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ABSTRACT

Human microRNA-125a-5p (miR-125a) is expressed in most tissues where it 
downregulates the expression of membrane receptors or intracellular transductors 
of mitogenic signals, thus limiting cell proliferation. Expression of this miRNA 
generally increases with cell differentiation whereas it is downregulated in several 
types of tumors, such as breast, lung, ovarian, gastric, colon, and cervical cancers, 
neuroblastoma, medulloblastoma, glioblastoma, and retinoblastoma. In this study, 
we focused on hepatocellular carcinoma and used real-time quantitative PCR to 
measure miR-125a expression in 55 tumor biopsies and in matched adjacent non-
tumor liver tissues. This analysis showed a downregulation of miR-125a in 80 % of 
patients, with a mean decrease of 4.7-fold. Comparison of miRNA downregulation with 
clinicopathological parameters of patients didn’t yield significant correlations except 
for serum bilirubin. We then evaluated the expression of known targets of miR-125a 
and found that sirtuin-7, matrix metalloproteinase-11, and c-Raf were up-regulated 
in tumor tissue by 2.2-, 3-, and 1.7-fold, respectively. Overall, these data support 
a tumor suppressor role for miR-125a and encourage further studies aimed at the 
comprehension of the molecular mechanisms governing its expression, eventually 
leading to treatments to restore its expression in tumor cells.

INTRODUCTION

Primary liver cancer is the fifth most common 
cancer in men and the ninth in women, with 554,000 and 
228,000 new cases per year, respectively. In addition, it 
is the second most common cause of death for cancer 
worldwide, estimated to be responsible for nearly 
750,000 deaths per year, i.e., 9% of all cancer deaths [1]. 
Hepatocellular carcinoma (HCC) is the predominant type 
of primary liver cancer and arises mostly in cirrhotic livers 
[2]. Since a few therapeutic options exist, particularly 
in the more advanced stages that require a systemic 
treatment, there is an urgent need for new biomolecular 

markers for an early diagnosis and of new therapeutic 
targets to improve the survival rate of patients with HCC.

MicroRNAs (miRNAs) are small non-coding 
RNAs that negatively regulate gene expression at post-
transcriptional level by affecting both translation and 
stability of complementary mRNAs [3]. MiRNAs are 
involved in a large variety of physiological processes 
playing crucial roles in cell differentiation and 
development [4, 5]. Several studies have also shown that 
aberrant expression of miRNAs is linked to pathological 
conditions, including cancer [6]. Downregulation of the 
microRNA biosynthesis enzyme Dicer in cancer cells 
or mutations affecting its structure lead to dysregulated 
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miRNA biogenesis and increased tumor progression [7–
10]. On the other hand, differentiating cells often exhibit 
increased Dicer expression [11–13]. In this field, a growing 
body of evidence indicates that miRNAs can function as 
either tumor suppressors by down-regulating oncogenic 
proteins, or tumor promoters by limiting the expression 
of oncosuppressor genes [14–16]. In HCC, miR-122 and 
miR-199 are frequently downregulated, suggesting a tumor 
suppressor role whereas miR-21 and miR-221 are often 
hyperexpressed [17–19]. Sorafenib is the only therapeutic 
agent for treatment of advanced HCC [20, 21] and a recent 
study has shown that miR-125a is a downstream effector of 
the drug in its antiproliferative activity toward carcinoma 
cells [22]; other microRNAs may also be involved in the 
mechanism of action of the drug [23].

MiR-125a regulates the expression of several genes 
controlling cell proliferation, migration, and apoptosis [24]. 
In the human breast cancer cell line SKBR3, tyrosin kinase 
receptors ERBB2 and ERBB3 are downregulated by miR-
125a leading to diminished cell proliferation and migration 
[25]. This finding is corroborated by in vivo studies showing 
that miR-125a and -125b are downregulated in ERBB2-
amplified and ERBB2-overexpressing breast cancers [26]. 
In several breast cancer cell lines, miR-125a also targets 
HuR, an RNA-binding protein that stabilizes transcripts 
of genes regulating cell proliferation, angiogenesis, 
rapid inflammatory response and stress response [27]. 
Overall, these data indicate that miR-125a may counteract 
proliferation and invasion of breast cancer cells through 
the downregulation of ERBB2, ERBB3, and/or HuR. 
These conclusions are also supported by the discovery of a 
germline mutation in the sequence of mature miR-125a that 
is highly associated with development of breast cancer [28].

