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Abstract

In a search for new potential multitarget anti-HIV compounds from natural products, we

have identified in Hypericum scruglii, an endemic and exclusive species of Sardinia (Italy), a

potent plant lead. The phytochemical study of the hydroalcoholic extract obtained from its

leaves led to the isolation of its most abundant secondary metabolites, belonging to different

chemical classes. In particular, three phloroglucinols derivatives were identified, confirming

their significance as chemotaxonomic markers of the Hypericum genus. Among them, the

3-(13-hydroxygeranyl)-1-(2’-methylbutanoyl)phloroglucinol was reported here for the first

time. All six isolated compounds have been evaluated firstly for the inhibition of both Human

Immunodeficiency Virus type 1 (HIV-1) Reverse Transcriptase (RT)-associated DNA Poly-

merase (RDDP) and Ribonuclease H (RNase H) activities, for the inhibition of HIV-1 inte-

grase (IN) in biochemical assays, and also for their effect on viral replication. Among the

isolated metabolites, three phloroglucinol derivatives and quercitrin were effective on both

RT-associated RDDP and RNase H activities in biochemical assays. The same active com-

pounds affected also HIV-1 IN strand transfer function, suggesting the involvement of the

RNase H active site. Furthermore, phloroglucinols compounds, included the newly identified

compound, were able to inhibit the HIV-1 replication in cell based assays.

Introduction

Natural products have played, and will continue to play, a key role in drug discovery. In particu-

lar, the diversity of plant-based systems has provided an enormous number of lead compounds
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in healthcare [1]. Indeed, plant products represent, according to an assessment of FDA on the

source of natural products, over one-quarter of all approved new molecular entities [2,3]. How-

ever, despite the intensive investigation of plant kingdom, it is estimated that only 6% of the

approximately 300,000 species of higher plants have been pharmacologically investigated, and

only 15% phytochemically [4]. Therefore, plants should be further investigated because new

compounds with original structures and novel modes of action are continuously required. Nat-

urally occurring compounds frequently inspire synthetic medicinal compounds, and they could

be chemically modified, based upon their structural and biological properties [5–8]. Their struc-

tural modification allows increasing their efficacy and selectivity, improving physicochemical,

biochemical and pharmacokinetic properties, removing or reducing side effects.

The therapeutic area of infectious diseases has benefited from abundant scaffold diversity

in natural products, able to interact with many specific targets [7]. Significant research and

development over the last 25 years into antiviral drug discovery has resulted in the identifica-

tion of important antiviral drugs [7]. In particular, a number of attempts have been made in

the fight against HIV-1 infection and several natural compounds able to inhibit the viral

enzymes have been reported [9–17]. However, so far all anti HIV-1 approved drugs were

obtained only by chemical synthesis.

HIV-1, the etiological agent of AIDS, still remains a global scourge despite the availability

of more than 30 approved anti-AIDS drugs [18]. Although the global scale-up of antiretroviral

therapy has contributed to reduce the number of new infections and AIDS-related deaths,

about 37 million people were estimated to be infected with HIV in 2016, with 1.8 million of

new infections and 1 million of deaths [19]. To date there is no vaccine or cure for HIV infec-

tion, and the efficacy of antiretroviral therapy, which combines two or three antiviral agents,

targeting different steps of the virus replication cycle, can be compromised by the selection of

strains resistant to one or multiple drug classes [20,21] and treatment-associated toxicity [22],

requiring the discovery of new antiviral agents with innovative modes of action or targets. In

this respect, the identification of one molecule able to inhibit more than one viral function

would provide significant advantages, raising the genetic barrier to resistance and increasing

the compliance to therapy.

Five different classes of anti-AIDS approved molecules are available for therapy [18] and the

majority of them is represented by inhibitors of reverse transcriptase (RT), the enzyme respon-

sible for the conversion of the single-stranded RNA genome into a double-stranded cDNA

[23,24]. RT is a multifunctional enzyme with two associated functions [25], DNA polymerase

and RNase H activities [26,27], that have been proven to be both essential for viral replication.

While the first one is currently the main target for AIDS treatment, the latter is the only HIV

enzymatic function not targeted by approved antiviral drugs [26,28,29], although it is a very

promising target [30]. Indeed it has been shown that RNase H inactivation lead to non-infec-

tious virions [31] and its selective inhibition completely blocks viral replication [32,33]. RNase

H catalytic core is highly conserved among viral species and strains [34,35] and presents high

structural homologies with HIV-1 integrase (IN) [24], the enzyme responsible for the integra-

tion of the HIV-1 cDNA genome into the host cell chromosome, that takes place through

DNA–protein and protein-protein interactions [36]. Among the cellular factors involved in the

integration process into the host DNA there is the human lens epitelium-derived growth factor

LEDGF/p75 [37], a nuclear protein that promotes IN chromatin tethering by establishing spe-

cific interactions between its IN-binding domain and the IN dimer. IN has become an explored

target for development of anti HIV treatments [24,38–40], with raltegravir [41,42], elvitegravir

[43] and dolutegravir [44] that are IN inhibitors approved for clinical use.

