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Introduction
Over the years, researchers tried to explain cancer pathogenesis by taking
into consideration different factors, such as immune system, the genetic
predisposition and environmental factors [1]. In this context, the
inflammation and oxidative stress response represent important topics in
scientific debate. The inflammation is a normal defensal tissue response to
factors that disturb omeostasis of human biological system [1]. Therefore,
it needs a delicate regulation that ensures the correct reaction against
damage and allows the organ and tissue reparation associated to the
recovery of their functions. However, the correct operation of the
“repairingmachine in our body” is due to a functional balance that allows
the immune system to activate itself after physical and/or chemical stimuli
and then by determining its shutting down which ensures the return to
the starting conditions, essential for biological function protection.
Response of genetic factors to environmental stressors can complicate
inflammation chronicization, as well as the possible instauration of a
chronic inflammation for autoimmune pathologies, that represent the
primum movens for cancer onset, just like inflammatory bowel disease
(IBD) [2]. The role of primary order carried out by immune system was
first hypothesized by Rudolf Ludwig Virchow in 1863, after leucocytes
presence demonstration in neoplastic tissue. This concept was taken up
by a large number of studies on the topic, demonstrating a clear
interconnection among inflammation, oxidative stress, cytokine produc-
tion, chemokines and tumoral growth, invasion and metastasis [3]. The
correlation between inflammation and cancer is now very clear given the
numerous scientific evidence especially in gastrointestinal tract cancer [4].
In this context, an inflammatory microenvironment is an essential
assumption for the development of most of tumors. Indeed, only a small
part of cancers is correlated to germline mutation, whereas the majority is
the result of a cooperation between environmental factors and genetic
somatic mutations [5]. The increase of metabolic pathologies, such as
obesity and diabetes in the last years, has caused an increase of tumor
incidence in this population. These diseases are associated to a higher risk
of developing cancer due to a direct cancerogenous effect, as well as an
immune dysregulation able to promote chronic inflammation and
oxidative stress through antioxidant system depletion [6].
Additionally, also advanced age and cell senescence are important

factor as they are able to generate per se a higher predisposition to
tumoral onset even through a dysregulation of inflammatory cascade.
These factors also make the immune response less efficient in fighting
cancer, allowing it to grow and metastasize [7].

Moreover, growing scientific evidence has demonstrated a possible
role of gastrointestinal bacterial community in the regulation of
several inflammatory/immunitary processes involved in tumor
initiation or progression. Gut microbiota represents the totality of
bacteria, virus and fungi that are in our gastroenteric tract. It is a
complex ecological system consisting of at least 500 different bacterial
species. Its qualitative and quantitative composition is deeply
different depending on the considered gastroenteric tract. In the
stomach, a small number of bacteria have been found, mainly
consisting of lactobacilli, streptococci, staphylococci, enterobacteria-
ceae and yeasts. In the subsequent gastrointestinal tracts, there is a
quantitative increase from 0 to 105 colony-forming unit/g (CFU/g)
in the duodenum to 108 CFU/g in the ileum and 1010 CFU/g in the
colon. In the colon more than 99% of the microorganisms are strictly
anaerobic, such as bifidobacteria, Bacteroides spp., Clostridium spp.,
Eubacterium spp., Fusobacterium spp., and peptostreptococci [8]. It
varies from one person to another and is modified by age, diet, type of
birth, breastfeeding, ileocecal valve efficiency, use of active drugs in
both heartburn and gastrointestinal mobility [9–12].

In order to understand the connection between gut microbiota and
cancer, we have to bear inmind that some of the functions carried out by a
eubiotic gut are resistance to intestinal colonization by pathogen bacteria
able to cause dysbiosis, induction in IgA production and antimicrobial
secretions, regulation of structural entirety of tight junctions and, above
all, regulation of innate and adaptive immunity [13–16].

However, despite the growing interest regarding this field,
nowadays, a standardized protocol to study the relationship between
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gut microbiota and cancer, especially in the interpretation of study
results, does not exist. The strongest scientific evidence concerning
this relationship exists in relation to gastrointestinal tumors.

In this review, we analyze, from a particular perspective, the
different ways to induce inflammation and oxidative stress in order to
explain the mechanisms underlying the development of several
cancers. Moreover, because of the strong scientific evidence in
literature, we focused our attention to the analysis of the role that gut
microbiota plays in gastrointestinal cancer development/promotion.

The Role of Tumoral Microenvironment
The major environmental factors responsible for induction of chronic
inflammatory process and cancer genesis are represented by chronic
infection (such as viral hepatitis for hepatocellular carcinoma
development, Helicobacter pylori infection to gastric cancer and
mucosa associated lymphoid tissue development, schistosoma
and bacteroides infection to bladder and colon cancer), toxic
exposition (e.g., tobacco, chemical products and asbestos) as well as
metabolic pathologies able to alter regulatory balance of inflammation
[17–19]. An important concept underlies the interconnection
between inflammation and cancer: the lasting inflammation. It
would not be the intensity of the inflammatory response but the
maintenance of a low-grade and chronic inflammation that
determines the neoplastic transformation of eukaryotic cells or the
induction of genotoxic damage [20]. However, it is important to
underline that not all chronic inflammations, although systemic, are
able to promote carcinogenesis. The development of solid tumors is
associated to an intrinsic tumoral inflammation supported by
protumorigenic microenvironment [5]. The tumoral microenviron-
ment is composed by macrophages, neutrophils, mast cells,
myeloid-derived suppressor cells, dendritic cells, and natural killer
cells; moreover, adaptive immune cells (T and B lymphocytes) in
addition to the cancer cells and their surrounding stroma (fibroblasts,
endothelial cells, pericytes, and mesenchymal cells). These cells
control tumor growth communicating through the production of
autocrine, paracrine and endocrine mediators, thus controlling
tumoral growth. The different types of interconnection, the grade
and the type of cellular activation are factors that conditionate the
interplay between immune system and the tumor in terms of
tumor-promoting or antitumor response [21,22]. It is possible to
hypothesize that the two types of tissue inflammation can coexist in
natural history of tumoral pathology. The role that this inflammation
would have in tumor would be dictated, in one way or another, by a
specific composition and activation of the tumoral microenvironment
[23].

