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Summary 

I 
 

Summary 

In the light of the depletion of fossil fuel reserves worldwide, the search for sustainable and more 

environmental friendly alternatives becomes decisive. The generation of liquid fuels as 

bioethanol or biodiesel from biomass are already considered as economically viable options. 

However, conflicts of interest arise when the generation of food or animal feedstock competes 

with biomass production for conversion to biofuels. The use of microalgae could offer a possible 

solution to several of these problems; however a more wide-spread use is hampered by the 

requirement of suitable strains for bulk chemical generation. Though a lot of effort has been spent 

in finding suitable strains in the past years, much of the potential that can be found in the 

biodiversity of algae remains untouched.  

In this work, microalgae that originated from established strain collections but have not been in 

the focus of biofuel-related research before were investigated on their potential for liquid biofuel 

production. This approach was complemented by the isolation of new strains from mainly local 

freshwater and marine water bodies, followed by a detailed characterization in terms of biomass 

and lipid productivity as well as of their fatty acid profiles. The genus Monoraphidium could be 

identified as highly interesting for these purposes, since many members show robust growth and 

considerably high lipid productivities. Two strains of interest, Monoraphidium contortum and 

Monoraphidium neglectum, were investigated in detail and compared to the model organism 

Chlamydomonas reinhardtii. Both Monoraphidium strains showed a pronounced increase of 

neutral lipids under nitrogen starvation which could be furthermore enhanced in lower culture 

densities, consequently resulting in better light availability for the cells. The accumulation of 

lipids was not only superior to that of C. reinhardtii but also resulted in a fatty acid profile with a 

dominance of C18:1 and C16:0 fatty acids, which is promising for liquid biofuel generation. In 

addition, cells of M. neglectum were found to increase their size at defined salt concentrations, 

thereby offering the possibility for facilitated down-stream processing. 

Key element for liquid biofuel production is the content of neutral lipids, namely triacylglycerol 

(TAG), in the biomass. The elucidation of pathways for TAG synthesis is currently subject to 

intense research efforts. Therefore the role of two distinct metabolic pathways was investigated in 

more detail in the model organism C. reinhardtii.  



Summary 

II 
 

To gain further insights into the lipid metabolism of Monoraphidium and to allow targeted 

improvement of these strains, the genome of M. neglectum was sequenced. The annotation of 

pathways of fatty acid synthesis as well as within the glycerolipid metabolism allowed not only 

detailed insights into the diversity of oleaginous organisms, but also leads to further promising 

targets to improve this strain. 

Within this work, the Selenastraceae could be identified as a highly interesting family with a 

number of interesting strains for biomass generation that also have a high potential for 

subsequent conversion to liquid biofuels. The sequencing of Monoraphidium neglectum was 

performed to establish this species as future model organism for the other members of this family 

and also opens the possibility for future targeted engineering approaches. 
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Abbreviations 

 

ACC acetyl-CoA carboxylases 

ACP acyl carrier protein 

AFDW ash free dry weight 

AGPAT 1-acylglycerol-3-phosphate O-acyltransferase 
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DAG diacylglycerol 

DGAT diacylglycerol-acyltransferases type 1 
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Cyt b6f cytochrome b6f 

DNA deoxyribonucleic acid 

DGTS diacylglycerol-N,N,N-dimethylhomoserine 

EAR enoyl-ACP reductase 

ER endoplasmic reticulum 

FAS fatty acid synthase 

Fd ferredoxin 

FID flame ionization detection 
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 oxidoreductase 

g gram 

GC gas chromatography 
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1. Introduction 

1.1. Sustainability and Bioenergy 

An important challenge of modern societies is to create a balance between environmental 

sustainability, economic growth and security of energy supplies (ESCAP, 2010; IEA, 2012). 

When the supply with energy is addressed, the world’s energy demand is currently primarily met 

by the utilization of conventional fossil fuels, which are also an important feedstock for plastics 

and fabrics (Srirangan et al., 2012). The exploitation of these reserves is not only associated with 

an increase of greenhouse gas emissions but also with a rising demand that resulted in an increase 

of oil prices, with a direct influence on the economy (Nigam & Singh, 2011). To satisfy the 

markets hunger for fossil fuels, methods like hydraulic fracturing are increasingly gaining 

importance, while their environmental and legal implications still need to be understood and 

assessed by future research (Wiseman, 2009). There is a clear need to overcome the limitations of 

diminishing fossil oil reserves, which leads to a renewed focus on alternative energy sources, e.g. 

using biomass for conversion to liquid fuels (Hecht et al., 2009; Sivakumar et al., 2010; Srirangan 

et al., 2012). Taking into account the large fraction of fuels used for the global energy 

consumption, it is interesting to note that today renewable alternatives to liquid fuels are far less 

developed than solutions towards sustainable electricity production (Schenk et al., 2008).  

Among liquid fuels, ethanol and biodiesel are probably the most prominent ones (Nigam & 

Singh, 2011; Sivakumar et al., 2010). Ethanol can be produced by conversion of starch and other 

carbohydrates deriving from crops as e.g. corn or sugar cane as most prominent feedstock 

(Merchant et al., 2012; Sivakumar et al., 2010; Srirangan et al., 2012). The use of bioethanol as 

fuel is fully established in Brazil, with the USA, China and India as further important players in 

the field (Nigam & Singh, 2011). However, several implications are associated with ethanol 

production, that include transportation problems, a high water consumption in the case of corn-

based ethanol as well as rising prices as for soybean, resulting in misguided incentives for 

conversion of forests into agricultural land in e.g. South America (Sivakumar et al., 2010). 

Though switchgrass and giant miscanthus are considered as potential alternatives to produce 

ethanol from lignocellulosic biomass, the infrastructure as well as down-stream processing is still 

required to develop (Nigam & Singh, 2011; Sivakumar et al., 2010). 
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When biodiesel and related liquid biofuels are considered, the compound of interest are oils 

containing triacylglycerols (TAG), that consist of three fatty acids esterified to a glycerol 

backbone (Chisti, 2007; Sivakumar et al., 2010). Triacylglycerols can be either used directly or 

after conversion to fatty acid methyl esters (FAME) as biodiesel, depending on the fatty acid 

composition (Barnwal & Sharma, 2005; Merchant et al., 2012; Sivakumar et al., 2010). Oils that 

are characterized by short chain fatty acids with carbon chain lengths between eight and 14 

carbons have the potential for direct use as liquid fuel, therewith reducing costs in downstream 

processing (Sivakumar et al., 2010). TAGs with longer fatty acids with up to 18 carbons can be 

also used as biofuel, but require prior processing into FAMEs (Sivakumar et al., 2010). Several 

vegetable oils as derived from canola, palm and soybean contain high contents of C16 and C18 

fatty acids and were subject to intense investigations on their fuel properties (Knothe, 2008). For 

the generation of biodiesel these oils are transesterified to methyl esters, a process catalyzed by 

acids, alkalis or lipase enzymes, which releases glycerin as side product (Barnwal & Sharma, 

2005; Chisti, 2007; Nigam & Singh, 2011). The conversion of the original vegetable oil to 

biodiesel reduces the viscosity as well as the molecular weight and opens the possibility of 

blending with conventional fuel in any proportion (Barnwal & Sharma, 2005). A further 

possibility of conversion of oils into liquid fuel can be found within the hydrogenation of 

vegetable oils as performed for NExBTL (Aatola et al., 2009; Nigam & Singh, 2011). Instead of 

fatty esters, hydrocarbons are generated within a process where oxygen is removed from lipids 

using hydrogen, without the need of additional chemicals (Aatola et al., 2009). Since the term 

“biodiesel” is reserved for fatty acid methyl esters, hydrotreated oils are therefore known as 

“renewable diesel fuels” (Aatola et al., 2009). However, the required equipment is rather complex 

as well as an additional source of hydrogen is needed (Nigam & Singh, 2011). Important points 

that need consideration when fatty acid derived compounds are intended for biofuel applications 

include oxidative stability, which is promoted by a high degree of saturation, and cold flow, 

which generally increases with the degree of unsaturation  (Chisti, 2007; Knothe, 2008; Schenk et 

al., 2008). In addition, it was recently proposed that optimally a biodiesel fuel should consist of 

only one major component in high concentration, though mixtures might be also acceptable 

(Knothe, 2008).  

Biodiesel is currently produced relying principally on canola, sunflower, soybean and palm oil as 

feedstock (Nigam & Singh, 2011; Sivakumar et al., 2010; Srirangan et al., 2012). When 
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compared to ethanol, the use of TAG for liquid biofuel generation has several advantages as it 

exhibits usually a better energy balance and can be used directly without engine modifications 

(Merchant et al., 2012; Sivakumar et al., 2010; Srirangan et al., 2012). Biodiesel production from 

first-generation feedstock is already a commercially viable process as indicated by Srirangan et 

al., 2012. 