For many years, the drug discovery was based on searching for new compounds or new tar-

gets, recently the development of single molecules targeting both viral HIV-1 RT-associated
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RNase H and RNA-dependent DNA polymerase (RDDP) functions, or RNase H and IN func-

tions (dual inhibitors) has been proposed as an interesting approach [17,26,45–49]. This inno-

vative strategy could offer the possibility to reduce the toxicity associated to the co-

administration of several classes of drugs [18,40].

In our ongoing research of new natural compounds as potential scaffolds for developing

innovative inhibitors of the HIV-1, we focused on Sardinian endemic flora, in which geo-

graphical isolation has selected original metabolic profiles, as documented by several reports

[14,50–60].

In particular, in this study we focus on Hypericum scruglii Bacchetta, Brullo et Salmeri

[61,62], a species exclusive to Sardinia island (Italy). Despite the large number of Hypericum
species, only H. perforatum L. has been intensively investigated, both chemically and pharma-

cologically. Commonly known as St. John’s wort, it is widely used in Europe as a drug for the

treatment of mild to moderate depression [63,64]. When compared to H. perforatum, few

studies have been undertaken on the other members of this genus although their recognized

pharmacological properties range from wound healing and antiseptics to antiviral, anti-

inflammatory, anticancer, antioxidants, antifungal, antimicrobial, cardioprotective and cyto-

toxic activities[14,51–53,65–69]. Some Hypericum species also exhibited anti HIV-1 properties

[14,70,71]. This genus is known for the production of a broad spectrum of secondary metabo-

lites, mainly naphthodianthrones (hypericin and pseudohypericin), phloroglucinols (hyper-

forin and adhyperforin), phenolic acids, flavonoids (hyperoside, rutin or quercitrin),

xanthones and essential oils [14,72–75]. Although H. scruglii was not already characterized in

terms of phytochemical composition and biological/pharmacological properties, recently

Mandrone et al. [53] have identified from this species shikimic and chlorogenic acids, two

known phlorogucinols derivatives, quercitrin, hyperoside and hypericin, even though in a very

low content, confirming their chemotaxonomic significance [76]. They have also described the

antioxidant and α-glucosidase inhibitory activities.

In the present study, we investigated the ability of the main compounds isolated from leaves

of Hypericum scruglii to inhibit both HIV-1 RDDP and RNase H activities in biochemical

assays. Active compounds were then assayed for their effects on HIV-1 IN activities and to

interfere with the HIV-1 life cycle.

Material and methods

Plant material

Aerial parts of H. scruglii were collected at the flowering stage (June 2012) in the site of San-

t’Antonio (Jerzu, Sardinia, Italy, 39˚45’57.4"N 9˚30’41.8"E). The leaves were randomly har-

vested from 30 individuals of the same population. No flowers, fruits, seeds and roots were

collected to avoid damage to the population. The species was botanically identified by C.S. and

a voucher specimen (CAG 239/c) was deposited at the General Herbarium of the Department

of Life and Environmental Sciences, University of Cagliari. Although H. scruglii is endemic, it

is not protected by local or international regulations. Furthermore, the location where the

plant material was harvested is not included in national or local parks or any other natural pro-

tected areas. Therefore, no specific permission was required for its collection.

Chemicals and instruments

Reagents and solvents were purchased from Sigma-Aldrich Chemical Company (St. Louis,

MO, USA). The reagents used for expression, purification and biochemical assays were pur-

chased from Microbiol (Sardinia, Italy), Sigma-Aldrich (Milano, Italy) and PerkinElmer

(Milano, Italy). The reference compound raltegravir was purchased from ChemScene
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(Monmouth Junction, United States) while the reference compound RDS1759 was provided

from a chemist collaborator Prof. Roberto Di Santo (University of Rome La Sapienza). The isola-

tion of the metabolites was conducted with the aid of distinct chromatographic techniques. The

thin-layer chromatographies (TLC) were carried out on plates impregnated silica Merck Kiesel-

gel 60 F254 thickness 0.20 mm for analytical purposes and on plates impregnated silica Merck

Kieselgel 60 F254 thickness 0.5 o 1.0 mm for preparative purposes. The bands were visualized by

spraying with the solution H2SO4-AcOH-H2O (1:20:4) and subsequent heating in the stove for 5

min at 120˚C. The column chromatographies (CC) were performed using either silica gel Merck

Kieselgel 60 (70–240 mesh), Amberlite XAD-4 (20–50 mesh; Fluka) and XAD-7 (20–50 mesh;

Fluka), Sephadex LH-201 (Pharmacia) or Bakerbond C8 and C18 as stationary phase.