Macrophages could have a controversial role in this field. In fact, in
relation to the acquisition of a specific functional phenotype, they
could have a tumor-promoting or antitumoral activity. They can
range from proinflammatory, antitumorigenic M1-phenotype to
anti-inflammatory, protumorigenic M2-phenotype macrophages
(fundamental for the induction of tumoral angiogenesis and for
invasion and metastatic processes) [24]. T lymphocytes could have a
similar role. In fact, they are divided into several subtypes: CD8+
cytotoxic T cells (CTLs) and CD4+ helper T (Th) cells, which
include Th1, Th2, Th17, and T regulatory (Treg) cells, as well as
natural killer T (NKT) cells. An increase of CTLs and Th1 in tumoral
microenvironment seems to be related to better prognosis as
highlighted in several studies on colon and pancreatic cancer, and a
decrease in their amount in tumoral microenvironment is associated
with a greater chance of spontaneous cancer development or as a
result of exposure to toxic environmental factors [25–27].

However, controversial results of a possible procancer role played
by T lymphocytes (CTLs, Th1, Th2 and Th17), except NKTs, are
present in the literature [28–30]. Some oncogenes such as RAS and
MYC would be able to trigger a signal transduction cascade that leads
to recruitment of additional leukocytes in the tumor region and the
expression of inflammatory cytokines and chemokines, as well as the
production of angiogenic factors [31,32]. Often, the necrosis
developed in the core region of a fast-growing solid tumor induces
the release of proinflammatory mediators such as interleukin (IL)-1
and High Mobility Group Box 1 (HMGB1) [33], which in turn
causes the release of angiogenetic factors, thus promoting cancer
survival either directly, by the increase in oxygen supply and nutrients
to tumor tissue, and indirectly, by recruitment of proinflammatory
cells and cytokines release [34]. Other tumors are able to stimulate
inflammation through the direct production of proinflammatory
substances, some of which activate macrophages through interaction
with Toll-like receptor (TLR)-2 [35]. Another type of inflammation
associated with the tumor is that provoked by antitumor therapy. It
can represent the result of tissue necrosis with the consequent release
of proinflammatory cytokines that increase tumor growth or, on the
other hand, can be the antitumor response elicited by an increased
exposure of tumor antigens to an immune system by radio and/or
chemotherapy [36,37].

Dysregulation of the inflammatory system is also involved in the
tumor initiation process. A mechanism associated with
inflammation-induced tumorigenesis is the upregulation of
activation-induced cytidine deaminase (AID) that is an enzyme able
to induce the switching of immunoglobulin gene class [38]. The
expression of this enzyme is related to an innumerable series of tumors
and is linked to the activation of inflammatory signals associated with
exposure to environmental factors such as NF-kB or TGF-β–
dependent pathways [38]. The overactivation and overexpression of
AID lead to the induction of genetic instability that is the basis of the
acquisition of new DNA mutations responsible for the tumor
initiation process, especially if loaded with critical genes such as Tp53,
c-Myc and Bcl-6 [39]. In this scenario, epigenetic regulation of gene
expression is also crucial. Epigenetic mechanisms including
micro-RNA–based silencing and DNA methylation are influenced
by the onset of chronic inflammation responsible for the silencing of
oncosuppressive genes such as INK4a and APC [40], and in
particular, aberrant CpG island methylation in tumors is related to an
increase of cancer development. An important factor able to induce
tumor process and to acquire uncontrolled replication capacity by
stem clone cells is represented by inflammation-induced production
of growth factors and cytokines. As demonstrated by Oguma et al.,
TNF-α would indeed induce penetration within the β-catenin
nucleus in conjunction with the inflammation-associated gastric
cancer genesis in the absence of any type of mutation of Wnt/
β-Catenin pathway [41]. On the other hand, the same DNA damage
would be able to induce inflammation, which in turn would carry out
procancerogenic activity. In a diethylnitrosamine-induced hepato-
carcinoma model (DEN), DNA damage has been shown to induce
cell death and necrosis, responsive to the release of DAMPs and thus
stimulation of Toll-like receptors, resulting in inflammation
activation [42,43]. The activity of different types of oncoproteins
such as Ras, Myc and RET may also trigger signal activation that can
trigger the production of proinflammatory cytokines and chemokines
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such as IL-6, IL-8, IL-1β, etc. [5]. From this evidence, it is clear that
complex relationship between inflammation and cancer is the basis of
the meccanism that allows tumorigenesis and sustains disease
progression up to the acquisition of metastatic capacity.

The Role of Chronic Inflammatory Diseases
Epidemiological studies have shown that chronic inflammation
predisposes individuals to various types of cancer. It is estimated that
underlying infections and inflammatory responses are linked to 15%
to 20% of all deaths from cancer worldwide [44]. There are many
triggers of chronic inflammation that increase the risk of developing
cancer. Such triggers include microbial infections (for example,
infection with Helicobacter pylori is associated with gastric cancer and
gastric mucosal lymphoma or HCV infection which is associated with
liver carcinoma), autoimmune diseases (for example, intestinal bowel
disease (IBD) is associated with colon cancer) and chronic
inflammatory conditions such as asthma, chronic obstructive
pulmonary disease (COPD). Accordingly, treatment with nonsteroi-
dal anti-inflammatory agents decreases the incidence and the
mortality from several tumor types [45–47]. In particular, nonste-
roidal anti-inflammatory drug use decreased cancer incidence in
healthy population [48], and celecoxib demonstrated an effect on
colorectal polyps in patients affected from familiar adenomatous
polyposis syndrome [49].
One of the best studied example is colon cancer on IBD, in which

colon cells are continuously exposed to growth-promoting inflam-
matory cytokines [50]. The increased risk of cancer in patients with
IBD may be associated with the chronic proliferation required to
repair damage to the epithelial monolayer caused by constant
inflammation. In chronic inflammation, cytokines secreted by
immune cells stimulate pathways [51–53] which are essential for
cancer proliferation.
Tumor necrosis factor α (TNFα) plays a fundamental role in

inflammation in IBD and has been the target of biological treatments.
TNFα provokes inflammation by stimulating the production of
IL-1β and IL-6, inducing expression of adhesion molecules,
proliferation of fibroblasts, activation of procoagulant factors, and
cytotoxicity of the acute-phase response [54]. The binding of TNFα
to its receptor causes the activation of mitogen-activated protein
kinases (MAPKs) and of the NF- B pathway, which may influence
barrier permeability. NF- B activation leads to increased transcription
of proinflammatory cytokines, resulting in a continuous feeding of
the inflammatory response, and increased expression of myosin light
chain kinase (MLCK) [55,56], which in turn stimulates perme-
abilization of the intestinal barrier. Additionally, TNFα seems to
stimulate the COX2-derived PGE2 which may have a direct impact
on carcinogenesis through regulation of the WNT signaling pathway
[54].
Another cytokine involved in the evolution of cancer is TGFβ1

