐𝐻 ⊂ 𝑢𝑢𝑐𝑐𝐻 .

Lemma 10. e set

{𝛼𝛼 𝑢 𝑢𝑢 𝛼𝛼𝛼𝑡 𝑏𝑏𝑡 𝑑𝑑𝛼 ∣ 𝛼𝛼 𝛼𝛼𝛼𝛼 > 𝑏𝑏} (33)

is nonempty, and

𝛼𝛼 𝛼𝛼𝛼𝛼𝛼𝛼 > 𝑏𝑏𝑡 if 𝛼𝛼 𝑢 𝑢𝑢 𝛼𝛼𝛼𝑡 𝑏𝑏𝑡 𝑑𝑑𝛼 . (34)

Proof. Let 𝛼𝛼 𝛼 𝛼𝑏𝑏𝑠𝑑𝑑𝛼/2.en, 𝛼𝛼 𝑢 𝑢𝑢𝑡 𝛼𝛼𝛼𝛼 𝛼 𝛼𝑏𝑏𝑠𝑑𝑑𝛼/2 𝛼 𝑑𝑑, and
𝛼𝛼𝛼𝛼𝛼𝛼 𝑓 𝛼𝑏𝑏 𝑠 𝑑𝑑𝛼/2 > 𝑏𝑏. e �rst part of the lemma is proved.
For 𝛼𝛼 𝑢 𝑢𝑢𝛼𝛼𝛼𝑡 𝑏𝑏𝑡 𝑑𝑑𝛼 we have 𝑏𝑏 𝛼 𝛼𝛼 𝛼 𝑑𝑑. If 𝑡𝑡 𝑢 𝑡𝛼𝛼𝑡 𝛼𝛼𝑡𝕋𝕋, then

𝛼𝛼 𝛼𝛼𝛼𝛼𝛼𝛼 𝛼 𝛼𝛼𝛼𝛼𝛼𝛼 𝛼𝛼𝛼 𝛼 𝛼𝛼𝛼

𝛼 𝛼
𝛼𝛼𝛼𝛼𝛼

𝐺
𝑐𝑐𝑞𝑞 𝑔𝑔 𝛼𝑠𝑠𝛼 Δ𝑠𝑠 𝑠 𝑏𝑏

𝑓
𝛽𝛽

𝐻 𝛼 𝛽𝛽

𝛼𝛼

𝛼𝛼𝛼𝛼𝛼
𝑐𝑐𝑞𝑞 𝑔𝑔 𝛼𝑠𝑠𝛼 Δ𝑠𝑠.

(35)

Since 𝐴𝐴 𝛼 𝐺, we have by using (H4)

𝑔𝑔 𝛼𝑠𝑠𝛼 𝛼 𝑓𝑓
𝑠𝑠

𝐺
ℎ 𝛼𝛼𝛼 𝛼𝑟𝑟𝛼𝛼 ∇𝑟𝑟 𝛼 𝐴𝐴

𝑓 𝑓𝑓
𝑠𝑠

𝐺
ℎ 𝛼𝛼𝛼 𝛼𝑟𝑟𝛼𝛼 ∇𝑟𝑟

𝑓 𝑓𝑓
𝑠𝑠

𝐺

𝑓𝑓 𝛼𝛼𝛼𝛼
𝛼𝛼 𝑇𝑇𝑇𝑏𝑏𝛼𝛼𝛼𝛼𝑑𝑑𝑓𝑓 𝛼𝛼𝛼𝛼

2 ∇𝛼𝛼

𝑓 𝑓𝑓
𝑏𝑏𝑏𝑏𝐻

𝑝𝑝𝛼𝐻

𝛼𝛼 𝑇𝑇𝑇𝑏𝑏𝛼𝛼𝛼𝛼𝑑𝑑𝑓𝑓 𝛼𝛼𝛼𝛼
2 𝑠𝑠.

(36)
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Using the fact that 𝜙𝜙𝑞𝑞 is nondecreasing we get

𝜙𝜙𝑞𝑞 𝑔𝑔 (𝑠𝑠) ≥ 𝜙𝜙𝑞𝑞 𝜆𝜆
𝑏𝑏𝑏𝑏1

𝑝𝑝𝑝1

𝑇𝑇 𝑇𝑇𝑇𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑓𝑓 (𝑏𝑏)
2 𝑠𝑠

≥ 𝑏𝑏𝑏𝑏1𝜙𝜙𝑞𝑞 
𝜆𝜆

𝑇𝑇 𝑇𝑇𝑇𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑓𝑓 (𝑏𝑏)
2 𝜙𝜙𝑞𝑞 (𝑠𝑠) .

(37)

Using the expression of 𝑏𝑏1

𝛼𝛼 (𝐺𝐺𝑏𝑏) ≥
𝛽𝛽

1 𝑝 𝛽𝛽
𝑏𝑏𝑏𝑏1𝜙𝜙𝑞𝑞 

𝜆𝜆
𝑇𝑇 𝑇𝑇𝑇𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑓𝑓 (𝑏𝑏)

2 
𝑇𝑇

𝑇𝑇𝑝𝑇𝑇
𝜙𝜙𝑞𝑞 (𝑠𝑠) Δ𝑠𝑠

≥ 𝑏𝑏𝑏𝑏1
𝛽𝛽

1 𝑝 𝛽𝛽
𝜙𝜙𝑞𝑞 

𝜆𝜆
𝑇𝑇 𝑇𝑇𝑇𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑓𝑓 (𝑏𝑏)

2 𝜙𝜙𝑞𝑞 (𝑇𝑇 𝑝 𝑇𝑇) 𝑇𝑇

≥ 𝑏𝑏.
(38)

Lemma 11. For all 𝑏𝑏 𝑢 𝑢𝑢(𝛼𝛼𝑢 𝑏𝑏𝑢 𝑢𝑢1) with ‖𝐺𝐺𝑏𝑏‖ 𝐺 𝑏𝑏 one has

𝛼𝛼 (𝐺𝐺𝑏𝑏) 𝐺 𝑏𝑏. (39)

Proof. If 𝑏𝑏 𝑢 𝑢𝑢(𝛼𝛼𝑢 𝑏𝑏𝑢 𝑢𝑢1) and ‖𝐺𝐺𝑏𝑏‖ 𝐺 𝑏𝑏, then 0 𝑏 𝑏𝑏(𝑢𝑢) 𝑏 𝑢𝑢1.
Using hypothesis (H3) and the fact that 0 < 𝛽𝛽 < 1, it follows
that

𝛼𝛼 (𝐺𝐺𝑏𝑏) = 𝐺𝐺𝑏𝑏 (𝑇𝑇 𝑝 𝑇𝑇)

= 𝑝
𝑇𝑇𝑝𝑇𝑇

0
𝜙𝜙𝑞𝑞 𝑔𝑔 (𝑠𝑠) Δ𝑠𝑠 𝑠 𝑏𝑏

≥ 𝑝
𝑇𝑇

0
𝜙𝜙𝑞𝑞 𝑔𝑔 (𝑠𝑠) Δ𝑠𝑠 𝑠 𝐺𝐺𝑏𝑏 (0)

≥ ‖𝐺𝐺𝑏𝑏‖ 𝑝 𝑇𝑇2𝑢𝑢𝜙𝜙𝑞𝑞 
1
𝑇𝑇


≥ 𝑏𝑏 𝑝 𝑇𝑇2𝑢𝑢𝜙𝜙𝑞𝑞 
1
𝑇𝑇


𝐺 𝑏𝑏.

