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HEDGING BY SEQUENTIAL REGRESSIONS REVISITED

ALE� µCERNÝ AND JAN KALLSEN

City University London and CAU Kiel

Abstract. Almost 20 years ago Föllmer and Schweizer (1989) suggested a simple
and in�uential scheme for the computation of hedging strategies in an incomplete
market. Their approach of local risk minimization results in a sequence of one-period
least squares regressions running recursively backwards in time. In the meantime
there have been signi�cant developments in the global risk minimization theory
for semimartingale price processes. In this paper we revisit hedging by sequential
regression in the context of global risk minimization, in the light of recent results
obtained by µCerný and Kallsen (2007). A number of illustrative numerical examples
is given.

1. Introduction

It is hard to imagine modern �nancial markets without derivative securities. From
equity and currency options, to interest rate swaptions, to exotics, derivatives are an
important tool for �nancial risk sharing. From the buyer�s point of view derivative
securities provide signi�cant reduction in risk with a relatively small initial outlay.
The issuer, on the other hand, can take comfort in the result of Black and Scholes
(1973) who show that issuer�s exposure can be o¤set by frequent enough trading in the
underlying asset. In practice, however, the Black�Scholes result cannot and should
not be taken literally, because it is well documented that most asset price dynamics
are inconsistent with a pure di¤usion process. It may be the case that frequent
hedging of a derivative security removes most of issuer�s risk, but such conclusion
can only be reached after a detailed investigation of the hedging error outside of the
Black�Scholes model in an environment which allows for price jumps. To succeed
in this task one needs to understand how to compute good hedging strategies in a
situation where perfect replication is not guaranteed a-priori.
In an in�uential article Föllmer and Schweizer (1989) argued that the Black�Scholes

result can be viewed as a special case of a sequential least squares regression whose
aim is to minimize recursively the one-step expected squared hedging error. This
procedure is easy to visualize and implement in practice and it will recover the per-
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2 A. µCERNÝ AND J. KALLSEN

fect replicating portfolio when such a portfolio exists. In subsequent work by Föllmer
and Schweizer (1991) and Schweizer (1991) it is shown that the concept of sequential
regressions can be extended to semimartingale models using the notion of local risk
minimization in which the minimal martingale measure and the Föllmer�Schweizer
(F�S) decomposition play a central role. But while in a �nite state model the min-
imal martingale measure always exists, it may happen that in a perfectly reason-
able arbitrage-free model with continuous asset prices it does not, see Delbaen and
Schachermayer (1998).
As an alternative to local risk minimization one may consider the minimization of

the unconditional expected squared hedging error

inf
#
E((v + # � ST �H)2); (1.1)

where v is an (admissible) initial endowment, # is an (admissible) trading strategy,
S is a stock price, H is a contingent claim to be hedged and # � ST represents
gains from trading in the time interval [0; T ]. Here v; S;H are expressed in terms of
an appropriate numeraire, most commonly the risk-free bank account. For ease of
exposition we only consider one risky asset in the main body of the paper, relegating
the multivariate case to section 8.
Criterion (1.1) is more appealing than local risk minimization, because after all one

cares about the total hedging error and not the daily pro�t�loss ratios. The reason
why global risk minimization has not been used more ubiquitously up until now is
that its solution is generally considered more involved compared to the approach of
Föllmer and Schweizer. The mathematical history of the solution to (1.1) is traced in
Pham (2000) and Schweizer (2001). µCerný and Kallsen (2007) show that (1.1) admits
a solution in a very general class of arbitrage-free semimartingale models where local
risk minimization may fail to be well de�ned.
The purpose of this paper is threefold. Firstly, we will demonstrate that in dis-

crete time the solution of (1.1) is as simple as the solution to local risk minimization
of Föllmer and Schweizer and can be implemented by means of a sequential regres-
sion. We show that there are two di¤erences between the F�S decomposition and
the globally optimal regression: the former uses two explanatory variables (safe and
risky returns) and it is always performed under the objective measure P ; the latter
uses only one explanatory variable (risky return) and is performed under so-called
opportunity-neutral measure P ? which may or may not coincide with P . Crucially,
the global risk minimizing strategy is always well de�ned and hence it provides a
more robust theoretical concept compared to the local risk minimization. Secondly,
we highlight the link between (1.1) and globally mean�variance e¢cient portfolios
which simpli�es and extends the analysis of Li and Ng (2000) and Leippold et al.
(2004). Finally, we translate the general semimartingale setup of µCerný and Kallsen
(2007) into discrete time and draw comparison with the existing literature.
The paper is organized as follows. Section 2 introduces notation and assumptions.

In section 3 we study hedging in a one-period model, establishing basic properties of
least squares coe¢cients and some connections to the Capital Asset Pricing Model.
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Section 4 considers a multiperiod model with IID stock returns and examines, in
turn, the Föllmer�Schweizer sequential regression, its relation to the F�S decompo-
sition, and the globally optimal sequential regression. Section 5 considers a model
with non-IID returns and constructs the corresponding opportunity process and the
opportunity-neutral measure P ?. In section 6 we provide interpretation of the op-
portunity process in terms of unconditional Sharpe ratios, and compute the glob-
ally mean�variance e¢cient portfolio. Section 7 contrasts our approach with the
Gourieroux�Laurent�Pham numeraire method. Most proofs and technicalities are
deferred to section 8.

2. Notation and assumptions

Consider a time horizon T 2 N and the set of trading dates T := f0; 1; : : : ; Tg:
We �x a probability space (
; P;F), a �ltration F = fFtgt2T ; FT = F ; and an
FT -measurable contingent claim H 2 L2(P ):We introduce the following notation for
conditional expectations,

Et(X) := E(XjFt);
Vart(X) := Et(X

2)� (Et(X))2 :
The discounted stock price process fStgt2T is adapted to F and we assume throughout
that S is locally square-integrable, i.e. for �St+1 := St+1 � St we have

Et((�St+1)
2) <1 for t < T:

This assumption is weaker than the commonly encountered requirement St 2 L2(P )
for t 2 T , cf. Hipp (1993), Melnikov and Nechaev (1999), Schäl (1994), Schweizer
(1995).

De�nition 2.1. We say that process S admits no arbitrage, if for all t 2 T nf0g and
all Ft�1-measurable portfolios #t we have that #t�St � 0 a.s. implies #t�St = 0 a.s.
We assume that S is arbitrage-free in the sense of the above de�nition. Strictly
speaking one can de�ne a solution of (1.1) without the no-arbitrage requirement (cf.
Melnikov and Nechaev 1999) but such extension, while mathematically elegant, does
not bring additional economic insight.

De�nition 2.2. We say that (v; #) is an admissible endowment�strategy pair if and
only if v is F0-measurable, # = f#tgt2T nf0g is predictable, meaning that #t is Ft�1-
measurable, and

v + # � ST := v +

TX

t=1

#t�St 2 L2(P ):

The set of admissible trading strategies with initial endowment v is denoted �(v). We
write � as a shorthand for �(0).