that plays an important role in the epithelial-mesenchymal transition
(EMT) [57,58], thus inducing a migratory and apoptosis-resistant
phenotype of intestinal epithelial cells through SLUG induction and
subsequent L1CAM gene expression.
Of interest, several reports have revealed that, in addition to the

cytokine proinflammatory effects, also several molecular alterations are
involved in the inflammation-induced carcinogenesis which involve
inactivation of tumor-suppressor genes, oncogene mutations, loss of
heterozygosity, and chromosomal and microsatellite instability (MSI).
The TP53 tumor-suppressor gene appears to be a key factor in the
early stages of IBD-associated colorectal carcinogenesis, as it develops
early in patients with IBD, whereas it occurs later in sporadic
colorectal cancer (CRC) [58]. It seems that TP53 abnormalities are
driven by inflammation, this hypothesis being supported by the
presence of increased TP53 expression in inflamed, nondysplastic,
noncancerous colonic mucosa in IBD [59].

A very early and gradually occurring event in cancer development is
the genomic instability. Indeed, in the subset of patients with IBD,
the colonic epithelium is damaged by reactive oxygen species (ROS)
produced in the context of the inflammatory milieu as a consequence
of the oxidative stress, leading to cellular damage in terms of oxidation
of proteins and DNA. Failure to remove or repair ROS-initiated
damage can be either mutagenic or lethal to cells [60].

In absence of coding-region mutations, often epigenetic changes,
represented by aberrant promoter methylation, occurring in
association with silencing of tumor-suppressor genes [e.g. TP53,
Kruppel-like factor 6 (KLF6), APC, KRAS, and deleted in colorectal
cancer (DCC)] have been detected in patients with IBD-associated
cancer [61]. In the context of the progression of inflammation in
IBD, DNA methylation is a key factor in a subset of tumors affected
by the CpG island methylator phenotype, a pathway that emerges as a
form of epigenetic instability [62]. In this scenario, an important
aspect of IBD-associated neoplasms is the defective DNA mismatch
repair, manifested as microsatellite instability (MSI) and promoter
hypermethylation of the mismatch repair gene mutL homolog 1
(MLH1) [63]. Recently, epigenetic abnormalities and aberrant
methylation have been demonstrated also to alter those signal
pathways involved in the stem cell proliferation and differentiation
capacity, such as WNT, NOTCH and HEDGEHOG pathways. In
particular, methylation of the WNT-signaling genes has been shown
in early-stage IBD and to gradually rise during progression of
IBD-associated CRC.

Another inflammatory condition associated with cancer develop-
ment is the COPD which represents an abnormal and chronic
inflammatory response of the lungs to noxious particles and gases. Of
note, approximately 30% of patients with mild to moderate COPD
have been reported to die from lung cancer [64], which has
traditionally been linked to a common etiological exposure, namely,
tobacco smoke. The chronic injurious state of this lung microenvi-
ronment may facilitate tumor development progressing from
metaplasia, dysplasia, carcinoma in situ and subsequent malignant
transformation [65]. Morphological changes in the bronchial
epithelium are accompanied by an increase in loss of heterozygosity
and field cancerization involving the accumulation of mutations that
eventually predispose the lung to cancer [66–68]. Similarly to the
intestinal IBD-associated carcinogenesis, TP53 mutations character-
ize the smoker epithelium exhibiting squamous metaplasia and occur
early during transformation [66]. Microsatellite instability (MSI) is
frequent in the nonmalignant bronchial epithelium of COPD and is
associated with EGFR amplification [69]. The increased EGFR
expression [70] and EGFR transactivation, observed in COPD
epithelium, augment and prolong inflammatory responses initiated
by viral and bacterial infection in the bronchial epithelial cells
[71,72]. Likewise, dysregulation of the PIK3CA/PTEN/Akt/mTOR
signaling, which coordinates tumor-promoting survival, metabolism,
migration and angiogenesis, is also observed in the bronchial airway of
smokers with dysplastic lesions, suggesting an early activation during
carcinogenesis [73]. Indeed, amplification of PIK3CA has been
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detected in high frequency in squamous cell carcinoma (SCC), in
contrast to gain-of-function mutations that are much less frequent
[74], whereas loss of PTEN protein expression or PTEN promoter
methylation has been evaluated as an independent poor prognostic
factor for patients with non–small cell lung cancer (NSCLC)
associated with a more aggressive subset of lung tumors [75–77].
These examples of inflammation inducing cancer can be separated

from the tumor-elicited inflammation, which occurs when the
invasive tumor is already established and drives invasion and
metastatic processes. In fact, the connection between inflammation
and cancer can be viewed as bidirectional: an extrinsic pathway,
driven by inflammatory conditions that increase cancer risk (such as
IBD and COPD); and an intrinsic pathway, driven by genetic
alterations that cause inflammation (such as oncogenes). In the latter
case, the genetic events that cause neoplasia are also responsible for
generating an inflammatory environment.

The most frequently mutated oncogenes in human cancer are
represented by both MYC and members of the RAS family, and in turn
components of the RAS–RAF signaling pathway, which are able to
induce the production of tumor-promoting inflammatory chemokines
and cytokines [32,78,79] and additionally to remodel the extracellular
microenvironment, such as inducing angiogenesis [31,80].

An example in which to explore the connection between oncogenes
and inflammatory microenvironment is human papillary thyroid
carcinoma, where the rearrangement of the RET gene is a frequent
early event in the pathogenesis of carcinoma and is a necessary and
sufficient event for this cancer to develop. The activation of RET
induces a transcriptional program that is similar to that which occurs
during inflammation and includes colony-stimulating factors (CSFs),
which promote the survival of leukocytes and their recruitment from
the blood to the tissues; interleukin 1β (IL-1β); cyclooxygenase 2
(COX2); chemokines that can attract monocytes and dendritic cells
(CC-chemokine ligand 2 (CCL2) and CCL20); chemokines that
promote angiogenesis (such as IL-8; also known as CXC-chemokine
ligand 8 (CXCL8)); the chemokine receptor CXC-chemokine receptor 4
(CXCR4), which binds to CXCL12; extracellular-matrix-degrading
enzymes; and the adhesion molecule lymphocyte selectin (L-selectin).
These results show that an early genetic event that is necessary and
sufficient for the development of a human tumor cancer directly promotes
the build-up of an inflammatory microenvironment.