(40)

Gathering Lemmas 4 to 11 and applying eorem 3, there
exist at least three positive solutions 𝑏𝑏1, 𝑏𝑏2, and 𝑏𝑏3 to (1)-(2)
verifying

𝑏𝑏1 < 𝑎𝑎𝑢 𝑏𝑏 < 𝛼𝛼 𝑏𝑏2 𝑢 𝑏𝑏3 𝐺 𝑎𝑎𝑢 𝛼𝛼 𝑏𝑏3 < 𝑏𝑏.
(41)

Example 12. Let 𝕋𝕋 = 𝕋1 𝑝 (1𝕋2)ℕ0} ∪ 𝕋1}, whereℕ0 denotes
the set of all nonnegative integers. Consider the 𝑝𝑝-Laplacian
dynamic equation

𝑝𝜙𝜙𝑝𝑝 𝑏𝑏
Δ (𝑢𝑢)

∇
=

𝜆𝜆𝑓𝑓 (𝑏𝑏 (𝑢𝑢))

∫
𝑇𝑇
0 𝑓𝑓 (𝑏𝑏 (𝜏𝜏)) ∇𝜏𝜏

2 𝑢 𝑢𝑢 𝑢 (0𝑢 𝑇𝑇)𝕋𝕋𝑢 (42)

satisfying the boundary conditions

𝜙𝜙𝑝𝑝 𝑏𝑏
Δ (0) 𝑝 𝛽𝛽 𝜙𝜙𝑝𝑝 𝑏𝑏

Δ 
1
4
 = 0𝑢

𝑏𝑏 (1) 𝑝 𝛽𝛽𝑏𝑏 
1
4
 = 0𝑢

(43)

where 𝑝𝑝 = 3𝕋2, 𝑞𝑞 = 3, 𝜂𝜂 = 1𝕋4, 𝛽𝛽 = 1𝕋2, 𝜆𝜆 = 1, 𝑇𝑇 = 1, and

𝑓𝑓 (𝑏𝑏) =





2√2𝑢 0 𝑏 𝑏𝑏 𝑏 1𝑢

4 (𝑏𝑏 𝑝 1) 𝑠 2√2𝑢 1 𝑏 𝑏𝑏 𝑏
3
2
𝑢

2 𝑠 2√2𝑢
3
2
𝑏 𝑏𝑏 𝑏 10𝑢

2𝑏𝑏 𝑠 2√2 𝑝 18𝑢 10 𝑏 𝑏𝑏 𝑏 1𝑢.

(44)

Choose 𝑎𝑎1 = 1 = 2𝑎𝑎, 𝑏𝑏 = 3𝕋2, 𝑢𝑢1 = 1𝑢 = 2𝑢𝑢, and 𝑏𝑏 = 10. It is
easy to see that 𝜁𝜁 = 2, 𝑏𝑏1 = 1𝕋(2(2 𝑠 √2)) and

min 𝑓𝑓 (𝑏𝑏) ∶ 𝑏𝑏 𝑢 0𝑢 𝑎𝑎1 = 2√2

≥
𝜆𝜆2

𝑇𝑇 1 𝑝 𝛽𝛽 𝜙𝜙𝑝𝑝 (𝑎𝑎)
=

2
√𝑎𝑎

= 2√2𝑢

min 𝑓𝑓 (𝑏𝑏) ∶ 𝑏𝑏 𝑢 0𝑢 𝑢𝑢1 = 2√2

≥
𝜆𝜆2

𝑇𝑇 1 𝑝 𝛽𝛽 𝜙𝜙𝑝𝑝 (𝑢𝑢)
=

2
√𝑢𝑢

=
1
√2

𝑢

min 𝑓𝑓 (𝑏𝑏) ∶ 𝑏𝑏 𝑢 [𝑏𝑏𝑢 𝑏𝑏] = 2 𝑠 2√2

≥ 𝜙𝜙𝑝𝑝 𝑏𝑏𝑏𝑏1 = 𝑏𝑏𝑏𝑏1 = 
3

4 2 𝑠 2√2
.

(45)

en, hypotheses (H1)�(H4) are satis�ed. erefore, by
eorem 8, problem (42)-(43) has at least three positive
solutions.

3.2. Quasilinear Elliptic Problem. We are interested in this
section in the study of the following quasilinear elliptic
problem:

𝑝𝜙𝜙𝑝𝑝 𝑏𝑏
Δ (𝑢𝑢)

∇
= 𝑓𝑓 (𝑏𝑏 (𝑢𝑢)) 𝑠 ℎ (𝑢𝑢) 𝑢 𝑢𝑢 𝑢 (0𝑢 𝑇𝑇)𝕋𝕋𝑢

𝑏𝑏Δ (0) = 0𝑢 𝑏𝑏 (𝑇𝑇) 𝑝 𝑏𝑏 𝜂𝜂 = 0𝑢
(46)

where 𝜂𝜂 𝑢 (0𝑢 𝑇𝑇)𝕋𝕋. We assume the following hypotheses:

(A1) function 𝑓𝑓 ∶ 𝑓 𝑓 𝑓𝑠
0 is continuous;

(A2) function ℎ ∶ (0𝑢 𝑇𝑇)𝕋𝕋 𝑓 𝑓𝑠
0 is le dense continuous,

that is,

ℎ 𝑢 ℂ𝑙𝑙𝑏𝑏 (0𝑢 𝑇𝑇)𝕋𝕋𝑢 𝑓
𝑠
0  𝑢 ℎ 𝑢 𝐿𝐿∞. (47)

Similarly as in Section 3.1, we prove existence of solutions
by constructing an operator whose �xed points are solutions
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to (46). e main ingredient is, again, the Leggett-Williams
�xed point theorem (eorem 3). We can easily see that (46)
is equivalent to the integral equation

𝑢𝑢 (𝑡𝑡) = 𝜙𝜙𝑞𝑞 
𝑇𝑇

𝜂𝜂
𝑓𝑓 (𝑢𝑢 (𝑟𝑟)) + ℎ (𝑟𝑟) ∇𝑟𝑟

+ 
𝑡𝑡

0
𝜙𝜙𝑞𝑞 

𝑇𝑇

𝑠𝑠
𝑓𝑓 (𝑢𝑢 (𝑟𝑟)) + ℎ (𝑟𝑟) ∇𝑟𝑟Δ𝑠𝑠𝑠

(48)

On the other hand,we have−(𝜙𝜙𝑝𝑝(𝑢𝑢
Δ))∇ = 𝑓𝑓(𝑢𝑢(𝑡𝑡))+ℎ(𝑡𝑡). Since

𝑓𝑓, ℎ ≥ 0, we have (𝜙𝜙𝑝𝑝(𝑢𝑢
Δ))∇ ≤ 0 and 𝜙𝜙𝑝𝑝(𝑢𝑢

Δ(𝑡𝑡2)) ≤ 𝜙𝜙𝑝𝑝(𝑢𝑢
Δ(𝑡𝑡1))

for any 𝑡𝑡1, 𝑡𝑡2 ∈ [0, 𝑇𝑇𝑇𝕋𝕋 with 𝑡𝑡1 ≤ 𝑡𝑡2. It follows that 𝑢𝑢
Δ(𝑡𝑡2) ≤

𝑢𝑢Δ(𝑡𝑡1) for 𝑡𝑡1 ≤ 𝑡𝑡2. Hence, 𝑢𝑢
Δ(𝑡𝑡) is a decreasing function on

[0, 𝑇𝑇𝑇𝕋𝕋. en, 𝑢𝑢 is concave. In order to apply eorem 3 we
de�ne the cone

𝑃𝑃 = 𝑢𝑢 ∈ 𝑢𝑢 𝑢 𝑢𝑢 is nonnegative,

increasing on [0, 𝑇𝑇𝑇𝕋𝕋, and concave on𝑢𝑢 𝑠
(49)

For 𝜉𝜉 ∈ (0, 𝑇𝑇𝜉2) we also de�ne the nonnegative continuous
concave functional 𝛼𝛼 𝛼 𝑃𝑃 𝛼 𝛼+