A tumor suppressive role for miR-125a is 
also supported by a study performed in the human 
neuroblastoma SK-N-BE cell line [29]. MiR-125a 
was found to downregulate the truncated isoform 
of the neurotrophin receptor tropomyosin-related 
kinase C (t-trkC), with subsequent inhibition of cell 
proliferation. This finding is consistent with the observed 
underexpression of miR-125a in human primary 
neuroblastomas. MiR-125a is also down-regulated in other 
tumors, such as medulloblastoma [30], glioblastoma [31], 
and lung cancer [32] where it suppresses cell proliferation 
by targeting Zbtb7a proto-oncogene [33].

In HCC Hep3B and SNU-449 cells, miR-125a 
inhibits cell proliferation through the down-regulation of 
sirtuin-7 (SIRT7), a NAD(+)-dependent deacetylase, and 
subsequent p21-dependent cell cycle arrest in G1 [34]. 
This activity has recently been confirmed in HepG2 and 
HuH-7 cells [22]. In HCC, miR-125a is also known to 
target vascular endothelial growth factor A (VEGF-A), and 
matrix metalloproteinase-11 (MMP11) [35].

In this study, we contributed to the characterization of 
the tumor suppressive activity of miR-125a by measuring 
its expression in HCC biopsies and in matched adjacent 

non-tumor liver tissues and by correlating the obtained 
data with clinical presentation. The expression levels of 
validated targets of miR-125a were also determined.

RESULTS

Characteristics of patients

At the end of the enrollment period, 55 consecutive 
patients were included in the study. Their demographic, 
biochemical, virological, and clinical characteristics are 
summarized in Table 1 . The mean age was 70.3 years, 
32 (58.1%) patients were males, and 41 (74.5%) were 
anti-HCV positive with 33 (80.5%) of them showing 
detectable plasma HCV-RNA. HBV was identified as the 
etiologic agent of the disease in 10 (17.5%) patients and 
the remaining 4 (7.3%) had a NASH-related cirrhosis. 
Two patients had a history of alcohol abuse, both anti-
HCV/HCV RNA positive; no other patients had a multiple 
etiology. Most of patients showed a compensated liver 
disease, with a Child-Pugh class-A in 89.1% of cases and 
classes-B/C in 10.9%. 27 (49.1%) patients showed an 
unifocal and 28 (50.9%) a multifocal HCC. According 
to the Barcelona Clinic Liver Cancer (BCLC) class, 47 
(85.4%) had class A, 5 (9.1%) class B and 3 (5.5%) class 
C. Three patients showed also portal thrombosis.

Down-regulation of miR-125a in hepatocellular 
carcinoma

Real-time qPCR was used to measure the amount 
of miR-125a in HCC biopsies from 55 patients with viral 
hepatitis or NASH. Comparison with the adjacent non-
tumor liver tissue (NC) revealed a down-regulation of the 
miRNA in 44 out of 55 patients (80%) (Figure 1), with 
a mean decrease of 4.7-fold. When the absolute amounts 
of the miRNA were considered, the mean content in 
HCC was 48% of that in NC and difference was highly 
significant (Figure 2). When patients were grouped based 
on HCC etiology, downregulation of the miRNA was 
detected in 8 out of 10 HBV patients (80%), 32 out of 41 
HCV patients (78%), and 4 out of 4 patients with NASH. 
Down-regulation was statistically significant in each 
group and prominent in HCV patients whose expression 
of miR-125a was reduced to 45 % (Figure 3). This result 
was confirmed even when HCV-RNA positive (3.83±3.14 
vs. 7.39±4.64 AU, p=0.0005) and HCV-RNA negative 
patients (4.78±3.81 vs. 10.3±5.01 AU, p=0.027) were 
separately analyzed.