Which pathway, extrinsic or intrinsic, between inflammation and
cancer would be more significant may be dependent on tumor type,
or maybe, both are both essential. This is the case of pancreatic cancer
in a murine model, where both pancreatitis and K-RAS gene
mutations are frequently found and both are required to induce
pancreatic intraepithelial neoplasia and invasive ductal carcinoma
[78]. Thus, although the RAS-RAF pathway [32,79] can drive
tumor-promoting inflammation, an extrinsic inflammatory condition
(pancreatitis) is needed to drive carcinogenesis in mice and
presumably in humans.

It is likely that all tumor-promoting inflammation, whether it
precedes or follows tumor development, is part of the normal
response to injury and infection that has been usurped by cancer cells
to their own advantage.

The Role of Oxidative Stress as a Bridge to Link
Inflammation and Cancer
The main known mediator of the link between inflammation and
cancer is the imbalance of oxidative stress induced by inflammation in
a normal tissue and sustained by microenviromental inflammation in
a context of malignant tumor.

Reactive oxygen species derivates (ROS or intermediates ROI) are
produced from molecular oxygen O2 that is normally unreactive but
is reduced to water through step-by-step reactions generating partially
reduced and very reactive intermediates with oxidizing potential: the
superoxide radical (O2

−), hydrogen peroxide (H2O2) and the hydroxyl
radical (OH) [81]. Similarly, reactive nitrogen species (RNS or
intermediate RNI) are derived from nitrogen metabolism: NO,
synthesized by the enzyme NOS (nitric oxide synthase), nitrogen
dioxide (NO2) and peroxynitrite (ONOO-), from interaction of NO
and O2, activator of nitrosylation [82]. These free radicals react with
other chemical or structural compounds of cells and also recruit other
inflammatory cells with secondary amplification of damage.

Physiologically, the main sources of reactive species in all cells are
mitochondria, cytochrome P450 and peroxisome. Under physiolog-
ical conditions, there is a constant endogenous production of reactive
intermediates of ROI and RNI that interact as “signaling” molecules
for metabolism, cell cycle and intercellular transduction pathways.
The production of ROI and RNI is balanced by a removal performed
by a series of protective molecules and systems globally defined as
“antioxidant defenses,” such as superoxide dismutase, catalase,
glutathione peroxidase and glutathione-S-transferase. When the
generation of free radicals and active intermediates exceeds the
system's ability to neutralize and eliminate them, the oxidative stress
occurs. In these conditions, ROI and RNI act as “toxic” substances
that may react with proteins, carbohydrates and lipids, with
consequent alteration in both the intracellular and intercellular
homeostasis, leading to possible cell death and regeneration. In the
context of chronic inflammation, the start of ROI and RNI-mediated
carcinogenesis may be direct (oxidation, nitration, halogenation of
nuclear DNA, RNA and lipids), or may be mediated by the products
of ROI-RNI and proteins, lipids and carbohydrates that are capable of
forming DNA adducts. Proteins are more susceptible to oxidation by
free radicals, where the oxidation of SH groups of cysteine reduces the
activity of various enzymes as well as the synthesis of GSH, which is
the main intracellular free radical scavenger. The oxidation of lipids
induces the formation of aldehydes and lipid peroxides that in high
concentrations are considered the more damaging species as they
easily react with proteins, DNA and phospholipids, generating a
variety of intra- and intermolecular toxic covalent adducts leading to
the propagation and amplification of oxidative stress. ROI can also
increase the expression of transcriptional factors including c-fos and
c-jun oncogenes involved in neoplastic transformation and are able to
recruit other inflammatory cells, thus intensifying the possibility of
DNA mutations in normal tissue, leading to cancer development and
proliferation [83]. In particular, in this peculiar stress condition,
intracellular pathways NF-KB, AP-1, p53 and caspases are activated
in terms of proangiogenic and antiapoptotic signals [84,85].
Collectively, these events lead to a state of a more complex oxidative
and metabolic stress, with implications in the control of cell
regeneration at various level of DNA gene expression: mitochondrial
DNA (mtDNA) is very sensitive to oxidative stress because it lacks of
histone proteins and contributes itself to amplify radicals production
in mitochondrial electron transport chain [86,87]. A proof of the
relevance of role of oxygen and nitrogen species as endogenous
proinflammatory and procarcinogenetic agents is the consistent
number of experimental evidences that alterations in components of
anti- and pro-oxidative cascades have an impact on cancer
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development [88]. Lung cancer represents itself the best example of
chemical-induced oxidative stress in a context of chronic inflamma-
tion as COPD [89]. Continuous cigarette smoking exposes
pulmonary cells to over 4700 different chemical compounds
including 1015 oxidants and free radicals [90], and 69 carcinogenic
like tobacco-specific nitrosamines, formaldehyde and benzene [91].
Elevated levels of ROS are produced normally by inflammatory and
endothelial cells in response to tobacco and pathogens [92],
concomitantly with inhibition of the transcription nuclear factor
erythroid 2-like 2 (NFE2L2 or NRF2) [93] that encodes for
cytoprotective and antioxidant genes [94]. ROS compounds interact
with polyunsaturated fatty acids and generate reactive carbonyl
species, able to suppress cellular PTEN, with subsequent constitutive
activation of protumoral AKT signaling [95]. These data suggest that
various biological mechanisms are associated with cigarette smoking–
induced cancer [96] in different lung tumor histological subtypes,
depending on modulation of DNA oxidative status.