NMR spectra were recorded at 25˚C and 300 MHz for 1H and 75 MHz for 13C on a Varian

NMR spectrometer FT-300. Methanol-d4 was used as internal lock.

Correlation spectroscopy (COSY) and double quantum filtered COSY (DQF-COSY) spec-

tra were recorded with gradient enhanced sequence at spectral widths of 3000 Hz in both f2

and f1 domains; the relaxation delays were of 1.0 s. The total correlation spectroscopy

(TOCSY) experiments were performed in the phase-sensitive mode with a mixing time of 90

ms. The spectral width was 3000 Hz. For all the homonuclear experiments, the initial matrix of

512 × 512 data points was zero-filled to give a final matrix of 1 k × 1 k points.

Proton-detected heteronuclear correlations were measured. Heteronuclear single-quantum

coherence (HSQC) experiments (optimized for 1J(H,C) = 140 Hz) were performed in the phase

sensitive mode with field gradient; the spectral width was 12000 Hz in f1 (13C) and 3000 Hz in

f2 (1H) and 1.0 s of relaxation delay; the matrix of 1 k × 1 k data points was zero-filled to give a

final matrix of 2 k × 2 k points. Heteronuclear 2 bond correlation (H2BC) spectra were

obtained with T = 30.0 ms, and a relaxation delay of 1.0 s; the third-order low-pass filter was

set for 130 < 1J(C,H) < 165 Hz. Heteronuclear multiple bond coherence (HMBC) experiment

(optimized for nJ(H,C) = 8 Hz) was performed in the absolute value mode with field gradient;

typically, 1H–13C gHMBC were acquired with spectral width of 18000 Hz in f1 (13C) and 3000

Hz in f2 (1H) and 1.0 s of relaxation delay; the matrix of 1 k × 1 k data points was zero-filled to

give a final matrix of 4 k × 4 k points. Constant time inverse-detection gradient accordion

rescaled heteronuclear multiple bond correlation spectroscopy (CIGAR–HMBC) spectra (8>
nJ(H,C) >5) were acquired with the same spectral width used for HMBC. Heteronuclear single-

quantum coherence—total correlation spectroscopy (HSQC-TOCSY) experiments were opti-

mized for nJ(H,C) = 8 Hz, with a mixing time of 90 ms.

LC-MS analysis was carried out on an Alliance 2695 separation module equipped with a

column heater and a sample chiller. The liquid chromatography system was coupled to a

Waters 2487 dual wavelength UV detector and to a Quattro Micro™ triple quadrupole mass

spectrometer (Waters/Micromass, Manchester, UK).

Recombinant proteins were purified using the chromatography system Biological LP

(Biorad). Biochemical assays were measured using the multiplate reader Victor 3 (Perkin

Elmer).

Extraction and isolation of active compounds

Plant material (70.0 g) was extracted by sonication with a solution of H2O:MeOH (1:1),

immersed in an ultrasonic bath (Elma1Transonicdigitals) for 40 min. Subsequently, samples

were filtered and the obtained crude extract was solubilized in H2O and then subjected to liq-

uid-liquid extraction using ethyl acetate (EtOAc) as extracting solvent. The aqueous fraction

was chromatographed on Amberlite XAD-4 and XAD-7, eluting first with water and then with

methanol. The organic fraction (10.0 g) was chromatographed on silica gel (SiO2CC) using
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CHCl3/MeOH solutions as eluent to afford 13 fractions. Fraction 1, eluted in chloroform, was

chromatographed through Sephadex LH-20, using n-hexane/CHCl3/MeOH (2:1:1) as eluent

solution; four fractions (A-D) were obtained. Fraction A was chromatographed by semi pre-

parative TLC (0.5 mm) using CHCl3/MeOH (1:19) as eluent. The compounds 3 was obtained.

From fraction B compounds 1 and 2 were isolated. Fraction 2, eluted with CHCl3/MeOH

(95:5), chromatographed by RP-18 CC using decreasing polarity H2O/MeOH solutions, led to

compounds 4 and 5.

Fraction 3 eluted with CHCl3/MeOH (9:1), was chromatographed by RP-18 CC using

decreasing polarity H2O/MeOH solutions, obtaining the compound 6.

Expression and purification of recombinant HIV-1 RT, IN and LEDGF

His-tagged p66/p51 HIV-1 RT was expressed in Escherichia coli strain M15 as previously

described [77]. Full-length IN and LEDGF proteins were expressed in E. coli BL21 (DE3)

[15,78].