From now we take F0 trivial to simplify the exposition. We will revert to general
F0 in section 8.
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3. Mean�variance hedging and the CAPM model

Consider T = 1 and a contingent claim H 2 L2(P ): Set V1 := H and de�ne

fV0; �1g := argmin
v;#1

E((v + #1�S1 � V1)
2):

By standard least squares arguments we have

�1 =
Cov(V1;�S1)

Var(�S1)
; (3.1)

V0 = E(V1)� �1E(�S1): (3.2)

Next we will provide alternative expressions for V0 and �1 which, although less im-
mediately obvious, are more useful than (3.1), (3.2).
Consider an auxiliary regression of the constant onto the explanatory variable �S1,

~�1 := arg min
#12R

E((#1�S1 � 1)2) =
E(�S1)

E((�S1)2)
;

and denote by � ~K1 the sum of explained squares from this auxiliary regression,

1�� ~K1 := min
#12R

E((#1�S1 � 1)2) = 1� ~�1E(�S1) = 1�
(E(�S1))

2

E((�S1)2)
:

Then using the Frisch�Waugh�Lovell theorem (cf. Davidson and MacKinnon 1993,
p.20) we can obtain V0 from the regression of V1 onto the residuals from the auxiliary
regression,

V0 = argmin
v
E((v(1� ~�1�S1)� V1)

2) = E

 
1� ~�1�S1
1�� ~K1

V1

!
: (3.3)

With V0 known one can recover �1 from a univariate regression,

�1 = argmin
#1

E((V0 + #1�S1 � V1)
2) =

E((V1 � V0)�S1)

E((�S1)2)
: (3.4)

Remark 3.1. An easy calculation shows that equation (3.3) is equivalent to the
CAPM pricing formula for derivative asset H with S1=S0 being the return on the
market portfolio and 1 the risk-free return. Indeed on dividing equation (3.2) by V0
and substituting for �1 from (3.1) we obtain

E (V1=V0) = 1 +
Cov (V1=V0;�S1)

Var (�S1)
E(�S1)

= 1 +
Cov (V1=V0; S1=S0)

Var (S1=S0)
E(S1=S0 � 1);

which yields the desired CAPM formula.

Remark 3.1 highlights that the (possibly signed) measure Q de�ned by

dQ

dP
:=
1� ~�1�S1
1�� ~K1
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is a martingale measure. To see this mathematically we observe,

E

�
dQ

dP

�
= E

 
1� ~�1�S1
1�� ~K1

!
= 1;

EQ (�S1) = E

 
1� ~�1�S1
1�� ~K1

�S1

!
=
E (�S1)� ~�1E((�S1)2)

1�� ~K1

= 0:

The �rst result states that Q has total mass 1, whereas the second asserts that the
stock is priced correctly by Q.
The quantity

�K̂1 :=
(E(�S1))

2

Var (�S1)
=

(E(�S1))
2

E((�S1)2)� (E(�S1))2
=

� ~K1

1�� ~K1

is the squared market Sharpe ratio of the stock return. The portfolio weight ~�1
represents the optimal number of shares bought by a quadratic utility investor with
unit initial wealth and unit relative risk aversion, cf. µCerný (2004b, Chapter 3).

Example 3.2. Consider a one-period model where S0 > 0 and the one-period return
S1=S0 takes three values, (0:9 1:2 1:6); with probabilities p =

�
2
3
1
12
1
4

�
. Denote the

excess return X := S1=S0 � 1: Then we have E(X) = E(X2) = 0:1, and

~�1 =
E(X)

E(X2)S0
=
1

S0
;

� ~K1 =
(E(X))2

E(X2)
= 0:1:

Denoting by Q the CAPM risk-neutral probability measure we have,

dQ

dP
=
1�XE(X)=E(X2)

1�� ~K1

=

�
11

9

8

9

4

9

�
;

and the CAPM risk-neutral probabilities read q = dQ
dP
p =

�
22
27

2
27

1
9

�
: The squared

market Sharpe ratio equals �K̂1 = � ~K1=(1�� ~K1) = 1=9:

4. Model with IID stock returns

Suppose now that S0 > 0 and fRtgt2T is a collection of IID random variables with
�nite second moment such that Rt > 0 almost surely. De�ne

St := S0

tY

j=1

Rj for t � 1;

� := E(Rt);

�2 := Var(Rt):
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4.1. Local risk minimization by sequential regression. In a dynamic model one
can perform the least squares regressions outlined in the previous section recursively,
by de�ning

fVt�1; �tg := arg min
vt�1;#t

�
Et�1((vt�1 + #t�St � Vt)

2) : vt�1; #t are Ft�1-measurable
	
;

VT := H: (4.1)

This approach is taken in Föllmer and Schweizer (1989). Assuming, for the time
being, that the process V thus obtained is well de�ned we have that

Vt�1 = Et�1

 
1� ~�t�St
1�� ~Kt

Vt

!
=: EQt�1 (Vt) ; (4.2)

where Q is the so-called minimal martingale measure,

dQ

dP
:=

TY

t=1

1� ~�t�St
1�� ~Kt

;

and the quantities

~�t :=
Et�1 (�St)

Et�1((�St)2)
; (4.3)

� ~Kt :=
(Et�1 (�St))

2

Et�1((�St)2)
= 1� Et�1((1� ~�t�St)2); (4.4)

re�ect the amount and performance of myopic one-period investment in the stock.
For future reference we denote the one-period realized locally optimal hedging error
by et,

et := Vt�1 + �t�St � Vt: (4.5)

The locally optimal hedging coe¢cient � is obtained from a conditional version of
(3.1, 3.4)

�t =
Covt�1(Vt;�St)

Vart�1(�St)
=
Et�1((Vt � Vt�1)�St)

Et�1((�St)2)
: (4.6)

Throughout in the notation we suppress the explicit dependence of V; �; e on the
contingent claim H.
Extending the analysis of Föllmer and Schweizer (1989) one can now ask what is

the unconditional hedging error of a self-�nancing strategy starting with capital v
and with �t shares bought at time t � 1. Denote the value of this portfolio at time
t by Gv;�t := v + ��St and set VT = H: By the law of iterated expectations and the
self-�nancing property, Gv;�T = Gv;�T�1 + �T�ST ; we have

E((Gv;�T � VT )
2) = E(ET�1((G

v;�
T � VT )

2))

= E(ET�1((G
v;�
T�1 � VT�1 + VT�1 + �T�ST � VT )

2)): (4.7)
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Since VT�1 and �T are the least squares coe¢cients from local risk minimization at
time T � 1 the realized locally optimal hedging error eT = VT�1 + �T�ST � VT must
be orthogonal to 1 implying ET�1(eT ) = 0. Consequently (4.7) yields

E((Gv;�T � VT )
2) = E((Gv;�T�1 � VT�1)

2 +  T ); (4.8)

where we have de�ned

 t := Et�1(e
2
t ) = Vart�1(Vt)� �tCovt�1(�St; Vt): (4.9)

After recursive application of (4.8) one obtains

E((Gv;�T � VT )
2) = (v � V0)

2 +

TX

t=1

E( t): (4.10)

In words, the unconditional expected squared hedging error equals the sum of one-
period expected squared hedging errors plus the square of initial misalignment v�V0.

Example 4.1. Consider a two-period (T = 2) trinomial model where the one-period
returns take three values, St=St�1 = (0:9 1:2 1:6); with conditional probabilities pt =�
2
3
1
12
1
4

�
as in Example 3.2. Denote by Xt the excess return Xt := St=St�1 � 1: Then

we have

Et�1(Xt) = Et�1(X
2
t ) = 0:1,

~�t =
Et�1(Xt)

Et�1(X2
t )St�1

=
1

St�1
;

� ~Kt =
(Et�1(Xt))

2

Et�1(X2
t )

= 0:1; for t = 1; 2:

The one-period change of measure reads

1� ~�t�St
1�� ~Kt

=
1� Et�1(Xt)

Et�1(X2
t )
Xt

1�� ~Kt

=

�
11

9

8

9

4

9

�
;

and the conditional risk-neutral probabilities of the minimal martingale measure are

qt =
1� ~�t�St
1�� ~Kt

pt =

�
22

27

2

27

1

9

�
:

As a consequence the stock returns remain IID under Q.
Consider a European call option with strike K = 108 expiring at T = 2. The

intercepts V arising from the local risk minimization are computed recursively from
T = 2 using (4.2). For example, the value of V in the middle node at time 1 is given
by

(V1jS1 = 120) = EQ(V2jS1 = 120) = 12:
Both the stock price lattice and the corresponding mean value process V are given
in Figure 1. Next we will evaluate the locally optimal hedging coe¢cient � using the
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Figure 1. Stock price and mean value process.