The Role ofGutMicrobiota inGastrointestinal Cancer
More than 90% of gut microbiota consists of two dominant phyla
(Bacteroidetes and Firmicutes). The remaining part consists of five
subdominant phyla: Actinobacteria, Proteobacteria, Fusobacteria,
Cyanobacteria and Verrucomicrobia [97–99]. However, phyla
evaluation in intestinal microbial composition is an approximation
that does not consider the functional role carried out by the single
bacterial species. For this reason, nowadays, the use of information
deriving from outcome of scientific trials is scarcely applicable in
routine clinical practice. Another strong limitation in the manage-
ment of gut microbiota for the treatment of several pathologies is
represented by the difficulty in modifying selectively the proportion
of its microbial species, without modifying the balance able to
maintain “the gut health” [100]. To maintain gut microbiota health
means to maintain a correct proportion, which is different from
one person to another, among different bacterial species. This
allows defending metabolic, structural and immune functions of
eubiotic microbiota, thus becoming essential for the host life
[13–16,101,102]. The communication between “gut microbiota
system” and liver, brain, adipose tissue and other organs of human
body is regulated by intestinal permeability (IP). Its increase, in
relation to a dysbiotic gut, can be considered a key point for the
comprehension of some pathogenetic mechanisms of systemic and
liver disorders as well as cancer. In addition to food adsorbed by
intestinal surface, bacterial products such as bacterial DNA,
peptidoglycans (molecules belonging to the class of
pathogen-associated molecular patterns-PAMPs) and, in some cases,
intact bacteria can reach the liver in elevated quantities in relation to
IP levels (Figure 1) [103]. The clear division between what is located
in our intestine and portal blood is guaranteed by mechanisms able to
regulate IP. Over time, the scientific findings in this field have led us
to understood that IP is not a static phenomenon and mucosa
intestinal is not a simple physical wall placed between intestine and
portal blood. IP degree is very variable and is interconnected to several
factors: type of diet, gene expression, intestinal/liver pathology,
production of surface mucus, integrity of tight junctions, production
of immunoglobulins (Ig)-A. Many of these factors are dependent
from gut microbiota, which is the “lead” in IP control [16].
As demonstrated by Cariello et al., there is a relationship between

IP, portal hypertension, alcohol use, plasma levels of proinflammatory
cytokines, and nitric oxide, expressed as nitrosothiols, and nitrite
levels in patients with various types and degrees of chronic liver
diseases. The assessment of IP degree through lactulose/mannitol test
on 83 patients with chronic liver damage showed an increase directly
proportional to the severity of liver disease. Independent factors from
IP alteration were age, portal hypertension, alcohol use, and diabetes.
Moreover, plasma levels of inflammatory cytokines and nitrosothiols
were significantly higher in patients with altered IP [104]. Cancer
represents the second cause of death worldwide, and particularly,
gastrointestinal cancer is the leading cause of morbidity and mortality
in the United States [105]. In recent years, there has been an increase
in scientific research to investigate the role of microbiota and
microbiota-linked inflammation in carcinogenesis [106,107].

A possible strategy to explain the link between microbiota and
cancer could be the “Molecular Pathological Epidemiology” which
consists in a multidisciplinary study approach regarding the
relationship between exogenous and endogenous factors (e.g.,
genetics) in the onset and progression of the tumor. Thanks to this
view, it is possible to study the capability of a specific environmental
factor to induce changes in the genetic expression that could influence
cancer onset and its progression or prognosis [108,109]. Certainly,
this approach has allowed us to make a lot of progress regarding the
understanding of the molecular mechanisms underlying neoplastic
diseases such as colon cancer, allowing, moreover, to identify clusters
of population with high risk to develop cancer and therefore deserving
of more efficient screening surveillance [110]. A classic example of
how the microbiota can promote or not the organization of the tumor
by interacting with the environment could be its ability to exert an
anti-inflammatory or proinflammatory power through the produc-
tion of metabolic substances from the metabolism of diet components,
inducing or not the generation of a tissue microenvironment favorable to
cancer development [111]. Tumor progression is also associated with
gene environment interactions. Recent advances in high-throughput
technologies gave us the possibility to understand better the link between
a specific microbial composition, the inflammation and the genetic
modifications able to induce cancer [112].

The conduction of studies in this regard is enormously difficult because
of the extreme degree of variability in the intestinal microbial composition
between the analyzed individuals, and for this reason, there is, however,
no univocal opinion to date, and future studies are needed in order to
better understand the mechanisms implemented by specific microbial
species in the induction of gastrointestinal cancer.

A large number of evidence have been produced in recent past years
about the viability of the gut microbiota to influence the outcome of
the therapy against different types of tumors. In this regard, the
functional link between gut microbiota and immune system has been
confirmed by the direct role of bacteria in influencing the efficacy of
PD-1-based immunotherapy against epithelial tumors [113]. The
alteration of the intestinal microbial composition induced by the use of
antibiotic has been associated with a lower efficacy of the immunother-
apeutic regimens against this category of tumors [113]. In particular, the
relative proportional deficiency ofAkkermansiamuciniphilawas correlated
with a lower response to therapy [113].Akkermansia muciniphila restored
the efficacy of PD-1 blockade in an interleukin-12dependent manner by
increasing the recruitment of CCR9 + CXCR3 + CD4+ T lymphocytes
in tumoral microenvironment.

The proportion of Fusobacterium nucleatum in some recent studies
has been found to be higher in patients with colorectal cancer
[114,115]. Its abundance also correlates with a higher rate of relapse
after chemotherapy and would be associated with a worse prognosis of



Figure 1. Mechanism of bacteria-induced inflammation through inflammasome activation. Bacterial products such as bacterial DNA and
peptidoglycans (molecules belonging to the class of pathogen-associated molecular patterns [PAMPs]) reach the liver in a large amount in
relation to the reduction of gut impermeability. They can activate innate immunity system through toll-like receptor binding and determine
the recruitment of several transduction pathways such asMyeloid differentiation primary response 88 (MYD88) related pathways with the
subsequent activation of Phosphatidylinositol-4,5-bisphosphate 3-kinase (PI3K), mitogen-activated protein kinase (MAPK), Interferon
regulatory factor 3 (IRF3), Protein Kinase B (Akt) and Nuclear factor-kappa B (NF-kB). All these proteins are associated all together in a
system of signal transduction called inflammasome that regulates the cellular reaction to several molecules identified through toll-like
receptors (TLR) on cellular surface. The result is the activation of several types of cells in production of inflammatory cytokines: interleukin
(IL)-1β, IL-18, IL-6, IL-12, transforming growth factor beta (TGF-β), and tumor necrosis factor alpha (TNF-α). A specific composition of gut
microbiota is correlated with some types of gastrointestinal tract tumors through the activation of inflammasome involved in cancer
development. Moreover, the scientific literature is also enriched of association studies that tried to link a specific composition of gut
microbiota, in terms of prevalence of bacterial species, to oncologic tissues abnormalities.
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the disease. The relative abundance of this bacteria has also been
correlated with a lower response to chemotherapy with 5-fluorouracil,
capecitabine and oxaliplatin.

