
Master Thesis
Intelligent Systems

Path Planning for a Redundant
Robot Manipulator using Sparse

Demonstration Data

Author: Supervisors:
Daniel Seidel apl. Prof. Dr. Jochen J. Steil

Dipl.-Math. Christian Emmerich

Research Institute for
Cognition and Robotics

Faculty of Technology
Bielefeld University

January 16, 2014

Abstract

The ability to plan and execute of movements to accomplish tasks is a fundamental re-
quirement for all types of robot, whether in industrial or in research applications. This
Master Thesis addresses path planning for redundant robot platforms. The research
targets two major goals. The first is to bypass the need for an explicit representa-
tion of a robot’s environment, which is strained with sophisticated computations as
well as required expert knowledge. This bypass allows for a considerably more flex-
ible use of a robot, being able to adapt its path planning data to an arbitrary new
environment within minutes. The second goal is to provide a real-time capable path
planning method, that utilizes the advantages of redundant robot platforms and han-
dles the increased complexity of such systems. These goals are achieved by introducing
kinesthetic teaching into path planning, which has already proven to be a successful
improvement for single task methods dealing with redundancy resolution.

The thesis proposes an approach utilizing a topological neural network algorithm
to construct an internal representation of a robot’s workspace based on input data
obtained from physical guidance of the robot by a user. In order to create feasible
and safe movements, information from both configuration space of the robot and task
space are employed. The algorithm is extended by heuristics to improve its results
for the intended scenario. This modified network construction algorithm constructs
a navigation graph similar to classical approaches with explicit modeling. It can be
processed by means of conventional search algorithms from graph theory to generate
paths between two arbitrary points in the workspace.

iii

Contents

1 Introduction 1
1.1 Motivation . 2
1.2 Outline . 3

2 The Human-Robot Co-Worker Scenario 5
2.1 FlexIRob System . 5
2.2 Kinesthetic Teaching . 6
2.3 Learning of Inverse Kinematics . 7

3 Application and Research of Path Planning 9
3.1 General Path Planning Approaches . 9
3.2 Alternative Approaches . 11
3.3 Data-driven Approach . 12

4 Learning the Free Workspace in a Topological Map 15
4.1 Instantaneous Topological Map . 15
4.2 Joint Space Validation . 19
4.3 Network Optimization . 28
4.4 Software Implementation . 35
4.5 Discussion . 36

5 Autonomous Task Generation and Execution 37
5.1 Path Finding Using A* . 37
5.2 Path Smoothing . 39
5.3 Motion Generation . 41
5.4 Software Implementation . 42
5.5 Discussion . 42

6 User Experiments on Method Applicability 43
6.1 Setup and Data Acquisition . 43
6.2 Influence of the Maximum Quantization Error 44
6.3 Evaluation of the Bootstrapping Heuristics 50
6.4 Discussion . 52

v

Contents

7 Navigation in Advanced Spaces: Orientation Learning 55
7.1 Problem Statement . 55
7.2 Algorithm Modification . 55
7.3 Estimation of the Weighting Parameter 57
7.4 Discussion . 61

8 Haptic User Feedback 63
8.1 Impedance-based Feedback . 64
8.2 User Study . 66

9 Conclusion 69
9.1 Outlook . 70

A Evaluation Data 71
A.1 Joint Space Validation . 71
A.2 Path Lengths . 73
A.3 Path Curvatures . 74

List of Figures 75

List of Tables 77

Bibliography 79

vi

Chapter 1

Introduction

Path planning in robotics is the task to move a robot from an initial position to a given
goal position. In mobile robotics this task is about finding a route in the environment
along which the robot can travel. In the field of stationary robot manipulators one has
to find a series of joint angles, which command the robot between the two endeffector
positions [1]. This thesis deals with path planning for the latter robot type. By
creating a series of joint angles, also called joint angle trajectory, one has to ensure a
safe transition between individual positions. That is, the trajectory must not cause
collisions with the environment or collisions of the robot with itself and hardware
restrictions like joint limits have to be considered. Furthermore, in most cases one is
also interested in fulfilling some quality criteria or constraints by minimizing a cost
function. These are for example shortness of the path, distance to obstacles or low
forces during movement. Once the criteria are defined for a given start and goal
position, a path is calculated with respect to them.

Path planning and single task position control become especially challenging when
working with redundant robots. They provide great advantages in flexibility and ma-
neuverability, for example allowing robots to operate in cluttered environments by
greatly boosting obstacle avoidance capabilities. For this reason, redundant robots
have been the target of research for more then two decades, as for example Siciliano
stated in 1990 that “The scientific and technological perspectives of robotics can be
greatly enhanced by considering redundancy which has been recognized as offering
greater flexibility and versatility in today’s robot manipulators” [2]. However, these
possibilities imply increased complexity in controlling these types of robot. Where
for conventional robots the mapping between task space and configuration space is –
with few exceptions – analytically solvable and distinct, redundant robot arms provide
for every task space position an infinite number of choices for the redundancy resolu-
tion. This allows to have different configurations for a specific task to choose from,
but requires new methods that are capable of calculating and choosing appropriate
redundancy resolutions. In general, this is known as the task to calculate an inverse
kinematics model, i.e., the ability to calculate a joint configuration for a given task
space position.

1

1 Introduction

In the research field of path planning such redundant robot manipulators offer great
opportunities as well. They are able to approach the same place from different direc-
tions and in different ways, but depend on environmental or task specific constraints in
order to operate well in such confined workspaces. This of course has a strong influence
on the way path planning has to be done, since one has to choose an appropriate path
from many to reach a certain goal position. This complexity of tasks and robots in
real-world conditions places strict requirements on robustness, correctness and speed
(real-time capability) of the algorithms employed to ensure safe usage of the robots.

1.1 Motivation

In many applications and scenarios path planning is done using a sampling-based ap-
proach [1]. The key idea in this type of planning is to determine whether single configu-
rations cause collisions using a collision-detection system. A planner uses this primitive
to sample different configurations to form a collision-free path. To achieve this, explicit
modeling of constraints is required, which necessitates simulation software and detailed
information about the environment and the robot. Information has to be transferred
into a suitable internal representation like geometric models of the obstacles and the
robot. For example, Behnisch et al. use a sampling-based random tree approach to
search in the task space where distance based potential functions are calculated using
a full simulation environment [3]. Using a suitable internal representation, a path is
generated by means of exhaustive or heuristic search. The advantages of this approach
are its high accuracy and the ability to simulate further details. Once the environment
can be simulated, distance information and other geometric properties for objects in
the scene can be obtained. However, this approach is costly in terms of computation
time and detailed expert knowledge is required. The environment has to be known
completely before the robot begins to move. For every change in the environment the
model has to be adapted accordingly, which requires trained professionals with the
respective expertise.

An approach that does not rely on explicit modeling and exact calculations is the
data-driven approach. Its premise is to remove the dependency of explicit representa-
tions by acquiring movement data and extracting the desired information. This thesis
is based on a research project where such a data-driven approach is used to gener-
ate single task movement commands for a redundant manipulator. These are easily
adaptable to dynamic environments and do not require specialized knowledge about
the problem. The project uses a technique called kinesthetic teaching to learn environ-

2

1.2 Outline

mental constraints and to specify task space trajectories. However, the system lacks
the ability to automatically generate trajectories for given start and goal positions
wherefore physical interaction is required. Despite being very intuitive, this limits the
system to static tasks only. In situations where dynamic task generation is needed or
physical interaction is not possible or not desired, automated path planning is required.
Therefore,

the overarching goal of this thesis is to integrate an autonomous path planning
method into the research project’s framework, that utilizes the intuitive kinesthetic
teaching interface and does not require explicit modeling of information.

To achieve this, the target of this work is to develop a system that is able to accomplish
the following major tasks:

(I) Process kinesthetic teaching input data and extract information to create an
internal representation of the workspace.

(II) Ensure correctness of the representation in context of collision-freeness.

(III) Autonomously create trajectories for given start and goal positions.

(IV) Generate motion commands to control the robot along the trajectories.

1.2 Outline

Chapter 2 describes the context of the thesis. This includes the research project in
general, which is called FlexIRob (2.1), a description of the kinesthetic teaching mech-
anism (2.2) and the learning based control algorithm (2.3).

Chapter 3 provides an overview of related research in path planning and outlines the
differences to the approach presented in this thesis. The requirements for the intended
work are specified along with an overview of the approach described throughout the
thesis.

Chapter 4 introduces the algorithm used for processing the input data. The basic
algorithm and implementation details are explained (4.1), followed by modifications
that have been applied to optimize the results for navigation (4.2 and 4.3).

In Chapter 5 the eventual trajectory generation based on the results of the previous
chapter is shown.

Chapter 6 investigates the applicability and stability of the path planning method
based on evaluation of recorded training data from users with different levels of ex-
perience. The evaluation setup and means of data acquisition are described (6.1).

3

1 Introduction

Afterwards, Sect. 6.2 and 6.3 present the results regarding different demands to the
method.

Chapter 7 demonstrates the extension of the method to learn training samples in an
inhomogeneous feature space to test the scalability of the system.

Chapter 8 shows a simple modification for the data acquisition phase that aims to
improve the usefulness of the training data by giving haptic feedback to the user during
training.

Chapter 9 summarizes the work of the thesis and discusses current limitations, as
well as upcoming research questions and possible future work.

4

Chapter 2

The Human-Robot Co-Worker
Scenario

The scenario of this thesis is located in the context of the FlexIRob system. To provide
the context of this thesis, a description of the system in general is given, followed
by individual components, that are important for the understanding of this thesis’s
methods. The whole system is thoroughly described in [4] and [5], from which the
following descriptions are summarized.

2.1 FlexIRob System

FlexIRob – Flexible Interactive Robot – is a showcase robotic system used in research at
Bielefeld University’s Cognition and Robotics Lab. The aim is to improve human-robot
interaction in a way that efficient and safe co-working of humans and robots becomes
possible (Fig. 2.1). The projects utilizes machine learning algorithms and interaction
technology in combination with a compliant robot platform to realize intuitive human-
robot interaction.

Fig. 2.1: A company worker using the FlexIRob system in a user study [4].

5

2 The Human-Robot Co-Worker Scenario

The system consists of a recent version of the KUKA Lightweight Robot (LWR IV) [6],
which is a redundant robot manipulator with seven degrees of freedom (DoF). As de-
scribed earlier, configuration and controlling of such redundant robots is a challenging
task. The FlexIRob system abstracts this configuration effort to a level that allows
robotics experts and lay people alike to reconfigure the robot to a new environment or a
new task. This is accomplished by having the user directly teach the robot information
about the environment and motions required for a task via kinesthetic teaching rather
than by regular means, such as direct programming or using a computer device as the
interaction interface. The gathered data from kinesthetic teaching is then processed
to produce movement commands for the arm [7].

2.2 Kinesthetic Teaching

The kinesthetic teaching process of the FlexIRob system is divided into two sepa-
rate but consecutive interaction phases: the configuration phase and the programming
phase. These are shortly described to give an overview of the whole system. A complete
description explaining all components in detail is found in [5].

In the first phase the robot is in a gravity compensation mode that allows users to
freely move joints and to position the robot. The human teacher can move the robot
to a desired Cartesian position with a desired joint configuration. Thereon the system
switches into a recording mode with increased joint stiffnesses in which data pairs of
corresponding endeffector locations and joint angles are recorded (Fig. 2.2). In this

Fig. 2.2: Kinesthetic teaching with multiple training areas and different redundancy
resolutions [5].

6

2.3 Learning of Inverse Kinematics

mode the movements are limited to a small area so that the teacher cannot change
the joint configuration significantly. Afterwards, the robot switches back to gravity
compensation mode and the user can move the robot to another area. The training
is finished if data has been recorded in all areas of the workspace required for the
intended task. In this way the constraints of the environment are implicitly modeled
by the user within the training data. The constraint knowledge is then extracted
through application of a machine learning algorithm to gain an inverse kinematics
mapping.

In the subsequent programming phase, the robot uses the so called assisted gravity
compensation mode [5]. The learned inverse kinematic is used to assist the teacher in
defining a task space trajectory, which is called a task. The user only has to move the
endeffector and thereby specify the pathway of the trajectory. The system maps these
positions to joint angles and controls the robot accordingly. However, the program-
ming phase is not important in context of this thesis, because the goal is to provide
an autonomous way of generating trajectories. The work of this thesis provides an
alternative to the programming phase (Fig. 2.3). The configuration phase remains
unaffected.

Configuration Programming

Autonomous
Generation

Fig. 2.3: Process for defining a task.

2.3 Learning of Inverse Kinematics

During the configuration phase the endeffector positions and the associated joint angles
are recorded for supervised training of an artificial neural network [5]. The algorithm
used is an extreme learning machine (ELM), which is a random-projection based single
hidden layer feed-forward neural network with efficient read-out learning [8]. The
implementation provides a static mapping from endeffector positions x ∈ R3 or R6 in
task space to joint angles q ∈ Rd, where d=7 applies for this scenario. For each position
in the workspace the neural network learns a specific solution of the inverse kinematics
from the training data. While different redundancy resolutions in different parts of the

7

2 The Human-Robot Co-Worker Scenario

workspace are possible, only one solution per task space position is provided by the
mapping. The ELM and the mapping it represents are defined by input and output
dimensions themselves without any knowledge of the configuration of the robot or
kinematic properties.

Once learning is finished, the trained network is embedded into a hybrid controller
as illustrated in Fig. 2.4. This allows to control the robot using task space positions
only. The ELM provides a redundancy resolution qc as constraint for an analytic
controller, called “CBF Hierarchical Controller” in the illustration. This controller
tries to satisfy the constraint as good as possible with the primary goal to accurately
approach the target position using a feedback control loop. This control mechanism is
used in Chapter 5 to move the robot along generated trajectories.

Trained
Neural Network

CBF
Hierarchical
Controller

x*

q Δq*

Δq

Task Space

Nullspace

c

Robot

x

..
.

Win

h q

..
.

Wout

..
.

Fig. 2.4: Hierarchical control scheme of the FlexIRob system [5].

8

Chapter 3

Application and Research of Path
Planning

The task of planning motion trajectories for robot manipulators has been subject of
research for several decades. With robots receiving more and more attention in a
multitude of applications, their use in industry and research has become indispensable.
With the growing number of applications also the complexity of robotic systems and
their respective control mechanisms increased.

This chapter will provide an overview of existing path planning approaches and point
out the differences to the method proposed in this thesis.

3.1 General Path Planning Approaches

The general approach to path planning expects a complete description of the geometry
of a robot and environment populated with obstacles [9, 1]. A robot possesses a state,
which is defined by a point q in the so-called configuration space C [10]. In case of an
articulated robot manipulator, such a point q consists of a list of joint angles (θ1, θ2,
. . .) and joint translations (d1, d2, . . .), depending on whether rotatory and prismatic
joints are present. A configuration q is characterized as free, if a robot in this state
neither collides with an obstacle nor with itself. The set of all free configurations
forms the free space Cfree and the obstacle space is defined as its complement with
Cobs = C \ Cfree. Path planning is then defined as the task to move a point q within
Cfree from an initial position qinit to a goal position qgoal [1].

Early approaches in path planning followed mostly the same principle: discretize the
configuration space and construct a connectivity graph in it that allows to find a path
using graph search algorithms.