Correlation between down-regulation of miR-
125a in HCC and clinical characteristics

One of the aims of the study was to correlate the 
expression profile of miR-125a-5p in neoplastic and 
non neoplastic tissue and the clinical characteristics 
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of the subjects enrolled. When patients were stratified 
according to age, gender, transaminase levels, Child-
Pugh score, BCLC score or other clinical characteristics 
of HCC (Table 2), no difference was observed between 
the mean fold-regulation of the miRNA in HCC vs. 

NC tissue. However, patients with total bilirubin 
serum concentrations higher than 1,1 mg/dL showed 
a markedly lower fold-regulation (-6.72±6.5 vs 
-1.84±2.63, p=0.02)] of the miRNA and no patient had 
a Gilbert’s syndrome.

Table 1: Demographic, biochemical, virological, and clinical characteristics of the enrolled patients

N° patients 55

Mean age (±SD) 70.3 (6.0)

Males, n° (%) 32 (58.1)

Alcohol abusers (> 30g/die), n° (%) 2 (3.6)

BMI (mean ± SD) 26.8 (3.1)

Subjects with diabetes, n° (%) 7 (12.7)

AST/ULN(mean ± SD) 1.54 (0.9)

ALT/ULN (mean ± SD) 1.49 (0.9)

ALP/ULN (mean ± SD) 1.12 (0.6)

Total bilirubin, mg/dl (mean ± SD) 0.98 (0.5)

PT% (mean ± SD) 89.2 (12.8)

α-fetoprotein, (mean ± SD) 233.8 (713.4)

Anti-HCV-positive patients, n° (%) 41 (74.5)

  -  HCV-RNA-positive subjects, n° (%) 33 (80.5)

  -  HCV load, IU/mL (mean ± SD) 1.2 E+6 (1.68 E+6)

  -  with HCV-genotype 1, n° (%) 28 (68.3)

  -  with HCV-genotype non-1, n° (%) 6 (14.6)

HBsAg-positive patients, n° (%) 10 (17.5)

  -  HBV-DNA-positive subjects, n° (%) 3 (30.0)

  -  HBV load, IU/mL (mean ± SD) 1.13 E+4 (1.91 E+4)

Patients with NASH, n° (%) 4 (7.3)

Child Pugh score, n° (%) of patients with 55

  -  A 49 (89.1)

  -  B 6 (10.9)

  -  C 0 (0.0)

Patients with first diagnosis of HCC, n° (%) 36 (65.5)

Patients with HCC relapse, n° (%) 19 (34.5)

Patients with a single HCC, n° (%) 27 (49.1)

Patients with multiple HCC, n° (%) 28 (50.9)

Patients with portal thrombosis, n° (%) 3 (5.4)

BCLC score, n° (%) of patients with 55

  -  A 47 (85.4)

  -  B 5 (9.1)

  -  C 3 (5.5)
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Evaluation of miR-125a target genes

In a recent study, we have evaluated the ability 
of miR-125a to interfere with the expression of known 
target genes in hepatocellular carcinoma HepG2 cells. 
The microRNA was transfected into the cells and the 
expression levels of ERBB2, ERBB3, MMP11, Zbtb7a, 
SIRT7, and VEGF-A were measured 48 h later. This 
analysis showed significant downregulation of MMP11, 
Zbtb7a and SIRT7 whereas the other targets were 
unaffected [22]. In the same study, we found that c-Raf is 
a direct target of miR-125a. Based on these data collected 
in vitro, we measured the expression level of MMP11, 

Zbtb7a, SIRT7 and c-Raf in tumor biopsies, focusing on 
those patients showing a downregulation of miR-125a of 
at least 2-fold. Comparison with the adjacent NC tissue 
revealed that MMP11, SIRT7 and c-Raf were upregulated 
in 71-83% of the patients with mean fold regulation values 
of 3, 2.2 and 1.7, respectively (Table 3). On the other hand, 
Zbtb7a didn’t show a significant upregulation.