Such phenomena would be linked to the interaction that such beat
would have in regulating the response to activation of TLR-4–
mediated pathway and MyD88 inducing cellular autophagy with the
subsequent reduction in the tumor microenvironment of immune
cells able to fight the tumor [116,117].

In the latter years, there was an increase in the incidence of
esophageal adenocarcinoma (EA) and the gastric esophageal junction
carcinoma that showed an inverse proportional relationship with the
incidence of HP infection. This correlation has suggested that HP
infection could play a protective role against EA due to the ability to
induce hypochlorhydria as a result of the destruction of gastric parietal
cells and the generation of atrophic gastritis [118,119]. In itself,
inflammation caused by esophageal gastrointestinal reflux on the
distal part of the esophagus mucosa and the resulting metaplasia in the
long run are able to altering the composition of the esophagus flora.
In an interesting research, the microbial composition of biopsy
samples of the esophagus was analyzed by bacterial 16S ribosomal
RNA gene survey and showed two different types of microbiome in
relation to the esophagus histology. In particular, the type I
microbiome was dominated by the genus Streptococcus and was
related to the phenotypically normal esophagus; on the contrary, the
type II microbiome, composed for the greater part from
gram-negative anaerobes/microaerophiles, was related to esophagitis
and Barrett's esophagus [120]. However, further studies are necessary
to understand the concrete role of EC induction variation. Gastric
cancer represents the third cancer-related mortality cause worldwide,
and its incidence has changed in the last years, becoming less frequent
in the distal portion of the stomach (antrum and gastric body) and
more frequent in the proximal region (esophagus-gastric junction)
[121]. The most important and known risk factor for the
development of gastric cancer is represented by Helicobacter pylori
(HP) infection [122]. This evidence is confirmed by the higher rate of
eradication associated to new therapies for HP infection that
determined a clear reduction of gastric cancer (GC) incidence rate.
Between 1% and 3% of patients with HP infection develop a gastric
adenocarcinoma [123]. Among the factors able to trigger GC onset in
patients with HP infection, an important role is carried out by
HP-oncoprotein cytotoxin-associated gene A (CagA) in determining
induction to progenitor cell proliferation in the gastric mucosa [123].
Other factors that correlated HP and CG directly are represented by
secreted vacuolating cytotoxin A (Vac A) [124]. In particular, strains
containing type s1, i1 or m1 alleles within the 5′ region of Vac A gene
are mainly related to GC onset [125]. Moreover, HP could carry out
an indirect activity in cancerogenesis process for CG. Gastric mucosa
colonization by HP is able to cause a reduction of gastric mucosal
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flora richness: HP DNA represents about 93% to 97% of genetic
sequence isolable from genomic analysis of mucosal gastric flora in
HP-positive patients, and a total of 33 phylotypes were detected. By
contrast, in HP-negative patient biopsy samples, it is possible to
identify about 262 phylotypes [126]. This variation in gastric mucosal
composition could have a role both in hypochlorhydria induction,
which represents the key role for histological progression to
intestinal-type GC, and in generating inflammation due to different
microbic metabolism of nutrients ingested with diet that could have a
role in cancer pathogenesis through inflammation [111,127]. Gastric
microbial composition modifies significantly itself in relation to
mucosa damage from chronic gastritis to intestinal metaplasia and
GC. Indeed, as the chronic gastritis passes from the GC, there is a
marked reduction in the diversity of gastric mucosal flora: Bacilli and
Streptococcaceae are mainly prevalent in GC samples compared with
chronic gastritis and intestinal metaplasia samples. By contrast,
Epsilonproteobacteria and Helicobacteraceae family are less repre-
sented in samples [128]. Some researchers highlighted a deep
difference in terms of gastric mucosal composition among patients
who live in high-risk areas and low-risk areas for GC development in
Colombia. Two operational taxonomic units (OTUs), Leptotrichia
wadei and a Veillonella sp., were more present among patients who
live in high-risk geographic area for GC development, while 16
OTUs, including a Staphylococcus sp., were significantly more
abundant in patients who live in low-risk geographic area for GC
development [129]. However, researchers concluded that in order to
consider a direct role related to these microbial composition variations
in GC pathogenesis, further studies are necessary. The colorectal
cancer (CRC) represents the third most frequent cause of
cancer-related death in United States for both male and female, and
its incidence has demonstrated a growing trend in the last few years
[130]. Natural history of CRC considers a sequence of different
anatomopathological entities that represent the stages through which
the transformation of normal mucosa cells in tumoral ones occurs.
This process is indissolubly related to genetic mutation acquisition,
altered methylation of DNA, modification of chromatin or altered
expression of microRNAs [131]. Universally accepted risk factors able
to trigger this progression are age, type of diet (a diet rich in red meat
and low in fibers and fruits), obesity, tobacco, metabolic syndrome
and intestinal microbial composition modified by all the factors tested
before [132]. A common point that explains the mechanism that links
these factors to CRC development is represented by inflammation. In
this regard, the role carried out by cyclo-oxygenase (COX)-2 and
inducible nitric oxide synthase (iNOS) that normally are not
expressed in epithelial cells and stromal cells is well known. COX-2
could have a role in determining the progression of colon polyps in
cancer by acting as procarcinogenic enzyme, through the production
of prostaglandin E2 (PGE2) that has proproliferative, proangiogenic,
and antiapoptotic properties [133]. Furthermore, COX-2 would be
able to induce the production of reactive aldehydes able to bind
themselves and alter protein structure, damage DNA or inhibit the
reparation and promote the acquisition of essential genetic mutations
for disease progression [134]. In this intricate set of biological
mechanisms, in recent years, there has been room for research aimed
at clarifying the role that microbial intestinal flora could play in CRC
despite the enormous difficulty in interpreting most data from in vitro
or animal models [135]. The presence of microbial biofilm on the
surface of colon adenomas has been recently found. It would be able
to promote the penetration of products of bacterial derivation into the
superficial epithelium through a decline of normal defenses of surface.
The composition of microbial film composition associated to colon
adenomas consists of Bacteroidetes and Firmicutes (Lachnospiraceae,
Clostridium, Ruminococcus and Butyrivibrio) as well as Fusobacteria and
Gamma-proteobacteria. Moreover, it is clear that adjacent healthy
mucosa is lacking of typical biofilm found in correspondence of
adenomas. According to the authors, the correlation between biofilm and
adenoma is to be researched in production by polyamines bacteria that
would be able to promote cellular growth and consequently CRC
through the induction of genotoxic damage [136].