RNase H polymerase-independent cleavage assay

The HIV-1 RT-associated RNase H activity was measured in 100 μL reaction volume contain-

ing 50 mM Tris–HCl, pH 7.8; 6 mM MgCl2; 1 mM dithiothreitol (DTT); 80 mM KCl; hybrid

RNA/DNA (50-GTTTTCTTTTCCCCCCTGAC-30-fluorescein,50-CAAAAGAAAAGGG
GGGACUG-30-Dabcyl); and 3.8 nM RT. The reaction mixture was incubated for 1 h at 37˚C,

the reaction was stopped by the addition of EDTA, and products were measured with a Victor

3 (Perkin) at 490/528 nm [35].

RDDP assay

The HIV-1 RT-associated RDDP activity was measured using the Enz-Check Reverse Tran-

scriptase Assay Kit (Life technologies, Carls- bad, California, USA), as previously described

[47]. The Yonetani-Theorell analysis was performed as previously reported [79].

Homogeneous time resolved fluorescence (HTRF) LEDGF dependent assay

The IN LEDGF/p75 dependent assay allowed to measure the inhibition of the 3’processing and

strand transfer IN reactions in the presence of recombinant LEDGF/p75 protein, as previously

described [80]. Briefly, 50 nM IN was preincubated with increasing concentration of com-

pounds for 1 hour at room temperature in reaction buffer containing 20 mM HEPES pH 7.5, 1

mM DTT, 1% Glycerol, 20 mM MgCl2, 0.05% Brij-35 and 0.1 mg/ml BSA. To this mixture, 9

nM DNA donor substrate (5’-ACAGGCCTAGCACGCGTCG-Biotin-3’ annealed with 5’-
CGACGCGTGGTAGGCCTGT-Biotin3’) and 50 nM DNA acceptor substrate (5’-Cy5-AT
GTGGAAAATCTCTAGCAGT-3’ annealed with 5’-Cy5- TGAGCTCGAGATTTTCCACAT-
3’) and 50 nM LEDGF/p75 protein were added and incubated at 37˚C for 90 minutes. After

the incubation, 4 nM of Europium-Streptavidine were added at the reaction mixture and the

HTRF signal was recorded using a Perkin Elmer Victor 3 plate reader using a 314 nm for excita-

tion wavelength and 668 and 620 nm for the wavelength of the acceptor and the donor sub-

strates emission, respectively.

Antiviral activity and cell toxicity. Phenotypic analyses with fully

replicating recombinant HIV-1 strain

The human TZM-bl indicator cell line was obtained from the American Type Culture Collec-

tion (Manassas, VA) and maintained at 37˚C and 5% CO2 in Dulbecco’s modified Eagle’s
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medium (DMEM) containing 10% fetal bovine serum, 50 μg/mLpenicillin, and 50 μg/mL

streptomycin. The HIV-1 virus NL(AD8) was titrated as follows: serial 5-fold dilutions of the

virus were made in quadruplicate wells in 96-well culture plates, in a total volume of 100 μL of

growth medium, for a total of 8 dilution steps. Freshly trypsinized cells (20,000 cells in 100 μL

of growth medium containing 75 μg/mL DEAE-dextran) were added to each well, and the

plates were incubated at 37˚C in a humidified 5% CO2-95% air environment. After 48 h of

incubation, the medium was removed and viral infection was quantified using a β-galactosi-

dase (CPRG) assay (Roche). Twenty thousand TZM-bl cells/well were seeded in 96-well plates

in complete DMEM supplemented with 30 μg/mL DEAE-dextran (Sigma-Aldrich). Three

hundred times the 50% tissue culture infective dose (TCID50)/mL of HIV AD8 strain and

seven serial dilutions (range, 40.000 nM to 625 nM) of each compound were added to the cells,

as previously described [81,82]. Vehicle (0.1% dimethyl sulfoxide [DMSO])-treated cells

served as a negative control. A CCR5 inhibitor (maraviroc) and an integrase inhibitor (dolute-

gravir) were used as positive-control drugs. The TZM-bl indicator cell line has an integrated

copy of the β-galactosidase gene under control of the HIV-1 promoter. Β-Galactosidase

expression, measured by use of a chlorophenol red/β-D-galactopyranoside (CPRG) assay

(Roche) in cell lysates 48 h post-infection was used as a marker of HIV infection. The inhibi-

tory curves were fitted by nonlinear regression, allowing for the calculation of the 50% effective

concentration (EC50) using the Prism software. To evaluate the cell toxicity of the compounds,

the metabolic XTT [2,3-bis-(2-methoxy-4-nitro-5-sulfophenyl)-2H-tetrazolium-5-carboxani-

lide] test (Sigma-Aldrich) was performed according to the manufacturer’s instructions.

Time of addition

In TOA experiment it is of fundamental importance that only one replication cycle has been

completed to avoid confounding effects derived from unwashed viruses after 1 hour of infec-

tion. For this reason, an env-pseudotyped virus (REJO4541 clone 67) was used. Time of addi-

tion (TOA) experiment was performed as previously described with minor modifications [83].