DISCUSSION

MicroRNA-125a-5p, denominated lin-4 in 
nematodes, appeared early in evolution, no later than 
550 millions of years ago. Today, it is present in all 

Figure 1: Expression of miR-125a in hepatocellular carcinoma biopsies from 55 patients. MiR-125a was quantitated by RT-
qPCR in biopsies of hepatocellular carcinoma (HCC) from patients with viral hepatitis (HBV and HCV) or non-alcoholic steatotic hepatitis 
(NASH). For each patient, the expression level is reported as fold regulation for comparison with matched adjacent non-tumor liver tissue 
(NC). The out of range value for patient 30 is -94.

Figure 2: Comparison of the expression levels of miR-125a in hepatocellular carcinoma and non-tumor liver tissue. 
Each box plot depicts data from 55 patients. The vertical lines indicate the value ranges, the horizontal boundaries of the boxes represent 
the first and third quartile. The p value for the comparison of the two data sets is <0.0000001 at Student’s t-test.
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animals with bilateral symmetry and its nucleotide 
sequence is very well conserved, with an 11 nucleotide 
stretch encompassing the seed region that is identical 
in all species analyzed [24]. This microRNA plays a 
fundamental role in downregulating Lin-28 protein, thus 
promoting phase transitions in development and/or cell 
differentiation in nematodes, insects and mammals [36–
39]. In mammalians, miR-125a appears to be expressed 
in most tissues, mainly targeting membrane receptors 
or intracellular signal transductors of mitogenic signals, 
thus limiting cell proliferation. Expression of this miRNA 
generally increases with cell differentiation whereas it 
is downregulated in several types of tumors, such as 
breast [25–27], lung [32, 33], ovarian [40], gastric [41], 
colon [42], and cervical [43] cancers, neuroblastoma 
[29], medulloblastoma [30], glioblastoma [31], and 
retinoblastoma [44]. Limited studies on the expression 
of miR-125a in HCC have also been performed. In 2013, 
Kim JK et al. used microarrays to analyze 16 samples of 
HCC of unknown etiology and compared the expression 
of the miRNA with 8 samples on non-matched liver 
tissue, showing a significant downregulation of miR-125a 
[34]. Similar results were obtained by Bi Q et al. that 
analyzed 80 samples of HCC, mostly from patients with 
chronic hepatitis B [35]. Then, our work is the first study 
conducted on a large cohort of well-characterized patients 
with chronic hepatitis C. It demonstrates a marked down-
regulation of miR-125a in tumor tissue and a subsequent 
up-regulation of its oncogenic targets MMP11, SIRT7 and 
c-Raf. These data suggest an oncosuppressor effect of the 
microRNA on HCC of different etiologies, likely through 
the regulation of MMP11, c-Raf and SIRT7 expression. 
No correlation between the down-regulation of miR-
125a and severity of HCC was observed, suggesting that 

the miRNA is mainly involved in the initiation of the 
oncogenic process. However, the majority of patients had 
an early stage of HCC, whereas this correlation should 
be evaluated in a larger sample of patients with HCC at 
different stages. The correlation between higher serum 
level of total bilirubin and higher down-regulation of miR-
125a is intriguing. Recently, Han and colleagues evaluated 
the factors associated with the recurrence of HCC in 
250 recipients of liver transplantation; they showed a 
correlation between lower serum values of total bilirubin 
in the donors and higher rate of HCC recurrence in the 
recipients, suggesting a protective role of bilirubin due to 
an anti-oxidant effect [45]. Thus, we may hypothesize that 
a higher down-regulation of miR-125a and a subsequent 
up-regulation of its targets may cause an activation of anti-
oxidant factors, including serum bilirubin. However, this 
hypothesis should be confirmed in specific studies.

Besides their central role in control of cell 
proliferation and differentiation, microRNAs act as 
regulators of virus-host interactions [46, 47]. With regard 
to hepatotropic viruses, miR-125a has been shown to 
interfere with the expression of hepatitis B virus surface 
antigen [48–50] thus limiting viral replication [51]. It is 
not uncommon that a microRNA affects multiple cellular 
activities since a single miRNA can bind several mRNAs 
provided with the same target sequence. In the case of 
miR-125a, the antiproliferative activity toward hepatic 
cells and the antireplicative activity toward HBV are 
clearly due to inhibition of two different pathways but 
they may be functionally related. Since HBV has appeared 
late in evolution, infecting only mammals and birds, 
primary role of miR-125a is most likely fine tuning of cell 
proliferation. HBV may have then coopted this cellular 
miRNA to modulate its own replication, keeping it low 