 

1.2. Photosynthesis to capture light energy for biofuel production 

Whenever biomass is generated under photoautotrophic conditions, photosynthesis is used to gain 

energy in combination with the conversion of inorganic carbon into reduced organic compounds 

as carbohydrates and oils (Chen et al., 2011; Huang et al., 2010; Merchant et al., 2012; Srirangan 

et al., 2012). In plants and eukaryotic algae these reactions take place in the chloroplast (Nelson 

& Yocum, 2006). The process of oxygenic photosynthesis relies on light that is captured by light 

harvesting complex proteins, and their excitation energy is transferred to the reaction centers of 

the photosystem II (PS II) as summarized previously (Schenk et al., 2008). At the reaction 

centers, the energy is used to split water for generation of molecular oxygen, releasing the 

protons into the thylakoid lumen while electrons follow the photosynthetic transport chain of the 

thylakoid membrane. While they pass plastoquinone (PQ), further protons are released into the 

thylakoid lumen. The electrons pass cytochrome b6f (Cyt b6f), plastocyanin and finally reach the 

photosystem I (PS I) (Schenk et al., 2008). In excited form, PS I is able to reduce ferredoxin (Fd), 

which converts NADP
+
 to NADPH via the ferredoxin-NADP

+
 oxidoreductase (FNR) (Nelson & 

Yocum, 2006). The proton gradient between thylakoid lumen and the chloroplast stroma is used 

by an ATP synthase to produce ATP, which is fed together with NADPH into the Calvin cycle 

besides other biochemical pathways (Schenk et al., 2008). The Calvin cycle mediates the fixation 

of carbon dioxide, which involves a Rubisco (Ribulose-1,5-bisphosphate carboxylase 

oxygenase)-catalysed carboxylation of ribulose-1,5-bisphosphate into 3-phosphoglycerates and a 

subsequent ATP/NADPH-driven reduction, which is followed by the regeneration of 

glyceraldehyde-3-phosphate to ribulose-1,5-bisphosphate (Raines, 2003; Schenk et al., 2008). 

The released glyceraldehyde-3-phosphates are then subject to further use within the metabolism 

of the cell, e.g. synthesis of isoprenoids as well as sucrose and starch after conversion to 

dihydroxyacetone phosphate (Raines, 2003). 
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Figure 1 Synthesis of metabolites relevant for fuel production deriving from the capture of light energy by 
photosynthesis and carbon fixation in green algae. Reprinted from Current Opinion in Biotechnology, 

Volume 23, Issue 3, Victoria H Work, Sarah D’Adamo, Randor Radakovits, Robert E. Jinkerson, Matthew 

C. Posewitz. Improving photosynthesis and metabolic networks for the competitive production of 

phototroph-derived biofuels. 290–297. Copyright (2012), with permission from Elsevier. 

 

In further metabolic steps, these compounds can serve as substrate for the generation of pyruvate, 

as precursor for fatty acid biosynthesis within the chloroplast (Rawsthorne, 2002). The fatty acids 

are subsequently converted into glycerolipids by various pathways, serving mainly structural or 
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storage functions (Merchant et al., 2012; Riekhof & Benning, 2009). Of special interest for the 

generation of liquid biofuels is the integration of fatty acids into the storage compound TAG, an 

important source for the production of biodiesel (Huang et al., 2010; Merchant et al., 2012). It 

should be mentioned that the photosynthetic apparatus as well as the central carbon metabolic 

network underlies a certain variability and modification if phylogenetically diverse groups are 

considered, e.g. Chlorophytes and diatoms (Hildebrand et al., 2013). 

 

1.3. Microalgae as sources for liquid biofuels 

With the first generation biofuel production heavily relying on the use of agricultural products 

(Srirangan et al., 2012), several concerns are expressed whether oil crops, animal fat and waste 

cooking oils are able to replace liquid fossil fuels in larger amounts (Schenk et al., 2008). 

Furthermore, biofuels are only predicted to be beneficial if environmental sustainability, 

preservation of biodiversity as well as the debate food versus fuel are properly addressed (Nigam 

& Singh, 2011). Since competition with agricultural land use for food production purposes is a 

severely discussed issue, second generation biofuel systems are proposed that are based on the 

use of lignocellulosic and microalgal biomass (Schenk et al., 2008). There is some overlap in 

definition, whether microalgae are already considered as second (Schenk et al., 2008) or as third 

generation accounting rather non-food crops and waste materials to the second generation 

(Antizar-Ladislao & Turrion-Gomez, 2008; Nigam & Singh, 2011; Srirangan et al., 2012). 

However, when area and freshwater requirements for oil crops are considered it becomes evident 

that algal fuel systems can provide a solution addressing several of those concerns e.g. by 

reducing the competition with agricultural food production (Merchant et al., 2012; Schenk et al., 

2008). Currently these factors, land use and availability of freshwater, are considered as the key 

limiting factors for biofuel production (Srirangan et al., 2012). 

Microalgae can be characterized by their unicellularity and the ability to perform photosynthesis 

thus including photosynthetic eukaryotes as well as cyanobacteria (Li et al., 2008; Mata et al., 

2010), a definition which can be furthermore combined with the organisms’ ability to fix carbon 

(Yu et al., 2011). However, these definitions of microalgae and algae in general is rather based on 

their appearance and functioning, not taking into account that they are a highly diverse and 

heterogeneous group of organisms with varying phylogenetic origins (Keeling et al., 2005). As 
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indicated before, the term alga rather describes a life-form than a systematic unit (Hallmann, 

2007). Photosynthesis can be found in a wide range of eukaryotic organisms (Parker et al., 2008). 

The most ancient group of photosynthetic eukaryotes are the members of the Plantae, which 

acquired their plastids in an event of primary endosymbiosis (Keeling et al., 2005). Primary 

endosymbiosis occurred when a photosynthetic prokaryotic organism was engulfed by a 

eukaryote, therewith giving rise to the lineage of green algae, red algae and Glaucophytes 

(Keeling et al., 2005; McFadden, 2001; Parker et al., 2008). Further groups of algae emerged 

with the event of secondary symbiosis, when a photosynthetic eukaryote of those ancient lineages 

was engulfed by another eukaryote and the plastid was integrated in its new cellular environment 

(McFadden, 2001; Parker et al., 2008). There is evidence for several separate events, resulting in 

the emergence of groups as the Stramenopiles, Haptophytes, Dinoflagellates, Euglenophytes and 

Apicomplexa (Bhattacharya et al., 2004; Parker et al., 2008), located at different branches of the 

three of eukaryotes (Keeling et al., 2005). Two further groups are Cryptophytes and 

Chlorarachinophytes that are characterized by the presence of a nucleomorph, a remnant of the 

engulfed primary endosymbiont (Bhattacharya et al., 2004; Parker et al., 2008). Another degree 

of complexity and diversity is introduced with tertiary endosymbiosis, which is known from 

some Dinoflagellates, integrating another photosynthetic secondary endosymbiont (Bhattacharya 

et al., 2004; Parker et al., 2008). All those highly diverse organisms can be considered as algae 

since they are united through the presence of their plastid, therewith sharing a common link to the 

photosynthetic prokaryotes (McFadden, 2001). 

Since these organisms have such a diverse background, they are also well distinguishable through 

features in their metabolism, as the preference for specific storage compounds (Table 1). As an 

example, Bacillariophyceae are known to store carbon as natural oils or chrysolaminarin while 

green algae rather rely on starch as well as on oil under certain conditions (Sheehan et al., 1998). 

Not only are the storage compounds rather diverse, they are furthermore found at different 

cellular locations (Hildebrand et al., 2013). The high diversity is currently investigated in various 

genome projects and RNA sequencing studies (Sasso et al., 2012), and when the production of 

biofuels from microalgae is addressed, the before-mentioned storage compounds become 

decisive. As well as higher plants e.g. canola or soybean, microalgae are able to produce 

considerable amounts of triacylglycerols (Chisti, 2007; Mata et al., 2010; Sivakumar et al., 2010). 

The accumulation of TAGs in microalgae usually takes place under environmental stress 
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conditions e.g. photooxidative stress or nitrogen starvation, resulting in an increase of TAG 

content to up to 20 – 50% of dry cell weight (Hu et al., 2008).  

 

Table 1 Summary of important storage compounds of various algal groups 

 

Algal group 

Important storage compounds according to 

Sheehan et al., 1998, Work et al, 2012 and 

Hildebrand et al., 2013 

Cyanobacteria Glycogen 

Chlorophytes (green algae) Starch, lipids 

Rodophytes (red algae) Floridean starch 

Phaeophyceae (brown algae) Laminaran 

Bacillariophyceae (diatoms) Lipids, chrysolaminarin 

Chrysophytes (golden-brown algae) Lipids, chrysolaminarin 

Haptophytes Lipids, chrysolaminarin 

Euglenophytes Paramylon 

 

Many eukaryotic algae have been found to contain very long chain polyunsaturated fatty acids 

with four or more double bonds as major components (Basova, 2005; Harwood & Guschina, 

2009; Lang et al., 2011; Spolaore et al., 2006) which is in contrast to the fatty acid composition 

of most vegetable oils that show a comparably high degree of saturation (Broun et al., 1999; 

Chisti, 2007; Knothe, 2008). Therewith the question arises which are the properties that are 

required for a microalgal strains that should be used for liquid biofuel applications.  

 

1.4. Desired traits of microalgal strains for biofuel purposes 

When the economic feasibility is considered to use microalgae for the production of bulk 

chemicals as crude oil, decisive properties of strains were summarized by Mata et al., 2010, 

namely abundant growth, the lipid and in particular the TAG content, robustness to fluctuations 

in the environmental conditions, ease in downstream processing and the potential use for the 

production of other valuable compounds. The importance of these points was also highlighted by 

other authors (Chen et al., 2011; Mutanda et al., 2011). Especially the co-production of high 

value products is considered as important factor, that needs nevertheless careful planning since 

associated markets are easily saturated (Stephens et al., 2010). 
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For the production of liquid fuels non- or monounsaturated fatty acids with a carbon chain length 

of 16 or 18 were reported as preferable sources (Carlsson et al., 2007). Though the degree of 

unsaturation of fatty acids can be reduced by partial catalytic hydrogenation (Bouriazos et al., 

2010), additional efforts in refining could be minimized by choosing strains that readily show 

suitable lipid profiles. Transesterification was described as a well-established process in the 

conventional production of biodiesel (Chisti, 2007), though there might be strain-dependent 

differences in the refinery technologies that are required for catalytic upgrading of the algal 

material (Tran et al., 2010). Further important factors are the suitability of these strains for the 

respective cultivation setup, where in principle two main concepts exist: open ponds and closed 

photobioreactors, whose advantages and disadvantages have been extensively reviewed in the 

past (Chisti, 2007; Mata et al., 2010; Schenk et al., 2008). In general, the costs of biomass 

production in photobioreactors is currently estimated to range one order of magnitude higher than 

those in ponds (Mata et al., 2010), therefore limiting economically viable cultivations to 

production of high value compounds as astaxanthin and nutraceuticals (Schenk et al., 2008). 