40000 TZM-bl cells/well in a 96-multiwell plate were infected with 1500 X the TCID50 per mL

of the env-pseudotyped HIV-1 virus in complete medium supplemented with DEAE-dextran

(Sigma–Aldrich, 30 mg/mL). Virus was incubated with cells for 1 h at 4˚C, and unbound virus

was subsequently removed by extensive and repeated washing with phosphate-buffered saline

(PBS) to synchronize the replication. For the next 7 h, antiretroviral compounds inhibiting

distinct viral replication steps (maraviroc, lamivudine, dolutegravir) and compound 3 were

added at the following time points: at time 0 and after 60, 120, 180, 240, 300, 360 and 420 min.

To ensure complete inhibition of viral replication we used a 40-fold EC50 concentration as

previously evaluated for each compound on TZM-bl cells [maraviroc (0.7 mM), lamivudine

(5 mM), dolutegravir (1 mM), and compound 3 (10 mM)]. After 2 days, viral infection was

quantified using a CPRG assay (Roche) and was then normalized to untreated control cells.

Results and discussion

Phytochemical profile

Based on previous observations [53], a phytochemical study was undertaken in order to isolate

the most abundant compounds in the hydroalcoholic extract obtained from leaves of H. scru-
glii (Fig 1). These compounds belong to different classes and, among them, are three phloro-

glucinol derivatives (compounds 1–3). Three compounds (3–5) were reported and isolated for

the first time from this species and compound 3 was reported here for the first time.

The phytoconstituents isolated were 3-geranyl-1-(2’-methylbutanoyl)phloroglucinol (1),

3-geranyl-1-(2’-methylpropanoyl)phloroglucinol (2), 3-(13-hydroxygeranyl)-1-(2’-
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methylbutanoyl)phloroglucinol (3), 1,3,5-benzentriol 2-[(2S,3R)-3-(3,4-dihydroxylphenyl)-

2,3-dihydroxylpropyl] (4), 3,4-dihydroxybenzoic acid (5 ) and quercitrin (6) (Fig 2).

Compounds 1, 2, and 3 belong to the class of phloroglucinols. The NMR data for com-

pound 1 and 2 were in agreement with 3-geranyl-1-(2’-methylbutanoyl)-phloroglucinol and

3-geranyl-1-(2’-methylpropanoyl)-phloroglucinol, respectively, previously reported from

Fig 1. 1H NMR spectra of MeOH/H2O extract of H. scruglii. Numbers indicate the diagnostic signals of the isolated secondary metabolites 1–6.

https://doi.org/10.1371/journal.pone.0195168.g001

Fig 2. Chemical structures of known metabolites isolated from H. scruglii.

https://doi.org/10.1371/journal.pone.0195168.g002
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other Hypericum species [71,84] and also identified in the extract of Hypericum scruglii through

NMR-based metabolomics[53].

Compound 3 (Fig 3) has been identified as a new metabolite on the basis of its spectro-

scopic features (Table 1). Its 13C-NMR spectrum shows 21 signals identified through 13C and

HSQC experiments as 4 methyls, 5 methylenes, 4 methines and 8 quaternary carbons, one of

them, at δ 210.1, attributable to a carbonyl group.

In the aromatic region of the 1H-NMR spectrum, a singlet signal at δ 5.88 is observed,

which correlates, in the HSQC spectrum, with the carbon at δ 93.5 and, in the CIGAR-HMBC

spectrum, with the C-1, C-2, C-4 and C-5 at δ 161.1, 105.1, 108.0, 163.5, respectively. The

methine proton at δ 3.87, linked to carbon C-2’ at δ 46.7, correlated in the CIGAR-HMBC

experiment, with the carbonyl carbon and with the C-5’ methyls at δ 17.3 and δ 12.4, and with

the methylene diasterotopic protons at δ 1.34 and δ 1.80 bonded to carbon C-3’ δ 28.1. These

Fig 3. A: Chemical structure of the novel phloroglucinol 3 from H. scruglii; B: diagnostic 2D NMR correlations.

https://doi.org/10.1371/journal.pone.0195168.g003
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correlations were in good agreement with the presence of a 2-methylbutanoyl group on the

aromatic ring. The C-4 carbon of the aromatic ring at δ 108.0 correlates, in the

CIGAR-HMBC, with the H-7 methylene doublet at δ 3.19. This proton is directly bonded to a

carbon at δ 23.7, and it shows long range correlations with the aromatic ring and with the C-8

and C-9 olefinic carbon at δ 125.5 and 135.1, respectively. Furthermore, the H-8 olefinic pro-

ton at δ 5.19 correlates with the methyl group linked to the C-9 and the C-10 methylene carbon

at δ 29.1, bonded to the protons at δ 2.20.