0 by

𝛼𝛼 (𝑢𝑢) = min
𝑡𝑡∈𝜉𝜉,𝑇𝑇−𝜉𝜉𝕋𝕋

𝑢𝑢 (𝑡𝑡) , 𝑢𝑢 ∈ 𝑃𝑃 (50)

and the operator 𝐹𝐹 𝛼 𝑃𝑃 𝛼 𝑢𝑢 by

𝐹𝐹𝑢𝑢 (𝑡𝑡) = 𝜙𝜙𝑞𝑞 
𝑇𝑇

𝜂𝜂
𝑓𝑓 (𝑢𝑢 (𝑟𝑟)) + ℎ (𝑟𝑟) ∇𝑟𝑟

+ 
𝑡𝑡

0
𝜙𝜙𝑞𝑞 

𝑇𝑇

𝑠𝑠
𝑓𝑓 (𝑢𝑢 (𝑟𝑟)) + ℎ (𝑟𝑟) ∇𝑟𝑟Δ𝑠𝑠𝑠

(51)

It is easy to see that (46) has a solution 𝑢𝑢 = 𝑢𝑢(𝑡𝑡) if and only
if 𝑢𝑢 is a �xed point of the operator 𝐹𝐹. For convenience, we
introduce the following notation:

𝛾𝛾 = (1 + 𝑇𝑇) 𝜙𝜙𝑞𝑞 (𝑇𝑇) ,

𝐴𝐴=
𝑎𝑎 − 𝛼𝛼‖ℎ‖1𝜉(𝑝𝑝−1)∞

𝛼𝛼𝑎𝑎
, where 𝛼𝛼=𝜙𝜙𝑞𝑞 2

𝑝𝑝−2 𝜙𝜙𝑞𝑞 (𝑇𝑇) (𝑇𝑇 + 1) ,

𝐵𝐵 = 𝜙𝜙𝑝𝑝 𝑇𝑇 − 𝜂𝜂 𝑠
(52)

eorem 13. Suppose that hypotheses (A1) and (A2) are
satis�ed; there e�ist positive �onstants 𝑎𝑎, 𝑏𝑏, 𝑐𝑐, and 𝑑𝑑 with

0 < 𝛾𝛾𝑎𝑎

= 𝑎𝑎1 < 𝑏𝑏 < 𝑑𝑑 − 2
𝑝𝑝−2 (𝑇𝑇 − 𝜉𝜉) 𝜙𝜙𝑞𝑞 (𝑇𝑇 − 𝜉𝜉) ‖ℎ‖1𝜉(𝑝𝑝−1) + 𝑏𝑏𝐵𝐵

< 𝑑𝑑 < 𝛾𝛾𝑐𝑐 = 𝑐𝑐1
(53)

and, in addition to (A1) and (A2), that 𝑓𝑓 satis�es

(A3) max0≤𝑢𝑢≤𝑎𝑎 𝑓𝑓(𝑢𝑢) ≤ 𝜙𝜙𝑝𝑝(𝑎𝑎𝐴𝐴);

(A4) max0≤𝑢𝑢≤𝑐𝑐 𝑓𝑓(𝑢𝑢) ≤ 𝜙𝜙𝑝𝑝(𝑐𝑐𝐴𝐴);

(A5) min𝑏𝑏≤𝑢𝑢≤𝑑𝑑 𝑓𝑓(𝑢𝑢) ≥ 𝜙𝜙𝑝𝑝(𝑏𝑏𝐵𝐵).

en problem (46) has at least three positive solutions 𝑢𝑢1, 𝑢𝑢2,
and 𝑢𝑢3, verifying

𝑢𝑢1 < 𝑎𝑎, 𝑏𝑏 < 𝛼𝛼 𝑢𝑢2 , 𝑢𝑢3 > 𝑎𝑎, 𝛼𝛼 𝑢𝑢3 < 𝑏𝑏𝑠
(54)

Proof. As done for eorem 8, the proof is divided in several
steps. We �rst show that 𝐹𝐹 𝛼 𝑃𝑃 𝛼 𝑃𝑃 is completely
continuous. Indeed, 𝐹𝐹 is obviously continuous. Let

𝑈𝑈𝛿𝛿 = {𝑢𝑢 ∈ 𝑃𝑃 𝑢 ‖𝑢𝑢‖ ≤ 𝛿𝛿} 𝑠 (55)

It is easy to see that for 𝑢𝑢 ∈ 𝑈𝑈𝛿𝛿 there exists a constant 𝑐𝑐 > 0
such that |𝐹𝐹𝑢𝑢(𝑡𝑡)| ≤ 𝑐𝑐. On the other hand, let 𝑡𝑡1, 𝑡𝑡2 ∈ (0, 𝑇𝑇)𝕋𝕋,
𝑢𝑢 ∈ 𝑈𝑈𝛿𝛿. en there exists a positive constant 𝑐𝑐 such that

𝐹𝐹𝑢𝑢 𝑡𝑡2 − 𝐹𝐹𝑢𝑢 𝑡𝑡1 ≤ 𝑐𝑐 𝑡𝑡2 − 𝑡𝑡1 , (56)

which converges uniformly to zerowhen |𝑡𝑡2−𝑡𝑡1| tends to zero.
Using the Arzela-Ascoli theorem we conclude that 𝐹𝐹 𝛼 𝑃𝑃 𝛼
𝑃𝑃 is completely continuous.

We now show that

𝐹𝐹𝑃𝑃𝑐𝑐1 ⊂ 𝑃𝑃𝑐𝑐1 , 𝐹𝐹𝑃𝑃𝑎𝑎1 ⊂ 𝑃𝑃𝑎𝑎1 𝑠 (57)

For all 𝑢𝑢 ∈ 𝑃𝑃𝑎𝑎1 we have 0 ≤ 𝑢𝑢 ≤ 𝑎𝑎1 and

‖𝐹𝐹 (𝑢𝑢)‖ ≤ 𝜙𝜙𝑞𝑞 
𝑇𝑇

𝜂𝜂
(𝑎𝑎𝐴𝐴)𝑝𝑝−1 + ‖ℎ‖∞∇𝑟𝑟

+ 
𝑇𝑇

0
𝜙𝜙𝑞𝑞 

𝑇𝑇

𝑠𝑠
(𝑎𝑎𝐴𝐴)𝑝𝑝−1 + ‖ℎ‖∞∇𝑟𝑟Δ𝑠𝑠

≤ 𝜙𝜙𝑞𝑞 (𝑎𝑎𝐴𝐴)
𝑝𝑝−1 + ‖ℎ‖∞ 𝑇𝑇 − 𝜂𝜂

+ 
𝑇𝑇

0
𝜙𝜙𝑞𝑞 (𝑎𝑎𝐴𝐴)

𝑝𝑝−1 + ‖ℎ‖∞ (𝑇𝑇 − 𝑠𝑠) Δ𝑠𝑠

≤ 𝜙𝜙𝑞𝑞 (𝑎𝑎𝐴𝐴)
𝑝𝑝−1 + ‖ℎ‖∞ 𝜙𝜙𝑞𝑞 (𝑇𝑇)

+ 𝜙𝜙𝑞𝑞 (𝑎𝑎𝐴𝐴)
𝑝𝑝−1 + ‖ℎ‖∞

𝑇𝑇

0
𝜙𝜙𝑞𝑞 (𝑇𝑇 − 𝑠𝑠) Δ𝑠𝑠

≤ 𝜙𝜙𝑞𝑞 (𝑎𝑎𝐴𝐴)
𝑝𝑝−1 + ‖ℎ‖1𝜉(𝑝𝑝−1)∞ 

𝑝𝑝−1
 𝜙𝜙𝑞𝑞 (𝑇𝑇)

+ 𝜙𝜙𝑞𝑞 (𝑎𝑎𝐴𝐴)
𝑝𝑝−1 + ‖ℎ‖1𝜉(𝑝𝑝−1)∞ 

𝑝𝑝−1
 𝜙𝜙𝑞𝑞 (𝑇𝑇) 𝑇𝑇

≤ 𝜙𝜙𝑞𝑞 (𝑎𝑎𝐴𝐴)
𝑝𝑝−1 + ‖ℎ‖1𝜉(𝑝𝑝−1)∞ 

𝑝𝑝−1
 𝜙𝜙𝑞𝑞 (𝑇𝑇) (𝑇𝑇 + 1) 𝑠

(58)