Open pond systems could provide a low-cost alternative for producing bulk chemicals as for 

liquid biofuels, but would therefore require competitive strains that are resistant to water loss by 

evaporation, resulting in increasing salinities, as well as to contaminating organisms (Schenk et 

al., 2008). To sum up, a strain of interest for biofuel applications should combine a large variety 

of properties, some of which might be even subject to common trade-offs e.g. high oil content 

versus high biomass accumulation (Sheehan et al., 1998). 

 

1.5. Previous research and screening programs on microalgae 

The suitability of algae for conversion to fuels was intensely investigated within the Aquatic 

Species Program that was initiated by the U.S. National Renewable Energy Laboratory and lasted 

from 1978 to 1996 (Mata et al., 2010; Sheehan et al., 1998). The massive screening effort in the 

frame of this program resulted in a collection of more than 3,000 strains, that was eventually 

narrowed down to about 300, with the best candidates mainly found among Chlorophytes, 

diatoms and several Eustigmatophytes, with a comparatively high number of representatives of 

the genera Chaetoceros, Chlorella, Navicula and Nitzschia (Sheehan et al., 1998). As one of the 

conclusions, diatoms were hypothesized as better choice for biofuel production in terms of 

highest lipid contents (40 – 60% of dry weight), but they showed disadvantages in the form of 
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silicate supply and low resistance to temperature fluctuations (Sheehan et al., 1998). Among the 

other, green algal strains Monoraphidium minutum was mentioned by name, assigned as high 

lipid producer but exhibiting unusual DNA properties (high degree of DNA base modification, 

71% GC content) and hard cell walls (Jarvis et al., 1992; Sheehan et al., 1998). 

Since the end of the program in 1996 (Sheehan et al., 1998), research efforts to find suitable 

strains have not ceased, as it is summarized within several comprehensive studies (Chen et al., 

2011; Hu et al., 2008; Mata et al., 2010). It has to be noted that important parameters affecting 

the cellular lipid profile (e.g. medium composition, availability of a reduced carbon source, light 

intensity and time point of harvesting) were not similar in between many of the published studies, 

so that large differences of biomass productivities and lipid contents might be reported for one 

species and even the same strain (Chen et al., 2011). However, some species and strains of 

interest emerged, showing similar tendencies within the different setups, therefore being 

recommended for liquid biofuel applications. 

Several organisms have been already proposed and investigated in more detail on their suitability 

for biofuel purposes as Nannochloropsis spec. (F&M-M24), which reached lipid productivities of 

up to 204mg l
-1

 day
-1

 (Rodolfi et al., 2009). A recently isolated strain of Nannochloropsis (BR2) 

was also identified as best performer in terms of fatty acid productivity in another study (Lim et 

al., 2012). Breuer et al., 2012, recently reported neutral lipid productivities exceeding 300mg l
-1

 

day
-1

 for Scenedesmus obliquus (UTEX 393), which was identified as best performer of a 

screening of well-known strains. A further strain of Scenedesmus, which was an own isolate, 

showed also promising lipid productivities in comparison to the other investigated strains by 

Griffiths et al., 2011. An outstanding lipid productivity was also reported for a strain of Chlorella 

vulgaris (CCALA 256) with 604mg l
-1

 day
-1

 (Přibyl et al., 2012), similarly another strain of this 

species (IBL-C105) came out as best performer of further screening by Nascimento et al., 2013 

with a lipid productivity of 205mg l
-1

 day
-1

. Best performers of other screening approaches 

include Tetraselmis sp. (Huerlimann et al., 2010) and Chlorococcum humicola (Chaichalerm et 

al., 2012). Monoraphidium sp. was selected after a screening of 147 strains for more detailed 

investigation of its potential for biofuel purposes by (Yu et al., 2012) due to promising oil 

contents and growth rates. When Dinophytes and Raphidophytes were investigated, Alexandrium 

minutum appeared as most promising, showing lipid productivities of 81 mg l
-1

 day
-1

 in an 

outdoor bioreactor (Fuentes-Grünewald et al., 2012).  
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Taking into account the tremendous biodiversity of algae, their actual potential still remains to be 

explored and promises new insights into their lipid metabolism und principal mechanisms of 

TAG accumulation (Hu et al., 2008; Liu & Benning, 2013). Bioprospecting is therefore 

considered of on-going relevance to identify strains with promising properties in terms of 

biomass generation and lipid accumulation (Merchant et al., 2012; Mutanda et al., 2011). 

Especially the isolation and selection of strains from local water bodies is currently considered as 

promising approach to gain strains with competitive growth properties under the respective local 

climatic conditions (Mutanda et al., 2011; Talukdar et al., 2012). 

 

1.6. Synthesis of oils in microalgae 

Intense research was performed in the model organism C. reinhardtii (Liu & Benning, 2013; 

Merchant et al., 2012), providing the understanding of some of the principal mechanisms within 

fatty acid synthesis and glycerolipid formation. The genes required for the de novo synthesis of 

fatty acids have been identified and annotated for C. reinhardtii (Riekhof et al., 2005). In a first 

step, acetyl-CoA is converted to malonyl-CoA by acetyl-CoA carboxylases (ACC) (see Figure 2, 

reaction 1), followed by the transfer of a malonyl group from a CoA to an acyl carrier protein 

(ACP) mediated by a malonyl-CoA:ACP transacylase (MAT) (reaction 2). Subsequently the β-

ketoacyl-acyl-carrier-protein synthase (KAS III) as part of the heteromultimeric type II fatty acid 

synthase (FAS) catalyses the condensation reaction between malonyl-ACP and acetyl-CoA 

forming acetoacetyl-ACP (reaction 3), thereby releasing CO2 (Hu et al., 2008; Riekhof & 

Benning, 2009). Acetoacetyl-ACP is then reduced by 3-oxoacyl-ACP reductase (KAR) (reaction 

4), followed by dehydration by beta-hydroxyacyl-ACP dehydratase (HAD) (reaction 5). The next 

step is the reduction by an enoyl-ACP reductase (EAR) (reaction 6), and the acyl-ACP enters 

subsequently the next condensation reaction with malonyl-CoA catalysed by KAS I (reaction 3) 

as described in detail previously (Hu et al., 2008; Riekhof & Benning, 2009; Riekhof et al., 2005; 

Rismani-Yazdi et al., 2011).  
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Figure 2 Fatty acid synthesis. Reprinted from Plant Journal, Volume 54, Issue 4, Qiang Hu, Milton 

Sommerfeld, Eric Jarvis, Maria Ghirardi, Matthew Posewitz, Michael Seibert. Microalgal triacylglycerols 

as feedstocks for biofuel production: perspectives and advances. 621-639. Copyright (2008), with 
permission from John Wiley and Sons. 

 

After repeated rounds of elongation, the acyl-ACP either serves directly as substrate for 

generation of glycerolipids within the chloroplast or the fatty acid is cleaved from the acyl carrier 

protein by thioesterases, releasing the free fatty acid usually as palmitate (C16:0) or stearate 

(C18:0) (Hu et al., 2008; Riekhof & Benning, 2009; Riekhof et al., 2005; Rismani-Yazdi et al., 

2011). The fatty acid can be subjected to several modifications, as elongation or desaturation.  

Several orthologous genes of the fatty acid desaturase gene complement of Arabidopsis could be 

also identified for C. reinhardtii (Riekhof et al., 2005). The presence of further polyunsaturated 

fatty acids as C18:4 and C18:3 and C16:4 hints towards further desaturases, whereof a Δ5 

desaturase has been identified recently (Riekhof & Benning, 2009).  

The synthesis of glycerolipids is performed at different cellular sites in C. reinhardtii, with 

monogalactosyldiacylglycerol (MGDG), digalactosyldiacylglycerol (DGDG) and 

sulfoquinovosyldiacylglycerol (SQDG) exclusively and phosphatidylglycerol (PG) as well as 
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phosphatidylinositol (PI) partially synthesized by the chloroplast, while diacylglycerol-N,N,N-

dimethylhomoserine (DGTS) and phosphatidylethanolamine (PE) appear of extraplastidic origin 

(Giroud et al., 1988). In contrast to higher plants, C. reinhardtii lacks the phospholipid 

phosphatidylcholine (PC), which is possibly functionally replaced by DGTS (Wada et al., 2009), 

a point which is currently under discussion (Liu & Benning, 2013). 

The synthesis of TAG in C. reinhardtii is usually hypothesized to be located at the endoplasmic 

reticulum as in plants (Li-Beisson et al., 2010; Liu & Benning, 2013), but recently evidence arose 

that TAG can be also assembled in the chloroplast under certain conditions (Fan et al., 2011). 