Other microbial species (Fusobacteria) would be able to promote
CRC through sulfide production able to damage DNA. Fusobacter-
ium nucleatum, for example, adheres, invades, and induces oncogenic
and inflammatory responses to stimulate growth of CRC cells
through its unique FadA adhesin. FadA binds to E-cadherin, activates
β-catenin signaling, and differentially regulates the inflammatory and
oncogenic responses [137]. From other studies, it was revealed that
germ-free animals and animals treated with antibiotics able to sterilize
intestine had a reduced rate of tumoral development, even if these results,
in our opinion, complicate clinical evaluation given the impossibility to
apply experimental model used to humans [138,139]. Moreover, this
great approximation, without an acute compositive evaluation of
intestinal microbial species, on the role of microbiota in CRC
pathogenesis could lead to an incorrect information about this topic.

Different microbial species carry out roles that are opposite in
CRC. Just like Lactobacillus and Bifidobacterium would have a role in
prevention of cancer in animal models, a manipulation of intestinal
microbial composition carried out by nucleotide-binding oligomer-
ization domain-like receptor family members (e.g., NOD-2, NLRP,
and IPAF) would have a crucial role in bacterial eubiosis conservation
[140,141]. Loss of either Nod2 or RIP2 resulted in a proinflamma-
tory microenvironment that enhanced epithelial dysplasia following
chemically induced injury. The condition could be improved by
trea tment with ant ib iot ic s or an ant i– in ter l eukin-6
receptor-neutralizing antibody. Fecal microbiota transplantation
from wild-type mouse to a knockout one for NOD-2 associates
itself to a reduction of cancer risk, underlining a direct role linked to
intestinal microbial composition in genesis of this pathology [142]. IP
degree is another element to be taken into consideration in analysis of
procancerogenous stimuli supported by gut microbiota. Normally,
PAMPs are able to overcome the filter made up of surface mucus and
cell tight junctions to reach submucosal level in contact with innate
and specific immunity cells. This type of interaction provides
physiological regulation of tolerance to microbial antigenes or their
elimination through a process of microbial scavenger that predicts the
onset of inflammation. As long as this inflammatory signal is activated
in a “controlled” manner, it maintains bacterial eubiosis and normal
tissue renewal through the classical cell turnover. However, in
condition of IP increase as happens in pathological processes or
particular diet habits, the dysregulation of inflammation causes the
activation of signal pathway that leads to cell proliferation, as well as
to be able to trigger DNA damage [143,144].

In this regard, there are different studies in literature that
demonstrate how an IP increase is related to reduced elaboration of
surface mucus and alteration of structural/reduced expression of tight
junctions is associated to a higher probability of developing colitis,
dysplasia and cancer [145–147]. The mechanisms that support cholic
cancerogenesis by gut microbiota are mainly related to induction of
cell proliferation as well as apoptosis inhibition. Enterococcus faecalis



728 Morgillo et al. Vol. 20, No. xx, 2018
and Bacteroides fragilis would be able, through COX-2 activation, to
cause a proliferative effect related to superoxide and activation of
nuclear factor kappa B (NF-kB), respectively [148,149] Some
receptors of innate immunity such as Toll-like receptors (TLRs) are
able to recognize bacterial antigenes and activate cell translation
pathways that hesitate in triggering inflammation and proliferative
response. Normally, TLRs are insufficiently expressed in intestine,
and this expression, even in the liver, is inducible in relation to their
activation [150]. TLR-4 activation by lipopolysaccharides (LPS)
induces proliferation through COX-2 activation and epidermal
growth factor receptor (EGFR) just like demonstrated by a reduction
of cell growth in TLR-4–deficient mice [151]. Moreover, TLR-4
activation is able to induce angiogenesis, which represents a further
crucial step for cell growth and metastasis [152]. EGFR per se is able
to promote cell proliferation through hydrogen peroxide formation.
Enterococcus faecalis is able to increase EGFR expression, favoring
this mechanism. Gefitinib use, EGFR inhibitor, is able to block
Enterococcus faecalis–induced cell proliferation [153].

On the other hand, enterotoxigenic Bacteroides fragilis, in a study
in vitro, was demonstrated to induce immediate apoptosis in
HT-29 human colon cancer cells. However, in a second observational
experimental phase, the toxin-induced activation of p38-MAPK and
COX-2 was demonstrated to reduce apoptosis and promote cell
proliferation [154]. Moreover, TNF-α activation, tumor necrosis
factor receptor 2 (TNFR2) and NF-kB pathway by Enterococcus
faecalis are able to reduce apoptosis through an increase of netrin-1, an
important regulator of cell cycle [155]. Similar biological mechanisms
able to promote cancerogenesis were also taken into consideration in
hepatocellular carcinoma (HCC). It represents one of the most
frequent neoplasias in the Western world since about 78,000 new
cases in United States by 2020 are estimated [156]. About 80% to
90% of HCC cases are consecutive to a chronic inflammatory damage
related to liver disease etiology (i.e., virus, alcohol, iron and copper
accumulation), but it seems to be connected to PAMPs arrival
through portal blood. It is well described in literature the role that gut
microbiota plays in all phases of liver diseases. Indeed, it participates
in mantaining an inflammatory state that acts as driving force for
progression to fibrosis and cirrhosis [157]. The comprehension of
connection between microbiota inflammation and HCC is based on a
few observations: a close vascular connection between intestine and
liver (gut-liver axis) exists. This axis receives nutrients not only by
portal blood but also by toxins released by gut microbiota in relation
to IP levels. The liver is rich in immunity cells (macrophages,
lymphocytes, natural killer cells and dendritic cells) that are able to
respond to stimulus generated by PAMPs, with the consequent
induction of inflammation [158,159]. The activation of inflamma-
tory signal focused on the activation of NF-kB–dependent signal
pathway involves the production of inflammatory cytokines such as
TNF-α, IL-6, IL-1, ROS, etc., which, as we have seen, are able to
stimulate cell proliferation and inhibit apoptosis, although their role is
widely described in the promotion of the HCC rather than its
induction [160–162]. Hepatocarcinogenesis, as demonstrated by
Dapito et al., would be related to the activation by LPS of TLR-4 with
the initiation of a chronic organ damage that comes out in the
promotion of proliferation at the expense of apoptosis by the
production of substances with mitogen activity like epiregulin [163].
The administration of antibiotics in this regard would be able to turn
off the proliferative signal mediated by the activation of TLR-4,
demonstrating an effective role of the microbiotic gut in the
progression of the HCC [164]. Inflammation and hepatocellular
damage resulting thereof are at the basis of the mechanisms for
triggering a regenerative response. However, this response would
occur in nonphysiological conditions, supported also by the activation
and proliferation of stem cells (HSCs). They would contribute to the
generation of fibrosis and then liver cirrhosis. The microenvironment
that is created leads to a nonphysiological cell regeneration that is
based on the deleterious damage-regeneration-repair cycle. Such
vicious cycle would be the basis of the loss of proliferative control
which may promote premalignant transformation and tumor growth
[165]. In this regard, HSCs would play an important role in
controlling cell proliferation by acting as true “mitotic controllers.”
Such cells would be able to respond to stimuli by the presence of
surface receptors such as TLR-4, which are typically activated by
ligands such as LPS or desoxicolic acid [166]. The activation of these
receptors involves the acquisition of a senescence-associated secretory
phenotype that favors the production of epiregulin and therefore
promotes cell proliferation and HCC progression. In a study by
Yoshimoto et al. correlation was made between the acquisition of
senescence-associated secretory phenotype of HSCs with the
progression of HCC. Researchers have shown that mice with high-fat
diet, compared to those with conventional diet, were more likely to
develop HCC and had a greater density of senescent HSCs in
peritumoral areas.