Using the elementary inequality

𝑥𝑥𝑝𝑝 + 𝑦𝑦𝑝𝑝 ≤ 2𝑝𝑝−1𝑥𝑥 + 𝑦𝑦𝑝𝑝 (59)
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and the form of 𝐴𝐴, it follows that

‖𝐹𝐹 (𝑢𝑢)‖ ≤ 𝜙𝜙𝑞𝑞 (𝑇𝑇 𝑇 𝑇) 2𝑝𝑝𝑝2 𝑎𝑎𝐴𝐴 𝑇 ‖ℎ‖𝑇/(𝑝𝑝𝑝𝑇)∞ 

≤ 𝜙𝜙𝑞𝑞 (𝑇𝑇 𝑇 𝑇) 2𝑝𝑝𝑝2 𝑎𝑎 𝑎 𝑎𝑎𝑎𝑎 𝑎 𝑎𝑎𝑇.
(60)

en 𝐹𝐹𝑃𝑃𝑎𝑎𝑇 ⊂ 𝑃𝑃𝑎𝑎𝑇 . In a similar way we prove that 𝐹𝐹𝑃𝑃𝑐𝑐𝑇 ⊂ 𝑃𝑃𝑐𝑐𝑇 .
Our following step is to show that

{𝑢𝑢 𝑢 𝑃𝑃 (𝛼𝛼𝛼 𝛼𝛼𝛼 𝛼𝛼) ∣ 𝛼𝛼 (𝑢𝑢) > 𝛼𝛼} ≠∅𝛼

𝛼𝛼 (𝐹𝐹𝑢𝑢) > 𝛼𝛼𝛼 if 𝑢𝑢 𝑢 𝑃𝑃 (𝛼𝛼𝛼 𝛼𝛼𝛼 𝛼𝛼) .
(61)

e �rst point is obvious. Let us prove the second part of (61).
For 𝑢𝑢 𝑢 𝑃𝑃(𝛼𝛼𝛼 𝛼𝛼𝛼 𝛼𝛼) we have 𝛼𝛼 ≤ 𝑢𝑢 ≤ 𝛼𝛼, if 𝑡𝑡 𝑢 𝑡𝑡𝑡𝛼 𝑇𝑇𝑡𝕋𝕋. en,
using (A2) we have

𝛼𝛼 (𝐹𝐹𝑢𝑢) 𝑎 𝐹𝐹𝑢𝑢 (𝑡𝑡)

≥ 𝜙𝜙𝑞𝑞 
𝑇𝑇

𝜂𝜂
𝑓𝑓 (𝑢𝑢 (𝑟𝑟)) ∇𝑟𝑟

𝑇 
𝑡𝑡

0
𝜙𝜙𝑞𝑞 

𝑇𝑇

𝑠𝑠
𝑓𝑓 (𝑢𝑢 (𝑟𝑟)) ∇𝑟𝑟Δ𝑠𝑠

≥ 𝜙𝜙𝑞𝑞 
𝑇𝑇

𝜂𝜂
𝑓𝑓 (𝑢𝑢 (𝑟𝑟)) ∇𝑟𝑟

≥ 𝛼𝛼𝑏𝑏𝜙𝜙𝑞𝑞 (𝑇𝑇 𝑝 𝑡𝑡)

≥ 𝛼𝛼.

(62)

Finally we prove that 𝛼𝛼(𝐹𝐹𝑢𝑢) > 𝛼𝛼 for all 𝑢𝑢 𝑢 𝑃𝑃(𝛼𝛼𝛼 𝛼𝛼𝛼 𝑐𝑐𝑇) and
‖𝐹𝐹𝑢𝑢‖ > 𝛼𝛼:

𝛼𝛼 (𝐹𝐹𝑢𝑢) 𝑎 𝐹𝐹𝑢𝑢 (𝑡𝑡)

𝑎 𝜙𝜙𝑞𝑞 
𝑇𝑇

𝜂𝜂
𝑓𝑓 (𝑢𝑢 (𝑟𝑟)) 𝑇 ℎ (𝑟𝑟) ∇𝑟𝑟

𝑇 
𝑡𝑡

0
𝜙𝜙𝑞𝑞 

𝑇𝑇

𝑠𝑠
𝑓𝑓 (𝑢𝑢 (𝑟𝑟)) 𝑇 ℎ (𝑟𝑟) ∇𝑟𝑟Δ𝑠𝑠

𝑎 𝜙𝜙𝑞𝑞 
𝑇𝑇

𝜂𝜂
𝑓𝑓 (𝑢𝑢 (𝑟𝑟)) 𝑇 ℎ (𝑟𝑟) ∇𝑟𝑟

𝑇 
𝑇𝑇

0
𝜙𝜙𝑞𝑞 

𝑇𝑇

𝑠𝑠
𝑓𝑓 (𝑢𝑢 (𝑟𝑟)) 𝑇 ℎ (𝑟𝑟) ∇𝑟𝑟Δ𝑠𝑠

𝑝 
𝑇𝑇

𝑡𝑡
𝜙𝜙𝑞𝑞 

𝑇𝑇

𝑠𝑠
𝑓𝑓 (𝑢𝑢 (𝑟𝑟)) 𝑇 ℎ (𝑟𝑟) ∇𝑟𝑟Δ𝑠𝑠

≥ ‖𝐹𝐹𝑢𝑢‖ 𝑝 
𝑇𝑇

𝑡𝑡
𝜙𝜙𝑞𝑞 

𝑇𝑇

𝑠𝑠
𝑓𝑓 (𝑢𝑢 (𝑟𝑟)) 𝑇 ℎ (𝑟𝑟) ∇𝑟𝑟Δ𝑠𝑠

≥ ‖𝐹𝐹𝑢𝑢‖ 𝑝 
𝑇𝑇

𝑡𝑡
𝜙𝜙𝑞𝑞 

𝑇𝑇

𝑡𝑡
𝑓𝑓 (𝑢𝑢 (𝑟𝑟)) 𝑇 ℎ (𝑟𝑟) ∇𝑟𝑟Δ𝑠𝑠

≥ ‖𝐹𝐹𝑢𝑢‖ 𝑝 
𝑇𝑇

𝑡𝑡
𝜙𝜙𝑞𝑞 (𝑇𝑇 𝑝 𝑡𝑡) ‖ℎ‖ 𝑇 𝜙𝜙𝑝𝑝 (𝛼𝛼𝑏𝑏) Δ𝑠𝑠

≥ ‖𝐹𝐹𝑢𝑢‖ 𝑝 (𝑇𝑇 𝑝 𝑡𝑡) 𝜙𝜙𝑞𝑞 (𝑇𝑇 𝑝 𝑡𝑡) 𝜙𝜙𝑞𝑞 ‖ℎ‖ 𝑇 𝜙𝜙𝑝𝑝 (𝛼𝛼𝑏𝑏) .

(63)

Using again the elementary inequality 𝑥𝑥𝑝𝑝 𝑇𝑦𝑦𝑝𝑝 ≤ 2𝑝𝑝𝑝𝑇(𝑥𝑥𝑇𝑦𝑦)𝑝𝑝
we get that

𝛼𝛼 (𝐹𝐹𝑢𝑢) ≥ ‖𝐹𝐹𝑢𝑢‖ 𝑝 (𝑇𝑇 𝑝 𝑡𝑡) 𝜙𝜙𝑞𝑞 (𝑇𝑇 𝑝 𝑡𝑡) ‖ℎ‖𝑇/(𝑝𝑝𝑝𝑇) 𝑇 𝛼𝛼𝑏𝑏

≥ 𝛼𝛼 𝑝 2𝑝𝑝𝑝2 (𝑇𝑇 𝑝 𝑡𝑡) 𝜙𝜙𝑞𝑞 (𝑇𝑇 𝑝 𝑡𝑡) ‖ℎ‖𝑇/(𝑝𝑝𝑝𝑇) 𝑇 𝛼𝛼𝑏𝑏

≥ 𝛼𝛼.