Two main pathways for the synthesis of TAG are commonly distinguished, the acyl-CoA 

dependent pathway, also known as Kennedy pathway, where fatty acids are sequentially 

transferred to a glycerol-3-phosphate backbone (Coleman & Lee, 2004; Li-Beisson et al., 2010; 

Riekhof et al., 2005), and an acyl-CoA independent pathway, using phospholipids or 

diacylglycerol as acyl donors for TAG synthesis (Dahlqvist et al., 2000; Stahl et al., 2004; Yoon 

et al., 2012) (Figure 3). The acyl-CoA-dependent pathway relies on glycerol-3-phosphate, which 

is acylated by the action of a glycerol-3-phosphate O-acyltransferase (GPAT), thereby forming 

lysophosphatidic acid (Figure 3). A further acylation step is mediated by 1-acylglycerol-3-

phosphate O-acyltransferase (AGPAT) to form phosphatidic acid, which is subsequently 

dephosphorylated by phosphatidate phosphatase (PP). The resulting diacylglycerol (DAG) is 

converted by diacylglycerol-acyltransferases (DGAT, DGTT) to TAG (Coleman & Lee, 2004; 

Hu et al., 2008; Riekhof & Benning, 2009; Rismani-Yazdi et al., 2011). GPAT as well as 

AGPAT were found to be up-regulated under nitrogen starvation in Neochloris oleoabundans, 

while PP and DGAT did not show pronounced changes in transcript abundance (Rismani-Yazdi 

et al., 2012). In contrast, an up-regulation of transcript abundance of PP could be shown for C. 

reinhardtii under nitrogen starvation (Miller et al., 2010). In C. reinhardtii two different forms of 

diacylglycerol-acyltransferases corresponding to type-1 (DGAT) and type-2 (DGTT) in 

Arabidopsis were identified (Liu & Benning, 2013). While the presence of DGAT type-2 

homologues could be deduced from the published genome sequence of C. reinhardtii (Merchant 

et al., 2007), type-1 DGAT was recently discovered and annotated (Boyle et al., 2012). Both 

DGAT families are different in their sequence as pronounced by Liu & Benning, 2013.  
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Figure 3 Schematic representation of the Kennedy-pathway leading to TAG synthesis. GK: glycerol 
kinase, GPAT: glycerol-3-phosphate O-acyltransferase, AGPAT: 1-acylglycerol-3-phosphate O-

acyltransferase, PP: phosphatidate phosphatase, DGAT: diacylglycerol-acyltransferase, PDAT: 

phospholipid:diacylglycerol acyltransferase 

 

It was reported that three DGTTs (DGTT 1-3) were up-regulated under nitrogen starvation 

(Miller et al., 2010). Recent work showed an increase of transcript abundance in only DGTT1 as 

well as for the newly discovered type-1 DGAT under nitrogen depleted conditions, while 

transcript levels of DGTT2 and DGTT3 remained comparatively stable (Boyle et al., 2012). 

DGTT4 and DGTT5 showed a rather low transcript abundances in both nutrient replete and 

nitrogen starvation conditions (Boyle et al., 2012). However, when DGTT4 was investigated 

under nitrogen starvation in photoautotrophic conditions, an increase of transcript abundance 

could be observed (Msanne et al., 2012). Vice versa, DGAT type 1 showed comparatively low 

expression, neither exhibiting a strong increase or decrease of transcript abundance (Msanne et 

al., 2012), therefore indicating differentiating expression patterns following the availability of 

reduced carbon sources (Boyle et al., 2012).  
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The acyl-CoA-independent synthesis, mediated by phospholipid:diacylglycerol acyltransferase 

(PDAT), is hypothesized to also play an important role in TAG generation in C. reinhardtii. 

PDAT unites different functionalities and is capable of handling various substrates, ranging from 

TAG synthesis via transacylation of DAG with acyl groups of phospholipids or galactolipids to 

the transacylation of two DAG (Yoon et al., 2012). Its role is discussed in the context of 

membrane remodelling and TAG homeostasis since it was not only able to hydrolyse 

phospholipids, galactolipids and cholesteryl esters but also TAG (Yoon et al., 2012). When 

investigated on the transcriptomic level, the expression pattern appeared less responsive to 

nitrogen starvation when compared to DGAT and DGTT1 (Boyle et al., 2012). No homologues 

for PDAT could be identified when the transcriptome of N. oleoabundans was investigated 

(Rismani-Yazdi et al., 2012), while it was present in Dunaliella tertiolecta (Rismani-Yazdi et al., 

2012). Further roles of the two DGAT forms and PDAT beyond oil accumulation were assumed 

since all three genes were found with variable expression in a number of different tissues as root, 

stem and leaves of higher plants (Li et al., 2010a). 

Once TAG is formed, it is deposited and stored in oil bodies, also called lipid droplets, whose 

structure and function have been recently subject to intense research (Huang et al., 2013; Liu & 

Benning, 2013; Merchant et al., 2012; Moellering & Benning, 2010; Nguyen et al., 2011). In 

yeast, they are formed at the endoplasmic reticulum (Merchant et al., 2012). In C. reinhardtii, the 

presence of a major lipid droplet protein (MLDP) with a size of 28 kDa was suggested as 

characteristic structural compound of lipid bodies (Moellering & Benning, 2010; Nguyen et al., 

2011), assuming a similar function as of oleosins (Moellering & Benning, 2010). In higher plants, 

lipid bodies are characterized by the presence of oleosins as structural proteins (Huang et al., 

2013; Merchant et al., 2012). The proteome of oil bodies was found rich in proteins in previous 

studies, including also proteins involved in neutral lipid synthesis as well as in the formation of 

DGTS (Moellering & Benning, 2010; Nguyen et al., 2011). However, other investigations using 

immunofluorescence microscopy showed recently the location of MLDP at the ER adjacent to 

lipid bodies, therewith indicating that MLDP is apparently not directly associated with lipid 

bodies in C. reinhardtii (Huang et al., 2013). This finding corresponds to the results of Wang et 

al., 2009, where only very low levels of proteins were found associated with lipid bodies and 

were assigned as apparent contaminants (Wang et al., 2009). 
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When the synthesis of triacylglycerols is addressed in algae, a further pathway is hypothesized in 

C. reinhardtii. There is evidence that, under certain conditions, TAGs can be produced primarily 

from chloroplast-derived DAG that is characterized by the occurrence of C16 fatty acids at its sn-

2 position (Fan et al., 2011). The phenotype of a starchless mutant of C. reinhardtii also included 

the accumulation of neutral lipids in the form of lipid droplets within the chloroplasts (Fan et al., 

2011; Goodson et al., 2011), therefore leading to the suggestion that the membranes of the 

chloroplast might be also sites of neutral lipid synthesis in C. reinhardtii. Glycerolipids as 

lysophosphatidic acid, phosphatidic acid and diacylglycerol are already formed in the chloroplast 

as precursors for the generation of polar lipids as MGDG, DGDG, SQDG and PG (Riekhof & 

Benning, 2009). Recently, chloroplast targeting peptides were identified for DGTT4, therefore 

leading to a model where the overall process of TAG generation was hypothesized to be also 

located within the chloroplast (Ramanan et al., 2013). 

 

1.7. Function of neutral lipids in photosynthetic organisms 

The triacylglycerol pool within the cell serves several functions, with the most prominent one 

being a storage compound for energy and carbon (Hu et al., 2008; Li-Beisson et al., 2010; 

Solovchenko, 2012). Usually high biomass productivity and lipid accumulation can be considered 

as mutually exclusive as stated as one major outcome of the ASP (Sheehan et al., 1998), therefore 

pronouncing this specific storage function under adverse environmental conditions (Hu et al., 

2008; Solovchenko, 2012).  

Nitrogen starvation is known as one of the major triggers for TAG accumulation in C. reinhardtii 

(Boyle et al., 2012; Msanne et al., 2012), Scenedesmus (Adams et al., 2013; Breuer et al., 2012), 

Chlorella (Adams et al., 2013; Breuer et al., 2012; Griffiths et al., 2011; Herrera-Valencia et al., 

2011; Přibyl et al., 2012) as well as in many other members of the green algal lineage (Adams et 

al., 2013; Breuer et al., 2012; Griffiths et al., 2011; Msanne et al., 2012; Rodolfi et al., 2009; 

Sheehan et al., 1998; Yamaberi et al., 1998). After the nutrient replete media is depleted of 

nitrogen sources, cells still sequester carbon dioxide or import further carbon sources, and 

channel these compounds towards carbohydrate or lipid synthesis instead of protein production 

(Richardson et al., 1969). Depletion of nitrogen was also shown to be an effective trigger for 

TAG accumulation in Phaeodactylum tricornutum (Breuer et al., 2012; Griffiths et al., 2011), 
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with silicate deficiency being also an important factor to induce lipid accumulation in diatoms 

(Sheehan et al., 1998). Among the Eustigmatophytes, strains of the genus Nannochloropsis are 

well-known to increase their neutral lipid as response to nitrogen depletion in the media (Breuer 

et al., 2012; Pal et al., 2011; Rodolfi et al., 2009; Simionato et al., 2013). It should be however 

noted that nutrient starvation lead to less promising results in cyanobacteria, where no substantial 

increase of lipids was observed as shown for Anacystis nidulans and Microcystis aeruginosa 

(Piorreck & Pohl, 1984) or Oscillatoria willei (Kumar Saha et al., 2003) and Spirulina platensis 

(Griffiths et al., 2011). A further trigger is sulfur starvation, resulting in an increase of neutral 

lipids in C. reinhardtii (Matthew et al., 2009) as well as in strains of Chlorella and Parachlorella 

(Mizuno et al., 2013). 

 Accumulation of TAG could also occur as response to salt stress, as it was shown for Dunaliella 

tertiolecta, where an increase of salt concentrations up to 1M NaCl resulted in a strong 

accumulation of TAG without any pronounced decrease of growth rate (Takagi et al., 2006). 