S V

256 148

160 192 52 84

100 120 144 268/27 12 36

90 108 4 0

81 0

t=0 t=1 t=2 t=0 t=1 t=2

second expression in (4.6). For example the value of �2 in the lowest node at time
t = 1 equals,

(�2jS1 = 90) =
E((V2 � V1)�S2jS1 = 90)

E((�S2)2jS1 = 90)
=
5

9
:

The locally optimal hedge � is depicted in Figure 2.

Figure 2. The locally optimal hedge � and the one-period expecteed
squared hedging error of an initially perfectly balanced hedging port-
folio  .

xi psi

1 0

91/135 1 968/81 0

5/9 18

t=1 t=2 t=1 t=2

Now one can evaluate the conditional expected one-period squared hedging error of
a perfectly balanced initial position (one where Gt�1 = Vt�1). For example, in the
lowest node at t = 1 the one-step locally optimal realized hedging error equals

(e2jS1 = 90) = (V2 � V1 � �2�S2jS1 = 90) =
�
1 �14 2

�
;

and the conditional expected squared hedging error is therefore

( 2jS1 = 90) = E((V2 � �2�S2 � V1)
2jS1 = 90) = 18:

Values of  are depicted in Figure 2.
Finally, using equation (4.10), we evaluate the unconditional expected squared hedg-

ing error of the hedging strategy �; assuming that v = V0;

E((V0 + � � S2 �H)2) =  1 + E ( 2) = 23
77

81
: (4.11)
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4.2. Föllmer�Schweizer decomposition.

De�nition 4.2.

(1) We say that a contingent claim H 2 L2 (P ) has an extended F�S decomposi-
tion if there is v 2 R; a predictable process # and a square-integrable martingale
N starting at 0 such that H = v + #�ST +NT and Covt�1 (�St;�Nt) = 0 for
all t 2 T n f0g.

(2) We say that H has a standard F�S decomposition if in addition #�St 2 L2(P )
for all t 2 T :

We will now relate the sequential regressions of the previous section to the F�S
decomposition. If the process V de�ned in (4.2) is square-integrable then

H = V0 + � � ST +NT ;

with � given in (4.6) and �Nt = et = Vt�1 + �t�St � Vt; is the standard F�S de-
composition of the contingent claim H. The unconditional squared hedging error of
a self-�nancing strategy (V0; �) can be expressed in terms of the process N ,

E((V0 + � � ST �H)2) =
TX

t=1

E ( t) = E(N2
T ):

In example 8.6 we will construct a price process S and a contingent claim H which
does not have the standard F�S decomposition but admits the extended decompo-
sition. In example 8.9 we will exhibit a two-period model and a contingent claim
H 2 L2(P ) for which even the extended decomposition fails to exist and the local
risk minimization is no longer well de�ned.

4.3. Global risk minimization by sequential regression. Let us now examine
the solution to the global risk minimization

min
#
E((Gv;#T � VT )

2); VT = H;

with the initial wealth v �xed. To facilitate the exposition we assume that the globally
optimal strategy exists, deferring the proof of its existence to section 8.2. The optimal
strategy is denoted by '(v) and we again suppress its explicit dependence on H in
the notation. Using the law of iterated expectations, the de�nition of a self-�nancing
strategy, and the optimality of ' we obtain

E((G
v;'(v)
T � VT )

2) = E(min
#T

ET�1((G
v;'(v)
T�1 + #T�ST � VT )

2)):

Recall the locally optimal strategy � de�ned in (4.1, 4.6). It transpires that �T cannot
be globally optimal in general, because by its construction it will solve

min
#T

ET�1((G
v;'(v)
T�1 + #T�ST � VT )

2) (4.12)

only if

Gv;#T�1 = VT�1; or (4.13)

ET�1 (�ST ) = 0: (4.14)
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Unless the contingent claim is perfectly replicable one cannot rely on the special
case (4.13). This, incidentally, explains why the hedging strategy in Föllmer and
Schweizer (1989) is not self-�nancing but only �mean self-�nancing�, i.e. Gt equals
Vt on average if one starts with Gt�1 = Vt�1. In an incomplete market the hedging
portfolio GT�1 may frequently undershoot or overshoot the target value VT�1 and the
globally optimal hedge ' must take this fact into account. The second special case
corresponding to (4.14) was discussed already by Föllmer and Sondermann (1986) for
a general square-integrable martingale S.
From (4.12) the globally optimal hedging strategy in the �nal period, t = T; reads

't(v) = argmin
#t

Et�1((G
v;'(v)
t�1 + #t�St � Vt)

2); (4.15)

which once again represents a least squares regression, but this time without an
intercept because the value of Gv;'(v)t�1 is given by past trading performance and the
constraint of self-�nancing strategies prevents the hedger to add or withdraw funds
along the way. Thus in the globally optimal regression the dependent variable is
Vt � G

v;'(v)
t�1 , the explanatory variable equals �St and no intercept is present. By

standard univariate regression we obtain

't(v) =
Et�1((Vt �G

v;'(v)
t�1 )�St)

Et�1((�St)2)

=
Et�1((Vt � Vt�1)�St)

Et�1((�St)2)
+ ~�t(Vt�1 �G

v;'(v)
t�1 )

= �t + ~�t(Vt�1 �G
v;'(v)
t�1 ); (4.16)

where the last line follows from (4.6).
To evaluate the hedging error of strategy '(v) we substitute (4.16) back into the

right hand side of (4.15), adding and subtracting Vt�1;

G
v;'(v)
t�1 + 't(v)�St � Vt = (G

v;'(v)
t�1 � Vt�1)(1� ~�t�St)

+Vt�1 + �t�St � Vt: (4.17)

By construction of Vt�1 and �t the realized locally optimal hedging error is orthogonal
to 1 and �St, implying

Et�1((1� ~�t�St) (Vt�1 + �t�St � Vt)) = 0: (4.18)

Equations (4.17) and (4.18) yield

Et�1((G
v;'(v)
t�1 + 't(v)�St � Vt)

2) = (1�� ~Kt)(G
v;'(v)
t�1 � Vt�1)

2 +  t; (4.19)

with  de�ned in equation (4.9).
Most importantly, in an IID case the quantity LT�1 := 1�� ~KT is deterministic and

therefore the optimization at time t = T�1 is essentially the same as the optimization
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at T; i.e.