The H-12 protons at δ 1.62, directly linked to the methylene carbon at δ 23.7, correlates

with the C-13 and C-14 carbons at δ 77.0 and 149.1, respectively. This latter presents correla-

tions with the methyl protons at δ 1.75, bonded to the carbon at δ 17.7, and with the olefinic

protons at δ 4.83 and 4.95 both correlated in the HSQC experiment to the carbon at δ 111.4.

The correlations observed in the CIGAR-HMBC, H2BC and HSQC-TOCSY spectra sug-

gested the structure of compound 3 (Fig 3). These data allowed the identification of compound

3 as 3-(13-hydroxygeranyl)-1-(2’-methylbutanoyl)phloroglucinol.

Compound 4 was identified as 1,3,5-benzentriol 2-[(2S,3R)-3-(3,4-dihydroxylphenyl)-

2,3-dihydroxylpropyl], named filiferol, a chalconoid analogue, isolated for the first time from

leaves of Washingtonia filifera [85]. It is based on a flavonol structure with the reduction of the

common flavonoid keto group to give an unprecedented methylene carbon on the three car-

bon chain. To our knowledge, this is the first report of filiferol from Hypericum genus.

Table 1. 1D and 2D NMR data of compound 3 in CD3OD.

no δ 1H J (Hz) DQ-COSY δ 13C HSQC CIGAR-HMBC HSQC-TOCSY

H!H H!C (nJ) H!C

1 161.1 C

2 105.1 C

3 165.4 C

4 108.0 C 4(2J), 5(3J), 8(2J), 9(3J)

5 163.5 C

6 5.88 s 94.8 CH 1(2J), 2(3J), 4(3J), 5(2J), 7(4J), 1’(4J)

7 3.19 d (6.9) 8 21.9 CH2 2(3J), 3(3J), 4(2J), 5(3J), 8(2J), 9(3J) 7, 8, 11(lr)

8 5.19 t (6.0) 7, 11(lr) 125.5 CH 7(2J), 10(3J) 7, 8, 11(lr)

9 135.1 C

10 2.20 m 12 29.1 CH2 8(3J), 9(2J), 11(3J), 12(2J), 13(3J) 10, 12, 13

11 1.65 s 8(lr) 23.7 CH3 8(3J), 9(2J), 10(3J)

12 1.62 m 10, 13 34.4 CH2 13(2J), 14(3J) 10, 12, 13

13 4.03 t (6.6) 12 77.0 CH 10(3J), 12(2J), 14(2J), 15(3J), 16(3J) 10, 12, 13

14 149.1 C

15a 4.95 s 15b, 16(lr) 111.4 CH2 13(3J), 14(2J) 14, 16

15b 4.83 s 15a, 16(lr) 111.4 CH2 13(3J), 14(2J), 16(3J) 14, 16

16 1.75 s 15b(lr), 15a(lr) 17.7 CH3 13(3J), 14(3J), 15(2J) 14, 16

1’ 211.7 C

2’ 3.87 tq (6.6) 3’, 5’ 46.7 CH 1’(2J), 3’(2J), 4’(3J), 5’(2J) 2’, 3’, 4’, 5’

3’a 1.34 m 2’, 4’ 28.1 CH2 1’(3J), 2’(3J), 4’(2J), 5’(3J) 2’, 3’, 4’, 5’

3’b 1.80 ov 2’, 4’ 28.1 CH2 1’(3J), 2’(3J), 4’(2J), 5’(3J) 2’, 3’, 4’, 5’

4’ 0.89 t (7.2) 3’ 12.4 CH3 2’(3J), 3’(2J) 2’, 3’, 4’, 5’

5’ 1.10 d (6.6) 2’ 17.3 CH3 2’(2J), 3’(3J) 2’, 3’, 4’, 5’

d = doublet, m = multiplet, ov = overlapped, s = singlet, t = triplet, tq = triplet of quartet; lr = long range.

https://doi.org/10.1371/journal.pone.0195168.t001
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3,4-dihydroxybenzoic acid (5 ), is a phenolic acid widely distributed in nature [86]. This

compound is one of the biologically active components of some medicinal plants, including

Hypericum perforatum L. [87]. It is been defined by the presence of characteristic signals in the
1H-NMR spectrum.

Finally, compound 6, was identified as quercitrin, a quercetin glycoside. It was already

reported for H. scruglii [53] and it is commonly present in the genus Hypericum [75,76,88–95].