Increasing salt concentrations were also shown to influence lipid contents in freshwater algae as 

Chlamydomonas mexicana and Scenedesmus obliquus, where an optimization of salt 

concentrations at low level to 25mM resulted in improved growth and contents of lipids (Salama 

et al., 2013). An increase of lipid contents at higher salt concentrations was furthermore observed 

for S. obliquus but however combined with a drastically impaired growth rate (Kaewkannetra et 

al., 2012). Besides salinity, pH also was discussed on its influence on TAG accumulation 

(Solovchenko, 2012). Increasing the pH from 8 to 10 resulted in an increase of fatty acid contents 

in the freshwater organism Neochloris oleoabundans albeit also in reduction of growth rate 

(Santos et al., 2012). 

The cellular content of TAG is reported to be increased under high light intensities (Hu et al., 

2008; Orcutt & Patterson, 1974; Solovchenko, 2012). The underlying mechanism involves the 

NADPH-consuming TAG synthesis that relieves the pressure of excess electrons within the 

electron transport chain that could otherwise result in an over-production of reactive oxygen 

species (Hu et al., 2008). Therefore a continuing carbon input combined with cell-division 

inhibiting nutrient limitation are besides light energy important components to produce those 

high-energy compounds (Přibyl et al., 2012). 
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A further complex role of TAG homeostasis for cell functioning is suggested since down-

regulation of PDAT resulted not only in a reduction of the TAG content but also in a phenotype 

with impaired growth rate under nutrient replete conditions (Yoon et al., 2012). It was concluded 

that the TAG pool could be an important source of fatty acids for membrane remodeling under 

vigorous growth (Yoon et al., 2012). The outstanding role of lipid turnover during vegetative 

growth is supported by the finding of a further lipase, CrLIP1, that is able to hydrolyze DAG and 

major polar lipids in C. reinhardtii and shows comparatively high transcript abundance under 

nutrient replete conditions (Li et al., 2012a). Interestingly, CrLIP1 failed to degrade TAG in vitro, 

while its down-regulation resulted in a delayed rate of TAG degradation after nitrogen starved 

cultures were re-supplied with a nitrogen source (Li et al., 2012a). Furthermore, the incorporation 

of free fatty acids into glycerolipids by TAG formation could play an additional role for 

detoxification processes (Listenberger et al., 2003; Petschnigg et al., 2009; Yoon et al., 2012). 

Therefore, multiple cellular functions appear to be connected to the generation of TAG, being 

subject to ongoing investigations.  

 

1.8. The model organism Chlamydomonas reinhardtii 

Among the various algae with sequenced genomes (Merchant et al., 2007; Radakovits et al., 

2012; Sasso et al., 2012; Vieler et al., 2012), Chlamydomonas reinhardtii is one of the best 

investigated ones, with a comprehensive molecular toolkit available (Harris, 2009). C. reinhardtii 

is a biflagellate green algae, that can be found in a number of highly diverse habitats as e.g. soils, 

freshwater ponds and lakes or brackish waters (Harris, 2009). The organism is characterized by 

the presence of two mating types (plus and minus) combined with a simple cell cycle whose 

stages can be artificially induced (Harris, 2009).  

The various laboratory strains assigned to this species that emerged over the past 60 years of 

intense research were in addition phylogenetically characterized (Pröschold et al., 2005). Many 

strains of C. reinhardtii lack a cell wall like the strain CC3491 (Casas-Mollano et al., 2008), 

which is preserved by other strains as CC1690 (Siaut et al., 2011). A notable factor is the loss of 

the nitrate reductase in many strains, since these strains are not able to metabolize nitrate and 

have to rely on other nitrogen sources as ammonia or urea (Pröschold et al., 2005). Apart from 

that, C. reinhardtii exhibits a remarkable metabolic flexibility and can be also grown 
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heterotrophically, while it still retains the elements required for photosynthesis (Merchant et al., 

2007). 

Nuclear as well as chloroplast transformation protocols have been established for C. reinhardtii 

(Day & Goldschmidt-Clermont, 2011; Walker et al., 2005). Various vectors were created 

allowing the nuclear overexpression of genes (Fischer & Rochaix, 2001; Neupert et al., 2009). 

Other vector systems can be used for specific gene down-regulation via artificial microRNAs 

(miRNAs) that rely on the cell intern RNA silencing machinery of C. reinhardtii (Molnar et al., 

2009; Schroda, 2006; Zhao et al., 2007). C. reinhardtii was found to harbor a complex system of 

RNA interference, based on miRNAs as well as small interfering RNAs (Zhao et al., 2007), with 

an extensive duplication of its core polypeptides (Casas-Mollano et al., 2008). 

Important aspects of research on C. reinhardtii include the study of photosynthesis, flagella as 

well as more applied aspects as its use for bioremediation purposes or biofuel generation 

(Merchant et al., 2007). While C. reinhardtii is a highly interesting target for hydrogen 

production (Kruse & Hankamer, 2010; Kruse et al., 2005; Melis & Happe, 2001; Schenk et al., 

2008), further applications are emerging to use this organism in the field of liquid, fatty acid-

based biofuels (Goodson et al., 2011; Li et al., 2010b). 

 

1.9. Genetic engineering approaches to increase neutral lipids in microalgae 

Increasing the cellular TAG contents and lipid productivity is an ongoing effort and therefore 

several targets have been proposed and were investigated (Merchant et al., 2012; Napier & 

Graham, 2010; Schenk et al., 2008; Sheehan et al., 1998). Much of this work was carried out in 

C. reinhardtii (Liu & Benning, 2013), but genetic transformation protocols are also available for 

other groups of algae, as it was e.g. recently established for the oleaginous organism 

Nannochloropsis gaditana (Radakovits et al., 2012). The investigation and sequencing of the 

genomes of members of the genus Nannochloropsis is subject to intense research (Kilian et al., 

2011; Radakovits et al., 2012; Rodolfi et al., 2009; Vieler et al., 2012), therefore establishing this 

group as oleaginous model among Eustigmatophytes (Work et al., 2012). 

Addressing the increase of the TAG content within the cell, DGAT was considered one of the 

main targets, since over-expression was shown to lead to higher oil contents in Arabidopsis 
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thaliana (Jako et al., 2001; Zou et al., 1997) and Brassica napus (Weselake et al., 2008; Zou et 

al., 1997). A particular DGAT1 isoform with a phenylalanine insertion was identified for maize, 

responsible for a substantial increase of oil contents (Zheng et al., 2008). It was also shown that 

blocking the fatty acid catabolism resulted in an accumulation of TAG in non-storage tissues 

(Napier & Graham, 2010; Slocombe et al., 2009), therefore being a further target. 

Starchless mutants of C. reinhardtii proved to be highly interesting subjects to elucidate the lipid 

metabolism in green algae (Fan et al., 2011; Goodson et al., 2011; Li et al., 2010b; Li et al., 

2010c; Ramanan et al., 2013). In the starchless mutant BAFJ5 an about tenfold increase of TAG 

compared to the wild type could be observed under highlight conditions and nitrogen starvation, 

with a concomitant total lipid content of 46% of dry weight (Li et al., 2010c). Moreover, these 

investigations lead to the hypothesis of an additional pathway for TAG formation that is localized 

within the chloroplast (Fan et al., 2011; Ramanan et al., 2013). Interestingly, the lipid content 

increased linearly in starchless mutants of C. reinhardtii with acetate as further carbon source in 

the media (Ramanan et al., 2013). Since lower lipid contents were found under phototrophic 

conditions, acetate supply was suggested as crucial factor in lipid droplet formation. It should be 

noted that heterotrophic growth did not result in significant differences in TAG content between 

wild type and BAFJ5, stressing the role of light availability for this process (Li et al., 2010c). An 

important function of DGTT4 for plastidic TAG generation was speculated, since DGTT4 was 

more than fourfold up-regulated under mixotrophic conditions with concomitant about six fold 

higher lipid contents when compared to phototrophic growth (Ramanan et al., 2013). 

Additionally, an over-expression of a thioesterase in the diatom Phaeodactylum tricornutum 

resulted in a 72% increase of fatty acids, possibly relieving feedback inhibition mechanisms 

caused by long-chain fatty acyl-ACPs (Gong et al., 2011). In conclusion, intense investigations 

were performed to increase the neutral lipid contents, which are an important prerequisite for 

strains that are intended for liquid biofuel production purposes (Mata et al., 2010). 
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2. Challenges 

A decisive challenge for using microalgae in liquid biofuel production is to increase the 

economic viability of this process. For this purpose, biorefinery approaches were proposed 

(Campbell et al., 2011; Chisti, 2007; Mussgnug et al., 2010; Stephens et al., 2010) that allow the 

conversion of single or a selection of feedstock into either single or multiple products, depending 

on their categorization (Srirangan et al., 2012). Besides the optimization of each individual step 

of the biofuel production process, nutrient recycling is also considered an important factor 

(Figure 4, Mata et al., 2010). 

Considering the use of microalgal biomass as feedstock for biorefinery approaches, the co-

production of several high value products as beta-carotene in an initial phase would allow a self-

subsidizing model (Stephens et al., 2010). However, when high value products are addressed, 

market size and saturation need to be taken into account (Stephens et al., 2010). After lipid 

extraction, the residual biomass can be used for biogas production by anaerobic digestion (Chisti, 

2007; Mussgnug et al., 2010; Sialve et al., 2009; Yang et al., 2011b) as it has been investigated 

for oil cakes from e.g. sunflower seeds (Kolesárová et al., 2011). Biogas can be burned for heat 

and electricity generation and is as well usable as transportation fuel (Srirangan et al., 2012), 

therewith leading towards a concept that is highly focusing on bioenergy generation. Another 

biofuel that could be produced in such an approach is hydrogen as indicated previously 

(Mussgnug et al., 2010; Schenk et al., 2008).  