Figure 3: MicroRNA-125a expression in HCC from patients with viral or non-alcoholic steatotic hepatitis. Data are the 
mean ± SEM. * p < 0.05 and ** p < 0.00001 at Student’s t-test for comparison with NC tissue.
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Table 2: Correlation between miRNA expression and demographic, biochemical, virological, and clinical characteristics 
of the patients

HCC vs. NC fold-
regulation < -2.13

HCC vs. NC fold-
regulation > -2.13

p

N° patients 28 27

Mean age (±SD) 70.2 (5.6) 70.3 (6.6) 0.96

Males, n° (%) 14 (50.0) 18 (66.7) 0.21

Alcohol abusers (> 30g/
die), n° (%)

0 (0.0) 2 (7.4) 0.14

BMI (mean ± SD) 26.2 (2.8) 27.6 (3.4) 0.15

Subjects with diabetes, 
n° (%)

4 (14.3) 3 (11.1) 0.99

AST/ULN(mean ± SD) 1.47 (0.9) 1.61 (0.9) 0.60

ALT/ULN (mean ± SD) 1.45 (0.9) 1.54 (0.9) 0.72

ALP/ULN (mean ± SD) 1.1 (0.3) 1.2 (0.8) 0.47

Total bilirubin, mg/dl 
(mean ± SD)

1.17 (0.6) 0.78 (0.3) 0.008

PT% (mean ± SD) 88.2 (12.6) 90.3 (13.1) 0.55

α-fetoprotein, (mean ± SD) 119.9 (413.8) 363.7 (941.4) 0.27

Anti-HCV-positive 
patients, n° (%)

22 (78.6) 19 (70.4) 0.48

  -  HCV-RNA-positive 
subjects, n° (%)

18 (81.8) 15 (78.9) 0.81

  -  HCV load, IU/mL 
(mean ± SD)

1.02 E+6 (1.53 E+6) 1.42 E+6 (1.87 E+6) 0.51

  -  with HCV-genotype 1, 
n° (%)

17 (77.3) 11 (57.9) 0.18

HBsAg-positive patients, 
n° (%)

3 (10.7) 7 (24.1) 0.14

  -  HBV-DNA-positive 
subjects, n° (%)

1 (30.0) 2 (28.6) 0.88

  -  HBV load, IU/mL 
(mean ± SD)

3.34 E+4 3.06 E+2 (5.1 E+1) NA

Patients with NASH, 
n° (%)

3 (10.7) 1 (3.7) 0.32

Child Pugh score, n° (%) of 
patients with

  -  A 24 (85.7) 25 (92.6)

  -  B 4 (14.3) 2 (7.4)

  -  C 0 (0.0) 0 (0) 0.41

Patients with first diagnosis 
of HCC, n° (%)

19 (67.9) 17 (63.0)

Patients with HCC relapse, 
n° (%)

9 (32.1) 10 (37.0) 0.70

(Continued )
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to escape the immune system and establish a persistent 
infection. It may also be speculated that HBV has become 
sensitive to miR-125a, among hundreds of other hepatic 
miRNAs, to coordinate its replication to the host cell 
proliferation.

Downregulation of microRNAs in cancer cells 
may be determined by genetic or epigenetic factors 
[52]. Chromosomal abnormalities, deletions, and 

mutation of promoter regions can reduce the expression 
level of miRNAs [53, 54]. It is also known that several 
miRNA genes are associated to CpG islands and are 
downregulated by DNA methylation [55]. With regard to 
miR-125a, a recent study has shown its downregulation in 
acute myeloid leukemic cells due to aberrant methylation 
of a CpG island located 3544 bp upstream of the mature 
miRNA sequence [56]. Further investigations aimed at the 

HCC vs. NC fold-
regulation < -2.13

HCC vs. NC fold-
regulation > -2.13

p

Patients with a single HCC, 
n° (%)

17 (60.7) 10 (37.0)