These early approaches can be represented by three distinct algorithms: roadmaps,
cell decomposition and potential fields [11]. Roadmaps capture the connectivity of Cfree
in 1D curves along which the robot is allowed to move. By completely exploring the
space a roadmap guarantees to find a collision-free path if and only if it exists. In cell
decomposition algorithms the free space is subdivided into simple – usually convex –

9

3 Application and Research of Path Planning

regions called cells. Cell connectivity is captured the same as in the roadmap algorithm.
A path query locates the two cells containing qinit and qgoal and looks for a path of
cells connecting them. The path of cells forms a channel of free space between qinit and
qgoal. Finally, potential fields do not explicitly construct a connectivity graph, but use
a potential function over the free space. The robot is guided towards the goal using
an attractive component and repelled from obstacles using a repulsive component.
These three approaches differ in the way the graph is constructed and represented.
Nonetheless, they share the fact that explicit representations of the obstacle boundaries
in the configuration space are calculated. However, this complete representation is
computationally expensive and scales exponentially with the number of degrees of
freedom [12].

In need of ways to control more complex systems with higher degrees of freedom,
the group of sampling-based motion planning algorithms has emerged. The idea is to
avoid the complete construction of the configuration space or the obstacle boundaries,
respectively, by sampling only a limited amount of information required for the task
at hand. This requires only information about whether a configuration lies in Cfree.
Modern collision detection algorithms provide exactly this information, once a complete
description of the environment is available. Hence, sampling-based motion planners
are defined as those whose only information about Cobs is obtained by sampling the
C-space using a collision detector [12].

Typical classification of sampling-based planners uses two categories: multi-query
and single-query approaches. A popular example for the multi-query approach is the
Probabilistic Roadmap Method, developed in a large number of variations [13]. It is
proven to be very efficient and applicable for a wide range of motion planning problems.
Planning is divided into two stages. The first stage is the pre-computation of a roadmap
that reproduces the connectivity of Cfree. Using the collision detector the configuration
space is sampled according to a suitable probability distribution. All free configurations
are stored as nodes, or milestones, in the roadmap. Milestones are connected if a
straight-line path completely located in Cfree exists between them. In the second stage
the roadmap is processed for path queries to connect qinit with qgoal [1].

The single-query approaches avoids the need for a computationally expensive pre-
computation of the roadmap. Instead, the roadmap is constructed on-the-fly during a
path query for a specific qinit with qgoal. The motivation is to access the configuration
space only as much as is required for a task instead of constructing a complete roadmap.
A frequently used technique for single-query approaches is the Rapidly-Exploring Ran-
dom Tree (RRT) algorithm by Lavalle [14]. In this approach usually two roadmaps or

10

3.2 Alternative Approaches

trees are initialized with their root at qinit and qgoal, respectively. The two trees are
expanded by sampling C at random and inserting free configurations as nodes into the
trees. A path is found as soon as the trees meet each other, i.e., a node of one tree is
connected to a node of the other.

These sampling-based approaches are capable of efficiently solving a large number
of complex problem statements in high-dimensional configuration spaces. However, in
terms of computation time they still suffer from exponential scaling with the number
of degrees of freedom [1]. In view of vastly increasing numbers of degrees of freedom,
e.g. in complex robot hands or full-body humanoid robot platforms, other approaches
with better scaling are necessary.

3.2 Alternative Approaches

In the recent years, research started to focus on alternative ways to improve the per-
formance of path planning algorithms, e.g. by further abstracting the problem repre-
sentation or extending the search to multiple spaces at the same time instead of using
only the configuration space.

Diankov et al. [15] introduced their BiSpace Planning algorithm, which improves
the planning performance for complex high-dimensional problems by simultaneously
exploring multiple spaces. Two separate RRT searches are used and combined: one
tree is constructed in the configuration space rooted at the current (initial) configu-
ration. This tree explores the full configuration space to guarantee the fundamental
requirements for a free path, i.e., feasibility, executability and collision-freeness. The
second tree explores the task space backwards from the goal position and acts as an
adaptive, well informed heuristic. A one-directional mapping from configuration space
to task space is used to connect the forward tree with the backward tree. Afterwards,
the configuration space tree attempts to follow the task space tree to the goal.

Behnisch et al. [3] reduce path planning efforts by shifting the planning problem to a
high-level representation. Their target is to reactively and locally avoid obstacles. This
is a hybrid approach in the sense that the search is divided into two steps: planning
and local obstacle avoidance. For planning, a classic sampling-based random tree
algorithm is used. But instead of sampling in configuration space, their approach
constructs the tree in task space with corresponding configuration space positions.
The reactive local planner adjusts the configuration space trajectories using distance-
based potential functions to avoid obstacles, which leaves the task space trajectories
unaffected. By reducing the dimension of the search space from the higher-dimensional

11

3 Application and Research of Path Planning

configuration space to the lower-dimensional task space they were able to effectively
reduce computation time. However, they also limited the general-purpose capabilities
of their system, because it is not applicable for arbitrary problem statements.

3.3 Data-driven Approach

The approach presented in this thesis shares a number of common features with the
path planning approaches described above – yet possess fundamental differences as
well. It makes use of a graph structure to represent the information required to search
for paths. This graph is constructed in the task space, just as the methods described by
Diankov et al. and Behnisch et al., but will also include configuration space information
during the creation process. Therefore, it can also be considered as a hybrid approach.

However, all of the presented approaches have in common, that they rely on explicitly
modeled information about the robot and obstacles. Collision detectors and similar
tools are used in order to categorize configurations as free. The approach of this thesis
completely bypasses this requirement by constructing the graph structure using real-
word demonstration data obtained from kinesthetic teaching.

The overall approach works the following way: the input data provides information
about free locations in the workspace. Free is defined the same as for sampling-based
methods. This information is processed to create a topological network of nodes rep-
resenting these free locations. The nodes are connected by edges, which show valid
transitions between nodes. An edge is considered valid if every location assumed by
the robot during the transition is also free. The creation process of the network is
described in Chapter 4. Afterwards, Chapter 5 describes, how such a network is used
to search for paths and to generate motions.

The topological network, more specifically the nodes of the network, are defined by
the input data. That is, the input data specifies the navigation space in which the
network lives. In this chapter, the navigation space is the three-dimensional Cartesian
space. A data point consists of the coordinates of the endeffector location, which is
further referred to as the translation. However, using this navigation space is not a
limitation of the algorithm and other potential spaces exists. Chapter 7 will describe
the application of the method to a navigation space consisting of the translation and
orientation of the endeffector. But also other sorts of spaces may be applicable, for
example the joint space of the robot.

12

3.3 Data-driven Approach

3.3.1 Criteria for Method Selection

The appropriate choice of an existing algorithm or the design of a new one to solve a
specific problem is in almost every case a crucial step towards the success of a project.
Although the algorithm for the graph generation in this thesis was chosen beforehand,
this section will discuss the reasons for its selection and advantages/disadvantages of
the algorithm.

In context of the kinesthetic teaching paradigm used to gather input data, special
requirements are placed for an appropriate algorithm. The demonstration data pos-
sesses several characteristics that are important for the algorithm selection and that
impose constraints on the processing. These are in detail:

Incremental Learning: The learning method has to be able to incrementally add data
to the network. The network has to be build up iteratively as soon as a data sample
becomes available.

Anytime evaluation: Using the graph for path planning shall be possible at any time
– within the range of the provided data – without the need for any extensive global
processing. The adaptation of the graph to the training data should be as fast as
possible, because adding input data and using the network for path planning may be
done in turns. This also excludes the repeated use of (possibly randomized) input
data until the algorithm converges into a stable state, i.e. a local minimum of an error
function. Therefore, it is desirable to extract as much information as possible from one
training iteration of an input point.

Continuous data: The amount of data to be processed is unknown. The input has
to be considered as a continuous data stream with no specific end of training. This
requires the algorithm to be capable of online learning.

Unknown topology: Prior knowledge about the topology is not available. The algorithm
has to be able to adapt to arbitrary topologies. The only available information is that
the data is clustered into distinct clouds, which are connected mostly by single paths.

Sparse and redundant input: Data from kinesthetic teaching is usually sparse compared
to generated data, e.g. from a random distribution, and it contains much redundancy.
The FlexIRob training framework forces the user to fixate the endeffector to a steady
position for several moments to switch modes of operation, which produces a series
of repeated data points. Due to the high data sampling rate of the framework of
100 Hz the difference of two consecutive input points is usually very small, so that a
subsampling has to be used to filter irrelevant data points. Users also tend to move

13

3 Application and Research of Path Planning

the endeffector in circular trajectories, which produces clusters of data points.

Correlated stimuli: The input stimuli are generated from real-world movements of the
robot and are therefore highly correlated. Randomizing or shuffling of the input data
is neither possible nor desired.

The Instantaneous Topological Map (ITM) algorithm is well suited to handle these
requirements and characteristics. It is a topological neural network first introduced
by Jockusch & Ritter in 1999 [16]. The ITM has been specially designed in need of
an algorithm capable of incremental learning of correlated input stimuli, as produced
by exploration movements in robotics. The algorithm is based on the Growing Neural
Gas algorithm (GNG) by Fritzke [17]. The GNG’s main feature is the ability to learn
practically any topology. This is possible due to its adaptive number of nodes, in
contrast to for example the classical Self-organizing Map described by Kohonen [18]
with a predefined topology and fixed number of nodes. However, the GNG does not
perform well when confronted with correlated input stimuli. This has been proven by
Jockusch & Ritter, who state that GNGs, if confronted with correlated stimuli, “face
severe degradation, which excludes their use for many on-line applications” [16].

In summary, the ITM fulfills most of the stated requirements. It is capable of
learning correlated stimuli. Learning is done only locally, which allows to add nodes
at any location without influencing the rest of the network. The algorithm does not
need to iteratively converge to correctly represent the input data, but produces reliable
results as soon as sufficient data has been provided. The ITM is by construction an
online learning algorithm. It can learn arbitrary topologies and no prior knowledge is
required for initialization. With these features, the algorithm is very qualified for the
intended purpose and therefore has been chosen as the network generation method.

14

Chapter 4

Learning the Free Workspace in a
Topological Map

The main element of the path planning mechanism proposed in this thesis is a topolog-
ical network, which contains the information about accessible and restricted areas of
the workspace. This chapter will explain in detail the network generation algorithm,
which is based on the Instantaneous Topological Map. At first the implementation and
configuration of the basic ITM is described. The algorithm had to be extended to re-
solve disadvantages that surfaced when used in combination with input data generated
from kinesthetic teaching. These extensions are motivated and described in Sect. 4.2
and Sect. 4.3.

4.1 Instantaneous Topological Map

The basic ITM algorithm works on a set of nodes i, represented by a corresponding
weight vector wi. The nodes are connected by a set of undirected edges, which define
a local neighborhood N (i) for each node i. The algorithm starts with two connected
nodes, for example the first two input stimuli. After that, for each stimulus ξ a set of
four rules is applied:

1. Matching: Find the nearest node n and the second-nearest node s of the input ξ
according to a given distance metric D(a, b), e.g. the Euclidean distance.

n = arg min
i
D(ξ, wi)

s = arg min
j,j 6=n

D(ξ, wj)

2. Reference vector adaptation: Move the nearest node n towards the input ξ.

∆wn = η · (ξ − wn)

15

4 Learning the Free Workspace in a Topological Map

3. Edge update:

(i) Create a new edge (n, s) connecting the nearest and second-nearest nodes
if they are not connected yet.

(ii) For each neighbor c of n: if ws lies within the Thales sphere defined by wn
and wc, delete edge (n, c) due to redundancy. It is replaced by the newly
created edge (n, s).

∀ c ∈ N (n): if (wn − ws) · (wc − ws) < 0 then remove edge (n, c)

(iii) Delete unconnected nodes.

4. Node update:

(i) If the stimulus ξ lies outside of the Thales sphere defined by wn and ws and
its distance to wn is greater than emax:

(wn − ξ) · (ws − ξ) > 0 and D(ξ, wn) > emax

• Create new node r with stimulus wr = ξ.

• Connect r and n.

(ii) If the distance between wn and ws is closer than 1
2emax, remove s.

The creation and deletion of edges and nodes is illustrated in Fig. 4.1.

The algorithm also possesses a range of positive properties. The ITM is not subject
to the fovea effect due to its creation rules. The fovea effect describes the situation, in
which the node density in a network is higher in areas where more stimuli occur. For
the ITM, new nodes are only created when a local area does not have a representative
node. This allows it to handle training data with non-uniform stimulus density.

In terms of computation time the ITM is also very efficient. The only step directly
dependent on the number of nodes is the matching step, whereas the costs for edge
adaptation depend on the neurons’ average number of connections.

4.1.1 Implementation

The ITM has been implemented as specified in the preceding section. The configuration
of the ITM network uses two parameters that define the outcome of the algorithm and
that have to be specified. These parameters are the maximum quantization error emax

16

4.1 Instantaneous Topological Map

n

s

edge
creation
zone

emax

node
creation
zone

n

s

Fig. 4.1: Edge update (left): Edges are added when a stimulus lies within the region
where the Voronoi cell of n intersects the Voronoi cell of s if n were not
present. Edges are removed when s is inside the Thales sphere defined by n
and one of its neighbors. The edge to the neighbor is then removed. Node
update (right): New nodes are created when the distance between a stimulus
ξ and the nearest node n is too large and the Thales sphere defined by n and
s does not cover that region (based on [16]).

and the adaptation rate η. In this case, the Euclidean metric is used as distance
function D for the nearest neighbor search.

The adaptation rate η is the ITM’s equivalent to the learning rate of other topo-
logical networks. Whereas a learning rate is in other algorithms essential to adjust a
network to the input data, Jockusch describes η as a smoothing parameter, that slowly
arranges the nodes to have approximately uniform distances. According to Jockusch’s
experimental verification, this step may even be omitted. Due to its frequent node
creation and deletion mechanism the network is still able to produce a uniform distri-
bution of nodes. In fact, in context of this thesis, using the reference vector adaptation
is even proven to be counterproductive. First, the clear goal is to explore the space
as good as possible, as the nodes of the graph will be used as direct input for navi-
gation. The adaptation however causes distortion of the nodes. Their location in the
navigation space changes. This means that it is no longer guaranteed that they are
free.

The second reason lies in the nature of the input data. The primary motivation dur-
ing training is to provide input data for the ELM. For this purpose, circular movements
produce useful training data. In contrast, if training the ITM with reference vector
adaptation, these repeated orbital movements cause the nodes to be “attracted” to the
center of a cluster, thereby reducing the overall explored area significantly. Fig. 4.2

17

4 Learning the Free Workspace in a Topological Map

(1) (2) (3) (4)

Image η Nodes Edges max ν Ø ν min Le max Le Ø Le
2 0.10 12 26 7 4.17 0.084 0.186 0.109
3 0.03 17 39 7 4.47 0.0895 0.232 0.120

0.02 18 43 12 4.67 0.0773 0.233 0.121
0.01 18 44 12 4.78 0.0624 0.246 0.124

4 0.00 18 44 12 4.78 0.0557 0.256 0.127

Fig. 4.2: ITM training with different reference vector adaptation rates: (1) depicts the
input data and (2), (3) and (4) the results for different η values.

illustrates training results for different η values. The table at the bottom displays
statistical data for the different networks, where ν denotes the valence of nodes and
Le the edge length. The edge length has been chosen as a measure of “network size”,
meaning that a high average edge length indicates, that the space occupied by the
network is also high. As the results show, with decreasing η the maximum and average
valence increase along with the maximum and average edge length. If nodes are moved
closer due to reference vector adaptation, then fewer nodes and edges are created or
existing ones are removed. Visual evaluation of the resulting networks confirms these
assumptions. In picture (2) the network is visibly “smaller” than the volume occupied
by the training data and its shape is more convex. These effects are reduced in picture
(3) and further in picture (4), where the shape of the network is very close to the
training data. As a result, the reference vector adaptation was completely omitted in
this thesis.