The commercialization of those biofuels is expected to be highly dependent on economic 

incentives and the possibility of their blending with fossil-derived fuels, and will rely on first 

generation feedstock until the following generations enter the scope of economic viability 

(Srirangan et al., 2012). Therefore inexpensive feedstock is considered a major challenge 

(Srirangan et al., 2012), which was already stated by Sheehan et al., 1998, concerning large scale 

production systems. The price of algal material varies currently between 15 – 30 € kg
-1

 depending 

on the cultivation method, therefore being almost tenfold higher than the average price for 

biomass of other sources as rapeseed ranging between 0.25 and 0.45 € kg
-1

 (Kröger & Müller-

Langer, 2012). Other calculations for biomass generation from microalgae indicate ranges 

between 3 and 13 € kg
-1

 depending on the cultivation method applied (Draaisma et al., 2013). 
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Figure 4 Value chain stages of the process to use microalgae for liquid biofuel generation, redrawn and 

modified from Mata et al., 2010 

 

One of the identified bottlenecks is the requirement of organisms with high biomass 

productivities capable to be cultivated in outdoor pond systems (Sheehan et al., 1998). Main 

challenges for the economic viability include besides, ensuring optimal lipid productivity, the 

optimization of harvesting and oil extraction processes (Mata et al., 2010). A further important 

task is to find strains that are suitable for domestication, as it was performed with well-known 

crop plants in the past (Merchant et al., 2012). As methods of choice to improve strains, genetic 

engineering and trait selection as well as investigation of higher ploidy lines in algae have been 

suggested before (Merchant et al., 2012). 
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3. Aim of this work 

Photosynthetic organisms as plants and microalgae are increasingly considered as feedstock for 

renewable energy production. In the field of renewable energies, the development of solutions for 

liquid biofuels is of special interest due to their high economic impact. Though microalgae have 

certain advantages when compared to higher plants, their actual potential is still far from being 

realized. An important factor is the lack of strains that combine robustness and high biomass 

productivities with high lipid contents and ease of down-stream processing. While some strains 

as of Nannochloropsis gained increasingly attention over the past years, much of the biodiversity 

found in algae collections as well as in the environment remains largely untouched.  

In this work, collection strains that have not been in the focus of biofuel-related research before 

as well as recently isolated strains from mainly local water bodies were screened and investigated 

on robust growth, lipid contents and fatty acid composition. Based on the combination of general 

robustness and lipid productivity, strains of interest were selected for more detailed 

investigations. Besides biomass accumulation, high contents of neutral lipids are considered as 

essential for liquid biofuel generation, albeit usually being the result of exclusive physiological 

states. Since nitrogen starvation as well as light intensity were reported as important factors for 

TAG generation within the cells, these conditions were investigated for strains of interest in a two 

stage setup that includes a growth and a lipid accumulation phase. 

The investigation of potential bottlenecks in triacylglycerol synthesis has gained increasing 

attention in the past years. C. reinhardtii can be considered as one of the most important model 

organism in the field of lipid related research, since its genome sequence and a comprehensive 

molecular toolbox allow targeted modifications. The final step of TAG synthesis is mediated by 

DGAT, which was therefore overexpressed to overcome potential limitations, especially under 

non-stressed conditions. Further pathways that could deprive TAG synthesis of precursors are the 

generation of polar lipids as DGTS. Since a down-regulation could result in an increase of 

metabolic flux towards TAG synthesis, the enzyme responsible for DGTS synthesis was down-

regulated. These investigations are considered to shed more light into the complex interplay of 

lipid generation pathways which can be subsequently exploited to create oleaginous strains of 

microalgae. 
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When the quality of liquid biofuels is addressed, the fatty acid composition is a decisive factor, 

demanding mainly saturated and monounsaturated fatty acids. To investigate whether the 

microalgal strains comply with these requirements, the fatty acid profiles were determined.  

A key element for a future economic viability could be found in a biorefinery approach, where 

the residual biomass is also utilized. Therefore, the performance of the algal biomass in 

fermentation reactors was investigated to elucidate the strains potential for methane production.  

Once an oleaginous strain is found, the next step leads towards its sequencing to elucidate central 

aspects of its lipid metabolism and to identify targets for genetic manipulations to increase the 

overall lipid productivity and quality. To provide the basis for this work, the genome of the most 

promising candidate was sequenced and central parts of its lipid metabolism were reconstructed, 

allowing a future integration of the results acquired from the intense investigation of the lipid 

metabolism in C. reinhardtii into targeted genetic engineering approaches as well as the 

establishment of this new promising strain as oleaginous model organism for future 

domestication. 
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4. Discussion 

This work is dedicated to the finding and investigation of strains of microalgae that could be 

integrated into liquid biofuel production concepts. Therefore, the approach that characterizes this 

work relies on the potential found in the biodiversity preserved in strain collections as well as in 

the environment.  

For biofuel applications, candidate strains should not only exhibit high lipid productivities, but 

also include a resistant and robust growth phenotype, allow targeted genetic modifications and 

offer ease in down-stream processing. A correspondingly targeted screening can result in 

effective preselection of strains that comply with several of these requirements. The first part of 

this discussion focusses on the results of the screening approach and the candidate strains that 

have been identified in the course of this work.  

High overall lipid productivity does not necessarily rely on rapidly growing strains that maintain 

simultaneously high lipid contents, but can be also reached in a two-stage setup, where an initial 

rapid growth phase is followed by a period of lipid accumulation, usually under starvation 

conditions. To ensure that the candidate strains follow this pattern, they were investigated in a 

comprehensive approach, combining nitrogen starvation with varying culture density that resulted 

in different light availability. 

Besides cultivation parameters, TAG generation can be directly targeted using genetic 

manipulation. C. reinhardtii was chosen as model organism with a comprehensive molecular 

toolbox. The over-expression and down-regulation approaches on two different targets, DGAT 

and BTA1 respectively, were performed to elucidate their role on TAG accumulation under 

varying culturing conditions. 

The sequencing of the species of interest, M. neglectum, allowed furthermore detailed insights 

into the potential of its lipid metabolism and can therefore provide a basis for future genetic 

engineering, thereby integrating the knowledge acquired in C. reinhardtii.  
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[4] Bogen C. Isolation and comprehensive screening of strains on their potential for liquid biofuel 

generation.  

[5] Bogen C. Investigation of the influence of BTA1 down-regulation on neutral lipid content in 

C. reinhardtii. 

 

4.1. Screening of strains on biomass productivities and lipid contents 

Whenever a screening for a specific purpose is performed, an important aspect in the early 

beginning is to choose the most promising starting material. There are different possibilities to 

gain promising strains for biofuel purposes, either relying on already known strains that have 

been identified by literature research (Breuer et al., 2012), focussing on strains of a prominent 

genus or species (Přibyl et al., 2012; Rodolfi et al., 2009) or directly isolating new strains from 

the environment (Chaichalerm et al., 2012; Lim et al., 2012; Yang et al., 2012) as well as a 

combination of those strategies (Griffiths et al., 2011). 

In this work, strains were considered that originated from algae collections but were not in the 

focus of biofuel-related research so far [2], and this approach was combined with the 
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investigation of isolates from local water bodies after a preliminary investigation of growth 

properties [4]. These organisms were subsequently investigated in the same methodological 

setup, ensuring their comparability and to overcome limitations of variations in the experimental 

conditions. Culturing under nutrient replete conditions was chosen to allow maximum biomass 

productivities and to determine the basic lipid productivities that can be reached without nitrogen 

starvation. 

The broad range of investigations of microalgae on their potential for biofuel applications is 

based on two main parameters: growth and lipid content (Chen et al., 2011). Biomass 

accumulation is one of the less problematic parameters to determine, since it is usually reported 

as dry weight of the total biomass (DW) or as ash free dry weight (AFDW) (Zhu & Lee, 1997). 

One of the challenges in screening approaches is the determination of lipid contents and the 

evaluation of their quality, since usually not all lipid classes but specifically triacylglycerols are 

the compound of interest for liquid biofuel applications (Hu et al., 2008). Traditional approaches 

apply time-consuming lipid extractions based on methanol and chloroform (Bligh & Dyer, 1959; 

Folch et al., 1957) or hexane (Davidi et al., 2011), often combined with fatty acid analysis of the 

total lipids fraction via gas chromatography coupled to flame ionization detection (GC-FID) 

(Makri et al., 2011; Msanne et al., 2012; Siaut et al., 2011) or to mass spectrometry (GC-MS) 

(Davidi et al., 2011; Poerschmann et al., 2004; Siaut et al., 2011). More sophisticated methods to 

determine the amount of lipids in the biomass include Fourier transform infrared micro-

spectroscopy (Dean et al., 2010) and neutral lipid determination via high performance liquid 

chromatography (HPLC) coupled to MS (Fauconnot et al., 2004) or Charged Aerosol Detectors 

(CAD) (McNichol et al., 2011; Moreau, 2006). However, these investigations are comparably 

expensive, especially if the analytical equipment is not readily available (Wawrik & Harriman, 

2010). Therefore some previous research was dedicated to finding fast and reliable detection 

methods for lipids, either based on colorimetry in comparatively inexpensive approaches 

(Wawrik & Harriman, 2010), fluorescent dyes as Nile Red (Chen et al., 2009; Elsey et al., 2007) 

and BODIPY (Cooper et al., 2010). Due to several advantageous properties as stability and the 

possibility to distinguish between polar and neutral lipids (Mutanda et al., 2011), much work 

currently relies on Nile Red (Chen et al., 2009; Lim et al., 2012; Yang et al., 2012). However, 

due to its shortcomings when inter-species variability is addressed, especially when strains with 

thick cells walls are considered (Dean et al., 2010; Mutanda et al., 2011), methods of a higher 
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reliability are required. A wide variety of strains of different phylogenetic origin was investigated 

in this work [2, 4], therefore harsher and less biased techniques were needed to ensure the 

comparability between the strains whether they originated from algae collections or were isolated 

in the course of the screening. It was shown that chloroform-methanol based techniques result in 

rather complete extraction of lipids when compared to other solvent system as hexane and 

isopropanol (Lee et al., 1998). Furthermore, the method of Bligh and Dyer (Bligh & Dyer, 1959) 

had a reduced efficiency in lipid extraction from tissues with increasing lipid contents (Iverson et 

al., 2001) when compared to the method of Folch (Folch et al., 1957). Therefore, Folch extraction 

was applied in the course of this work [1-4]. 