Effects of H. scruglii chemical components on both HIV-1 RT-associated

functions

Biological activities of H. scruglii were previously investigated reporting its antioxidant and α-

glucosidase activity [53]. However, up to date, no information on its anti HIV-1 properties

was available. Given the promising results obtained from Hypericum hircinum L. components

on both HIV-1 RT associated functions [14], with the objective to identify new metabolites

able to inhibit both HIV-1 RT-associated functions from the Hypericum genus, the most abun-

dant compounds (1–6) isolated from H. scruglii have been tested on both RDDP and RNase H

activities in biochemical assays, using the RDDP selective non-nucleoside RT inhibitor

(NNRTI) Efavirenz and the RNase H selective diketo acid (DKA) derivative RDS1759 [33] as

controls (Table 2). In accordance to other reports on naturally occurring phloroglucinol com-

pounds that have shown a broad range of biological activities including anti-HIV activity

[71,96–99], our results showed that 3-geranyl-1-(2’-methylbutanoyl)phloroglucinol (1), 3-ger-

anyl-1-(2’-methylpropanoyl)phloroglucinol (2), 3-(13-hydroxygeranyl)-1-(2’-methylbutanoyl)

phloroglucinol (3) inhibited both HIV-1 RT-associated activities with IC50 values around 4.1–

25.5 μM range (Table 1). Interestingly, the small differences in the lateral chains of 1, 2 and 3

do not affect the potency of inhibition towards the two viral functions. Also quercitrin (6)

showed to be active in the low micromolar range against both RT-associated functions. Quer-

citrin (6) is indeed a glycoside of quercetin, a flavonoid which is known to be a potent inhibitor

of both functions of HIV-1 RT [14,100]. Differently, 1,3,5-benzentriol 2-[(2S,3R)-3-(3,4-dihy-

droxylphenyl)-2,3-dihydroxylpropyl], known as filiferol (4), exhibited a weak inhibition of

both HIV-1 RT-associated RNase H and RDDP functions, and 3,4-dihydroxybenzoic acid,

namely protocatechuic acid (5), was found inactive at the maximum concentration tested

(100 μM), similarly to what already found for the structurally-related shikimic acid [14].

Table 2. Effects of compounds isolated from Hypericum scruglii on the HIV-1 RT-associated activities and IN activities in presence of LEDGF/p75.

Compound aHIV-1 RT bHIV-1 RT cHIV-1 IN LEDGF

RNase H IC50 (μM) RDDP IC50 (μM) dependent IC50 (μM)

1 4.3 ± 0.4 25.5 ± 8.8 7.3 ± 0.3

2 4.1 ± 0.1 12.3 ± 2.5 7.4 ± 0.4

3 9.1 ± 0.5 19.7 ± 3.5 13.0 ± 1.0

4 93 ± 7 92 ± 10 6.4 ± 0.7

5 > 100 (100%)d > 100 (85%)d >100 (97%)d

6 6.3 ± 1.0 9.7 ± 1.4 1.6 ± 0.16

RDS 1759 7.3 ± 0.1

Efavirenz 0.012 ± 0.003

Raltegravir 0.058 ± 0.01

aCompound concentration required to inhibit the HIV-1 RNase H activity by 50%.
bCompound concentration required to inhibit the HIV-1 RDDP activity by 50%.
cCompound concentration required to inhibit the HIV-1 IN catalytic activities, in the presence of LEDGF, by 50%.
dPercentage of control activity in the presence of 100 μM concentration of compound.

https://doi.org/10.1371/journal.pone.0195168.t002
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Evaluation of the effects H. scruglii chemical components on HIV-1 IN

activity

Since HIV-1 RNase H and IN domains have striking similarities, in order to evaluate if the

compounds able to inhibit HIV-1 RNase H function could act through a multitarget profile,

we investigated them also on IN catalytic activities. It is well known, in fact, that compounds

capable to inhibit the HIV-1 RNase H activity may also affect the HIV-1 IN activity

[15,17,39,45,46,80]. Hence, we evaluated their ability to inhibit the HIV-1 IN strand transfer

reaction in the presence of the LEDGF/p75 cellular cofactor, using Raltegravir as positive con-

trol (Table 2).

Results showed that 3-geranyl-1-(2’-methylbutanoyl)phloroglucinol (1), 3-geranyl-1-(2’-

methylpropanoyl)phloroglucinol (2), 3-(13-hydroxygeranyl)-1-(2’-methylbutanoyl)phloroglu-

cinol (3) inhibited HIV-1 IN activities in presence of LEDGF/p75 with IC50 values in the 7.3–

13μM range. Also in this case, results showed that the small differences in the lateral chains of

1, 2 and 3 do not affect the potency of inhibition on these enzymatic functions. It is worth not-

ing that these compounds were able to inhibit in similar concentration both RT-associated

RNase H activity and IN strand transfer function, while they were found to be less active on

RT-associated RDDP activity. Differently, quercitrin (6) inhibited HIV-1 IN in the low micro-

molar range, resulting 4-fold more active on HIV-1 IN activity with respect to HIV-1 RNase H

function. The HIV-1 Integrase (IN) inhibition of its aglycon quercetin has been already

reported in in vitro assay [101]. Worth to note, the filiferol (4) that weakly inhibited both HIV-

1 RT-associated RNase H and RDDP functions, were able to inhibit the HIV-1 IN activities in

presence of LEDGF/p75 with an IC50 value of 6.4 μM, showing a selectivity for this viral

enzyme. 3,4-dihydroxybenzoic acid (5), already found inactive on both RT-associated activi-

ties, was not active also on HIV-1 IN inhibition.