Patients with multiple 
HCC, n° (%)

11 (39.3) 17 (63.0) 0.08

Patients with portal 
thrombosis, n° (%)

1 (3.6) 2 (7.4) 0.53

BCLC score, n° (%) of 
patients with

  -  A 25 (89.3) 22 (81.5)

  -  B 2 (7.1) 3 (11.1)

  -  C 1 (3.6) 2 (7.4) 0.4

Table 3: Expression levels of validated targets of miR-125a in hepatocellular carcinoma

Fold regulation (HCC/NC)

Etiology Patient MMP11 SIRT7 c-Raf Zbtb7a

HBV

1 n.d. 0.40 0.50 0.60

26 0.92 0.65 1.02 0.67

30 5.07 1.85 0.95 1.41

HCV

5 1.49 1.38 1.18 1,83

32 1.61 2.51 1.53 0.05

35 0.46 1.51 2.46 1.77

36 4.61 4.20 2.47 2,29

39 n.d. 2.92 1.06 0.71

43 3.44 2.42 1.99 0.54

54 0.78 4.24 0.73 1.42

56 9.97 1.95 5.35 0.36

65 2.10 2.00 2.30 1.70

NASH

23 2.50 n.d. 0.99 1.17

49 3.37 n.d. 1.53 0.70

mean 3.03* 2.17* 1,72* 1.09

Expression levels were evaluated by RT-qPCR in a subset of patients with a downregulation of miR-125a of at least 2-fold. 
Data are reported as fold regulation for comparison of hepatocellular carcinoma (HCC) tissue with matched adjacent non-
tumor liver tissue (NC). N.d., not determined because of the limited amount of tissue. * p < 0.05 at Wilcoxon test.
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identification of the promoter of the transcription unit of 
miR-125a will allow the comprehension of the molecular 
mechanisms governing its expression, eventually leading 
to treatments to restore its expression in tumor cells. 
Otherwise, vectors for the ectopic expression of miRNA 
mimics [57] may be used to boost the cellular reservoir 
of miR-125a. Finally, recent progress in cell transfection 
techniques has led to development of efficient formulations 
for therapeutic delivery of synthetic microRNAs based on 
cationic polymers or exosomes [58, 59]. These techniques 
have made the use of small RNAs in human therapy a 
promising therapeutic approach and several clinical trials 
are in progress [60].

PATIENTS AND METHODS

Patients

This study was planned as prospective with a 
progressive enrolment by the senior investigators of two 
participating Liver Units in Naples, southern Italy. The 
two centers participating to the study have cooperated in 
several investigations using the same clinical approach 
[61]. All consecutive patients who underwent a diagnostic 
liver biopsy for HCC at one of two participating Liver 
Units from June 2013 to May 2014 were enrolled. HCC 
was diagnosed in accordance with the EASL/EORTC 
criteria [62]. Each patient underwent a complete physical 
examination, full liver function tests and serology for 
HBsAg, anti-delta, anti-HIV and anti-HCV. The anti-
HCV-positive subjects were considered as having HCV 
infection. A diagnosis of NASH (non-alcoholic steato-
hepatitis) was made according to the AASLD/ACG/AGA 
guidelines [63]. Alcohol intake and other potential causes 
of liver disease were assessed. A consumption of alcohol 
exceeding 30g per day for females and 40g per day for 
males over at least the last 6 months was considered as 
alcohol abuse. None of the patients was anti-HIV positive.

The stage of HCC was assessed using the criteria 
proposed by the BCLC (Barcelona Clinic Liver Cancer) 
group [64]. For each patient, a HCC specimen and a non-
neoplastic liver tissue sample (NC) were obtained by US-
guided percutaneous liver biopsy using a needle Biomol® 
18Gx150mm (HS Hospital, Rome, Italy). Fragments of 
nearly 3 mg were cut away from the two extremities of 
the liver biopsies not useful for diagnosis [65] and stored 
at -80°C in RNAlater solution (Qiagen GmbH, Hilden, 
Germany) for subsequent molecular analyses. In addition, 
plasma and whole blood samples were collected for 
each patient and stored at -80°C the same day the liver 
biopsies were performed. All procedures were followed in 
accordance with the international guidelines and with the 
Helsinki Declaration of 1975, revised in 1983. The Ethics 
Committee of the Azienda Ospedaliera Universitaria 
of the Second University of Naples approved the study 
(n°349/2013). All patients signed their informed consent 

for liver biopsy, the collection and storage of biological 
samples and for the anonymous use of their data for 
research purposes.