(64)

By eorem 3 there exist at least three positive solutions 𝑢𝑢𝑇,
𝑢𝑢2, and 𝑢𝑢3 to (46) satisfying ‖𝑢𝑢𝑇‖ < 𝑎𝑎, 𝛼𝛼 < 𝛼𝛼(𝑢𝑢2), ‖𝑢𝑢3‖ > 𝑎𝑎,
and 𝛼𝛼(𝑢𝑢3) < 𝛼𝛼.

Example 14. Let 𝕋𝕋 𝑎 {𝑇 𝑝 (𝑇/2)ℕ0} ∪ {𝑇}, whereℕ0 denotes
the set of all nonnegative integers. Consider the 𝑝𝑝-Laplacian
dynamic equation

𝜙𝜙𝑝𝑝 𝑢𝑢
Δ (𝑡𝑡)

∇
𝑇 𝑓𝑓 (𝑢𝑢 (𝑡𝑡)) 𝑎 0𝛼 𝑡𝑡 𝑢 𝑡0𝛼 𝑇𝑡𝕋𝕋𝛼 (65)

satisfying the boundary conditions

𝑢𝑢 (𝑇) 𝑝 𝑢𝑢 
𝑇
2
 𝑎 0𝛼 𝑢𝑢▵ (0) 𝑎 0𝛼 (66)

where 𝑝𝑝 𝑎 3/2, 𝑞𝑞 𝑎 3, 𝑎𝑎(𝑡𝑡) 𝑎 𝑇, ℎ 𝑎 0, 𝑇𝑇 𝑎 𝑇, and

𝑓𝑓 (𝑢𝑢) 𝑎





√2
2
𝛼 0 ≤ 𝑢𝑢 ≤

𝑇
2
𝛼

4 𝑢𝑢 𝑝
𝑇
2
 𝑇

√2
2
𝛼

𝑇
2
≤ 𝑢𝑢 ≤

3
2
𝛼

4 𝑇
√2
2
𝛼

3
2
≤ 𝑢𝑢 ≤ 2𝑢.

(67)
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Choose 𝑎𝑎 𝑎 𝑎𝑎𝑎, 𝑏𝑏 𝑎 𝑏𝑎𝑎, 𝑐𝑐 𝑎 𝑎𝑐, and 𝑑𝑑 𝑎 𝑏. It is easy to see
that 𝛾𝛾 𝑎 𝑎, 𝐴𝐴 𝑎 𝑎, 𝐵𝐵 𝑎 √𝑎𝑎𝑎, 𝛼𝛼 𝑎 𝑎, and

max 𝑓𝑓 (𝑢𝑢) ∶ 𝑢𝑢 𝑢 0,
𝑎
𝑎
𝑎

√𝑎
𝑎

≤ (𝑎𝑎𝐴𝐴)𝑝𝑝𝑝𝑎 𝑎√𝑎𝑎 𝑎
√𝑎
𝑎
,

max 𝑓𝑓 (𝑢𝑢) ∶ 𝑢𝑢 𝑢 [0, 𝑎𝑐] 𝑎 4 +
√𝑎
𝑎

≃ 4, 707

≤ (𝑐𝑐𝐴𝐴)𝑝𝑝𝑝𝑎 𝑎 𝑐𝑐𝑝𝑝𝑝𝑎 𝑎 √𝑐𝑐 𝑎 𝑐,

min 𝑓𝑓 (𝑢𝑢) ∶ 𝑢𝑢 𝑢 
𝑏
𝑎
, 𝑏 𝑎 4 +

√𝑎
𝑎

≃ 4, 707

≥ (𝑏𝑏𝐵𝐵)𝑝𝑝𝑝𝑎 𝑎 √𝑏𝑏𝐵𝐵 ≃ 𝑎, 0𝑎𝑏
(68)

erefore, by eorem 13, problem (65)-(66) has at least
three positive solutions.

3.3. A p-Laplacian Functional Dynamic Equation on Time
Scales with Delay. Let 𝕋𝕋 be a time scale with 0, 𝑇𝑇 𝑢 𝕋𝕋𝜅𝜅

𝜅𝜅,
𝑝𝑟𝑟 𝑢 𝕋𝕋 with 𝑝𝑟𝑟 ≤ 0 𝑟 𝑇𝑇. We are concerned in this section
with the existence of positive solutions to the 𝑝𝑝-Laplacian
dynamic equation

𝜙𝜙𝑝𝑝 𝑢𝑢
Δ (𝑡𝑡)

∇
+𝜆𝜆𝑎𝑎 (𝑡𝑡) 𝑓𝑓 (𝑢𝑢 (𝑡𝑡) , 𝑢𝑢 (𝜔𝜔 (𝑡𝑡)))𝑎0, 𝑡𝑡 𝑢 (0, 𝑇𝑇)𝕋𝕋,

𝑢𝑢 (𝑡𝑡) 𝑎 𝜓𝜓 (𝑡𝑡) , 𝑡𝑡 𝑢 [𝑝𝑟𝑟, 0]𝕋𝕋,

𝑢𝑢 (0) 𝑝 𝐵𝐵0 𝑢𝑢
Δ (0) 𝑎 0, 𝑢𝑢Δ (𝑇𝑇) 𝑎 0,

(69)

where 𝜆𝜆 𝜆 0. We de�ne 𝑋𝑋 𝑎 𝑋𝑙𝑙𝑑𝑑([0, 𝑇𝑇]𝕋𝕋, ℝ), which is a
Banach spacewith themaximumnorm ‖𝑢𝑢‖ 𝑎 max[0,𝑇𝑇]𝕋𝕋 |𝑢𝑢(𝑡𝑡)|.
We note that 𝑢𝑢 is a solution to (69) if and only if

𝑢𝑢 (𝑡𝑡)

𝑎





𝐵𝐵0 𝜙𝜙𝑞𝑞 
𝑇𝑇

0
𝜆𝜆𝑎𝑎 (𝑟𝑟)

×𝑓𝑓 (𝑢𝑢 (𝑟𝑟) , 𝑢𝑢 (𝜔𝜔 (𝑟𝑟))) ∇𝑟𝑟

+
𝑡𝑡

0
𝜙𝜙𝑞𝑞 

𝑇𝑇

𝑠𝑠
𝜆𝜆𝑎𝑎 (𝑟𝑟)

×𝑓𝑓 (𝑢𝑢 (𝑟𝑟) , 𝑢𝑢 (𝜔𝜔 (𝑟𝑟))) ∇𝑟𝑟Δ𝑠𝑠 if 𝑡𝑡𝑢[0, 𝑇𝑇]𝕋𝕋,

𝜓𝜓 (𝑡𝑡) if 𝑡𝑡𝑢[𝑝𝑟𝑟, 0]𝕋𝕋𝑏
(70)

Let

𝐾𝐾 𝑎 𝑢𝑢 𝑢 𝑋𝑋 𝑢 𝑢𝑢 is nonnegative and concave on 𝐸𝐸 𝑏 (71)

Clearly 𝐾𝐾 is a cone in the Banach space 𝑋𝑋. For each 𝑢𝑢 𝑢 𝑋𝑋,
we extend 𝑢𝑢 to [𝑝𝑟𝑟, 0]𝕋𝕋 with 𝑢𝑢(𝑡𝑡) 𝑎 𝜓𝜓(𝑡𝑡) for 𝑡𝑡 𝑢 [𝑝𝑟𝑟, 0]𝕋𝕋. We
also de�ne the nonnegative continuous concave functional
𝛼𝛼 ∶ 𝛼𝛼 𝛼 ℝ+

0 by

𝛼𝛼 (𝑢𝑢) 𝑎 min
𝑡𝑡𝑢𝜉𝜉,𝑇𝑇𝑝𝜉𝜉𝕋𝕋

𝑢𝑢 (𝑡𝑡) , 𝜉𝜉 𝑢 0,
𝑇𝑇
𝑎
 , ∀𝑢𝑢 𝑢 𝐾𝐾𝑏 (72)