The second parameter, the maximum quantization error emax, determines the res-
olution or the density of the resulting network. The choice for this parameter highly
depends on the input data and the intended use case. Fig. 4.3 demonstrates the train-
ing of an ITM with different emax values using a snippet of a kinesthetic teaching
session.

The far left picture (1) shows the training snippet. Picture (2) shows the result for
emax=0.01. The ITM is constructed along the trajectory of the input stimulus with

18

4.2 Joint Space Validation

(1) (2) (3) (4)

Fig. 4.3: ITM network generated from a training data snippet using different emax
values. From left to right: 0.01, 0.10, 0.20.

very few connections between the circular lines. This can be described as overfitting.
The network learns the detailed topology of the input data, while the actual goal is
to learn the space in which the stimuli occur. The third picture shows a network that
is well connected without too many unnecessary nodes. Picture (4) depicts a result in
stark contrast to the first one. The value of emax is too big for the network to create
enough nodes to sufficiently learn the input area and therefore results in an underfitting
behavior. A deeper analysis for finding an emax value fitting to the scenario is provided
in Chapter 6.

Fig. 4.4 shows a first result when applying the basic algorithm without reference
vector adaptation and emax=0.10. The input data consists of about 15 training areas
in a scenario with two simple cubes as obstacles. The corresponding network is shaped
similar to the input data and all training areas are reachable by traversing along the
edges inside the network. But there are also some holes in the network, where not
enough data was available. Also, for example at the very bottom, some training areas
are poorly connected to the rest of the network. These insufficiencies are addressed
later in this chapter.

4.2 Joint Space Validation

Using the basic implementation as described in the previous section enables the system
to learn a network in the input space which can be used for navigation purposes. This
is sufficient in cases where the robot performs only simple movements during training.
But in context of a redundant robot manipulator more complex movements have to
be considered. The problem is, that pairs of Cartesian positions may occur, which

19

4 Learning the Free Workspace in a Topological Map

Fig. 4.4: Visualization of a kinesthetic teaching session showing the input data (left)
and a corresponding generated ITM network (right).

the ITM considers as nearest neighbors due to the Euclidean distance measurement,
but which correspond to large movements of the robot. That is, the postures differ
significantly. A posture is here defined as the joint angle configuration of the robot.
Fig. 4.5 depicts these two situations, where a simple movement is made and the two
positions are compatible (1) and therefore valid. In contrast, picture (2) shows a
complex movement for which the positions are not compatible (2), therefore invalid.

The reason for this problem occurring in the first place when using an ITM is that
the network only covers the Cartesian space. However, in this scenario the Cartesian
space is strongly connected to the joint space of the robot. To be able to produce a
valid navigation graph even for complex movements, which exploit the full potential of
the redundancy, the joint space has to be integrated into the ITM network generation.

This task is solved using a joint space validation for potential edges in Cartesian
space. The detection of such invalid connections is done by comparing the postures in
which the robot approaches the positions. For this, the distance Dθ between the joint
angle vectors is calculated using the Euclidean metric. These vectors consist of the
angular positions of the motors given in radians.

There are two major cases in which invalid connections may occur. The first is the
classic elbow up and elbow down situation, which is also present for non-redundant
manipulators. This situation can be characterized by the fact, that a transition between
the two postures is not possible – while at the same time maintaining the endeffector

20

4.2 Joint Space Validation

(1) (2)

Fig. 4.5: Valid and invalid connections between nodes: (1) The two postures are very
similar and a transition between them is possible. (2) The postures originate
from different redundancy resolutions (elbow up and elbow down) and a direct
transition is not possible.

location (for the robot type used in this thesis). Furthermore, switching between
elbow up and elbow down positions often results in movements through or close to
singularities. The second case is when the robot changes the redundancy resolution
while staying in the same spot or close to it. The difference to the first case is that a
smooth transition is possible, while the elbow up to elbow down switch does not allow
such a transition – without changing the endeffector position. In Fig. 4.6 the two cases
are illustrated by example. While for case (1) no intermediate stages exist and for
every occurrence edge creation must be prevented. Case (2) is different; changes in the
redundancy resolution for near positions are not critical per se and appear very often.
In most cases a smooth transition is possible, because the resolutions are still very
much alike. But for those cases where postures are not similar enough, a fitting joint
distance threshold dθmax has to be found, that separates them from valid connections.
The modification in form of an ITM rule looks as follows:

3. Edge update with validation:

(i) Create a new edge (n, s) connecting the nearest and second-nearest nodes
if they are not connected yet and if Dθ(n, s) < dθmax.

(ii) For each neighbor c of n: if ws lies within the Thales sphere defined by wn
and wc, delete edge (n, c) due to redundancy. It is replaced by the newly

21

4 Learning the Free Workspace in a Topological Map

(1) (2)

Fig. 4.6: (1) Elbow up and elbow down solution for the same endeffector position. (2)
Initial position (orange) and two other possible redundancy resolutions with
increasing differences.

created edge (n, s).

∀ c ∈ N (n): if (wn − ws) · (wc − ws) < 0 then remove edge (n, c)

(iii) Delete unconnected nodes.

To be able to calculate Dθ for a pair of nodes, a set of joint angles has to be
stored for each node. In this scenario, there are two possible sources of joint angles,
which can be used. The first is to store the joint angles during training, in which the
robot effectively approached the location of a node. The second is to use the mapping
of the ELM instead. The major difference is that the recorded angles are accurate
– in terms of closeness of the endeffector to the target location – while the ELM
angles imply a generalization error. However, the recorded angles are only available
for locations represented by an input sample and interpolation is not possible without
further model knowledge (without losing accuracy). On the other hand, the ELM
provides a continuous mapping between task space and joint space. Also, the ELM
angles are eventually used for the motion generation. Both ways have been tested and
are presented below.

4.2.1 Validation Using ELM Mapping

The Cartesian position information is acquired and stored the moment the robot takes
up a position. The joint angles of the ELM on the other hand are calculated later on

22

4.2 Joint Space Validation

and are – in case of incremental learning of the ELM – subject to variations during
the training. They are not equivalent to the joint angles recorded during training,
but rather the representation of the mapping between Cartesian positions and joint
angles produced by the current state of the ELM (as explained in Sect. 2.3). Using the
ELM mapping is considered for the following reason: the redundancy resolution that
is chosen for the robot when executing trajectories is controlled by the mapping of the
ELM, not by the joint angles the robot takes on during data acquisition. Furthermore,
the recorded joint angles may be inconsistent. This is possible because of the free
movement mode during the training of the ELM. In this mode, which allows to move
the robot from one training area to the other and to reposition the robot as needed,
arbitrary movements are possible. For the ELM training this is irrelevant, since the
data from this mode is not included while learning. However, the ITM will use this
data to connect the training areas. If a user moves the robot between two training
areas multiple times using different redundancy resolutions, this inconsistency may
influence the ITM negatively. When using ELM-produced angles, these inconsistencies
are automatically avoided. For the training areas, the assumption implied by the
FlexIRob scenario is that only a single redundancy resolution per workspace region is
taught. The possible inconsistencies during free movement do not influence the ELM
mapping.

To investigate, if this approach produces reliable results, a training session is used
in which potentially invalid connections are created by training different redundancy
resolutions at locations close to each other. Fig. 4.7 (left) shows the training data.
Close to each obstacle are two training areas, one approaching from each side of the
obstacle. The pictures on the right show the recording of longer movements in gravity
compensation mode in which the robot has been moved to all places of the workspace.
During this movement the robot has intentionally been used with a configuration in-
verse to the corresponding other training area. At that moment, the regular ITM
creates connections between the two cluster pairs. Moving along these edges would
force the robot to move through the obstacles, because the differences of the two pos-
ture’s joint angles is big. This situation has to be prevented at all costs using this
criterion.

General properties of the networks can be examined by calculating edge costs in joint
space, Dθ, when training the ITM for different emax values. That is, the distance in
the joint space given in radian. Such a distance can be interpreted as the total angular
movement required to transfer the robot from one configuration into the other. Tab. 4.1

23

4 Learning the Free Workspace in a Topological Map

basic training (b) test movement (t) ITM for basic+test

Fig. 4.7: Training session used for evaluating the joint distance validation.

shows the corresponding network statistics. The values given are the maximum and
average edge length Le [m], the maximum and average joint space distance Dθ per
edge [rad

edge] and the average joint space distance per task space distance [rad
m].

The upper four rows correspond to networks trained without the additional test
movements. As to be expected, the average edge length Le increases nearly propor-
tionally with emax. A more interesting discovery is made when observing the maximum
and average joint space distances per edge. The average Dθ/edge behaves similar to
the average edge length while the maximum values increase insignificantly. The joint
space distances per meter – Dθ divided by the edge length Le – remains nearly constant
as well. This leads to the assumption, that a static threshold dθmax for Dθ is possi-
ble for the given range of emax values. When comparing these results with networks
trained with the additional test movements seen in the bottom four rows of Tab. 4.1,
an overall increase in joint distance is observable in the fifths and sixths columns. The
maximum distance of an edge as well as the average distances are larger in the bottom
four rows.

The free movements are especially important for the ITM. Much of the movements
are not directly in or at the border of the ELM training areas, but a bit farther
away. The ITM requires these movements to connect the training areas. For the
corresponding joint angles, the ELM extrapolates the data from the training areas.
This of course introduces some generalization errors, which causes greater joint angle
distances. In consequence, the validation must also be reliable for positions not near
to ELM training areas, because the test movement are important for overall network
generation. They are equivalent to the movements between training areas in the normal
ELM training, which appear during the whole training session.

24

4.2 Joint Space Validation

data emax maxLe Ø Le maxDθ/edge Ø Dθ/edge Ø Dθ/Le
b 0.06 0.254 0.086 1.71 0.375 4.53
b 0.08 0.358 0.115 1.83 0.503 4.50
b 0.10 0.336 0.140 1.93 0.591 4.38
b 0.12 0.364 0.165 1.99 0.696 4.39

b+t 0.06 0.254 0.086 1.86 0.406 4.65
b+t 0.08 0.358 0.115 2.75 0.539 4.65
b+t 0.10 0.336 0.140 2.76 0.640 4.53
b+t 0.12 0.364 0.165 2.75 0.722 4.35

Tab. 4.1: Joint space movement Dθ evaluated using ELM-produced joint angles. The
networks compared are trained with different emax values and either the basic
training (b) or in combination with the test movements (b+t).

The edges are examined by testing systematically different thresholds for Dθ and ob-
serving which edges are marked as invalid. The observation started with dθmax=2.5 rad
and stepped in decrements of 0.1 rad until no more connections between the opposing
training areas were created. At about 1.5 rad the first edges were detected as invalid.
From 1.0 rad onwards, regular edges were also detected as invalid. The first value for
which undesirable connections between the training areas was completely eradicated
was 0.5 rad, which is already below the average of 0.54 rad. Nearly all edges created
during the test movement were also detected as invalid. Pictures demonstrating this
validation are shown in Appendix A.1. According to these result, the trade-off be-
tween preventing invalid connections and removing valid ones is very high, which led
to further investigation of the ELM output.

The reason for this misbehavior of the validation, where valid and invalid edges are
likewise marked invalid, is the generalization behavior of the ELM. This is especially
notable between areas with opposing joint configurations. At these positions, the ELM
mediates between the configurations, which decreases the joint distances. In Fig. 4.8
(1) this behavior is demonstrated for a path between two such areas. The robots
visualize the joint angles, to which the ELM maps the anchor points of the path.
Apart from the huge position error for the endeffector, this clearly shows that there is
no hard boundary (or boundary area) at which the configuration switches. The joint
angles merge seamlessly between the two configurations. In picture (2) the same path
is visualized with the real joint angles from training data. Here, the configuration
directly switches between the first two points. In consequence, the use of the ELM
mapping for validating edges is not reliable.

25

4 Learning the Free Workspace in a Topological Map

(1) (2)

Fig. 4.8: Visualization of a path (orange) and the joint angles corresponding to the
anchor points using the ELM mapping (1) and the joint angles recorded during
training (2). Each depicted posture belongs to the anchor point with the same
color. The training data is shown in red.

4.2.2 Validation Using Training Angles

The same procedure as with the ELM mapping is applied to test whether the joint
space validation produces more reliable results using angles recorded during training.
Tab. 4.2 shows the equivalent network statistics for the new set of joint angles. The
general observation reveals that the joint spaces distances Dθ have significantly in-
creased. While the maximum joint space distance per edge is nearly equal in all cases,
the values for Dθ/Le are quite different. They are not proportional to emax in any way.
The average distance per edge for all networks increased by 26 % when compared to
ELM joint angles. This further supports the hypothesis that using the ELM angles is
not suited for validation, because the mapping of the ELM is continuous in the whole
workspace. This causes smoother transitions.

As in Sect. 4.2.1, calculated joint angle distances for the edges are used to find a
threshold dθmax, which prevents the creation of edges between areas with opposing
joint configurations. Since the value range of Dθ for the ELM angles case and the
recorded angles case is quite different from the ELM, the threshold values are not
directly comparable. But in contrast to the prior evaluation, the use of recorded joint
angles allows for finding a very suitable threshold. This means, that nearly no valid

26

4.2 Joint Space Validation

data emax maxLe Ø Le maxDθ/edge Ø Dθ/edge Ø Dθ/Le
b 0.06 0.250 0.080 2.50 0.390 4.69
b 0.08 0.275 0.105 2.61 0.553 4.97
b 0.10 0.258 0.125 2.51 0.683 5.26
b 0.12 0.312 0.147 2.50 0.759 5.07

b+t 0.06 0.254 0.086 3.92 0.616 6.99
b+t 0.08 0.358 0.115 3.90 0.765 6.55
b+t 0.10 0.336 0.140 3.83 0.902 6.36
b+t 0.12 0.364 0.165 3.85 0.978 5.92

Tab. 4.2: Joint space movement Dθ evaluated using recorded joint angles.

edges are marked as invalid and that connections between opposing training areas are
always detected. For a threshold of 1.0 rad the result was similar to the ELM validation
with 0.5 rad. Nearly all of the edges created during the additional test movements
were incorrectly marked as invalid. Up to a threshold of dθmax=2.5 rad this reduced
drastically, where only a few edges were falsely detected as negative. At a value of
3.0 rad none of the regular edges were invalidated and all edges connecting the critical
areas were successfully prevented. The result of the validation is shown exemplarily
in Fig. 4.9, further pictures for different thresholds are given in Appendix A.1. The
same values were confirmed using other sets of training data. As a result, the joint

(1) (2)

Fig. 4.9: Joint distance validation with a threshold of 3.0 rad. (1) shows a subsequent
validation with invalid edges marked in orange and (2) depicts the network
with validation directly integrated into the training phase.

27

4 Learning the Free Workspace in a Topological Map

distance criterion allows to reliably detect invalid edges when using joint angles directly
recorded during training and proves to be stable for multiple test cases.

4.3 Network Optimization

Sparseness of the input data acquired from kinesthetic teaching proved to be a ma-
jor obstacle for the ITM learning algorithm. When learning a plain ITM network
as described in Sect. 4.1, the resulting network is allocated in several clusters with
only sparse connections between them just as the robot has been moved between the
training areas. This is depicted in Fig. 4.4. Such a network is not suited well for
use as a navigation graph. The paths found by a shortest path algorithm may be
unnecessary long and detoured in many cases due to holes in the network and the low
interconnection of clusters.