Inhibition of HIV-1 in cell culture and characterization of the mechanism

of action of bioactive compounds in cell-based assays

Given that compounds 1, 2, 3, 4 and 6 were able to inhibit both the HIV-1 RT and IN func-

tions in biochemical assays, we wanted to evaluate their effect on the HIV-1 replication.

Results showed that compounds 1, 2 and 3 significantly inhibited HIV-1 replication with

EC50 values in the 3.5–8 μM range (Fig 4), in accordance with the range of IC50 values showed

against the three viral enzymatic functions in biochemical assays, showing no cytotoxic effect

up to the highest tested concentration in cells (CC50 > 50 μM) (Table 3). Quercitrin, even if it

was able of inhibiting both HIV-1 RT-associated activities and IN functions in biochemical

assay, did not exert any effect on HIV-1 replication at the highest tested concentration

(Table 3), similarly to what reported for its aglycon quercetin [102]. Since compounds 1, 2 and

3 were active on both HIV-1 RT and IN in biochemical assays, we asked which was the viral

process targeted by bioactive compounds and, hence, a time-of-addition experiment on the

most promising molecule was carried out. This experiment determines how long the addition

of an anti-HIV compound can be postponed within the viral replication cycle before losing its

antiviral activity. Reference compounds with a known mode of action such as Maraviroc,

Lamivudine and Dolutegravir were included. As shown in Fig 5, the compound 3, similarly to

lamivudine, a RT inhibitor, lost its activity if added after 4–5 hour post-infection. This timing

is compatible with an anti-RT activity, exerted on both RNase H and RDDP functions, but not

with IN inhibition [103]. These data demonstrate that compound 3 exerts its anti-HIV activity

targeting the RT functions, while the anti-IN activity, exhibited only in enzymatic assays, is

not significantly involved in the inhibition of viral replication. A number of compounds were

reported to have dual RNase H/IN inhibitory activity in vitro but were more selective for IN
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and, indeed, they were shown to inhibit the IN in cell-based experiments [104]. Very few com-

pounds [32,33] were reported to be more selective for RNase H versus IN in vitro and were

shown to inhibit the RT in cell-based experiments. Hence, it is possible that a dual inhibitory

activity displayed in enzymatic assays, is not supported by cell-based results, but at our knowl-

edge, no much data are available on such discrepancies on compounds that were shown to

have equal potency of inhibition in vitro on the two enzymes. Therefore, further studies should

be performed to elucidate this specific behavior and to obtain derivatives of compound 3 that

may be active on viral replication targeting both viral enzymes.

Conclusions

Searching for new potential multitarget anti-HIV active compounds form Sardinian endemic

flora, we successfully identified in Hypericum scruglii some chemical components able to

Fig 4. Antiviral activity of compounds 1, 2 and 3 on HIV AD8 laboratory strain in TZM-bl cells. Cells were infected with

300 TCID50/mL and treated with compounds isolated from H. scruglii at seven different concentration. EC50 values ranged

from 3.5 to 8 μM. Only active compounds were shown.

https://doi.org/10.1371/journal.pone.0195168.g004

Table 3. Effects of compounds isolated from Hypericum scruglii on the HIV-1 replication.

Compounds aEC50 (μM) bCC50(μM)

1 3.5 >50

2 8 >50

3 3.5 >50

4 >40

5 >40

6 >40

Maraviroc 0.07 >20

aCompound concentration required to inhibit HIV-1 (AD8) replication in TZM-bl cells by 50%.
bCompound concentration required to inhibit TZM-bl cell viability by 50%.

https://doi.org/10.1371/journal.pone.0195168.t003
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inhibit both HIV-1 RT-associated and IN activities in the low micromolar range. Among the

bioactive compounds, two known phloroglucinol derivatives, compounds 1 and 2, and a

newly identified acylphloroglucinol, compound 3, were also able to inhibit the virus replication

in cell-based assays. Mode of action studies demonstrated that these compounds were active

also in cell cultures and the timing of inhibition was compatible with an action on the HIV RT

enzyme.

Hence, bioactive compounds isolated from H. scruglii, represent new attractive scaffolds for

the development of new dual inhibitors that deserve further investigations by means of chemi-

cal modification, in search of new dual derivatives active on both HIV-1 RT and IN.
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