The different cultivation conditions and methods that are used among previous studies (Chen et 

al., 2011) result in some difficulties within their general comparability, however some common 

tendencies were observed as well as several differences to previously published work, indicating 

the presence of several promising candidate strains. As an example, Dunaliella tertiolecta has 

been reported to contain 16.7% oil content of ash free dry weight (Gouveia & Oliveira, 2009), a 

considerably lower value than the 24.4% of dry matter found here [2, Table 1]. This can be most 

likely attributed to differences in determining the dry weight as well as a different lipid extraction 

method used by Gouveia & Oliveira (2009). In contrast, far higher values of 60.6% have been 

reported by Takagi et al. (2006) from a ten days cultivation of D. tertiolecta (ATCC 30929) 

under phototrophic conditions and a supply of 3% carbon dioxide (Takagi et al., 2006), which 

could have resulted in unspecific starvation conditions. This finding underlines the high 

variability of total lipid values reported for the same microalgal species in different studies. The 

D. tertiolecta strain that was investigated here [2] showed comparative contents of lipids as 

another strain of Dunaliella spec. investigated in the same work. Both strains shared a highly 

similar fatty acid profile, pointing towards their potentially close relationship. Furthermore, the 

low total lipid yields of Scenedesmus costatus (11.9% of dried biomass) [2] correspond well to 

values reported from Scenedesmus obliquus of 12.7% in the stationary phase without 

supplementary glucose or induction of specific starvation conditions (Mandal & Mallick, 2009). 

However, other Scenedesmus strains were able to accumulate higher amounts of total lipids under 

phototrophic growth conditions, ranging between 18% and 21% of biomass (Rodolfi et al., 2009). 

The isolate Br6a II, closely clustering to Scenedesmus obliquus, however lays exactly within this 
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reported range [4], as well as the total lipid content of S. obliquus (SAG 276-6) was found on a 

similar level (17% of dry weight, [3]).  

In this initial screening setup, M. contortum showed the best overall qualities compared to the 

other candidate strains, characterized by a good phototrophic biomass productivity (a mean of 

239mg dry biomass l
-1 

day
-1 

for the overall cultivation period) and with comparatively high fatty 

acid abundances [2]. Navicula salinicola also showed high productivities, but was not considered 

for more detailed investigations since its growth performance was rather variable [2]. Other 

strains of the genus Monoraphidium also showed high biomass productivities above 200mg l
-1 

day
-1

, notably M. arcuatum, M. dybowski, M .neglectum and M. terrestre [2]. Therefore this 

group could be found in the upper range when compared to other investigated strains. Eight 

further strains (C. reinhardtii, Chlorococcum infusionum, Lobochlamys segnis, Muriella 

aurantiaca, Nannochloris eucaryotum, Navicula salinicola, Parachlorella kessleri and 

Pleurastrum insigne) were also found with comparable biomass productivities, notably P. 

kessleri as best performer with 358mg l
-1 

day
-1

 [2]. This was also the case for the isolate HL1 [4], 

which shares a high sequence similarity to P. kessleri [4]. Recent investigations did not only 

report high lipid productivities (Li et al., 2012b; Přibyl et al., 2012) but also the scale-up of P. 

kessleri using a thin-layer bioreactor (Li et al., 2012b), therefore underlining the potential of this 

species and closely related organism when carbon sequestration and lipid production in general is 

considered. 

Similarly Chlorella vulgaris was reported with high biomass and lipid productivities (Přibyl et 

al., 2012). Isolates as Sp2, Spain1 and LS1, which clustered with C. vulgaris based on their 23S 

rDNA sequence, reached also notably high biomass productivities [4], therefore confirming the 

suitability of these organisms for rapid biomass production. Interestingly, the best performer in 

terms of biomass production of the screening, Sp2, showed some clear differences in its marker 

sequence to C. vulgaris, therefore indicating a certain phylogenetic distance [4]. These results 

indicate that besides Chlorella and Parachlorella, Monoraphidium appears as a highly interesting 

genus for biomass generation especially when carbon sequestration is a further target (Mata et al., 

2010; Sankar et al., 2011; Sydney et al., 2010). 

 



Discussion 

29 
 

4.2. Lipid productivity under photoautotrophic growth conditions 

The primary aim of these studies [2, 4] was to identify strains which show high lipid productivity 

under nutrient replete growth conditions, without unspecific nutrient starvation. The best 

performers in terms of total lipid productivity, which could be identified in the course of the 

screening, were Parachlorella kessleri, Navicula salinicola, Pleurastrum insigne, 

Monoraphidium contortum and Monoraphidium arcuatum as well as Spain1 and Sp2 with 

comparable lipid productivities, which were found to range between 67 and 87 mg l
-1

 day
-1 

[Table 

2, 3]. Comparable and even lower lipid productivities were reported for a number of 

photoautotrophically grown strains before (Chen et al., 2011). However, when compared to 

Griffiths and Harrison, 2009, these values appear low given the lipid productivities of Amphora, 

Neochloris oleoabundans and Ankistrodesmus falcatus, ranging between 109 and 160mg l
-1

 day
-1

. 

As already mentioned by the authors (Griffiths & Harrison, 2009), comparison of lipid 

productivities obtained from different cultivation conditions, especially from non-optimised 

conditions, is rather difficult. Nevertheless, the lipid productivity was suggested a helpful 

parameter to identify key species (Griffiths & Harrison, 2009). In this regard, the best performer 

strains of Nannochloropsis reached 61mg l
-1

 day
-1

 in another broad investigation of various 

species on their potential for biofuel production purposes (Rodolfi et al., 2009). It should be 

noted that not the best performer but Nannochloropsis sp. with a productivity of 55mg l
-1

 day
-1

 

was used for further optimization and more detailed investigation by (Rodolfi et al., 2009). 

Under nutrient replete conditions, the lipid productivity of another investigation ranged from 

13mg l
-1

 day
-1

 for Ankistrodesmus falcatus and Pavlova sp. to up to 55mg l
-1

 day
-1

 reached with 

Cylindrotheca fusiformis (Griffiths et al., 2011). The good performance of the diatom C. 

fusiformis (Griffiths et al., 2011) appears to be similar to the comparatively high lipid 

productivities of Navicula salinicola (78mg l
-1

 day
-1

) in this work [2]. However, with another 

diatom species, Phaeodactylum tricornutum, considerably lower productivities with 30mg l
-1

 

day
-1

 were reported (Griffiths et al., 2011), which was also the case for the isolates Br5b and LS2 

[4]. These results might therewith be exemplary for the wide range of lipid productivity 

performance of different strains and species encountered in one specific setup, which in the case 

of this work was focussed on conditions that could also occur in larger scale cultivations. 
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Table 2 Mean lipid productivity of the strains originating from algae collections as indicated by Bogen et 

al., 2013 [2]. 

 

Lipid productivity 

[mg l
-1

 day
-1
] 

Parachlorella kessleri 81.4 

Navicula salinicola 77.9 

Pleurastrum insigne 68.1 

Monoraphidium contortum 67.9 

Monoraphidium arcuatum 67.3 

Chlorococcum infusionum 64.4 

Monoraphidium dybowski 58.2 

Monoraphidium terrestre 57.2 

Lobochlamys segnis 52.8 

Chlamydomonas reinhardtii  52.3 

Nannochloris eucaryotum 50.1 

Chloridella simplex 45.0 

Muriella aurantiaca 44.2 

Monoraphidium neglectum 42.7 

Nannochloris spec. 41.3 

Ankistrodesmus nannoselene 31.7 

Chlorococcum costazygoticum 30.8 

Dunaliella spec. 27.8 

Coelastrella striolata 27.8 

Characium californicum 25.9 

Lobochlamys culleus 25.0 

Dunaliella tertiolecta 23.8 

Scenedesmus costatus 17.5 

Chlorella luteo-viridis 15.8 

Characium oviforme 14.8 

Monoraphidium griffithii 13.6 

Chloridella neglecta 13.2 

Monoraphidium tortile 10.3 

Coccomyxa chodati 3.2 

Dunaliella granulata 3.0 

 

Taking into consideration the overall lipid productivity, four different strains of Monoraphidium 

were among the eight best performers obtained from strain collections [2]. Since they showed this 

phenotype under rather high light intensities, combined with growth under autotrophic conditions 
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with CO2 as carbon source, this genus exhibits promising traits for potential industrial 

applications. 

 

Table 3 Mean lipid productivity of strains isolated in the course of this work [4] 

 

Lipid productivity  
[mg l

-1
 day

-1
] 

Spain 1 86.7 

Sp2 79.6 

Oe11a I 60.5 

HL1 59.6 

Oe11a III 52.6 

LS1 49.9 

Oe15a 38.2 

Br6a II 34.5 

Br7a 30.9 

Oe14a I 27.9 

Oe2a 27.6 

Oe14b II 24.0 

AL-1 22.5 

LS2 19.6 

Oe9b 17.5 

Br5b 11.7 

Br21 9.6 

BS2 I 7.7 

BS5 I 3.3 

Br10a 2.1 

 

 

4.3. Fatty acid abundance and composition under phototrophic growth  

To evaluate the suitability of a strain for liquid biofuel applications, it was an important first step 

to quantify the amount of total lipids within the biomass and to calculate the lipid productivity. 