A better suiting network may be obtained by enhancing the ITM algorithm to correct
such deficits. Algorithms for detecting and resolving holes and other undesired proper-
ties in a graph are well known and understood in the research field of graph theory, e.g.
the hole detection algorithm described by Nikolopoulos et al. [19]. Holes found by such
an algorithm could then be closed by creating edges between the corresponding nodes.
However, such an approach is computationally expensive and even more importantly,
requires global processing on the graph. This violates the prerequisite of an online-
training capable method. In order to satisfy this constraint, two heuristics that do not
depend on further model knowledge to augment the network have been developed. The
idea is to preserve the natural structure of the ITM by generating additional training
samples from the set of acquired input data as it is processed. Applying postprocessing
on top of the regular training would alter the network not according to the creation
rules and may cause inconsistencies. The process of increasing the amount of training
data by generating new samples from the available data is called bootstrapping (BS).
As these heuristics are very specific to the scenario, their description and verification
is done using actual training data instead of more general, artificially generated data.

4.3.1 δ-Bootstrapping for Local Connectivity

The target of the δ-bootstrapping is to close small holes in the network and increase
local connectivity. A näıve approach is to apply noise to the training data to generate

28

4.3 Network Optimization

new samples:

ξc =

wx

wy

wz

 +

γx

γy

γz

 , γi ∈ N (µi, σ2
i) (4.1)

This entails several disadvantages: first and foremost, the addition of noise has to
produce samples with a distance greater than emax in order to have any effect. This
raises concern for the maximum distance that may be applied by the noise. If chosen
too high, samples within space occupied by obstacles could be produced. Since no
model information like endeffector size is available, an appropriate selection for this
parameter proves difficult.

An approach that utilizes information modeled implicitly by nodes’ local neighbor-
hoods is chosen to avoid this problem. This heuristic adds a fifth rule to the set of
training rules, which applies additional training for every original input sample:

5. Sample additional data from neighborhood for each newly created node r (Fig. 4.10):

(i) Construct the δ-neighborhood Nδ(r) for δ > 1:

Nδ(r): every node c connected to node r through at least 2 and at most δ
edges.

(ii) For each c ∈ Nδ(r): train net with input stimulus ξc (omitting step 5):

ξc = wc + 1
2 · (wr − wc). (4.2)

This also introduces a new parameter of neighborhood depth, δ. In contrast to the
noise added to the x-, y and z-coordinates in Eq. (4.1), this parameter is much simpler
to determine. It is an integer number with a very limited range. The minimum value is
two, since a value of one would consider only neighbors directly connected to the node
and therefore have no effect. The theoretical maximum value is defined by the longest
path possible in the network. However, since this heuristic increases computation time
exponentially as a function of δ (assuming an approximately uniform valence for all
nodes), the practical range of δ values is very small.

Furthermore, the parameter does not scale with the range of values or number of
components of the input data, but rather with its intrinsic dimension. As evaluated
in [20], the intrinsic dimension of the input data manifests for the ITM in the average
number of connections of a node. For example, a two-dimensional data set embedded

29

4 Learning the Free Workspace in a Topological Map

edges=3
edges=2
edges=1

x
x

x
x

x

x

=3
samplesx

Fig. 4.10: Local neighborhood (left) and sample generation (right). For brevity, the
picture only shows samples generated for δ=3 while the algorithm creates
samples for all nodes included in # edges=2. . . n.

in a feature space of a higher dimension will produce four to six emanating edges per
node on average, regardless of the feature vector size [17]. As a result, δ can be chosen
relative to this average. A high average valence will cause the δ-neighborhood to grow
faster with increasing δ than a low average valence. To compensate for this effect, a
high average valence should be accompanied by a low δ value and vice versa.

In addition to exponentially increasing computation time, higher δ values will cause
the network to converge to its convex hull. Fig. 4.11 demonstrates this behavior.
The picture series shows new samples being generated in a concave network structure.
Whereas for δ=2 the samples are very close to existing nodes, for δ>5 the samples
create a convex structure. However, this behavior is limited by the magnitude of emax.
If chosen higher, partially concave networks with a depth smaller than this value will
not be filled with nodes and therefore remain.

For this reason, a high δ value will produce nodes far away from explored areas,
which may be harmful in most scenarios. For the same reason, the fifth rule is only
applied for a newly created node r and not each iteration for the winning node n.
Such an approach would result in repeated exploration of the same nodes every time a
node is nearest to the input stimulus. Each time the δ-neighborhood of a node grows,
it further increasing the impact of the δ-bootstrapping. The consequence is a similar
convergence to the network’s convex hull.

For this thesis’ scenario both cases produce undesired behavior, expressed by nodes
with potentially harmful proximity to obstacles or even collisions. To avoid this, δ must

30

4.3 Network Optimization

δ=2 δ=3 δ=4 δ=5,6

Fig. 4.11: Convergence of the network for increasing δ values: colored points depict the
new samples for each δ.

not be chosen too large. Tab. 4.3 shows an overview of the networks characteristics
if constructed with different δ values. The table shows the number of nodes and
edges of the network in the second and third column. The fourth column lists the
maximum and average valence of the nodes, denoted as ν. The last three columns give
an approximation of the error ε in meters caused by the heuristic. The correlation
between this error and the parameter emax is the following: emax is lower limit to
distance between any two nodes in the network. But at the same time it is the maximum
distance a stimulus can be apart from any node, before a new node is created to reduce
the quantization error for the stimulus. However, the nodes created by the heuristic do
not originate from regular training data, but from additionally created samples. These
samples may not be located within the area of the regular training data. To measure
this error, the minimum distance to any sample of the training data is calculated
for each node created during the bootstrapping. From those values the minimum,
maximum and average distances are calculated. The ITM network itself is generated
from the same training data as shown in Fig. 4.4 (left) with emax=0.10.

δ Nodes Edges max ν Ø ν min ε max ε Ø ε

0 175 330 10 3.76 n.a. n.a. n.a.
2 177 388 13 4.37 0.0154 0.026 0.0208
3 206 586 14 5.68 0.0053 0.115 0.0341
4 270 988 15 7.31 0.0089 0.140 0.0538
5 367 1602 17 8.72 0.0038 0.220 0.0714

Tab. 4.3: Network statistics of training with different δ values. Networks are trained
with emax=0.10.

For δ=2, the additional fifth rule has practically no effect on node generation. The

31

4 Learning the Free Workspace in a Topological Map

generated training samples are too close to existing nodes and therefore the creation
of nodes is prevented due to emax. Despite this, there is a noticeable increase in
the number of edges. If the ITM network is trained with δ=3, then the number
of nodes increases by 18 % with respect to training with δ=0, whilst the number of
edges significantly increases by 78 %. The connectivity increases from δ=2 to δ=3 in a
similar manner as from δ=0 to δ=2. However, the estimated error is also significantly
greater. The maximum error produced by the heuristic is a measure for obstacle
collisions originating from node creation in unexplored areas. Even if the average error
is small, a single node with a big error may cause a collision. The maximum error has
quadrupled to a total of 11.5 cm when compared to δ=2. By increasing δ to 4 and
5, the error reaches more than 20 cm. Despite the highly increased connectivity, this
order of magnitude increment in maximum error renders the resulting network unsafe
and therefore useless for navigation purposes.

However, there is a simple way to gain the increased connectivity of a higher δ value
without increasing the error too much. High errors are produced when a sample ξc is
generated between nodes with a large distance, since this directly influences the max-
imum distance a node may be apart from the network. Filtering out such potentially
high-error samples before consolidating them with the training data prevents their
negative effects. For this, limiting the maximum distance allows to drastically lower
the error in exchange for a moderate loss of connectivity gain. Choosing a threshold
for the maximum distance is fairly easy when taking a look at the node creation rules
of the ITM. A stimuli has to have a distance of at least emax to any node, aside from
the Thales sphere criterion. When creating a sample between two existing nodes, their
distance to it in consequence has to be at least two times emax. Choosing three times
emax as the threshold provides a span of exactly emax for new nodes to be created,
which proved to be a suitable value. Tab. 4.4 shows the results for the training proce-
dure with this limit turned on. For δ=3, the maximum error is reduced by more than

δ Nodes Edges max ν Ø ν min ε max ε Ø ε

0 175 330 10 3.76 n.a. n.a. n.a.
2 177 388 13 4.37 0.0154 0.026 0.0208
3 191 509 14 5.32 0.0151 0.053 0.0266
4 203 596 14 5.86 0.0146 0.111 0.0399
5 211 653 15 6.18 0.0053 0.128 0.0445

Tab. 4.4: Network statistics of training with different δ values and distance limit for
node pairs.

32

4.3 Network Optimization

half compared to the previous heuristic while the gain in average valence is decreased
by only 10 %. Even for δ =5, the maximum error is only slightly higher than for δ=3
without limitation, which was the first value having a significant effect. Exemplary
results for δ=4 are shown in Fig. 4.12.

Fig. 4.12: Comparison of the ITM training without δ-bootstrapping (left) and with δ-
bootstrapping for δ=4 (right). The network density is significantly increased
and most of the smaller holes are closed.

4.3.2 Bootstrapping of Global Interconnectivity

While the δ-bootstrapping is able to close holes and to increase nodes’ local connec-
tivity, the problem of weakly connected clusters remains. Even if the distance between
clusters is small, they are only connected if the robot has been moved between them
during training. In many situations, this forces the path planner to traverse along
other clusters to reach an adjacent one, even though a direct movement should be
possible. Therefore, a second heuristic called Global Interconnectivity Bootstrapping
(GI-bootstrapping) searches for potential cluster pairs and tries to connect them. Most
of the time the mere distance between two postures is sufficient enough a criterion to
connect them. But since these connections will be part of a trajectory for the robot,
a transition between two postures is not always possible and a validation is necessary.
Situations where the physical distance for the endeffector is small, but the correspond-
ing postures are very different have been explained in Sect. 4.2 and an example for both
valid and invalid connections has been given in Fig. 4.5. This heuristic validates po-

33

4 Learning the Free Workspace in a Topological Map

tential connections using exactly the same method as described in Sect. 4.2 to prevent
such connections.

the heuristic operates as follows: For each newly created node r check if there are
potential nodes for a connection. A connection between two nodes has to fulfill three
criteria to be valid. Firstly, a Cartesian distance threshold must be fulfilled. A nearest
neighbor search selects all nodes that are within a sphere with the radius d around the
node r. This threshold value has been picked by evaluating several sets of training data.
The average distances between clusters for different users have been observed to find a
fitting value that connects adjacent clusters and prevents the creation of edges longer
than the size of obstacles in the environment. A value of 0.25 m included a sufficient
number of nodes to find beneficial connections and to exclude counterproductive ones.
This is of course very specific to the scenario. Secondly, from all selected nodes, those
that stand in close connection to r are removed. For this, every node that is contained
in the δ-neighborhood Nδ(r) is excluded, because this heuristic is the opposite of
δ-bootstrapping. The GI-bootstrapping tries to find global connections while the δ-
bootstrapping searches for possible local connections. At last and most importantly,
the aforementioned joint space criterion filters out invalid posture transitions. If all
three criteria for a pair of nodes are fulfilled, an input sample is generated between
them like in the δ-bootstrapping. Formulated as a sixth rule for the ITM, this heuristic
can be described as follows:

6. Sample additional data from global neighborhood for each newly created node r:

(i) Construct the δ-neighborhood Nδ(r) for δ > 1

(ii) Construct the neighborhood by distance Nd(r) with radius d:

Nd(r): {c | D(r, c) < d}.

(iii) Construct the set of potential node pairs: Np(r) = Nd(r) \ Nδ(r)

(iv) For each c ∈ Np(r): if Dθ(r, c) < dθmax, then train net with input stimulus
ξc:

ξc = wc + 1
2 · (wr − wc). (4.3)

Results for this heuristic are shown in Fig. 4.13. In picture (1) a number of valid
connections are marked. These connections create shortcuts at places where otherwise
a larger movement along the network is required. For example the training area at

34

4.4 Software Implementation

(1) (2)

Fig. 4.13: Results of the GI-bootstrapping for d =0.25 m and maxDθ=2.5 rad. (1)
shows a subsequent global search with compatible node pairs marked in
orange. In (2) the heuristic is integrated into the training phase, where
training samples are created between compatible nodes.

the very bottom is connected to the rest of the graph by only a single edge. The
new connections add the possibility to directly move to the training areas on either
side. Picture (2) shows the result when the heuristic is used during training to create
training samples. For each connection marked in (1) a sample is generated and edges
are created depending on the ITM edge creation rules.

4.4 Software Implementation

The presented algorithms have been implemented using C++ as programming lan-
guage. They are integrated as separate components into the FlexIRob framework
according to the information-driven design principles used in the project [7, 21]. The
implementation utilizes the Compliant Control Architecture (CCA) software frame-
work [22] to feature modularized components. CCA itself uses the Robotics Service
Bus middle ware [23] to allow interprocess and network communication. The imple-
mentation includes a graph learning component realizing the ITM algorithm explained
in this chapter and a visualization component for the graph, as well as components
introduced later in the thesis. The visualization uses the Open Robotics and Ani-
mation Virtual Environment [24] to visualize the robot and environment. In terms of
computation times, the implementation fulfills the real-time requirement without any

35

4 Learning the Free Workspace in a Topological Map

problems. Using an Intel R© Xeon R© E5530 Quadcore CPU with 2.40GHz computation
times below 1 ms on average for a single input sample are achieved. This has been
tested for the complete algorithm with both bootstrapping heuristics enabled (δ=4)
and confirmed for large networks of 300 and more nodes. Bearing in mind the position
update rate of 100 Hz – i.e., a position update every 10 ms – the algorithm is feasible
even for accelerated input streams ten times faster than real-time.

4.5 Discussion

In this chapter the network learning as basis for the data processing has been shown.
The implementation of the Instantaneous Topological Map has been explained along
with a description of the parameters and their mode of action.

The network creation has been extended with an edge validation mechanism required
for the intended scenario. This has been motivated by deficits that became apparent
in context of this thesis and a solution has been provided. To achieve this, the con-
figuration space is used to test whether a correct and safe transition between pairs of
nodes is feasible. The mechanism has been tested with ELM-produced joint angles and
training data joint angles. The comparison has shown that the latter outperforms the
former due to the generalization behavior of the ELM.

While applying the algorithm on real-world training data, several deficits in the re-
sulting network were discovered. In order to overcome these and improve the network,
the ITM algorithm has been extended with two heuristics. The first one uses local
information modeled implicitly to bootstrap the network, which increases the connec-
tivity between the nodes without generating large quantization errors. The effect of
the introduced parameter δ for neighborhood depth has been systematically investi-
gated and the typical behavior for big and small values has been shown along with
a guideline on how to choose a suitable value for δ. The GI-bootstrapping tackles
the problem of low interconnection between the clusters as a result of the kinesthetic
teaching approach used to generate the input data. For this, a global search, that
respects the desired online-training capability of the network, is used to find potential
connections, which are then tested using the joint angle criterion.

36

Chapter 5

Autonomous Task Generation and
Execution

The next step in this thesis is to find a trajectory of consecutive postures that allow to
safely move the robot from its initial position to a goal position. The previous chapter
described the generation of a network in the workspace. The nodes of this network
represent free locations and the edges specify allowed movements between the nodes. In
the context of path planning, this network will further be referred to as the navigation
graph. This chapter describes how a graph is used to create the actual path and to
control the robot. In general, this is done using a search algorithm to find a path that
minimizes some cost function. The method used here is known as the A* algorithm
and guarantees to find an optimal path. After a path has been found, postprocessing
is applied to generate a smooth trajectory of waypoints and an execution controller
controls the robot to move along the path.