For 𝑡𝑡 𝑢 [0, 𝑇𝑇]𝕋𝕋, de�ne𝑄𝑄 ∶ 𝐾𝐾 𝛼 𝑋𝑋 as

𝑄𝑄𝑢𝑢 (𝑡𝑡) 𝑎 𝐵𝐵0 𝜙𝜙𝑞𝑞 
𝑇𝑇

0
𝜆𝜆𝑎𝑎 (𝑟𝑟) 𝑓𝑓 (𝑢𝑢 (𝑟𝑟) , 𝑢𝑢 (𝜔𝜔 (𝑟𝑟))) ∇𝑟𝑟

+ 
𝑡𝑡

0
𝜙𝜙𝑞𝑞 

𝑇𝑇

𝑠𝑠
𝜆𝜆𝑎𝑎 (𝑟𝑟) 𝑓𝑓 (𝑢𝑢 (𝑟𝑟) , 𝑢𝑢 (𝜔𝜔 (𝑟𝑟))) ∇𝑟𝑟Δ𝑠𝑠𝑏

(73)

Lemma 15. Let 𝑢𝑢𝑎 �e a �xed point of𝑄𝑄 in the cone𝐾𝐾. De�ne

𝑢𝑢 (𝑡𝑡) 𝑎 
𝑢𝑢𝑎, 𝑡𝑡 𝑢 [0, 𝑇𝑇]𝕋𝕋,
𝜓𝜓 (𝑡𝑡) , 𝑡𝑡 𝑢 [𝑝𝑟𝑟, 0]𝕋𝕋𝑏

(74)

It follows that (74) is a positive solution to (69) satisfying

‖𝑄𝑄𝑢𝑢‖ ≤ 𝑇𝑇 + 𝛾𝛾 𝜆𝜆𝑞𝑞𝑝𝑎

× 𝜙𝜙𝑞𝑞
𝑇𝑇

0
𝑎𝑎(𝑟𝑟) 𝑓𝑓(𝑢𝑢(𝑟𝑟) , 𝑢𝑢(𝜔𝜔(𝑟𝑟))) ∇𝑟𝑟 for 𝑡𝑡𝑢[0, 𝑇𝑇]𝕋𝕋𝑏

(75)

Proof.

‖𝑄𝑄𝑢𝑢‖ 𝑎 (𝑄𝑄𝑢𝑢) (𝑇𝑇)

𝑎 𝐵𝐵0 𝜙𝜙𝑞𝑞 
𝑇𝑇

0
𝜆𝜆𝑎𝑎 (𝑟𝑟) 𝑓𝑓 (𝑢𝑢 (𝑟𝑟) , 𝑢𝑢 (𝜔𝜔 (𝑟𝑟))) ∇𝑟𝑟

+ 
𝑇𝑇

0
𝜙𝜙𝑞𝑞 

𝑇𝑇

𝑠𝑠
𝜆𝜆𝑎𝑎 (𝑟𝑟) 𝑓𝑓 (𝑢𝑢 (𝑟𝑟) , 𝑢𝑢 (𝜔𝜔 (𝑟𝑟))) ∇𝑟𝑟Δ𝑠𝑠

≤ 𝑇𝑇 + 𝛾𝛾 𝜆𝜆𝑞𝑞𝑝𝑎𝜙𝜙𝑞𝑞 
𝑇𝑇

0
𝑎𝑎 (𝑟𝑟) 𝑓𝑓 (𝑢𝑢 (𝑟𝑟) , 𝑢𝑢 (𝜔𝜔 (𝑟𝑟))) ∇𝑟𝑟 𝑏

(76)

From (73) and (75) it follows that

(i) 𝑄𝑄(𝐾𝐾) 𝑄 𝐾𝐾;
(ii) 𝑄𝑄 ∶ 𝐾𝐾 𝛼 𝐾𝐾 is completely continuous;
(iii) 𝑢𝑢(𝑡𝑡) ≥ 𝑢𝑢𝑎(𝑇𝑇 + 𝛾𝛾)‖𝑢𝑢‖, 𝑡𝑡 𝑢 [0, 𝑇𝑇]𝕋𝕋.

Depending on the signature of the delay 𝜔𝜔, we set the
following two subsets of [0, 𝑇𝑇]𝕋𝕋:

𝑌𝑌𝑎 ∶𝑎 𝑡𝑡 𝑢 [0, 𝑇𝑇]𝕋𝕋 𝑢 𝜔𝜔 (𝑡𝑡) 𝑟 0 ;

𝑌𝑌𝑎 ∶𝑎 𝑡𝑡 𝑢 [0, 𝑇𝑇]𝕋𝕋 𝑢 𝜔𝜔 (𝑡𝑡) ≥ 0 𝑏
(77)

In the remainder of this section, we suppose that 𝑌𝑌𝑎 is
nonempty and ∫𝑌𝑌𝑎

𝑎𝑎(𝑟𝑟)∇𝑟𝑟 𝜆 0. For convenience we also
denote

𝑙𝑙 ∶𝑎
𝜙𝜙𝑝𝑝 ∫

𝑇𝑇
0 𝑎𝑎 (𝑟𝑟) ∇𝑟𝑟

𝜆𝜆𝑞𝑞𝑝𝑎 𝑇𝑇 + 𝛾𝛾
, 𝑚𝑚 ∶𝑎

𝜙𝜙𝑝𝑝 ∫
𝑇𝑇
0 𝑎𝑎 (𝑟𝑟) ∇𝑟𝑟

𝑢𝑢𝜆𝜆𝑞𝑞𝑝𝑎
𝑏 (78)

eorem 16. Suppose that there exist positive constants 𝑎𝑎, 𝑏𝑏,
𝑐𝑐, and 𝑑𝑑 such that 0 𝑟 𝑎𝑎 𝑟 𝑏𝑏 𝑟 𝑢𝑢𝑑𝑑𝑎(𝑇𝑇 + 𝛾𝛾) 𝑟 𝑑𝑑 𝑟 𝑐𝑐. Assume
that the following hypotheses (C1)–(C8) hold:
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(C1) 𝑓𝑓 𝑓 𝑓+
0 × 𝑓

+
0 → 𝑓+

0 is continuous;
(C2) function 𝑎𝑎 𝑓 𝑎0𝑎 𝑎𝑎𝑎𝕋𝕋 → 𝑓+

0 is le-dense continuous;
(C3) 𝜓𝜓 𝑓 𝜓𝜓𝜓𝜓𝑎 0𝜓𝕋𝕋 → 𝑓+

0 is continuous;
(C4) 𝜔𝜔 𝑓 𝜓0𝑎 𝑎𝑎𝜓𝕋𝕋 → 𝜓𝜓𝜓𝜓𝑎 𝑎𝑎𝜓𝕋𝕋 is continuous, 𝜔𝜔𝑎𝜔𝜔𝑎 𝜔 𝜔𝜔 for all

𝜔𝜔;
(C5) 𝐵𝐵0 𝑓 𝑓 → 𝑓 is continuous and there are 0 < 𝛿𝛿 𝜔 𝛿𝛿

such that

𝛿𝛿𝛿𝛿 𝜔 𝐵𝐵0 𝑎𝛿𝛿𝑎 𝜔 𝛿𝛿𝛿𝛿 for 𝛿𝛿 𝑠 𝑓+
0 ; (79)

(C6) lim𝑥𝑥→0+ 𝑓𝑓𝑎𝑥𝑥𝑎 𝜓𝜓𝑎𝛿𝛿𝑎𝑎𝑓𝑥𝑥
𝑝𝑝𝜓𝑝 < 𝑙𝑙𝑝𝑝𝜓𝑝, uniformly in 𝛿𝛿 𝑠

𝜓𝜓𝜓𝜓𝑎 0𝜓𝕋𝕋;
(C7) lim𝑥𝑥𝑝 →0+;𝑥𝑥2 →0+ 𝑓𝑓𝑎𝑥𝑥𝑝𝑎 𝑥𝑥2𝑎𝑓max{𝑥𝑥

𝑝𝑝𝜓𝑝
𝑝 𝑎 𝑥𝑥𝑝𝑝𝜓𝑝2 } < 𝑙𝑙𝑝𝑝𝜓𝑝;