't(v) = argmin
#t

Et�1(Lt(G
v;'(v)
t�1 + #t�St � Vt)

2 +  t+1)

= argmin
#t

LtEt�1((G
v;'(v)
t�1 + #t�St � Vt)

2)

= argmin
#t

Et�1((G
v;'(v)
t�1 + #t�St � Vt)

2)

because  t+1 does not depend on # and Lt is deterministic. On de�ning

Lt =

TY

j=t+1

(1�� ~Kj); LT = 1; (4.20)

and after recursive application of (4.19) we obtain

E((G
v;'(v)
T � VT )

2) = L0 (v � V0)
2 +

TX

t=1

E (Lt t) : (4.21)

Example 4.3. Consider the setup of Example 4.1. We have Lt = 0:9T�t for t =
0; 1; 2: Assuming v = V0 we �nd '1(V0) = �1 = 55=81,

G
V0;'(V0)
1 = V0 + �1�S1 = ( 1

44
81

2174
81

49 2
27 );

and therefore

'2(V0) = �2 +
~�2(V1 �G

V0;'(V0)
1 ) = ( 4249

7290
8917
9720

4399
4320 ) � ( 0:583 0:917 1:018 ):

Referring to (4.21) the unconditional expected squared hedging error of the globally
optimal strategy equals

E((G
V0;'(V0)
2 �H)2) = L1 1 + E(L2 2) = 22

34

45
;

which is indeed less than the corresponding value for the locally optimal strategy � in
equation (4.11).

Further numerical examples are available in µCerný (2004b, Chapter 12).

5. Stochastic opportunity set

In previous sections we have considered a multi-period stock price model with IID
returns and reviewed the computation of hedging strategies by sequential regressions
due to Föllmer and Schweizer (1989). We have noted that the hedging strategy result-
ing from the Föllmer�Schweizer sequential regression will not minimize the uncondi-
tional hedging risk, because it chooses at each node a speci�c value for the intercept
(intercept being the value of the replicating portfolio), whereas in reality this value
is given by the past trading performance. We have modi�ed the Föllmer�Schweizer
sequential regression by removing the intercept to obtain the globally optimal hedging
strategy.
If the stock returns are not IID the hedging formula (4.15) in general fails to yield

the globally optimal hedging strategy, except for t = T . In this section we describe
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the �nal adjustment to the recursive least squares procedure, which is needed to
handle the general case of non-IID returns. The �nal modi�cation involves a change
of measure from the original probability P to a new probability measure P ?. In
contrast to much of �nancial literature the new probability measure P ? is not a
martingale measure, in the sense that taking expectations under this measure will
not generate arbitrage-free prices.
The purpose of measure P ? is to internalize the stochastic changes in the multi-

period Sharpe ratio which is related to process L in equation (4.20) (see section 6
for more details). We call L the opportunity process. If under P some states o¤er
higher Sharpe ratio in the future than others, then the one-period realized hedging
error in those states can be higher because better investment opportunities in the
future will allow to make up for the higher error today. Whereas the least squares
under P fail to incorporate the changing investment opportunities, P ? modi�es the
probability weights so that the least squares regression without intercept (4.15) taken
under P ? yields the globally optimal hedging strategy. For this reason we call P ? the
opportunity-neutral measure. Mildly extending the standard economic terminology
we can talk of deterministic/predictable/stochastic opportunity set when the corre-
sponding opportunity process is deterministic/predictable/stochastic.
Consider the problem

min
#t

Et�1(Lt(G
v;#
t � V ?

t )
2) = min

#t
Et�1(Lt(G

v;#
t�1 + #t�St � V ?

t )
2): (5.1)

Assume that Lt is (0; 1]-valued and that Et�1(Lt(V ?
t )
2) < 1. When Lt is stochastic

as of t�1 equation (5.1) still represents a well-de�ned least squares regression because
Et�1(Lt(�St)

2) <1. One can internalize the random weights Lt in a new probability
measure P ? such that for any Ft-measurable random variable Z we have

EP
?

t�1 (Z) = Et�1 (LtZ) =Et�1(Lt): (5.2)

From the Bayes� law we then see that the right de�nition of P ? is

dP ?=dP =
TY

t=1

Lt=Et�1(Lt):

Now (5.1) reads Et�1(Lt)min#t E
P ?

t�1((G
v;#
t�1 + #t�St � V ?

t )
2): The solution of

min
#t

EP
?

t�1((G
v;#
t�1 + #t�St � V ?

t )
2)

can be found from (4.2-4.6, 4.16, 4.19) if we replace P with P ?: Speci�cally, on de�ning

~�
?

t :=
EP

?

t�1 (�St)

EP
?

t�1((�St)
2)
; (5.3)

� ~K?
t :=

�
EP

?

t�1 (�St)
�2

EP
?

t�1((�St)
2)
; (5.4)
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V ?
t�1 := EP

?

t�1

 
1� ~�?t�St
1�� ~K?

t

V ?
t

!
=: EQ

?

t�1 (V
?
t ) ; (5.5)

dQ?

dP ?
:=

TY

t=1

1� ~�?t�St
1�� ~K?

t

; (5.6)

�?t :=
CovP

?

t�1 (V
?
t ;�St)

VarP
?

t�1 (�St)
=
EP

?

t�1

��
V ?
t � V ?

t�1

�
�St

�

EP
?

t�1((�St)
2)

; (5.7)

 ?t := EP
?

t�1(
�
V ?
t � �?t�St � V ?

t�1

�2
): (5.8)

we conclude that the globally optimal strategy and the resulting hedging error satisfy

't(v) = argmin
#t

EP
?

t�1((G
v;'(v)
t�1 + #t�St � V ?

t )
2) = �?t +

~�
?

t (Vt�1 �G
v;'(v)
t�1 ); (5.9)

Et�1(Lt(G
v;'(v)
t � V ?

t )
2) = Et�1(Lt)((1�� ~K?

t )(V
?
t�1 �G

v;'(v)
t�1 )2 +  ?t )

= Et�1(Lt�1(V
?
t�1 �G

v;'(v)
t�1 )2 + Lt 

?
t ); (5.10)

where we have de�ned

Lt�1 := (1�� ~K?
t )Et�1(Lt); LT := 1: (5.11)

On applying (5.2)-(5.11) recursively with V ?
T := H we obtain

min
#
E(LT (G

v;#
T � V ?

T )
2) = E((G

v;'(v)
T � VT )

2)

= L0 (v � V0)
2 +

TX

t=1

E(Lt 
?
t ): (5.12)

A rigorous proof that all the quantities above are well-de�ned is given in section 8.2.

Example 5.1. Consider the two-period trinomial model of Example 4.1, with modi�ed
objective probabilities. Suppose that in the up node at time t = 1 the conditional
distribution of one-period return R = (0:9 1:2 1:6) is p2u := (2

3
1
12

1
4
) whereas in

the middle and down node at time 1 it is p2m = p2d := (4
5

1
10

1
10
): At time zero the

conditional probability distribution of one-period return is assumed to be p1 := (
72
91

9
91

10
91
):
Since L2 = 1 we have p?2 = p2; for all three conditional distributions of the one-

period return at t = 1. In the up node at time 1 the situation is the same as in
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Example 4.1, yielding

(~�
?

2jS1 = 160) =
1

160
;

(� ~K?
2 jS1 = 160) = 0:1;

(L1jS1 = 160) = 0:9;

(V ?
1 jS1 = 160) = 52;

(�?2jS1 = 160) = 1;

( ?2jS1 = 160) = 0:

In the middle and down nodes at time 1 the stock price behaves like a martingale, i.e.

we have E1(�S2) = 0; implying ~�
?

2 = 0; q
? = p? and

(L1jS1 = 120) = (L1jS1 = 90) = 1;
(V ?
1 jS1 = 120) = E (V ?

2 jS1 = 120) = 12;

(V ?
1 jS1 = 90) = E (V ?

2 jS1 = 90) = 3
3

5
;

(�?2jS1 = 120) =
E ((V ?

2 � V ?
1 ) (S2 � S1) jS1 = 120)

E((S2 � S1)
2 jS1 = 120)

= 1;

(�?2jS1 = 90) =
E ((V ?