Sero-virological methods

HBV serum markers (HBsAg, anti-HBs, anti-HBc) 
were sought using commercial immunoenzymatic assays 
(Abbott Laboratories, North Chicago,IL, USA). The 
anti-HCV antibody was detected using a 3rd generation 
commercial immunoenzymatic assay (Ortho Diagnostic 
Systems, Neckargemund, Germany). Liver biochemistry 
and routine analyses were performed by standard methods 
in a Cobas Modular 6,000 automated analyzer using c501 
biochemistry modules (Roche Diagnostics Ltd, Rotkreuz, 
Switzerland). For HBsAg positive patients, serum HBV-
DNA levels were determined by real-time PCR with a 
detection limit of 20 copies/mL, as previously described 
[66]. For anti-HCV positive patients, viral RNA was 
extracted from 140 μl of plasma samples using a microspin 
column (QIAamp RNA viral kit, Qiagen GmbH). HCV 
RNA was quantified by real-time PCR in a Light cycler 
1.5 (Roche Diagnostics, Branchburg, NJ, USA), as 
reported [67]; the detection limit of this method is about 
40 IU/mL of plasma. HCV genotypes were determined by 
the HCV genotype Lipa assay (Bayer, France) following 
the manufacturer’s instructions.

Tissue RNA extraction and real-time qPCR 
analyses

HCC and NC liver tissues were homogenized by 
TissueLyser (QiagenGmbH, Hilden, Germany) at 30 Hz 
for 30 sec. Total RNA was then extracted by microspin 
columns (AllPrep DNA/RNA mini kit, Qiagen GmbH, 
Hilden, Germany) and quantitated spectrophotometrically 
with NanoDrop 2000c (ThermoScientific). MiR-125a 
was quantified along with RNU6B (reference gene) 
by RT-qPCR with TaqMan® miRNA assays from 
Applied Biosystems according to the manufacturer’s 
protocol. The expression levels of transcripts targeted 
by miR-125a were determined by RT-qPCR with 
iTaq™ Universal SYBR® Green Supermix (Bio-Rad). 
In particular, 200 ng of RNA were retrotranscribed by 
Transcriptor High Fidelity cDNASynthesis Sample kit 
(Roche) using random examer primers; 1 μl of cDNA 
product was then used to amplify the target sequences 
along with GAPDH as reference. Primers were: 
GAPDH, 5’-GAAGGTGAAGGTCGGAGTC-3’ and  
5’-GAAGATGGTGATGGGATTT-3’; SIRT7, 5’-GTCTG 
CATGAGCAGAAGCTG-3’ and 5’-GGAACGCAGGA 
GGTACAGAC-3’; c-Raf, 5’-GCAATGAAGAGGCTGGT 
AGC-3’ and 5’- GGAGCAGCTCAATGGAAGAC-3’;  
Zbtb7a, 5’-ACGAGTGCAACATCTGCAAG-3’ and 5’-GG 
TCGTAGTTGTGGGCAAAG-3’ [33]; MMP11, 5’-TCC 
TGACTTCTTTGGCTGTG-3’ and 5’-CCATGGGTCT 
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CTAGCCTGAT-3’ [35]. The expression levels of miR-
125a and its targeted transcripts were normalized to their 
respective reference genes by using the 2-ΔCt method.

Statistical analysis

Continuous variables were summarized as 
mean ± standard deviation, unless stated differently; 
categorical variables were expressed as absolute and 
relative frequencies. Differences in the mean values 
were evaluated by the Student’s t-test except for the 
expression levels of miR-125a targets that did not 
follow a normal distribution and were compared by the 
Wilcoxon test; the chi-squared test was used to compare 
categorical variables. A p value <0.05 was considered to 
be statistically significant.
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