(C8) lim𝑥𝑥→𝑥 𝑓𝑓𝑎𝑥𝑥𝑎 𝜓𝜓𝑎𝛿𝛿𝑎𝑎𝑓𝑥𝑥𝑝𝑝𝜓𝑝 > 𝑚𝑚𝑝𝑝𝜓𝑝, uniformly in 𝛿𝛿 𝑠
𝜓𝜓𝜓𝜓𝑎 0𝜓𝕋𝕋.

en, for each 0 < 𝜆𝜆 < 𝑥 the boundary value problem (69)
has at least three positive solutions 𝑢𝑢𝑝, 𝑢𝑢2, and 𝑢𝑢3 verifying

𝑢𝑢𝑝 < 𝑎𝑎𝑎 𝑎𝑎 < 𝑎𝑎 𝑢𝑢2 𝑎 𝑢𝑢3 > 𝑎𝑎𝑎 𝑎𝑎 𝑢𝑢3 < 𝑎𝑎𝑏
(80)

Proof.e proof passes by three lemmas.

Lemma 17. e following relations hold:

𝑄𝑄𝑃𝑃𝑎𝑎 ⊂ 𝑃𝑃𝑎𝑎𝑎 𝑄𝑄𝑃𝑃𝑐𝑐 ⊂ 𝑃𝑃𝑐𝑐𝑏 (81)

Proof. Using condition (C6) for 𝜀𝜀𝑝 > 0 such that 0 < 𝑥𝑥 𝜔 𝜀𝜀𝑝,
we have

𝑓𝑓 𝑥𝑥𝑎 𝜓𝜓 𝑎𝛿𝛿𝑎 < 𝑎𝑙𝑙𝑥𝑥𝑎𝑝𝑝𝜓𝑝 for each 𝛿𝛿 𝑠 𝜓𝜓𝜓𝜓𝑎 0𝜓𝕋𝕋𝑏 (82)

Applying condition (C7) we get

𝑓𝑓 𝑥𝑥𝑝𝑎 𝑥𝑥2 < max 𝑥𝑥
𝑝𝑝𝜓𝑝
𝑝 𝑎 𝑥𝑥𝑝𝑝𝜓𝑝2  𝑙𝑙𝑝𝑝𝜓𝑝 (83)

for 𝜀𝜀2 > 0 such that 0 < 𝑥𝑥𝑝 𝜔 𝜀𝜀2, 0 < 𝑥𝑥2 𝜔 𝜀𝜀2. Put 𝜀𝜀 𝜀
min{𝜀𝜀𝑝𝑎 𝜀𝜀2}. en for ‖𝑢𝑢‖ 𝜔 𝑎𝑎 and from (75) we have

|𝑄𝑄𝑢𝑢| 𝜔 ‖𝑄𝑄𝑢𝑢‖

𝜔 𝑎𝑎 + 𝛿𝛿 𝜆𝜆𝑞𝑞𝜓𝑝𝜙𝜙𝑞𝑞 
𝑎𝑎

0
𝑎𝑎 𝑎𝜓𝜓𝑎 𝑓𝑓 𝑎𝑢𝑢 𝑎𝜓𝜓𝑎 𝑎 𝑢𝑢 𝑎𝜔𝜔 𝑎𝜓𝜓𝑎𝑎𝑎 ∇𝜓𝜓

𝜀 𝑎𝑎 + 𝛿𝛿 𝜆𝜆𝑞𝑞𝜓𝑝 𝜙𝜙𝑞𝑞 
𝑌𝑌𝑝

𝑎𝑎 𝑎𝜓𝜓𝑎 𝑓𝑓 𝑢𝑢 𝑎𝜓𝜓𝑎 𝑎 𝜓𝜓 𝑎𝜔𝜔 𝑎𝜓𝜓𝑎𝑎 ∇𝜓𝜓

+ 
𝑌𝑌2

𝑎𝑎 𝑎𝜓𝜓𝑎 𝑓𝑓 𝑎𝑢𝑢 𝑎𝜓𝜓𝑎 𝑎 𝑢𝑢 𝑎𝜔𝜔 𝑎𝜓𝜓𝑎𝑎𝑎 ∇𝜓𝜓

𝜔 𝑙𝑙 𝑎𝑎 + 𝛿𝛿 𝜆𝜆𝑞𝑞𝜓𝑝 ‖𝑢𝑢‖ 𝜙𝜙𝑞𝑞 
𝑎𝑎

0
𝑎𝑎 𝑎𝜓𝜓𝑎 ∇𝜓𝜓

𝜔 𝑙𝑙 𝑎𝑎 + 𝛿𝛿 𝜆𝜆𝑞𝑞𝜓𝑝𝑎𝑎𝜙𝜙𝑞𝑞 
𝑎𝑎

0
𝑎𝑎 𝑎𝜓𝜓𝑎 ∇𝜓𝜓

𝜀 𝑎𝑎𝑏
(84)

en𝑄𝑄𝑃𝑃𝑎𝑎 ⊂ 𝑃𝑃𝑎𝑎. Similarly one can show that𝑄𝑄𝑃𝑃𝑐𝑐 ⊂ 𝑃𝑃𝑐𝑐.

Lemma 18. e set

{𝑢𝑢 𝑠 𝑃𝑃 𝑎𝑎𝑎𝑎 𝑎𝑎𝑎 𝛼𝛼𝑎 ∣ 𝑎𝑎 𝑎𝑢𝑢𝑎 > 𝑎𝑎} (85)

is nonempty, and

𝑎𝑎 𝑎𝑄𝑄𝑢𝑢𝑎 > 𝑎𝑎𝑎 if 𝑢𝑢 𝑠 𝑃𝑃 𝑎𝑎𝑎𝑎 𝑎𝑎𝑎 𝛼𝛼𝑎 𝑏 (86)

Proof. Applying hypothesis 𝑎𝐶𝐶𝐶𝑎 we have

𝑓𝑓 𝑢𝑢𝑎 𝜓𝜓 𝑎𝛿𝛿𝑎 > 𝜙𝜙𝑝𝑝 𝑎𝑚𝑚𝑢𝑢𝑎 for each 𝛿𝛿 𝑠 𝜓𝜓𝜓𝜓𝑎 0𝜓𝕋𝕋𝑏 (87)

We also have 𝑢𝑢𝑎𝜔𝜔𝑎 𝑢 𝛿𝛿𝑓𝑎𝑎𝑎 + 𝛿𝛿𝑎‖𝑢𝑢‖. Let 𝑢𝑢 𝑠 𝑃𝑃𝑎𝑎𝑎𝑎 𝑎𝑎𝑎 𝛼𝛼𝑎. en,
𝑎𝑎 𝜔 𝑢𝑢𝑎𝜔𝜔𝑎 𝜔 𝛼𝛼. Hence,