2 � V ?
1 ) (S2 � S1) jS1 = 90)

E((S2 � S1)
2 jS1 = 90)

=
1

2
;

( ?2jS1 = 120) = E((V ?
2 � �?2�S2 � V ?

1 )
2 jS1 = 120) = 0;

( ?2jS1 = 90) = E((V ?
2 � �?2�S2 � V ?

1 )
2 jS1 = 90) = 19

11

25
:

At t = 0 the opportunity process one period ahead is stochastic, L1 = (1 1 9=10); and
therefore the opportunity-neutral measure P ? will di¤er from the objective measure P:
Speci�cally we have

p?1
p1
=

L1
E(L1)

=

�
91

90

91

90

91

100

�
;

implying p?1 =
�
4
5

1
10

1
10

�
: Hence at time t = 0 we have EP

?

(�S1) = 0; ~�
?

1 = 0 and
q? = p? (but p? 6= p). This means

� ~K?
1 = 0;

L0 = (1�� ~K?
1)E(L1) =

90

91
;

V0 = EP
?

(V ?
1 ) = 9

7

25
;

�?1 =
EP

?

((V ?
1 � V ?

0 )�S1)

EP ?((�S1)
2)

=
16

25
;

 ?1 = EP
?

((V ?
0 + �1�S1 � V ?

1 )
2) = 12

276

625
:
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By virtue of (5.12) the unconditional expected squared hedging error of the globally
optimal strategy equals

E((G
V ?0 ;'(V

?
0 )

T � V ?
T )
2) = E (L1 

?
1 + L2 

?
2) = 27

7803

11 375
:

6. Opportunity process and the Sharpe ratio

In this section we will show that the opportunity process L is closely related to the
Sharpe ratio of the globally optimal investment in the underlying asset.

De�nition 6.1. We call

� := sup

(
E(# � ST )p
Var(# � ST )

: # 2 �
)

the maximal unconditional Sharpe ratio, where we set 0
0
:= 0. Here � is the set of

admissible strategies with zero initial endowment from de�nition 2.2.

Theorem 6.2. The maximal unconditional Sharpe ratio is given by

�2 = L�10 � 1:
Consider the contingent claim H = 1 and the corresponding globally optimal hedging
strategy '(0) with initial wealth 0,

't(0) = ~�
?

t (1�G
0;'(0)
t�1 ): (6.1)

'(0) regarded as an investment strategy is globally mean�variance e¢cient with un-
conditional moments

E(G
0;'(0)
T ) = 1� L0;

Var(G
0;'(0)
T ) = L0 (1� L0) :

Proof. Easily,

�2(X) :=
(E(X))2

Var(X)
=

1

inf�2RfE ((1� �X)2)g � 1 = sup�2R

�
1

E ((1� �X)2)
� 1
�
:

For X = # � ST we have

�2 = sup
#2�

f�2(# � ST )g = sup
�2R;#2�

�
1

E ((1� �(# � ST ))2)
� 1
�

=
1

inf#2�fE ((1� # � ST )2)g
� 1 = 1

L0
� 1;

where the last equality follows from (5.12) with contingent claim H = 1 and initial
wealth v = 0. This also shows that '(0) in (6.1) is a globally mean�variance e¢cient
investment strategy. An easy calculation (see 8.17) yields

E((1�G
0;'(0)
T )G

0;'(0)
T ) = 0;
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while (5.12) implies E((1�G
0;'(0)
T )2) = L0: From here

E(G
0;'(0)
T ) = E((G

0;'(0)
T )2) = 1� L0;

Var(G
0;'(0)
T ) = E((G

0;'(0)
T )2)� (E(G0;'(0)T ))2 = L0 (1� L0) :

�

Remark 6.3. Theorem 6.2 simpli�es and generalizes characterization of globally
mean�variance e¢cient portfolios in discrete time (cf. Li and Ng 2000 and Leip-
pold et al. 2004). Continuous-time version of this result can be found in µCerný and
Kallsen (2007, Proposition 3.6) and µCerný and Kallsen (2006). By contrast to global
optimality, there is a parallel strand of literature where portfolio allocation and/or
derivative pricing is based on local maximization of utility or of the Sharpe ratio (cf.
Björk and Slinko 2006, µCerný 2003, Christensen and Platen 2007, Cochrane and
Saá-Requejo 2000, Kallsen 1999 and Kallsen 2002).

7. The Gourieroux�Laurent�Pham change of numeraire method

The purpose of this section is to relate our sequential regressions to the numeraire
method proposed by Gourieroux et al. (1998). We do not cover all technical details;
these can be found in Arai (2005).
Suppose the wealth process G0;'(0) de�ned in Theorem 6.2 is strictly less than 1:

Then the variance-optimal measure Q? is equivalent to P and its density process is
given by the formula

E(dQ?=dP jFt) = Lt(1�G
0;'(0)
t )=L0:

Gourieroux et al. proposed to take the process 1�G0;'(0)t as a new numeraire, de�ning

�St := [1 St]=(1�G
0;'(0)
t );

d �P=dP = (1�G
0;'(0)
T )2=L0:

Exploiting the fact that G0;'(0) is a Q?-martingale we �nd that the density process of
the new measure �P reads

E(d �P=dP jFt) = Lt(1�G
0;'(0)
t )2=L0:

Extending standard change of numeraire arguments Gourieroux et al. show the equiv-
alence

inf
#
E((v + # � ST �H)2) = L0 inf

�#
E
�P ((v + �# � �ST � �H)2);

�H := H=(1�G
0;'(0)
T );

for suitably chosen sets of admissible strategies. The equivalence is not as simple as
it might seem because the dimension of �S exceeds the dimension of S by one and
special care has to be taken when interpreting �# as a self-�nancing strategy.
S is a Q?-local martingale which implies �S is a �P -local martingale, hence the

solution of the mean�variance hedging problem under �P becomes very simple, with
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�L = 1, e�� = 0, ( �P )? = �P = ( �Q)? and �Vt = E
�P ( �HjFt); corresponding to the solution

of Föllmer and Sondermann (1986). Both the conditional and unconditional Sharpe
ratios under �P are zero, and myopic hedging with �S under �P is also globally optimal.
In a model with IID returns this comes at the cost of more complicated dynamics of �S
and �V , notably �V is now path-dependent. Also the relationship between the optimal
strategy �' in the modi�ed problem and the optimal strategy ' of the original problem
is not straightforward.
By contrast, our solution does not require a change of numeraire and yields all

components of the optimal strategy directly. Prices S are not P ?-local martingales
and in general (P ?)? 6= P ? so one cannot claim that the opportunity set generated
by S becomes deterministic (or even predictable) under P ?. It is true, however,
that myopic hedging under P ? leads to globally optimal hedging under P . Another
important di¤erence is that we obtain ~�

?
(Schweizer�s adjustment process) as part of

the recursive solution while in the numeraire method ~�
?
(and consequently G0;'(0)T )

are treated as inputs to be obtained elsewhere.

8. Technicalities

8.1. Admissible strategies. In this section we examine the notion of admissibility
from de�nition 2.2 in the context of a general semimartingale model. Lemma A.2 in
µCerný and Kallsen (2007) shows that for every locally square-integrable semimartin-
gale S there is an increasing sequence of stopping times fUngn2N converging to 1
P -almost surely such that

supfE
�
S2�
�
: � � Un stopping timeg <1

for any n 2 N.
The following two de�nitions taken from µCerný and Kallsen (2007) can be applied

equally in discrete or continuous time as long as the stock price process is a locally
square-integrable semimartingale.