Enabling this functional profile to be acquired would be the
inflammatory stimulus dictated by the production of IL-1β, in turn
produced for the signal triggered by the high concentrations of
desoxicolic acid and PAMPs in portal blood. In this sense, HFD
would be able to induce a change in the intestinal microbial
composition, favoring the survival of Firmicutes, especially Clostri-
dium, which are capable of producing high levels of desoxicolic acid
from the metabolism of colic acid. Such link ring explains the
increased activation of NF-kB in mice fed with HFD and provides a
basis for understanding the role of HSC in hepatocyte cancer [167].

Finally, pancreatic cancer is one of the most aggressive neoplasms,
with a mortality rate that can reach over 90% of new cases within the
first year of diagnosis [168]. For this reason, the understanding of the
pathophysiologic mechanisms responsible for its onset and/or its
progression is the basis, together with an appropriate renewal of
therapies, to reduce the social impact of this disease. Again, chronic
inflammation is the basis of the pathophysiological process that
supports the formation of pancreatic cancer. Although the pancreas,
unlike the liver, does not exhibit its intrinisc microbiome, according
to a recent scientific theory, it could be reached by PAMPs both in the
circulatory stream and through the biliary/pancreatic tract (transduc-
tal transmission). The arrival of such antigens leads to stimulation of
innate immunity receptors, including TLR-4, resulting in proinflam-
matory cytokine production that would act along with other risk
factors such as obesity and smoking for the onset of the disease [169].
The combination of the classic risk factors for pancreatic cancer and
the penetration of PAMPs into the portal circle is evident in alcohol
abuse. Alcohol is, in fact, a risk factor for pancreatic disease, from
pancreatitis to cancer, but is also one of the best known causes of
increased bowel permeability, leading to circulatory delivery of
bacterial-derived products [104].

Such interesting and promising scientific discoveries are paving the
way for a better understanding of pathogenetic mechanisms that
support gastrointestinal cancer, enabling the scientific community to
emerge on a new scenario that is promising to be exploited as a new
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therapeutic weapon against such diseases. However, nowadays, the results
obtained from in vitro and experimental animals are not applicable to
biology of human systems and therefore require further confirmations
and in-depth studies. The key point for application to human therapy
may be from the possibility in the near future of selective or superselective
manipulation of intestinalmicrobial species, enabling a specific “microbial
personalization” for the specific patient.

Conclusion
For several years, scientific evidence has shown the link between
inflammation and cancer. In this context, it is clear that an
inflammatory microenvironment is an essential assumption for the
development of most tumors. Each cell and the proportion of specific
inflammatory cell types in tumoral microenvironment could have a
polarized role in tumor progression or tumor suppression according to
the production of autocrine, paracrine and endocrine substances.
Moreover, inflammation is able to determine the production of

angiogenetic factors and to promote the survival of tumor cells
through a direct route, that is, the increase in oxygen supply and
nutrients to tumor tissue, and an indirect route, which increases the
recruitment of proinflammatory cells and releases cytokines that
promote growth, invasion of tumor metastasis.
Several chronic inflammatory diseases are also able to determine an

increase of cancer risk as happens in patients affected by IBD or
COPD. In these chronic inflammations, in addition to the cytokine
proinflammatory effects, several molecular alterations are also
involved in the inflammation-induced carcinogenesis, such as
inactivation of tumor-suppressor genes, oncogene mutations, loss of
heterozygosity, and chromosomal and microsatellite instability.
A common mediator of carcinogenesis in inflamed tissues is the

imbalance of oxidative stress induced by inflammation in a normal
tissue and sustained by microenviromental inflammation in a context
of malignant tumor.
Another factor involved in the generation of chronic inflammation

that sustains cancer is represented by endotoxemia. The communi-
cation between “gut microbiota system” and liver, brain, adipose
tissue and other organs of human body is regulated by intestinal
permeability (IP). Its increase, in relation to a dysbiotic gut, can be
considered a key point for the comprehension of some pathogenetic
mechanisms of systemic and liver disorders as well as cancer. Indeed,
there is a relationship between IP and plasma levels of proinflamma-
tory cytokines, nitric oxide, and nitrite levels in patients with various
types and degrees of chronic liver diseases.
However, despite the growing interest regarding this field,

nowadays, a standardized protocol to study the relationship between
gut microbiota and cancer especially in the interpretation of study
results does not exist. The strongest scientific evidence of this
relationship exists in relation to tumors of gastrointestinal tract. For
this reason, we focused our attention on the pathogenetic
mechanisms sustained by gut-derived inflammation in the develop-
ment of gastrointestinal cancer.
Bearing in mind these mechanisms that link inflammation,

oxidative stress and IP to cancer, it could be useful to plan the
prophylaxis and the therapy of cancer in the next future.
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