5.1 Path Finding Using A*

The target of finding a shortest path in a graph has been a research target in the field
of artificial intelligence for decades. The A* algorithm is one of the fundamental and
most popular algorithms, which has been first introduced by Hart et al. [25] in 1968.
It is an extension of the very popular Dijkstra algorithm [26]. A* is a heuristic search
algorithm that guarantees to find the shortest path from the start node to the goal
node, if it exists. The scenario in this thesis is, that the robot is in the vicinity of a
node in the navigation graph and that a target location in the workspace is provided.
The goal is then to find a path connection these two locations.

The pseudo code of the A* algorithm is displayed in Alg. 5.1. It uses two sets: the
set closed contains all nodes that have already been visited and the set open contains
the nodes that are due to be explored. For each node two values are stored. The
g-score holds the cost to travel from start to a node along the best known path and
in parent the preceding node of this path is stored. For determining the next node to
expand a second score is calculated, the h-score. Whilst the g-score is the sum of all

37

5 Autonomous Task Generation and Execution

Algorithm 5.1 A* Algorithm
1: function A*(start,goal)
2: closed = {}; /*set of expanded nodes*/
3: open = {start}; /*set of open nodes*/
4: g(start) = 0; /*cost at start node*/
5: parent(start) = start;
6:
7: while (open 6= {}) do /*loop open set*/
8: current = open.pop();
9: if (current == goal) then

10: return current /*path found!*/
11: closed.insert(current);
12: open.remove(current);
13: for all neighbors n in N (current) do
14: if (n 6∈ closed) then
15: if (n 6∈ open) then
16: g(n) = ∞;
17: parent(n) = NULL;
18: update node(current,n);
19: return “no path found”

20: function update node(c,n) /*update cost for a neighbor*/
21: if (g(c) + cost(c,n) < g(n)) then
22: g(n) = g(c) + cost(c,n);
23: parent(n) = c;
24: if (n ∈ open) then
25: open.remove(n);
26: open.insert sorted(n,g(n)+h(n));

travel cost up to the current node, the h-score approximates the distance from a node
to the goal node. This is for example the linear distance, which is in this scenario the
distance between the node and goal according to the chosen metric D. The nodes in
open are then sorted in ascending order by their total distance from start to goal,
which is the sum of the g- and h-score of a node. With respect to the optimality of
A*, the estimation of the h-score has to be admissible, meaning that the costs to reach
the goal must never be overestimated. Using linear distance satisfies this condition.

At first, closed and open are initialized with the empty set and the set contain-
ing only start, respectively. The algorithm then processes the open set, iteratively
expanding the first node of the set and adding its neighbors to the open set. For

38

5.2 Path Smoothing

each neighbor that has not already been expanded (therefore not being an element of
closed) the g-score and parent values are updated if the previous g-score is higher
than the g-score of the current node plus the cost to reach the neighbor. The algo-
rithm finishes if either the current node becomes the goal node and the shortest path
is found or the open set is empty, which means that no path exists. The actual path is
then created by recursively following the parent nodes from goal until reaching start.
Fig. 5.1 illustrates an example exploration for the procedure of A* step by step.

(1) (2) (3)

(4) (5) (6)

Fig. 5.1: An example for an A* shortest path search: In orange depicted are the start
and goal nodes, green is the current node, grey are nodes in the closed set.
The blue nodes are from the open set with the number showing the processing
order according to the estimated path length.

5.2 Path Smoothing

The result of the A* algorithm is a sequence of nodes, which function as waypoints.
This sequence basically fulfills the requirement of connecting start and goal position.
However, according to the resolution of the graph a movement using only these points
may be rough and suboptimal. Such a path will generally not be in straight lines
and smooth curves, but in slight oscillations, as the example in Fig. 5.2 (1) depicts.

39

5 Autonomous Task Generation and Execution

To counteract this effect, the waypoints are interpolated and smoothing is applied.
This is done using cubic spline interpolation. In this method, points are interpolated
using piecewise continuous polynomials (the splines) of a low degree. In contrast,
in regular polynomial interpolation a single polynomial of high degree is used. The
advantage of spline interpolation is that the error can be kept small even though low
degree polynomials are used [27]. Furthermore, spline interpolation does not have
the disadvantage of strong oscillations, that interpolation with high-order polynomials
suffers from. The SciPy library – a collection of algorithms for scientific work in (the
programming language) Python [28] – is used to implement spline interpolation and
smoothing. The implementation of the library is described in [29]. The smoothing is
also a feature of the library and not part of this thesis. Basically, smoothing uses the
quadratic error of the interpolated points with respect to the input points for reducing
oscillations. Instead of having an error of zero, which means no smoothing, the sum
of the divergences for all points is limited to a threshold s. The actual value for s
has been determined empirically, so that only a small amount of smoothing is applied,
which is enough to remove the smaller oscillations caused by the graph structure. The
result for the example in Fig. 5.2 is shown on the right-hand side.

(1) (2)

Fig. 5.2: Interpolation and smoothing of the via points using cubic spline interpolation
of the path in the navigation graph found by A*.

40

5.3 Motion Generation

5.3 Motion Generation

With path search and interpolation completed, the final step left is the execution of
a path. The robot has to move from point to point along the edges. The FlexIRob
framework allows robot manipulation fairly easily using the existing position controller.
As explained in Sect. 2.3, the redundancy resolution is chosen using the ELM network.
With a joint configuration provided by the ELM for a given task space position, the
hierarchical controller moves the robot as close to the position as possible.

Using this position control, a simple task-space-level controller allows the robot to
follow a trajectory. The robot receives the first position and starts approaching it.
As soon as the distance between the current position and the target falls below a
threshold, the robot is commanded to the next point of the path. A high threshold
further “smoothes” the path, because the robot does not accurately approach the
targets. A value too small, on the other hand, causes stuttering in the movement,
because the position controller already stops the movement before the new position is
received. A good compromise between both effects is found for a threshold of about
8 cm, which allows sufficiently accurate approaches while still maintaining a continuous
movement. An example of this is shown in Fig. 5.3.

Fig. 5.3: Robot movement along a trajectory. The target path is depicted in red, while
the actual movement of the robot is shown in green.

41

5 Autonomous Task Generation and Execution

5.4 Software Implementation

The algorithms explained in this section have been implemented using the Python pro-
gramming language. Information exchange with the C++ graph learning component
is achieved through the Robotics Service Bus interface, as mentioned in Sect. 4.4. The
average computation time for a path has been investigated by generating paths for ran-
dom start and goal positions using a graph with approximately 200 nodes. The time
was measured starting in the moment when target and goal positions are received until
calculations are finished and the first movement command is send. The computations
therefore include finding of the nearest nodes for the positions, searching a path with
A* and interpolating the points with splines. This resulted in computation times of
about 70 ms on average for 1000 generated paths using the same hardware as described
in Sect. 4.4.

5.5 Discussion

This chapter explained the utilization of the ITM network to generate waypoint tra-
jectories for the robot. Using the A* algorithm, a shortest path with respect to the
Euclidean distance is calculated, which consists of a list of consecutive nodes. The
positions connected to these nodes are utilized to control the robot. To generate more
fluent trajectories, the points are interpolated and smoothed using spline interpolation.
Finally, the rudimentary execution controller is described, which has been used to test
trajectories on real robot hardware.

42

Chapter 6

User Experiments on Method
Applicability

The previous chapters demonstrated the mechanics and results of the path planning
method for simple test cases and constructed training data. This has proven the con-
cept as working and that the data-driven approach has been successfully implemented.
This chapter will evaluate the applicability of the method when deployed in experi-
ments with users. For this, at first the testing conditions and evaluation methods are
described and subsequently the gathered data is presented and interpreted. At first,
the ITM parameter emax is analyzed using the basic ITM algorithm. After that, the
bootstrapping heuristics are tested for effectiveness and the error they lead to.

6.1 Setup and Data Acquisition

The general evaluation consists of two scenarios, which are shown in Fig. 6.1. The first
one consists of two cube obstacles parallel to the robot and the second one of a single
obstacle that limits the movement to one side and above the robot. Data has been

(1) (2)

Fig. 6.1: Obstacle scenarios in the evaluation.

43

6 User Experiments on Method Applicability

recorded for three users with different knowledge about the particular robot system
and robotics in general. User A possesses no prior knowledge of robotics at all and used
the FlexIRob system for the first time. User B is actively involved in robotics research
and is associated with the FlexIRob development, but also had no prior knowledge
of this thesis. At last, User C is very knowledgeable about the kinesthetic teaching
environment and mechanics of the FlexIRob system as well as this thesis’ method.

During the training phase, all users are advised to train areas in the workspace
exhaustively. They stopped the training on their own as soon as they deemed it
sufficient to correctly move the robot at every location of the workspace. Fig. 6.2
conveys an impression of what a training data set looks like for each of the scenarios.

Fig. 6.2: Example training data set for each evaluation scenario. Left: Scenario 1 with
data from user B. Right: Scenario 2 with data from user C.

6.2 Influence of the Maximum Quantization Error

The first analyses are regarding the qualities of the basic ITM network depending on
parameter emax. Optimizations are completely disabled. For each test user (A, B, C)
and each scenario (1, 2) a number of networks are learned for different emax, from 0.06
to 0.20. This range has been chosen, because it covers a wide range of practical values.
If chosen below 0.06, strong overfitting occurs, whereas values bigger then 0.20 result
in equally strong underfitting (both effects have been explained in Sect. 4.1.1).

44

6.2 Influence of the Maximum Quantization Error

6.2.1 Nodes, Edges and Valence

In general, the number of nodes and edges created are in all cases not influenced by
the user behavior, but only by the value of emax. This is illustrated in Fig. 6.3 (left),
where the relative number of nodes is shown in relation to emax. The number of nodes
follows a negative exponential curve. That is, it is very high for small values and starts
to stagnate at larger values. The illustration for the number of edges progresses very
similarly and is omitted.

This shows the strong impact of emax on the number of nodes, as already mentioned
in Sect. 4.1.1. The result for small values is overfitting, because too many nodes with
few connections are created. On the other hand, a big value causes underfitting because
of the low node generation rate.

A good network for navigation has as many nodes as needed to appropriately repre-
sent the training data, but not as many as to cause overfitting. An indicator for both
overfitting and underfitting is a low average valence in the network. In the former case
the nodes follow the input stimulus and are too far apart to create edges to adjacent
movements. In the latter case there are simply not enough neighboring nodes created
in a training. To observe this, Fig. 6.3 (right) illustrates the relation between emax and
the average valence. Even though the differences are not large, the general trend of the
valence confirms the assumption, that low and high values for emax are not beneficial
for overall connectivity. While the maximum valences are found for emax values around
0.10, for smaller and larger values the valences tend to decrease.

0.06 0.08 0.10 0.12 0.14 0.16 0.18 0.20
e_max

0

100

200

300

400

500

600

#
 n

od
es

A1
A2
B1
B2
C1
C2
Ø
σ

0.06 0.08 0.10 0.12 0.14 0.16 0.18 0.20
e_max

2.8

3.0

3.2

3.4

3.6

3.8

4.0

va
le

nc
e

A1
A2
B1
B2
C1
C2
Ø
σ

Fig. 6.3: Influence of emax. Left: Number of nodes. Right: Average valence, the
standard deviation is not shown due to the reduced value range.

45

6 User Experiments on Method Applicability

6.2.2 Training Data Representation

A deeper analysis of the over- and underfitting behavior is provided by observing, how
well the training data is represented by the network. That is, the effective quantization
error. The following measurement is used:

Quantization Error: The distance of a training sample t to its nearest node n:

Et = arg min
k
‖tj − nk‖ (6.1)

Fig. 6.4 (left) illustrates a graph (emax=0.12) as well as the training data used to
generate it. Each node occupies the location of a training sample, however, most of the
training samples are not represented by a node. The higher the distances of training
samples to their nearest nodes are, the more trained areas are not represented by the
graph. For training samples outside of the convex hull of the graph this implies, that
they are counted as unknown area. The diagram on the right depicts the results of the
error calculations for all combinations of users and scenarios. It clearly shows a linear
relation. Therefore, no threshold exists at which a significant change occurs. If a small
effective error is desired, then emax has to be chosen accordingly.

0.06 0.08 0.10 0.12 0.14 0.16 0.18 0.20 0.22 0.24
e_max

0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

av
er

ag
e

qu
an

tiz
at

io
n

er
ro

r E
t

Ø A1
Ø A2
Ø B1
Ø B2
Ø C1
Ø C2
Ø all
σ all

Fig. 6.4: Quantization error for training samples. Left: Network with corresponding
training data (red) for emax=0.12. Right: Effective Quantization error in
relation to emax. The graphic shows the average error for all training samples
for networks learned with different emax values.

46

6.2 Influence of the Maximum Quantization Error

6.2.3 Path Lengths and Curvature

To evaluate the influence of the numbers of nodes on actual paths – for each user in
each scenario and for each emax value – a set of paths is created and analyzed. The
paths are generated as follows:

• The bounding box of the training data is computed.

• Horizontal paths are created for two directions: along the x-axis (from negative
to positive x values) as well as in y-direction. The intention is to make use of as
much nodes as possible. Paths in z-direction are disregarded, because in most
cases the training data is located on a single plane.

• A grid of 10 × 10 test points is computed on each corresponding plane of the
bounding box.

• For each pairing of a point on the positive boundary with a point on the negative
boundary a path is created, see Fig. 6.5.

Fig. 6.5: Excerpt of paths created during evaluation of a single user-scenario combina-
tion. Both pictures depict the paths created for a single goal point, but with
different start points. The left picture shows the paths from points on the −x
plane to a point on the +x plane. The picture on the right-hand side shows
the same for y values.

47

6 User Experiments on Method Applicability

• The connections from the boundary points to the first and last point of a path
are not interpolated. This is because the same behavior is used in real-world
navigation. Outside of the area the network was trained in, no information
is available. If a target or start point lies outside, the programmed behavior
is to move up to the network on the shortest path available. Therefore, all
movement outside of the network follows a straight line, because interpolation
causes additional movement in unknown area.

• Each permutation is tested with 100 · 100 · 2 = 20000 paths.

The resulting paths are analyzed regarding the following two properties:

Path Lengths: How long is an eventual path calculated by A* after smoothing and
interpolation:

Lp = ΣN−1
i=0 ‖pi+1 − pi‖ (6.2)

Path Curvature: The amount of bending in a path. This is measured using a curvature
index proposed by Petreska & Billard [30]. The curvature index is defined as the
ratio between the total arc length of a path and the distance between the start
and end point. The distance metric is the Euclidean distance:

Cp = Lp
‖pN − p0‖

(6.3)

This value provides a rough estimation about the overall shape of a path. For
example a curvature index of 1.0 indicates a straight path, whereas π

2 corresponds
to a semicircular path.

The overall result of the path length and curvature analysis is visualized in Fig. 6.6.
The diagram shows the normalized average path length and curvature for all evalua-
tions. Separate statistics for length and curvature of the different scenario and user
combinations can be found in Appendix A.2 and A.3.