De�nition 8.1. A trading strategy # is called simple if it is a linear combination of
strategies Y 1]]�1;�2]] where � 1 � � 2 are stopping times dominated by Un for some n 2 N
and Y is a bounded F�1-measurable random variable. The set of terminal wealths
attainable by simple self-�nancing strategies with initial endowment v 2 L2 (
;F0; P )
is denoted by

Ks
2(v) := fv + # � ST : # simple g:

If the initial endowment is not �xed beforehand, we consider instead the set

Ks
2(F0) := fv + # � ST : v 2 L2 (
;F0; P ) ; # simple g:

Since the hedging problems below concern the approximation of an arbitrary payo¤
H in L2(P ) it makes perfect sense from an economic standpoint to view elements of
the L2(P ) closures

K2(v) := Ks
2(v);

K2(F0) := Ks
2(F0);
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as being attainable by a self-�nancing strategy. It is less immediately obvious that
one can extend the de�nition of the closed subspace K2(v) � K2(F0) to some initial
endowments v =2 L2 (
;F0; P ) as follows,

K2(v) := fH 2 L2(P ) : there exist H(n) 2 Ks
2

�
v(n)
�
with H(n) L

2(P )�! H; v(n)
P�! vg:

Here P�! denotes convergence in probability. For the next de�nition we recall that if
S is a semimartingale then L(S) denotes the set of S-integrable predictable processes
in the sense of Jacod and Shiryaev (2003), III.6.17.

De�nition 8.2. We call (v; #) 2 L0(
;F0; P ) � L(S) an admissible endowment�
strategy pair if there exist some sequences (v(n))n2N in L2(
;F0; P ) and (#(n))n2N of
simple strategies such that

v(n) + #(n) � St ! v + # � St in probability for any t 2 [0; T ] and
v(n) + #(n) � ST ! v + # � ST in L

2(P ):

We set

�(v) := f# 2 L(S) : (v; #) admissibleg;
� := �(0);

U := fv 2 L0(
;F0; P ) : �(v) not emptyg;
U �� := f(v; #) 2 L0(
;F0; P )� L(S) : (v; #) admissibleg:

Clearly U � L2(
;F0; P ). One easily veri�es that U �� = U � � = R � � if
the initial �-�eld F0 is trivial. We recall the following result from µCerný and Kallsen
(2007).

Lemma 8.3. 1. For any v 2 U the set K2(v) is closed in L
2(P ) and one has

K2(v) = fv + # � ST : # 2 �(v)g.

For v 2 L2(P ) we have in addition K2(v) = fv + # � ST : # 2 �g.
2. K2 (F0) is closed in L2(P ) and

K2 (F0) = fv + # � ST : (v; #) admissibleg.

De�nition 8.2 provides a general notion of admissibility for locally square-integrable
semimartingale price processes. We will now demonstrate that the general de�nition
is consistent with the simpler discrete-time de�nition 2.2 introduced at the beginning
of the paper.

Proposition 8.4. In a discrete-time model we have

(1) � = f# predictable: # � ST 2 L2(P )g
(2) U �� = f(v; #) : v is F0-measurable, # is predictable, v + # � ST 2 L2(P )g
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Proof. 1. The inclusion � is obvious. To prove � consider two arrays of natural
numbers fK(t;m); n(t;m)gt2T ;m2N and for i; j 2 T ;m 2 N de�ne random variables

�
(m)
ij :=

8
><
>:

jY

t=i

1j#tj<K(t;m)1t<Un(t;m) for i � j

1 for i > j

;

where j#tj is the Euclidean norm of vector #t. We have

�
(m)
j;t #t�St 2 L2(P ) for j � t; (8.1)

because �(m)j;t #t�St is the gain from a simple strategy corresponding to � 1 =
tV
i=j

Un(i;m)^

(t� 1); � 2 =
tV
i=j

Un(i;m) ^ t and Y = #t

tY

i=j

1j#ij<K(i;m). De�ne

Yj := �
(m)
1;j�1

TX

t=j

#t�St for j = 1; 2; : : : ; T:

A short calculation shows

Yj+1 = �
(m)
j;j Yj � �

(m)
1;j #j�Sj (8.2)

which together with (8.1) yields

Yj 2 L2(P )) Yj+1 2 L2(P ) for j = 1; 2; : : : ; T � 1: (8.3)

By assumption Y1 = # � ST 2 L2(P ) and by virtue of (8.3) we have
Yj 2 L2(P ) for j = 1; 2; : : : ; T: (8.4)

De�ne #(m)t := �
(m)
1;t #t. By construction #(m) is simple. We will now choose

fK(t;m)gt2T ;m2N; fn(t;m)gt2T ;m2N such that the strategy #(m) is an approximat-
ing sequence to # as required by De�nition 8.2. Equation (8.2) can be rearranged to
yield

#j�Sj + Yj+1 � Yj + (1� �
(m)
j;j )Yj = (1� �

(m)
1;j )#j�Sj = #j�Sj � #

(m)
j �Sj

and after summation from 1 to T we have

# � ST � #(m) � ST =
TX

j=1

(1� �
(m)
j;j )Yj: (8.5)

Since Y1 2 L2(P ) we can now choose K(1;m) > m and n(1;m) > m such that
E((1��(m)1;1 )

2Y 2
1 ) < m�1T�1. The values of K(1;m) and n(1;m) determine Y2 and we

then �nd K(2;m) > m and n(2;m) > m such that E((1� �
(m)
2;2 )

2Y 2
2 ) < m�1T�1; etc.

Such K(i;m); n(i;m) exist by virtue of (8.4) and dominated convergence. Equation
(8.5) implies

E((# � ST � #(m) � ST )
2) < m�1;
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and hence #(m) � ST ! # � ST in L2(P ): Since limm!1K(t;m) = limm!1 n(t;m) =

1 for all t and Un !1 we have #(m) � St ! # � St a.s. and therefore in probability
for all t 2 T .
2. The proof is analogous, but we start with j = 0 and de�ne �(m)0;0 := 1jvj<K(0;m): �

Remark 8.5. 1. Schweizer (1995) de�nes the following class of admissible strategies

� := f# predictable : # � St 2 L2(P ) for all t 2 T g:
He notes that the mean�variance hedging problem (1.1) may not have a solution in �,
and provides an example to that e¤ect. His example is not arbitrage-free and therefore
it does not �t the framework of the present paper.
In Example 8.6 we use the main idea of Schweizer�s example to construct an

arbitrage-free model with T = 3, F0 trivial, S 2 L2(P ) and �# predictable such that
H := �# � S3 2 L2(P ) but �# � S2 =2 L2(P ). By construction we have H 6= # � S3
for # 6= �#; but at the same time it follows from the proof of Proposition 8.4 that
one can approximate �# � S3 with arbitrary precision in L

2(P ) by using simple strate-
gies. Hence the expected squared hedging error can be made arbitrarily close to zero
but never exactly zero within Schweizer�s class of hedging strategies. This also shows
that H does not have the standard F�S decomposition but it admits the extended F�S
decomposition in the sense of De�nition 4.2.
2. Melnikov and Nechaev (1999) show that in discrete time mean�variance hedging

can always be solved in the class of predictable strategies from De�nition 2.2, under the
somewhat stronger assumption S 2 L2(P ) but notably without requiring the absence
of arbitrage.
3. We know from µCerný and Kallsen (2007) that regardless of the setting (dis-

crete time, continuous processes, general semimartingales) the mean�variance hedging
problem has a solution in the class � from De�nition 8.2 if there is an equivalent mar-
tingale measure with square-integrable density. In discrete time the existence of such
a martingale measure follows from the absence of arbitrage via the Dalang�Morton�
Willinger theorem. Proposition 8.4 shows that in discrete time � coincides with the
strategies of Melnikov and Nechaev (1999) if S 2 L2(P ) and that the Melnikov�
Nechaev de�nition of admissibility can also be used when we only require local square-
integrability of S.