𝑎𝑎 𝑎𝑄𝑄𝑢𝑢𝑎 𝜀 𝑎𝑄𝑄𝑢𝑢𝑎 𝑎𝑎𝑎 𝜓 𝑇𝑇𝑎

𝑢
𝛿𝛿

𝑎𝑎 + 𝛿𝛿
‖𝑄𝑄𝑢𝑢‖

𝑢 𝛿𝛿𝜙𝜙𝑞𝑞 
𝑎𝑎

0
𝜆𝜆𝑎𝑎 𝑎𝜓𝜓𝑎 𝑓𝑓 𝑎𝑢𝑢 𝑎𝜓𝜓𝑎 𝑎 𝑢𝑢 𝑎𝜔𝜔 𝑎𝜓𝜓𝑎𝑎𝑎 ∇𝜓𝜓

𝑢 𝛿𝛿𝜆𝜆𝑞𝑞𝜓𝑝𝜙𝜙𝑞𝑞 
𝑌𝑌𝑝

𝑎𝑎 𝑎𝜓𝜓𝑎 𝑓𝑓 𝑢𝑢 𝑎𝜓𝜓𝑎 𝑎 𝜓𝜓 𝑎𝜔𝜔 𝑎𝜓𝜓𝑎𝑎 ∇𝜓𝜓

+
𝑌𝑌2

𝑎𝑎 𝑎𝜓𝜓𝑎 𝑓𝑓 𝑢𝑢 𝑎𝜓𝜓𝑎 𝑎 𝜓𝜓 𝑎𝜔𝜔 𝑎𝜓𝜓𝑎𝑎 ∇𝜓𝜓

𝑢 𝛿𝛿𝜆𝜆𝑞𝑞𝜓𝑝𝜙𝜙𝑞𝑞 
𝑌𝑌𝑝

𝑎𝑎 𝑎𝜓𝜓𝑎 𝑓𝑓 𝑢𝑢 𝑎𝜓𝜓𝑎 𝑎 𝜓𝜓 𝑎𝜔𝜔 𝑎𝜓𝜓𝑎𝑎 ∇𝜓𝜓

𝑢 𝑚𝑚𝛿𝛿𝜆𝜆𝑞𝑞𝜓𝑝min
𝜔𝜔𝑠𝑌𝑌𝑝

{𝑢𝑢 𝑎𝜔𝜔𝑎} 𝜙𝜙𝑞𝑞 
𝑌𝑌𝑝

𝑎𝑎 𝑎𝜓𝜓𝑎 ∇𝜓𝜓

𝑢 𝑎𝑎𝑚𝑚𝛿𝛿𝜆𝜆𝑞𝑞𝜓𝑝𝜙𝜙𝑞𝑞 
𝑌𝑌𝑝

𝑎𝑎 𝑎𝜓𝜓𝑎 ∇𝜓𝜓

𝑢 𝑎𝑎𝑏
(88)

Lemma 19. For all 𝑢𝑢 𝑠 𝑃𝑃𝑎𝑎𝑎𝑎 𝑎𝑎𝑎 𝑐𝑐𝑎 and ‖𝑄𝑄𝑢𝑢‖ > 𝛼𝛼 one has
𝑎𝑎𝑎𝑄𝑄𝑢𝑢𝑎 > 𝑎𝑎.

Proof. Using the fact that 𝛿𝛿 𝜔 𝑎𝑎 + 𝛿𝛿, we have

𝑎𝑎 𝑎𝑄𝑄𝑢𝑢𝑎 𝜀 𝑎𝑄𝑄𝑢𝑢𝑎 𝑎𝑎𝑎 𝜓 𝑇𝑇𝑎

𝑢
𝛿𝛿

𝑎𝑎 + 𝛿𝛿
‖𝑄𝑄𝑢𝑢‖

>
𝛿𝛿𝛼𝛼
𝑎𝑎 + 𝛿𝛿

𝑢 𝑎𝑎𝑏

(89)

Applying the Leggett-Williams theorem (eorem 3), the
proof of eorem 16 is complete.
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Example 20. Let 𝕋𝕋 𝕋 𝕋𝕋𝕋𝕋𝕋𝕋 𝕋𝕋𝕋𝕋𝕋 𝕋 𝕋𝕋𝕋 𝕋𝕋𝕋𝕋 𝕋 𝕋𝕋𝕋𝕋𝕋𝕋ℕ𝕋𝕋,
where ℕ𝕋 denotes the set of all nonnegative integers. Con-
sider the following 𝑝𝑝-Laplacian functional dynamic equation
on the time scale 𝕋𝕋:

Φ𝑝𝑝 𝑢𝑢
Δ 𝕋𝑡𝑡𝕋

∇
+ 𝑢𝑢𝕋 + 𝑢𝑢𝕋

𝕋 𝕋 𝕋𝕋 𝑡𝑡 𝑡 𝕋𝕋𝕋 𝕋𝕋𝕋𝕋𝕋

𝜓𝜓 𝕋𝑡𝑡𝕋 ≡ 𝕋𝕋 𝑡𝑡 𝑡 𝕋
𝕋
𝕋
𝕋 𝕋

𝕋𝕋
𝕋

𝑢𝑢 𝕋𝕋𝕋 𝕋 𝐵𝐵𝕋 𝑢𝑢
Δ 

𝕋
𝕋
 𝕋 𝕋𝕋 𝑢𝑢Δ 𝕋𝕋𝕋 𝕋 𝕋𝕋

(90)

where 𝑇𝑇 𝕋 𝕋, 𝑝𝑝 𝕋 𝕋𝕋𝕋, 𝑞𝑞 𝕋 𝕋, 𝑎𝑎𝕋𝑡𝑡𝕋 ≡ 𝕋𝕋 𝐵𝐵𝕋𝕋𝑠𝑠𝕋 𝕋 𝑠𝑠, 𝑤𝑤𝕋𝑡𝑡𝕋 𝑤
𝕋𝕋𝕋 𝕋𝕋𝕋𝕋 → 𝕋𝕋𝕋𝕋𝕋𝕋 𝕋𝕋𝕋𝕋 with 𝑤𝑤𝕋𝑡𝑡𝕋 𝕋 𝑡𝑡 𝕋 𝕋𝕋𝕋, 𝑟𝑟 𝕋 𝕋𝕋𝕋, 𝜂𝜂 𝕋 𝕋𝕋𝕋,
𝑙𝑙 𝕋 𝕋𝕋𝕋, 𝑚𝑚 𝕋 𝕋, and 𝑓𝑓𝕋𝑢𝑢𝕋 𝜓𝜓𝕋𝑡𝑡𝕋𝕋 𝕋 𝑢𝑢𝕋, 𝑓𝑓𝕋𝑢𝑢𝕋𝕋 𝑢𝑢𝕋𝕋 𝕋 𝕋𝑢𝑢𝕋 + 𝑢𝑢𝕋𝕋

𝕋.
We deduce that 𝑌𝑌𝕋 𝕋 𝕋𝕋𝕋 𝕋𝕋𝕋𝕋𝕋𝕋, 𝑌𝑌𝕋 𝕋 𝕋𝕋𝕋𝕋𝕋 𝕋𝕋𝕋𝕋. It is easy
to see that hypotheses (C1)–(C5) are veri�ed. On the other
hand, notice that lim𝑥𝑥→𝕋+𝑓𝑓𝕋𝑥𝑥𝕋 𝜓𝜓𝕋𝑠𝑠𝕋𝕋𝕋𝑥𝑥

𝑝𝑝𝕋𝕋 𝕋 𝕋 < 𝑙𝑙𝑝𝑝𝕋𝕋 and
lim𝑥𝑥→𝑥𝑓𝑓𝕋𝑥𝑥𝕋 𝜓𝜓𝕋𝑠𝑠𝕋𝕋𝕋𝕋𝑥𝑥

𝑝𝑝𝕋𝕋𝕋 𝕋 +𝑥 > 𝑚𝑚𝑝𝑝𝕋𝕋. us, hypotheses
(C6)–(C8) are obviously satis�ed. en, by eorem 16,
problem (90) has at least three positive solutions of the form

𝑢𝑢 𝕋𝑡𝑡𝕋 𝕋




𝑢𝑢𝑖𝑖 𝕋𝑡𝑡𝕋 𝕋 𝑡𝑡 𝑡 𝕋𝕋𝕋 𝕋𝕋𝕋𝕋𝕋 𝑖𝑖 𝕋 𝕋𝕋 𝕋𝕋 𝕋𝕋

𝜓𝜓 𝕋𝑡𝑡𝕋 𝕋 𝑡𝑡 𝑡 𝕋
𝕋
𝕋
𝕋 𝕋

𝕋𝕋
. (91)
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