As can be seen from Eq. (6.3), the curvature is strongly related to the path length.
The lines shown in the diagram confirm this relation, because both follow nearly the
same progression. This is explained by the creation of start and end points using an
uniform grid. The distances between start and end points vary only little. Thus, the
curvatures are approximately the length values scaled by some factor. The progression
of the lines shows that the average path length and the average path curvature are

48

6.2 Influence of the Maximum Quantization Error

0.06 0.08 0.10 0.12 0.14 0.16 0.18 0.20 0.22
e_max

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

le
ng

th
 L

p
/c

ur
va

tu
re

 C
p

Ø Lp
σ Lp
Ø Cp
σ Cp

Fig. 6.6: Overall path length and path curvature as function of emax.

highest for emax=0.06. They decrease by up to 11 % (in length) and 9 % (in curvature)
at emax=0.12, from which on they start to flatten out. Furthermore, the standard
deviation also follows a similar progression up to emax=0.12.

This behavior can be interpreted as follows: the paths lengths and curvatures are
higher for smaller values for two reasons. First, overfitting causes paths to contain
more detours, because of missing connections. Second, the lower emax is, the more
waypoints (=nodes) are respected as constraints in the interpolation. The algorithm
tries to fit a curve to these points as good as possible with respect to smoothing.
This inclusion of more nodes for the same path length cause small oscillations. An
illustration of this is given in Fig. 6.7. In general, this behavior can be interpreted as
overfitting in the output function of the path generation. The reason for this is the
chosen method. The path is generated using interpolation with slight smoothing. An
approximation method instead of an interpolation is required to fully compensate for
this erratic behavior. However, this is avoided for a reason. First, this further raises
the complexity, because an appropriate approximation method has to be found and
configured. The approximation may produce greater errors with respect to proximity
to the training data than interpolation. Furthermore, using approximation to counter
a misconfiguration of the ITM is only treating the symptoms of the problem. The
cure is to resolve the problem at the root by finding a better suiting emax value for
interpolation.

49

6 User Experiments on Method Applicability

Fig. 6.7: Example for path oscillations caused by interpolation. The blue and green
points depict nodes of two graphs with big and small emax values, the lines
are the respective interpolations.

In contrast to the disadvantages of overfitting due to small values for emax, large
values cause the opposite effect: adjacent training areas and movements between these
may not create nodes and be connected, because they are too close to each other.
In some tests of the evaluation, this even caused the average paths lengths to start
increasing again (see Fig. A3).

In conclusion, the best fitting value for emax seems to be 0.12. It provides a good bal-
ance between overfitting and underfitting in the network. Higher values do not impair
the length and curvature, but provoke undesired effects. The effective quantization
error increases linearly with emax, for which a small value is desired. Therefore, the
evaluations in the next chapters will use emax=0.12 for all test cases.

6.3 Evaluation of the Bootstrapping Heuristics

The evaluation of the heuristics will be in the following manner: at first the effectiveness
of the δ-bootstrapping is examined. This follows the same procedure as before. The
heuristic is used with δ values from 2 to 5 and a constant emax of 0.12 to train four
networks for each combination of user and scenario. The results are then compared
with the basic network without optimization and each other. Afterwards, the GI-
bootstrapping is used in addition to the δ-bootstrapping. A separate observation of
the GI-bootstrapping is omitted, because it is not intended for standalone use.

50

6.3 Evaluation of the Bootstrapping Heuristics

6.3.1 δ-Bootstrapping

For each learned network the same set of paths is generated and examined for path
length and curvature. Fig. 6.8 illustrates the acquired evaluation data. The first two
groups display the general network properties. Noticeable is the absent change in
number of nodes. Compared to the short analysis in Sect. 4.3.1, this evaluation shows
nearly no increase in the number of nodes. This can be explained by the following:
The general network topology stays similar – but of course with fewer nodes. The
distance required for a sample to trigger the creation of a new node is increased by
50 % (from emax=0.08 to 0.12). However, the samples are created in the middle of the
virtual edges between pairs of nodes. As it seems, the topology of the network does
not allow these points to exceed a distance of 0.12 to any node. Though the number
of nodes does not increase, the heuristic still has a significant effect on the number
of edges. The second group in Fig. 6.8 shows the average valence. Even for δ=2 the
valence increases by nearly 20 % compared to the reference network. A δ value of 3
produces an increase of 30 %. Only starting from δ=4 the valence increase is not as
high as from 0 to 2 and from 2 to 3. As a result, the heuristic effectively counters
the problem of the ITM creating only one edge per sample even when the rules would
permit further edges. In sparse data sets, these edges are not created due to the low
number of samples per region. This heuristic produces the samples that trigger the
creation of such edges. The evaluation of the error produced by the heuristic at this
point is pointless, because there are almost no new nodes to observe.

The latter two groups in Fig. 6.8 display the path lengths and curvature. Both show
a similar progress. They slightly drop with increasing δ by a maximum of 4 % and 3 %,

nodes Ø ν Lp Cp
60%

100% 121 121 123 124 124

3.57

4.26

4.65 4.73 4.76 3.09 3.10
3.03 3.01 2.97

4.14 4.14 4.08 4.06 4.03

δ=0

δ=2

δ=3

δ=4

δ=5

Fig. 6.8: Evaluation data for the δ-bootstrapping. All data displayed is the average
over all evaluations.

51

6 User Experiments on Method Applicability

respectively. As a result, even though the connectivity is significantly increased, the
impact on path length and curvature is small but noticeable. In general, an appropriate
choice for δ seems to be 4. The positive influence up to this value is noticeable, while
difference to δ=5 is small. Bearing in mind, that the computation cost increases
exponentially with δ, choosing a higher value is not reasonable.

6.3.2 δ- and GI-bootstrapping

Fig. 6.9 illustrates the results, when the GI-bootstrapping is used in addition to the
δ-bootstrapping. As to be expected, the number of nodes and the average valence are
not noticeably influenced. However, only by creating very few edges in the network,
the heuristic is able to further decrease the path length and curvature. This validates
the idea of the heuristic to improve the path generation by finding shortcuts in the
network.

nodes Ø ν Lp Cp
60%

100%
121
+0.0

121
+0.0

124
+0.5

124
+0.7

124
+0.7

3.57
+0.00

4.26
+0.01

4.67
+0.02

4.75
+0.02

4.78
+0.02

3.09
+0.003.01

-0.09 2.96
-0.07 2.93

-0.08
2.92
-0.05

4.14
+0.004.07

-0.08 4.01
-0.07

3.99
-0.07

3.98
-0.05

δ=0

δ=2

δ=3

δ=4

δ=5

Fig. 6.9: Evaluation data for the δ-bootstrapping and GI-bootstrapping. Pale bars cor-
respond to δ-bootstrapping only. The bottom numbers display the difference
to the corresponding network without GI-bootstrapping.

6.4 Discussion

This chapter has provided a thorough examination of the implemented methods and
algorithms on the basis of recorded real-world user data. The used testbed has been
described to provide an overview of the acquired data. At first the evaluation was
concentrated on the basic ITM algorithm, for which a fitting value for emax had to
be found. The general impact of the parameter on the resulting network has been
demonstrated by observing the number of nodes and the average valence. The number
of nodes decreases exponentially with increasing emax, whilst the average valence peaks

52

6.4 Discussion

at around emax=0.10 and decreases for smaller as well as larger values of emax. The
quality of the training data representation decreases linearly with increasing emax.
Additionally the fluctuation for single training data samples increases along with the
error. The conclusion regarding these network qualities is to choose a rather smaller
value for emax to keep the quantization error and underfitting small.

After that, the networks have been evaluated by generating a large number of paths
for every possible combination of recorded training data set and emax value. The
resulting path lengths and curvatures were calculated and compared. Both properties
decrease for values up to emax=0.12 . Higher values do not have a positive effect and
are therefore not recommended, bearing in mind that the quantization error increases
linearly. In consequence, emax=0.12 is considered as optimal according to the acquired
training data.

At last, the heuristics added to the ITM algorithm have been examined by creating
networks and paths with and without the heuristics.

Compared to the analysis in Chapter 4, a bigger emax value reduces the impact
of the δ-bootstrapping, because almost no new nodes are created. The heuristic still
triggers the creation of new edges, boosting the valence by up to 20 %. The impact
on the length and curvature of actual paths is lower, though. They decrease only by
3–4 %. The evaluation of the GI-bootstrapping has shown, that it is able to noticeably
influence the graph generation by only adding a few edges as shortcuts. Together
both heuristics decrease the path length and curvature by up to 6 %. On one hand,
these relatively small influence of the heuristics (despite the much higher increase in
connectivity) suggests that there is not much potential to improve the path qualities.
On the other hand, it also shows, that networks generated with the basic ITM algorithm
are already very suitable for generating paths. However, one has to bear in mind, that
the evaluations of the path qualities are only theoretically, since the paths have not
been used on the actual robot or in the simulation. Such an evaluation is much more
time-intensive, but might provide further insights.

53

Chapter 7

Navigation in Advanced Spaces:
Orientation Learning

The previous chapters described the learning of the ITM for the three-dimensional
Cartesian space. That is, the ITM learns only the translation of the endeffector po-
sition, but not its orientation. The orientation of the endeffector during navigation is
then implicitly defined in the redundancy resolution. To test out the general scalability
of this thesis’ approach, this chapter describes as a proof of concept the modification
of the ITM algorithm to allow learning the combination of translation and orientation
at the same time.

7.1 Problem Statement

The problem introduced by this task is to combine two inhomogeneous spaces into
one single input space. The construction of the ITM fundamentally depends on the
nearest neighbor search in the input space. If two input spaces are simply combined by
concatenating the feature vectors to a 3+3D vector, the nearest neighbor search weights
one of them more important than the other, depending on the ratio of the value ranges.
Translation coordinates are specified in meters, where the value range is approximately
[-1,1]. On the other hand, the range for orientation angles in radian is [-2π,2π] – more
than six times larger. Furthermore, the input spaces have different importance factors.
If the orientation receives too much weight, changes in the translation have no impact
and only orientation changes trigger the creation of new nodes. The same applies vice
versa. In consequence, a good compromise is necessary between both spaces.

7.2 Algorithm Modification

The first aspect is the representation of the orientation. Orientation in this context
can be described as a set of parameters, that define the angular position of the en-
deffector relative to another reference position. There are multiple ways to describe
this relation. Some of them are easier to interpret for humans, like Euler angles,

55

7 Navigation in Advanced Spaces: Orientation Learning

where an orientation is specified by rotation angles around the coordinate system axes.
This is easy to visualize, but incurs certain disadvantages, like multiple ambiguities
in expressing single orientations or the gimbal lock. The gimbal lock is a geometric
problem, where after an unfavorable combination of rotations two axes are aligned. In
consequence, both rotate around the same axis and a degree of freedom is lost [31].
A commonly used way to avoid these limitations is the representation of orientations
using quaternions. They are an extension of complex numbers, that allow to describe
three-dimensional geometrical problem statements with complex algebra. A detailed
description of quaternions is omitted at this point and can be found in [32, 33]. The
main reason for using quaternions in this context is the need for an unambiguous and
non-redundant representation. The goal is to learn prototypes in the orientation space.
If input samples with the same orientation were to occur during training the ITM can-
not recognize them as equal if their representation differs from one another and two
distinct nodes would be created. Hence, the nearest neighbor search must be able to
identify similar orientations. Quaternions provide an easy way fulfill this requirement.
In the quaternion space, each orientation has exactly two representations, q and −q.
The following paragraph shows a metric, that measures the closeness of two quater-
nions independently of the possible two representations, so that it is not required to
consider them.

The problem that needs to be solved is to combine the translation and orientation
spaces to allow the ITM to learn both at the same time. The first step in the ITM
training is the nearest neighbor search. For this purpose, a metric is required that
provides a single distance value, so that nodes can be sorted according to their distance
to a stimulus. Having two separate distance values for each space would not allow to
sort them. The distance metric is adapted in a way that allows to specify a weighting
between the translation and orientation spaces. The following metric combines them
using a weighting factor ω:

DTO = (1− ω) ·DT + ω ·DO (7.1)

This allows to easily mediate the weighting of translation and orientation. For ω=0
orientation is completely disregarded and for ω=1 the converse is true. The metric
used in the translation space DT remains the Euclidean distance. To measure the
closeness of two orientations q1 and q2, the angle of rotation required to get from one

56

7.3 Estimation of the Weighting Parameter

orientation to the other is computed [33]:

DO = cos−1(2 · 〈q1, q2〉2 − 1) (7.2)

where 〈·, ·〉 is the inner product. If imagining the quaternions as points on a unit
sphere, this formula gives the angle between the lines connecting the origin with the
respective points. The ambiguity of quaternions is resolved by taking the square of the
inner product.

The second step, the reference vector adaptation, does not need to be changed,
because it is omitted anyway. The Thales sphere criterion in the edge adaptation step
can be employed for a seven-dimensional vector with translation and orientation values
as well, so that no adaptation is required.

In the fourth step, the emax becomes important for the node adaptation. Since
the edge length is no longer only the translational distance, but also consists of an
orientation part. It may be possible to split this mechanism to use two separate
thresholds eTmax and eOmax, but this complicates the decision of when to create a new
node. One has to decide if a new node is created if either both thresholds are exceeded
or only one of them. The first case is not applicable, because situations can occur, where
one of them is greatly exceeded, while the other may never be exceeded. Consequently,
no nodes would be created. If only one of them needs to be exceeded, node creation
may become unbalanced. If there is much movement in only one of the spaces, the
number of nodes shall be defined as normal. But if movement in both spaces is close
to the threshold before either of them is exceeded, then only one node is created for
the double amount of movement than in the normal case. Finally, choosing to have
a weighting between the emax thresholds amounts to weighting the distances. As a
result, the approach that has been chosen is to use only one threshold, which limits
the combined distance.

7.3 Estimation of the Weighting Parameter

The weighting parameter ω in Eq. (7.1) was determined empirically. For this purpose,
a special training session was recorded, as depicted in Fig. 7.1. The training proceeded
as follows:

1. Start on the right-hand side with endeffector oriented downwards (1st training
area)

57

7 Navigation in Advanced Spaces: Orientation Learning

2. Movement to the center (2nd training area)

3. Movement to the left-hand side (3rd training area)

4. Orientation change to leftwards, same endeffector position (4th training area)

5. Orientation change to upwards, same endeffector position (5th training area)

6. Movement to the center (6th training area)

7. Movement to the right-hand side (7th training area)

(1)
(2)

(3)

(4)

(5) (6)
(7)

Fig. 7.1: Training areas of the orientation learning session.

The intention of this training session is to train two orientations at the first training
area without changing the orientation at this area. The task is then to find a path
connecting the downwards position with the upwards position. If the ITM correctly
learns this orientation, this path has to be indirect by first traversing to the left side,
changing orientation and then moving back.

For empirical determination of the weighting and an according new value for emax the
following two-step strategy is deployed: the target is to find emax and ω so that the
translation space is influenced as little as possible (w.r.t. training without orienta-
tion) and that the weighting of the orientation space allows to successfully learn the
orientation in addition to the translation.

58

7.3 Estimation of the Weighting Parameter

There are seven training areas of which theoretically only three are respected when
training with ω=0. This is because the translations are redundant. The result is a
network with n nodes. Assuming that by including orientations all seven areas become
distinct, the number of nodes shall increase to 7

3n, because nodes are created in seven
areas instead of three. Therefore, at first an appropriate ω is determined for which the
number of nodes roughly meets this assumption. But since the error threshold emax

is shared for both translation and orientation, the edge length in translation space LT
will become unavoidably shorter. To counter this, the second step is to increased emax
until LT remains approximately the same as before. This way, the translation space
receives the same importance as before and the orientation is included with enough
weight to allow learning of different orientations at same training areas. The resulting
values produce a network, in which fewer nodes are created relative to the size of the
space, because emax is higher after the number of nodes has been doubled by increasing
ω. However this is tolerated in favor of the importance of the consistency in translation
space. The resulting network is tested by calculating the aforementioned task with the
orientation switch at the right training area.