Example 8.6. Here we modify Example 4 of Schweizer (1995) to come up with
an arbitrage-free model with T = 3; S 2 L2(P ) and a strategy �# 2 � such that
�# � S3 2 L2(P ) but �# � S2 =2 L2(P ):
Let 
 = (0; 1)� f�1; 1g � f�1; 1g � R and let F be the Borel �-algebra on 
. By

! = (u; y1; y2; z), u 2 (0; 1), y1; y2 2 f�1; 1g, z 2 R we denote the elements of 
.
Let U(!) = u; Yi(!) = yi; Z(!) = z; F0 trivial, F1 = �(U; Y1); F2 = �(U; Y1; Y2);
F3 = F ; and P be a measure on 
 such that U; Y1; Y2 are independent and uniformly
distributed on their respective domains, while the conditional distribution of Z given
U; Y1; Y2 is normal with mean 0 and variance U

2. Set S0 := 0; �S1 := Y1, �S2 := Y2,
�S3 := Z � Y2. Clearly S is adapted and S 2 L2(P ). It is also arbitrage-free because
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�St take on both positive and negative values with non-zero probability, t = 1; 2; 3.
The strategy �#1 := 0; �#2 = �#3 := U�1 is predictable and we have H := �# � S3 =
U�1Z 2 L2(P ); therefore �# 2 �. At the same time �# � S2 = U�1Y2 =2 L2(P ) which
means �# =2 �. Finally, by construction of the stock price process for any #; � 2 �
such that # � S3 = � � S3 we have # = � a.s. which implies that H cannot be hedged
perfectly by trading strategies in �.

8.2. Optimal hedging. In this section we will treat the general case where S is
a multidimensional process (cf. Bertsimas et al. 2001 and µCerný 2004a). We do
not assume that the conditional returns of individual assets are linearly independent.
For any matrix A we denote by A�1 its Moore�Penrose inverse which is a particular
matrix satisfying AA�1A = A; cf. Albert (1972). Geometrically, A�1b is the shortest
solution (in Euclidean norm) of the least squares problem minx (Ax� b)> (Ax� b) :

Theorem 8.7. Under the assumptions of section 2 the process L given by

LT = 1;

Lt�1 = Et�1(Lt(1� Et�1(Lt�St)
>Et�1((Lt�St�S

>
t )

�1�St)));

is (0; 1]-valued and the opportunity-neutral measure P ?;

dP ?

dP
:=

TY

t=1

Lt
Et�1 (Lt)

;

is well de�ned. The processes ~�
?
; V ? and �? given by

~�
?

t = Et�1 (Lt�St)
>Et�1(Lt�St�S

>
t )

�1

= EP
?

t�1 (�St)
>EP

?

t�1(�St�S
>
t )

�1; (8.6)

V ?
t�1 = EP

?

t�1

 
1� ~�?t�St
1�� ~K?

t

V ?
t

!
; V ?

T = H; (8.7)

� ~K?
t = EP

?

t�1 (�St)
>EP

?

t�1(�St�S
>
t )

�1EP
?

t�1 (�St) ; (8.8)

�? = EP
?

t�1

��
V ?
t � V ?

t�1

�
�St

�>
EP

?

t�1(�St�S
>
t )

�1: (8.9)

are well-de�ned. For a �xed admissible initial endowment v 2 U the strategy '(v)
given by

't(v) = �?t +
~�
?

t (V
?
t�1 �G

v;'(v)
t�1 ); (8.10)

is admissible and minimizes the expected squared hedging error among all admissible
strategies with initial endowment v, while (V ?

0 ; '(V
?
0 )) is the optimal endowment�

strategy pair if the hedging error is minimized over the initial endowment as well.

Proof. 1) By construction LT is (0; 1]-valued. Suppose Lt is (0; 1]-valued. Since
Et�1((�St)

2) <1 the least squares problem

Lt�1 := minfEt�1((
p
Lt � �t

p
Lt�St)

2) : �t is Ft�1-measurableg (8.11)
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has a (not necessarily unique) solution where the optimal value of �t can be chosen
as ~�

?

t = Et�1 (Lt�St)
>Et�1(Lt�St�S

>
t )

�1. To see this de�ne A = Et�1(Lt�St�S
>
t );

� = Et�1 (Lt�St) and denote byA1=2 the unique symmetric matrix such that
�
A1=2

�2
=

A: We have �tA�
>
t = 0 , Et�1(Lt (�t�St)

2) = 0 , �t�St = 0 ) �t� = 0: This
implies � 2 Span (A) and consequently AA�1� = �: Therefore we can write

Et�1((
p
Lt � �t

p
Lt�St)

2) = Et�1(Lt)� 2�t�+ �tA�
>
t

= Et�1(Lt)� 2�tAA�1�+ �tA�
>
t

=
A1=2�>t � A1=2A�1�

2 + Et�1(Lt)� �>A�1�;

which proves the optimality of ~�
?

t above.
2) Trivially, 0 � Lt�1 � Et�1 (Lt) � 1. By contradiction assume that P (Lt�1 =

0) > 0. We have
1Lt�1=0Et�1((

p
Lt � ~�

?

t

p
Lt�St)

2) = 0;

which in view of Lt > 0 is only possible if

1Lt�1=0

�
1� ~�?t�St

�
= 0:

The latter contradicts the assumption of no arbitrage since h := 1Lt�1=0
~�
?

t is Ft�1-
measurable, h�St � 0 but h�St 6= 0. Hence Lt�1 is (0; 1]-valued and by induction
this holds for all t 2 T :
3) By construction of P ? we have

Et�1 (Lt�St) = Et�1 (Lt)E
P ?

t�1 (�St) ;

Et�1(Lt�St�S
>
t ) = Et�1 (Lt)E

P ?

t�1(�St�S
>
t );

which shows the second equality in (8.6).
4) We have E(LT (V ?

T )
2) < 1: Assume that E(Lt(V ?

t )
2) < 1. The least squares

problem

~ 
?

t�1 := minfEt�1((�t
p
Lt + �t

p
Lt�St �

p
LtV

?
t )
2) : �t; �t are Ft�1-measurableg

(8.12)
is well-de�ned and the optimal values can be chosen �t = V ?

t�1 and �t = �?t . This is
shown by the same method as in 1). The total sum of squares equals the explained
sum of squares plus the residual sum of squares

Et�1(Lt(V
?
t )
2) = Et�1((V

?
t�1

p
Lt + �?t

p
Lt�St)

2) + ~ 
?

t�1: (8.13)

We have seen in part 1) that
p
Lt can be decomposed into P -orthogonal components

p
Lt = ~�

?

t

p
Lt�St +

p
Lt

�
1� ~�?t�St

�

which in combination with (8.11, 8.13) yields

Et�1(Lt(V
?
t )
2) = Lt�1

�
V ?
t�1

�2
+
�
�?t +

~�
?
Vt�1

�
Et�1(Lt�St�S

>
t )
�
�?t +

~�
?
Vt�1

�>
+~ 

?

t�1:

(8.14)
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The last two terms in (8.14) are non-negative which together with hypothesis implies

E(Lt�1
�
V ?
t�1

�2
) � E(Lt (V

?
t )
2) <1:

By induction �?t and V
?
t�1 are well-de�ned for all t 2 T .