In Tab. 7.1 the network statistics for determining the value is shown. The top row
shows the reference network without orientation. For ω values smaller than 0.05 the
network does not correctly learn the translation space. Due to the influence of the
orientation, edges are removed when the robot moves back from left to right, but ω
is still too low to create new nodes (Fig. 7.2, top). This is explained easily: an edge
between two nodes is created if one of them does not already have a connection to
another node which covers that particular area (Thales criterion). Other connections
are removed, if the new connection takes over, because it is better fitting (to a new
stimulus). This is strongly related to the distance between nodes. When the orientation

emax ω Nodes Edges Ø LT Ø LO Ø LTO
0.08 0.00 26 49 0.0944 0.643 0.0944
0.08 0.03 44 74 0.0873 0.432 0.0976
0.08 0.05 48 86 0.0878 0.317 0.0993
0.08 0.07 55 93 0.0845 0.286 0.0986
0.08 0.10 57 100 0.0810 0.260 0.0989
0.08 0.15 63 107 0.0799 0.211 0.0995
0.08 0.20 74 122 0.0755 0.201 0.1014
0.094 0.10 46 76 0.0934 0.29 0.1137

Tab. 7.1: Statistical data for the orientation learning results.

59

7 Navigation in Advanced Spaces: Orientation Learning

is included at this point, but the weight is too low, then no new nodes are created.
But it is still possible that edges are removed, because neighboring nodes replace
them. The orientation is included in the inner product of the Thales criterion and
indirectly increases the importance of the translation. One can imagine that the area
of a seven-dimensional Thales sphere between two nodes covers more nodes, than the
three-dimensional sphere does and therefore more edges are removed. The resulting
holes are only closed, if new nodes are created and the Thales spheres become smaller.
The result are multiple independent networks.

For 0.05 ≤ ω ≤ 0.15 the network is able to create nodes evoked by orientation
changes, as the table shows that the number of nodes is increased compared to the first
line. For values of 0.20 and above the network starts overemphasizing the orientation
space. By observing the network creation process, it is apparent that edges are created
for similar orientations, i.e., irrespective of the nodes’ translation (Fig. 7.2, bottom).
Edges are created even between node pairs with one node on the left side and the
other on the right side. For ω=0.1 the number of nodes is approximately 7

3 times
higher than for ω=0.0 and with emax=0.094 the new edge length corresponds to the
translation-only case.

(1)

(2)

Fig. 7.2: Incorrect learning of orientation and translation spaces. Top: Orientation is
weighted very low and causes removal of correct edges. Bottom: Orientation is
too emphasized and edges are mostly created based on orientation similarities.

60

7.4 Discussion

Finally, a path is generated similar to the description in Chapter 5. Fig. 7.3 depicts
the start and goal position and the resulting path. The path proceeds as desired first
to left-hand side and then back, instead of directly changing the orientation. Since this
is only a proof of concept, the orientations are not interpolated between the nodes of
the path, as opposed to the translations. The newly generated points just reuse the
orientation of the next original target point. However, quaternions allow for a fairly
easy interpolation and several popular approaches exist, for example Spherical Linear
Quaternion Interpolation (SLERP, [34]).

Fig. 7.3: Generated path for position with same translation and opposing orientation.
The start position is orange and the goal position is green. The path (red)
traverses over to the other side and back to change the orientation of the
endeffector.

7.4 Discussion

This chapter proved the general scalability of the path planning approach using an ITM
to learn the free workspace. The method has been extended to learn a navigation graph
in a feature space that combines both translation and orientation of the endeffector.
An adapted distance metric allows to specify the weighting between both spaces for
the fundamental nearest neighbor searches. Using a simple test case, it was shown that
navigating between different orientations while respecting the translation is possible.

61

Chapter 8

Haptic User Feedback

After the implementation of the method had been finished and tested on the real-world
robot, the intended goal of this thesis had been proven to be functional and to fulfill
the overall goal. However, during experiments with the implementation and the user
study another aspect was discovered, that may be very beneficial for the applicability
of the method. Users showed a strong need for feedback about the current state of
their training. During recording, the only available feedback was a visualization of the
emerging network on a computer monitor. Users tended to maintain frequent visual
contact with the monitor to be aware of their trained areas and to plan their next
motions. This problem has also been discovered in a user study of the FlexIRob system
[4]. Therefore, feedback during training is identified as an important requirement to
improve usability. The aim of the feedback is to let users know if the current movements
of the robot are redundant or if they explore new areas. Further, it is desirable to guide
users towards an unexplored area if they are moving within explored areas.

However, using visual feedback has shown to have a major drawback: the visual-
ization projects the three-dimensional graph onto the two-dimensional surface of the
computer monitor. This lacks the ability to sufficiently represent the geometry of the
graph and the visualization has to be constantly rotated to focus the active region. Fur-
thermore, the users attention was directed away from the robot, which is undesireable
in a human-robot coworker scenario with respect to safety and didactics.

An optimal solution to this problem may be to use methods of Augmented Reality
to directly visualize the graph in the workspace and therefore in the users’ current
field of view. However, this approach requires the respective equipment. Furthermore,
Augmented Reality is also a very active field of research which requires profound knowl-
edge for appropriate results [35]. The setup of this thesis allows for another way of
providing feedback. Research in Augmented Reality often encounters the problem of
lacking haptic feedback for projections. In current research, this deficit is compensated
by using haptic feedback devices to allows users to feel virtual objects [36]. The robot
itself together with the kinesthetic teaching interface provides a directly usable tool for
providing haptic feedback. This chapter demonstrates how this opportunity has been
used to implement a rudimentary haptic feedback component. The objective was to

63

8 Haptic User Feedback

test if such an approach can provide useful feedback and if further research into this
type of technology is advisable.

8.1 Impedance-based Feedback

The haptic feedback is realized by utilizing two components of the FlexIRob software
and the robot: the joint impedance control of the robot [37] and the gravity compen-
sation mode [7] of the system. The impedance control works in a way that it receives
position commands and – if no external forces act on the robot – holds the current
positions. If external forces do occur, for example because the user pushes against a
joint, it behaves in a spring-like manner. The more force the user applies, the larger
the discrepancy between actual position and set position, the stronger is the force of
the robot to retake the set position of the command. This impedance is specified by
two parameters, stiffness and damping. The latter can be interpreted as the spring
constant and the former as the resistance offered by the robot in reaction to the ap-
plied force. The gravity compensation mode works by updating the position command
in a feedback loop with the current actual position of the robot. Depending on the
intensity of stiffness and damping the robot can be moved easily or the stiffness can
be increased up to a point where no movement is possible at all (w.r.t. the maximum
force of the robot).

These two components are combined to achieve the desired haptic feedback, which
works the following way: the goal is to tell the users, when they are moving the robot
inside or outside of the graph during the free movement mode. This is accomplished
by increasing the stiffness of the impedance control inversely proportional to the dis-
tance between the endeffector position and the second nearest node of the graph (see
Fig. 8.1). The graph is constantly growing, as the robot is moved through unexplored
areas. Hence, one node is always within the sphere with a radius of emax around the
endeffector. The presence of this node does not allow to make assumptions, if the
robot is in the graph or moves towards it, thus the second nearest node is used as a
beacon. The stiffness is increased as soon as the distance to the second node is smaller
then emax. This indicates, that the endeffector has been moved towards the graph. If
the users move the robot even nearer to the second node, the stiffness increases further
and they are informed, that they move the robot towards explored space. However,
the stiffness is never increased to a point, that users cannot move the robot or struggle
with it. The stiffness calculation is shown in Alg. 8.2.

64

8.1 Impedance-based Feedback

emax

Fig. 8.1: Distance between endeffector and graph. Depicted in red is the sphere around
the endeffector with radius emax and in green the distance to the second
nearest node.

On top of that, a second modification is added to support the user. If the robot
is inside of the graph and if the user stops holding the robot, it shall move out of
the graph on its own. This behavior is realized in a simplified manner: the robot only
moves upwards in z-direction and towards zero x and y coordinates, that is towards the
z-axis. By this the robot is able to avoid the graph in two directions. However, it does
not guarantee to move outside of the graph, e.g. if the area around the z-axis is fully
explored. This movement is easily accomplished my moving only those joints, whose
rotation axis is not the z-axis. Specifically, these are the second, fourth and sixth joint.
As long as the endeffector distance to the second nodes is lower than emax, a small
offset is added to the position update for the gravitation compensation component of
these joints. The pseudo code for this behavior is found in Alg. 8.3

This implementation realizes a simple graph avoidance, but with limited useful-

Algorithm 8.2 Haptic Feedback Stiffness
1: defaultStiffness = 20; /*default stiffness value*/
2: maximumStiffness = 150; /*maximum stiffness value*/

3: function calc stiffness(pos)
4: s = get secondnearest node(pos); /*nearest node to pos*/
5: d s = D(pos,s) /*distance to s*/
6: if (d s < emax) then
7: factor = 1 − (d s / emax);
8: else
9: factor = 0

10: return defaultStiffness + factor · (maxStiffness − defaultStiffness);

65

8 Haptic User Feedback

Algorithm 8.3 Haptic Feedback Perturbation
1: maximumPerturbation = 0.05; /*maximum perturbation value*/

2: function add perturbation(pos)
3: s = get secondnearest node(pos); /*nearest node to pos*/
4: d s = D(pos,s) /*distance to s*/
5: if (d s < emax) then
6: factor = 1 − (d s / emax);
7: else
8: factor = 0
9: q = get position command(); /*get joint position as float[7]*/

10: if (q[2] > 0) then
11: q[2] = q[2] − factor · maximumPerturbation
12: else
13: q[2] = q[2] + factor · maximumPerturbation
14: if (q[4] > 0) then
15: /*directions of joints are different*/
16: q[4] = q[4] + factor · maximumPerturbation
17: else
18: q[4] = q[4] − factor · maximumPerturbation
19: if (q[6] > 0) then
20: q[6] = q[6] + factor · maximumPerturbation
21: else
22: q[6] = q[6] − factor · maximumPerturbation
23: set position command(q)

ness. In a more correct implementation the robot should not move upwards, but in a
situation-dependent direction to move out of the graph. This is a far more complex
approach, because further information is required to move the robot in a dynamic di-
rection, e.g. an inverse kinematic. Therefore, only a simple approach is used for this
haptic feedback proof of concept.

8.2 User Study

To find out if this implementation is useful and if haptic feedback in general is accepted,
two users have been consulted to test the training and report back their opinion. While
one of the users only trained the robot without a specific task, the other user was given
a direct order on how to proceed. The user was asked to train five areas at the same
height, which are positioned approximately in a semi-circle (one in front of the robot

66

8.2 User Study

and two at each side). The user trained this two times: The first run without the
haptic feedback and second one with feedback enabled. In the second run with haptic
feedback, the user was advised to try using the feedback to not move through already
trained areas. The results are depicted in Fig. 8.2. A direct comparison between the
two runs is not meaningful, because the task was changed in the second run. Even
though, a comparison of the two graphs shows, that the user was able to train a more
voluminous graph. Especially the connections between the clusters have increased. As
mentioned earlier, users tend to move along the same route when moving the robot
back to a training area, which they already have trained. Here, the user actively tried
to avoid this. Of course, this is also possible by only telling users to do so. But using
haptic feedback for this, a user does not need to keep track of his movements or rely
solely on the 2D visualization.

The overall feedback of the two users was positive towards receiving haptic feedback
through the robot. They liked the idea, because it seemed intuitive. However, both
showed irritation at some point. On one hand, this might be due to the very rudi-
mentary implementation. On the other hand, introducing haptic feedback to improve
the ITM training during ELM training combines two different sub-tasks. Up to this
point the ITM generation was solely a “byproduct” of the ELM training. By actively
tapping into the ELM training the unique goal of the ELM training vanishes.

In conclusion, haptic feedback in general seems to be useful and well accepted by
users. However, the concrete way of integrating it into the ELM training might not
be not optimal and the concept requires additional thought. The important aspect is
to find a way in which ELM and ITM training can be merged effectively into a single
training procedure. This is not a trivial task and requires more research.

Training Areas Without Feedback With Feedback

Fig. 8.2: Evaluation with a user to test the haptic feedback. The left picture illustrates
the “task” given to the user. The other two pictures show the resulting graph
for the runs without and with feedback.

67

Chapter 9

Conclusion

The purpose of this thesis was to extend the FlexIRob system with an autonomous
path planning component. The premise for this was to go without explicit modeling
of the robot and environments in a simulation. The method was supposed to utilize
the kinesthetic teaching interface of the system to accomplish this goal. After moti-
vating the need for this type of path planning the Instantaneous Topological Map was
introduced in Chapter 4, which embodies the main aspect of the component. The ITM
is used to represent the information about the environment obtained from kinesthetic
teaching and therefore addresses goal (I) of Sect. 1.2. Sect. 4.2 showed how the algo-
rithm was extended to ensure the correctness of the ITM in context of the redundant
robot system. By utilizing configuration space information the system validates edges
in terms of feasibility for being performed by the real robot before adding them to the
navigation graph. It has been shown that this approach produces reliable results when
correct input data in the configuration space is present, thereby fulfilling goal (II).
Sect. 4.3 introduced further extensions to the algorithms which bootstrap the input
data to improve the shape of the navigation graph.

The goals (III) and (IV) can be considered as the second major part of this thesis’
work and are addressed in Chapter 5. It has been shown that a specific tasks is easily
solved once a valid navigation graph has been constructed. The graph is processed
to connect arbitrary start and goal positions through a list of nodes and edges. Af-
terwards, the path in the graph is transformed into smooth movement commands for
the robot. The software implementation satisfies the goal of real-time online learning
and processing. The learning of the graph is feasible even for accelerated input data
streams of more than ten times real-time. Computation times for path search and mo-
tion generation can be considered as virtually real-time with delays less than one tenth
of a second on average between receiving start and goal inputs and the first movement
of the robot. In conclusion, the target of the thesis has been successfully accomplished
and it has been proven that path planning for a redundant robot manipulator using
sparse demonstration data is feasible.

The implementation has been tested in a small user study with participants of differ-
ent expertise in robotics and knowledge of the system. The evaluation aimed towards

69

9 Conclusion

finding suitable parameters for all parts of the method. Each parameter has been
systematically investigated and its influence has been shown. On this basis a choice
for each parameter based on the gathered user data has been presented. Afterwards,
chapters 7 and 8 investigated further aspects of such a data-driven path planning ap-
proach. In Chapter 7 the ITM algorithm has been adapted to an higher-dimensional
navigation space. It has been proven that the algorithm is scalable and allows for
operation in spaces other than the three-dimensional Cartesian space. Finally, Chap-
ter 8 evaluated the idea of giving haptic feedback about the training status to the user.
A basic approach to this showed promising results, though there is much more effort
required for a productive application of such feedback.

9.1 Outlook

Further work may address the concept of orientation learning. As the possibility to
include orientations in the ELM learning has been introduced to the FlexIRob system
during the work of this thesis, more effort is required to efficiently use this feature.
The extension has been tested with an artificial test scenario. Application in real-
world scenarios still shows significant deficits which have to be resolved by further
research.