5i) We now show that the strategy (v; '(v)) de�ned in (8.10) is admissible for any
F0-measurable v such that E (L0v2) <1 and for any H 2 L2(P ). A straightforward
calculation shows

(G
v;'(v)
t � V ?

t )
p
Lt = (G

v;'(v)
t�1 � V ?

t�1)
p
Lt

�
1� ~�?t�St

�
(8.15)

+
p
Lt
�
V ?
t�1 + �?t�St � V ?

t

�
:

On taking conditional expectations we �nd

Et�1(Lt(G
v;'(v)
t � V ?

t )
2) = Lt�1(G

v;'(v)
t�1 � V ?

t�1)
2 + ~ 

?

t�1;

E((G
v;'(v)
T �H)2) = E(LT (G

v;'(v)
T � V ?

T )
2)

= E(L0 (v � V ?
0 )
2) +

T�1X

t=0

E(~ 
?

t�1): (8.16)

It follows from (8.14) that E(
PT

t=1
~ 
?

t ) � E(LT (V
?
T )
2) = E (H2) and by virtue of

(8.16) (v; '(v)) is admissible if and only if E (L0v2) <1.
ii) Consider an admissible strategy # 2 �: In view of the least squares regressions

(8.11, 8.12) we have

0 = E
�
Lt
�
V ?
t�1 + �?t�St � V ?

t

�
�St

�
= E

�
Lt
�
V ?
t�1 + �?t�St � V ?

t

��

= E
�
Lt

�
1� ~�?t�St

�
�St

�
;

which together with (8.15) yields

Et�1(Lt(G
v;'(v)
t � V ?

t )G
0;#
t ) = Lt�1(G

v;'(v)
t�1 � V ?

t�1)G
0;#
t�1:

Since both Gv;'(v)T �V ?
T and G

0;#
T are in L2(P ) by Hölder�s inequality (Gv;'(v)T �V ?

T )G
0;#
T

is integrable and consequently

E((G
v;'(v)
T � V ?

T )G
0;#
T ) = L0(G

v;'(v)
0 � V ?

0 )G
0;#
0 = 0: (8.17)

iii) Consider an arbitrary admissible pair (v; #). Using the arguments of 5i) with
H = v + # � ST we conclude E (L0v2) < 1, which means that (v; '(v)) is also
admissible and #� '(v) 2 �.
Now consider a general H 2 L2 (P ) and the corresponding processes V ?; '(v). We

can write

E((Gv;#T � V ?
T )
2) = E((G

v;'(v)
T � V ?

T +G
0;#�'(v)
T )2)

= E((G
v;'(v)
T � V ?

T )
2) + E((G

0;#�'(v)
T )2);

where the second equality follows from ii). Thus (v; '(v)) has the smallest expected
squared hedging error among all admissible strategies with �xed initial endowment v.
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The optimality of (V ?
0 ; '(V

?
0 )) among all admissible endowment�strategy pairs then

follows easily from (8.16). �

Corollary 8.8. 1. The set of admissible initial endowments is given explicitly by
U = fv 2 L(F0) : E (L0v2) <1g.
2. U = L2(F0) if and only if ess inf L0 > 0 which holds if and only if the maximal

Sharpe ratio de�ned in section 6 is bounded from above, ess sup (�) <1.
Proof. 1. � This is shown in 5iii) above.
� Take v such that E (L0v2) <1 and �x a contingent claim H = 0 2 L2(P ). By

5i) (v; '(v)) is an admissible endowment�strategy pair.
2. Suppose ess inf L0 = " > 0: Then "E(v2) � E(L0v

2) � E(v2) which implies
U = L2(F0): Conversely, if ess inf L0 = 0 de�ne pn := P (L0 2 [ 1

n+1
; 1
n
)): By passing

to a subsequence kn � n we can restrict our attention to the values pkn > 0: Set

v(!) = n�1
p
kn=pkn for L0(!) 2 [1=(kn + 1); 1=kn) ; n 2 N;

v(!) = 0 elsewhere.

Then E(v2) =
P

n2N n
�2kn �

P
n2N n

�1 = 1 while E(L0v2) �
P

n2N n
�2 < 1;

implying v 2 U but v =2 L2(F0): �

8.3. The importance of P ?. We have argued in sections 5 and 6 that the opportu-
nity-neutral measure P ? is an economically meaningful object playing an important
role in optimal dynamic asset allocation. The following example shows that P ? is
also technically indispensable, in the sense that the mean value process V ? always
possesses �rst and second conditional moments under P ? (it is always P ?-locally
square integrable, cf. µCerný and Kallsen 2007, Lemma 4.4) whereas it may fail to
have both the �rst and second conditional moments under P: The same example
shows that local risk minimization is in general ill-de�ned (V1 is not square-integrable
under P and V0; �0 fail to exist).

Example 8.9. Let 
 = (0; 1) � f�1; 1g � f�1; 1g and let F be the Borel �-algebra
on 
. By ! = (u; y1; y2), u 2 (0; 1), y1; y2 2 f�1; 1g, we denote the elements of 
.
Let U(!) = u; Yi(!) = yi;F0 trivial, F1 = �(U; Y1);F2 = F ; and P be a measure on

 such that U is a uniformly distributed random variable on [0; 1]; Y1 is independent
of U and uniform on f�1; 1g and let the conditional distribution of Y2 given U; Y1 be
P (Y2 = 1jU; Y1) = U; P (Y2 = �1jU; Y1) = 1�U for some  > 0. Set S0 = 0;�S1 =
Y1, and �S2 = Y2. Consider measure Q under which U; Y1; Y2 are independent and
uniformly distributed on their respective domains: Q is a martingale measure and
Q � P; consequently the market is arbitrage-free.
S is bounded and trivially, S 2 L2(P ). De�ne the contingent claim H = U��Y +

2

for some � 2 R. We have
E
�
H2jF1

�
= U�2�;

E
�
H2
�
= E(U�2�) =

Z 1

0

u�2�du;
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which means E (H2) <1,  � 2� > �1. To obtain V1 we have
E (�S2jF1) = 2U � 1; E((�S2)

2jF1) = 1
L1 = 1� (2U � 1)2 = 4U (1� U) (8.18)

V1 = V ?
1 = E

��
1� E (�S2jF1)�S2

E((�S2)2jF1)

�
H

L1

����F1
�
=
1

2
U��: (8.19)

The result in (8.19) becomes obvious when one realizes that in the last period the
market is complete with conditional risk-neutral probabilities of �S2 = �1 equal to
1=2. Now

E(V1) =

Z 1

0

1

2
u��du <1, � < 1:

To construct the desired counterexample we therefore need � � 1,  � 2� > �1 and
 > 0: These conditions are met for example with � = 1;  > 1:
Finally, we evaluate the conditional density of U under P ? and compute L0,

P ?(U 2 B) =
P (L11B(U))

E(L1)
=:

Z

B

p?1(u)du;

p?1(u) =
u (1� u)

R 1
0
u (1� u) du

=
( + 1)(2 + 1)


u (1� u) :

Note that V1 is square integrable under P
? whenever E(H2) <1 in accordance with

the general theory put forward in µCerný and Kallsen (2007).
To obtain L0 we evaluate E

P ?(�S1) = 0 whereby (5.11) and (8.18) give

L0 = E(L1) =
4

( + 1)(2 + 1)
;

which yields the maximal unconditional Sharpe ratio,

� =
p
1=L0 � 1 =

s
22 �  + 1

4
=

s
2 ( � 1=4)2 + 7=8

4
:
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