Another aspect for future work is to omit the need for two learning components
in the system, i.e., the ELM and ITM. By extending the ITM with generalization
capabilities, it may be possible to generate joint angles for arbitrary locations in the
workspace instead of using the ELM. This avoids the somewhat redundant learning of
the same input data and possible inconsistencies caused by this.

The major aspect of this thesis was to process kinesthetic teaching data to construct
a navigation graph and autonomously generate trajectories. A rudimentary execution
controller has been implemented to generate movement commands for the robot and
test the system. However, this controller is not very accurate and stuttering movements
of the robot can occur. Hence, a better controller for generated trajectories, e.g. a
PID controller [38], might be called for and may be addressed in future work.

70

Appendix A

Evaluation Data

A.1 Joint Space Validation

(1) (2)

(3) (4)

Fig. A1: Joint space validation using ELM-produced angles with threshold Dθmax of
0.5 rad (1), 0.75 rad (2), 1.0 rad (3) and 1.5 rad (4).

71

A Evaluation Data

(1) (2)

(3) (4)

Fig. A2: Joint space validation using recorded angles with threshold Dθmax of
1.0 rad (1), 1.5 rad (2), 2.0 rad (3) and 2.5 rad (4).

72

A.2 Path Lengths

A.2 Path Lengths

0.06 0.08 0.10 0.12 0.14 0.16 0.18 0.20 0.22
e_max

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

pa
th

 le
ng

th
 L

p
 [m

]

Ø A1
Ø A2
Ø B1
Ø B2
Ø C1
Ø C2
Ø all
σ all

Fig. A3: Average path lengths for each evaluation constellation.

Con
emax 0.06 0.08 0.10 0.12 0.14 0.16 0.18 0.20

A1 3.48 3.34 3.28 3.00 3.11 2.97 2.77 2.86
A2 3.79 3.54 3.53 3.53 3.47 3.41 3.33 3.38
B1 3.73 3.59 3.38 3.09 3.23 3.33 3.42 3.48
B2 3.36 3.59 3.26 3.27 3.08 3.32 3.37 3.06
C1 3.14 3.03 2.92 2.88 2.88 2.77 2.97 2.84
C2 3.39 3.08 3.08 2.79 2.76 2.69 2.67 2.65
Ø 3.48 3.36 3.24 3.09 3.09 3.08 3.09 3.04
σ 0.91 0.88 0.82 0.75 0.74 0.74 0.73 0.69

Tab. A1: Average path lengths for each evaluation constellation.

73

A Evaluation Data

A.3 Path Curvatures

0.06 0.08 0.10 0.12 0.14 0.16 0.18 0.20 0.22
e_max

0

1

2

3

4

5

6

cu
rv

at
ur

e
in

de
x
C
p

Ø A1
Ø A2
Ø B1
Ø B2
Ø C1
Ø C2
Ø all
σ all

Fig. A4: Average path curvatures for each evaluation constellation.

Con
emax 0.06 0.08 0.10 0.12 0.14 0.16 0.18 0.20

A1 4.29 4.16 4.10 3.85 3.94 3.81 3.63 3.72
A2 4.66 4.43 4.45 4.42 4.39 4.34 4.28 4.29
B1 4.48 4.35 4.17 3.88 4.03 4.13 4.21 4.27
B2 4.56 4.82 4.50 4.50 4.29 4.54 4.61 4.28
C1 4.12 4.01 3.90 3.87 3.87 3.75 3.95 3.83
C2 5.01 4.68 4.66 4.33 4.29 4.21 4.18 4.17
Ø 4.52 4.41 4.30 4.14 4.14 4.13 4.14 4.09
σ 1.33 1.30 1.23 1.15 1.14 1.13 1.14 1.13

Tab. A2: Average path curvature for each evaluation constellation.

74

List of Figures

2.1 A company worker using the FlexIRob system in a user study 5
2.2 Kinesthetic teaching with multiple training areas and different redun-

dancy resolutions . 6
2.3 Process for defining a task . 7
2.4 Hierarchical control scheme of the FlexIRob system 8

4.1 Edge and node update mechanism of the ITM 17
4.2 ITM training with different reference vector adaptation rates 18
4.3 ITM network generated from a training data snippet using different emax

values . 19
4.4 Visualization of a kinesthetic teaching session 20
4.5 Valid and invalid connections between nodes 21
4.6 Problematic joint configurations . 22
4.7 Training session used for evaluating the joint distance validation 24
4.8 Visualization of a path and the corresponding joint angles 26
4.9 Joint distance validation with a threshold of 3.0 rad 27
4.10 Local neighborhood and sample generation 30
4.11 Convergence of the network for increasing δ values 31
4.12 Comparison of the ITM training with and without δ-bootstrapping . . 33
4.13 Results of the GI-bootstrapping . 35

5.1 An example for an A* shortest path search 39
5.2 Interpolation and smoothing of the via points 40
5.3 Robot Movement along an example trajectory 41

6.1 Obstacle scenarios in the evaluation . 43
6.2 Example training data set for each evaluation scenario 44
6.3 Number of nodes and valence in relation to emax 45
6.4 Quantization error for training data . 46
6.5 Excerpt of paths created during evaluation 47
6.6 Overall path length and path curvature as function of emax 49
6.7 Example for path oscillations . 50

75

A List of Figures

6.8 Evaluation data for the δ-bootstrapping 51
6.9 Evaluation data for the δ-bootstrapping and GI-bootstrapping 52

7.1 Training areas of the orientation learning session 58
7.2 Incorrect learning of orientation and translation spaces 60
7.3 Generated path for position with same translation and opposing orien-

tation . 61

8.1 Distance between endeffector and graph 65
8.2 Evaluation with a user to test the haptic feedback 67

A1 Joint space validation using ELM-produced angles 71
A2 Joint space validation using recorded angles 72
A3 Average path lengths . 73
A4 Average path curvatures . 74

76

List of Tables

4.1 Joint space movement evaluation with ELM-produced angles 25
4.2 Joint space movement evaluation with recorded angles 27
4.3 Network statistics of training with different δ values 31
4.4 Network statistics of training with different δ values and distance limit . 32

7.1 Statistical data for the orientation learning results 59

A1 Average path lengths . 73
A2 Average path curvature . 74

77

Bibliography

[1] B. Siciliano and O. Khatib. Springer Handbook of Robotics. Gale virtual reference
library. Springer, 2008.

[2] Bruno Siciliano. Kinematic control of redundant robot manipulators: A tutorial.
Journal of Intelligent and Robotic Systems, 3(3):201–212, 1990.

[3] Matthias Behnisch, Robert Haschke, and Michael Gienger. Task space motion
planning using reactive control. In IEEE/RSJ International Conference on Intel-
ligent Robots and Systems, 2010.

[4] Sebastian Wrede, Christian Emmerich, Ricarda Grünberg, Arne Nordmann,
Agnes Swadzba, and Jochen J Steil. A user study on kinesthetic teaching of
redundant robots in task and configuration space. Journal of Human-Robot In-
teraction, 2(Special Issue: HRI System Studies):56–81, 2013.

[5] Jochen J Steil, Christian Emmerich, Agnes Swadzba, Ricarda Grünberg, Arne
Nordmann, and Sebastian Wrede. Kinesthetic teaching using assisted gravity com-
pensation for model-free trajectory generation in confined spaces, volume 94 of
Springer Tracts in Robotics, pages 107–127. Editor: F. röhrbein et al. edition,
2013.

[6] Rainer Bischoff, Johannes Kurth, Guenter Schreiber, Ralf Koeppe, Alin Albu-
Schaeffer, Alexander Beyer, Oliver Eiberger, Sami Haddadin, Andreas Stemmer,
Gerhard Grunwald, and Gerhard Hirzinger. The kuka-dlr lightweight robot arm
– a new reference platform for robotics research and manufacturing. Joint 41st
International Symposium on Robotics and 6th German Conference on Robotics,
pages 741–748, 2010.

[7] Arne Nordmann, Christian Emmerich, Stefan Rüther, Andre Lemme, Sebastian
Wrede, and Jochen J Steil. Teaching nullspace constraints in physical human-robot
interaction using reservoir computing. In International Conference on Robotics
and Automation, pages 1868 – 1875, St. Paul, 2012.

[8] Guang-Bin Huang, Dian Hui Wang, and Yuan Lan. Extreme learning machines: a
survey. International Journal of Machine Learning and Cybernetics, 2(2):107–122,
2011.

79

A Bibliography

[9] Héctor H González-Banos, David Hsu, and Jean-Claude Latombe. Motion plan-
ning: Recent developments. Autonomous Mobile Robots: Sensing, Control,
Decision-Making and Applications, 2006.

[10] Tomás Lozano-Pérez and Michael A Wesley. An algorithm for planning collision-
free paths among polyhedral obstacles. Communications of the ACM, 22(10):560–
570, 1979.

[11] Jean-Claude Latombe. ROBOT MOTION PLANNING.: Edition en anglais.
Springer, 1990.

[12] Stephen R Lindemann and Steven M LaValle. Current issues in sampling-based
motion planning. In Robotics Research, pages 36–54. Springer, 2005.

[13] Roland Geraerts and Mark H Overmars. Sampling and node adding in prob-
abilistic roadmap planners. Robotics and Autonomous Systems, 54(2):165–173,
2006.

[14] Steven M. Lavalle. Rapidly-exploring random trees: A new tool for path planning.
Technical report, 1998.

[15] Rosen Diankov, Nathan Ratliff, Dave Ferguson, Siddhartha Srinivasa, and James
Kuffner. Bispace planning: Concurrent multi-space exploration. Proceedings of
Robotics: Science and Systems IV, 63, 2008.

[16] Jan Jockusch and Helge Ritter. An instantaneous topological mapping model for
correlated stimuli. In Proc. Int. Joint Conf. on Neural Netw. (IJCNN 99), page
445, 1999.

[17] Bernd Fritzke. A growing neural gas network learns topologies. In Advances in
Neural Information Processing Systems 7, pages 625–632. MIT Press, 1995.

[18] Teuvo Kohonen. The self-organizing map. Proceedings of the IEEE, 78(9):1464–
1480, 1990.

[19] Stavros D. Nikolopoulos and Leonidas Palios. Hole and antihole detection in
graphs. In Proceedings of the fifteenth annual ACM-SIAM symposium on Discrete
algorithms, SODA ’04, pages 850–859, Philadelphia, PA, USA, 2004. Society for
Industrial and Applied Mathematics.

[20] Ján Jockusch. Exploration based on neural networks with applications in manip-
ulator control. PhD thesis, Bielefeld University, 2000.

80

A.3 Bibliography

[21] Sebastian Wrede. An information-driven architecture for cognitive systems re-
search. PhD thesis, Bielefeld University, 2008.

[22] Software Abstractions for Simulation and Control of a Continuum Robot, volume
7628, Tsukuba, Japan, 11/2012 2012. Springer.

[23] Johannes Wienke and Sebastian Wrede. A middleware for collaborative research in
experimental robotics. In 2011 IEEE/SICE International Symposium on System
Integration (SII), pages 1183–1190. IEEE, 2011.

[24] Rosen Diankov and James Kuffner. Openrave: A planning architecture for au-
tonomous robotics. Robotics Institute, Pittsburgh, PA, Tech. Rep. CMU-RI-TR-
08-34, page 79, 2008.

[25] P.E. Hart, N.J. Nilsson, and B. Raphael. A formal basis for the heuristic deter-
mination of minimum cost paths. IEEE Transactions on Systems Science and
Cybernetics, 4(2):100–107, 1968.

[26] E.W. Dijkstra. A note on two problems in connexion with graphs. Numerische
Mathematik, 1(1):269–271, 1959.

[27] William H. Press, Saul A. Teukolsky, William T. Vetterling, and Brian P. Flannery.
Numerical Recipes in C (2Nd Ed.): The Art of Scientific Computing. Cambridge
University Press, New York, NY, USA, 1992.

[28] Eric Jones, Travis Oliphant, Pearu Peterson, et al. SciPy: Open source scientific
tools for Python. "http://www.scipy.org/", 2001–.

[29] Paul Dierckx. Algorithms for smoothing data with periodic and parametric splines.
Computer Graphics and Image Processing, 20(2):171–184, 1982.

[30] Biljana Petreska and Aude Billard. Movement curvature planning through force
field internal models. Biological cybernetics, 100(5):331–350, 2009.

[31] David Hoag. Apollo guidance and navigation: Considerations of apollo imu gimbal
lock. Canbridge: MIT Instrumentation Laboratory, pages 1–64, 1963.

[32] Jack B Kuipers. Quaternions and rotation sequences. Princeton university press,
1999.

[33] Berthold KP Horn. Some notes on unit quaternions and rotation. 2001.

81

"http://www.scipy.org/"

[34] Erik B Dam, Martin Koch, and Martin Lillholm. Quaternions, interpolation and
animation. Datalogisk Institut, Københavns Universitet, 1998.

[35] DWF Van Krevelen and R Poelman. A survey of augmented reality technologies,
applications and limitations. International Journal of Virtual Reality, 9(2):1, 2010.

[36] K. Murakami, R. Kiyama, T. Narumi, T. Tanikawa, and M. Hirose. Poster: A
wearable augmented reality system with haptic feedback and its performance in
virtual assembly tasks. In 2013 IEEE Symposium on 3D User Interfaces (3DUI),
pages 161–162, 2013.

[37] Alin Albu-Schäffer, Christian Ott, and Gerd Hirzinger. A unified passivity-based
control framework for position, torque and impedance control of flexible joint
robots. The International Journal of Robotics Research, 26(1):23–39, 2007.

[38] Aidan O’Dwyer. Handbook of PI and PID controller tuning rules, volume 2.
Imperial College Press London, 2009.

Declaration of Authorship

I declare that the work presented here is, to the best of my knowledge and belief,
original and the result of my own investigations, except as acknowledged. Formulations
and ideas taken from other sources are cited as such. It has not been submitted, either
in part or whole, for a degree at this or any other university.

Ich versichere, dass ich die vorliegende wissenschaftliche Arbeit selbständig verfasst und
keine anderen als die angegebenen Hilfsmittel verwendet habe. Die Stellen der Arbeit,
die anderen Werken dem Wortlaut oder dem Sinn nach entnommen sind, wurden unter
Angabe der Quelle als Entlehnung deutlich gemacht. Diese Arbeit hat in gleicher oder
ähnlicher Form meines Wissens nach noch keiner Prüfungsbehörde vorgelegen.

Bielefeld, January 16, 2014

Daniel Seidel

	Introduction
	Motivation
	Outline

	The Human-Robot Co-Worker Scenario
	FlexIRob System
	Kinesthetic Teaching
	Learning of Inverse Kinematics

	Application and Research of Path Planning
	General Path Planning Approaches
	Alternative Approaches
	Data-driven Approach

	Learning the Free Workspace in a Topological Map
	Instantaneous Topological Map
	Joint Space Validation
	Network Optimization
	Software Implementation
	Discussion

	Autonomous Task Generation and Execution
	Path Finding Using A*
	Path Smoothing
	Motion Generation
	Software Implementation
	Discussion

	User Experiments on Method Applicability
	Setup and Data Acquisition
	Influence of the Maximum Quantization Error
	Evaluation of the Bootstrapping Heuristics
	Discussion

	Navigation in Advanced Spaces: Orientation Learning
	Problem Statement
	Algorithm Modification
	Estimation of the Weighting Parameter
	Discussion

	Haptic User Feedback
	Impedance-based Feedback
	User Study

	Conclusion
	Outlook

	Evaluation Data
	Joint Space Validation
	Path Lengths
	Path Curvatures

	List of Figures
	List of Tables
	Bibliography