However, for the production of biodiesel it is equally important to determine the relative 

abundance of the fatty acids within the total lipid fraction, since compounds like sterols, pigments 

and hydrocarbons, which are part of the lipid extract, are not suited for the conversion into 

biodiesel (Pruvost et al., 2009). This can easily lead to an overestimation of the suitability of a 

strain as biodiesel feedstock as pronounced by McNichol et al., 2011. Therefore it is required to 
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determine the fatty acid contents of the respective lipid fraction (McNichol et al., 2011) as it was 

also performed in this work [1-4]. GC-FID is widely used for the determination and 

quantification of fatty acids from complex lipid samples as indicated before, nevertheless GC-MS 

was used in this work [1-4] which allows to overcome limitations imposed by GC-FID, which 

can lead to a misidentification of peaks as fatty acids that result from contaminants, artifacts or 

other coeluting compounds (Dodds et al., 2005). 

Though strains may show similar total lipid contents [2, 4], the relative abundances of fatty acids 

can vary considerably, e.g. in the case of Chloridella neglecta (23% total lipids, relative fatty acid 

abundance of a value of 111) and Monoraphidium griffithii (22% total lipids, relative fatty acid 

abundance value of 59) [2]. This high variability of fatty acid abundances corresponds well to 

other recent investigations where distinct differences were found between the total lipid content 

of algal biomass and their fatty acid content (McNichol et al., 2011). The magnitude of these 

differences was highly variable between various samples (McNichol et al., 2011), therefore 

showing the importance to determine the fatty acid abundance. Here, diatom strains as N. 

salinicola, Br5b and LS2 showed the highest overall fatty acid abundances when grown under 

nutrient replete conditions [2, 4]. Lipids are considered as the main storage compound in diatoms 

besides chrysolaminarin (Sheehan et al., 1998), which is in accordance with this finding. 

In contrast, green algae rather rely on starch for primary storage (Sheehan et al., 1998). 

Nonetheless, the strains BS2-I, Coccomyxa chodatii, Chloridella neglecta, Chloridella simplex 

and Monoraphidium tortile were also found with comparatively high fatty acid contents (above a 

threshold of a relative abundance value of 100). With the exception of C. simplex [2] these strains 

showed generally poor biomass productivities [2, 4] and can therefore be considered as a show-

case for the trade-off between lipid content and biomass productivity. Since those strains showed 

rather slow growth, the increased light penetration into the cultures might be a furthermore 

decisive factor for lipid and fatty acid production. High light intensities can result in neutral lipid 

accumulation (Solovchenko, 2012), which could be the reason for the comparatively high fatty 

acid abundances encountered in these strains. This response might be highly species-dependent, 

since some strains as Dunaliella granulata show poor biomass accumulation combined with low 

fatty acid abundances (a relative abundance value of 49). A further exception was identified with 

Chloridella simplex [2], being possibly a rewarding target for more detailed investigation in the 

future. 
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Besides the overall fatty acid abundance the respective fatty acid profile is an important aspect to 

evaluate the suitability of a species for liquid biofuel applications (Chisti, 2007; Hu et al., 2008; 

Schenk et al., 2008). Several strains that either belong or cluster to Chlorella or Parachlorella 

were identified with high biomass and lipid productivities within this screening [2, 4]. However, 

with the exception of LS1, comparatively high contents of polyunsaturated fatty acids (especially 

C18:2, C16:2 and also C16:4 in case of Sp2 and Spain1) could be detected when their fatty acid 

profiles were investigated [4]. The fatty acid profile of C. vulgaris is known for the dominant 

presence of polyunsaturated C18 (Přibyl et al., 2012). P. kessleri also exhibited comparatively 

high contents of C18:2 (40 - 52%) (Li et al., 2012b). This finding could be partially confirmed in 

this work, where the investigated P. kessleri strain originating from the CCAP as well as the 

isolate HL1 showed high contents of C18:2 with 34.4% and 41% of the total fatty acids 

respectively, as well as certain amounts of unsaturated C16 fatty acids [2, 4], that were not 

reported previously (Li et al., 2012b). While polyunsaturated fatty acids require an additional 

hydrogenation step during down-stream processing when used e.g. for biodiesel production 

(Bouriazos et al., 2010), they might be highly valuable subject for other applications, as e.g. for 

the production of food commodities (Draaisma et al., 2013).  

In contrast, the fatty acid profile of several of the Monoraphidium strains showed C18:1 

dominating the fatty acid profile (above 50% of total fatty acids in M. dybowski, M. neglectum 

and M. tortile) [2]. Further high abundances of C16:0 [2] reveal fatty acid profiles which appear 

promising for biodiesel generation, e.g. in terms of oxidative stability as pronounced by Schenk 

et al., 2008. It could be shown that these strains already possess promising fatty acid profiles 

when cultured under nutrient replete conditions. Since Monoraphidium contortum showed a 

phenotype that combined robust biomass accumulation, comparatively high fatty acid abundances 

and a fatty acid profile dominated by the presence of C18:1 and C16:0, it was chosen for more 

detailed investigation [2]. M. neglectum, which appeared with considerably lower fatty acid 

abundances within this screening but a fatty acid profile with high abundances of C18:1 and 

C16:0 [2], was also chosen for comparison. 
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4.4. The impact of nitrogen starvation on lipid accumulation in Monoraphidium 

The use of nitrogen starvation is a widespread method to induce neutral lipid accumulation in 

many green algal organisms as e.g. in Chlamydomonas (Boyle et al., 2012; Goodson et al., 2011; 

La Russa et al., 2012; Moellering & Benning, 2010; Msanne et al., 2012; Siaut et al., 2011), 

Coccomyxa (Msanne et al., 2012), Chlorella (Adams et al., 2013; Breuer et al., 2012; Laurens et 

al., 2012; Piorreck & Pohl, 1984; Přibyl et al., 2012), Neochloris (Adams et al., 2013; Breuer et 

al., 2012; Gouveia et al., 2009; Popovich et al., 2012) and Scenedesmus (Breuer et al., 2012; 

Mandal & Mallick, 2009; Piorreck & Pohl, 1984) as well as in groups of other phylogenetic 

branches as the Eustigmatophytes harbouring the promising genus Nannochloropsis (Radakovits 

et al., 2012; Rodolfi et al., 2009; Simionato et al., 2013). The effects of nitrogen starvation can be 

tremendous on lipid accumulation as shown for Scenedesmus obliquus, where the amount of total 

lipids was found at 43% of dry weight, compared to 13% from nutrient replete cultivation 

(Mandal & Mallick, 2009).  

When nitrogen starvation was applied in this work, the neutral lipid content as well as the fatty 

acid abundances increased considerably for all of the investigated strains: M. contortum [2], M. 

neglectum and C. reinhardtii [3]. A comparative increase of neutral lipids was also observed for 

S. obliquus and P. kessleri investigated in the same setup [3]. Interestingly, the increase of neutral 

lipid contents was similar for both Monoraphidium strains: while M. contortum increased its 

neutral lipid content from 3% of dry weight (with a total lipid content of 25% of dry weight) 

under nutrient replete conditions to 13% under nitrogen starvation [2], M. neglectum showed also 

final neutral lipid contents of 14% of dry weight after nitrogen starvation, starting from about 1% 

neutral lipids of dry weight reached under nutrient replete conditions [3]. The increase of neutral 

lipids was even higher, when nitrogen starvation was combined with low culture densities, 

therewith resulting in an improved light penetration. Here, M. contortum reached 20 % neutral 

lipids [2] and M. neglectum a neutral lipid content of 21 % of dry weight [3]. These findings are 

consistent with other work, where even strains with rather low lipid contents under nutrient 

replete conditions showed a pronounced increase after nitrogen starvation (Mandal & Mallick, 

2009). These gravimetrical determinations were also reflected by the increase of fatty acid 

abundances within the total lipid fraction as determined via GC-MS for M. contortum and M. 

neglectum, with both strains reaching similar abundances of fatty acids under nitrogen starvation 

in the low density cultures [2, 3]. The reference strain S. obliquus showed comparable neutral 
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lipid yields with 1% of dry weight under nutrient replete and 22% under nitrogen starved 

conditions [3]. These values are lower than the over 35% TAG of dry weight previously reported 

(Breuer et al., 2012), though being of identic origin (UTEX 393, SAG 276-6). Since this S. 

obliquus strain was recommended as highly promising for TAG generation (Breuer et al., 2012), 

the abundantly biomass accumulating Monoraphidium strains can be likewise considered as 

rewarding targets for biofuel generation. 

The neutral lipid productivity of M. neglectum was calculated with 52 ± 6mg neutral lipids l
-1

 

day
-1

 (including three days growth in nutrient replete conditions before transfer to nitrogen 

starvation conditions for five days) [3]. Similar productivities were reported for Ankistrodesmus 

falcatus (55mg l
-1

 day
-1

) (Griffiths et al., 2011), though these values are rather difficult to 

compare due to differences in the growth properties of both investigated strains and the 

respective experimental setup as indicated before. Ankistrodesmus braunii, a further species 

within the Selenastraceae, was speculated to bear a potential for lipid synthesis that was equal or 

even superior to Chlorella spp., and was reported to contain lipid contents of up to 73% of DW 

depending culture age and method of analysis (Williams & McMillan, 1961). This could indicate 

that a longer period of culturing could also lead towards higher lipid contents in the investigated 

strains of Monoraphidium. Interestingly, the P. kessleri strain tested here showed with a total 

lipid content of 34% of dry weight considerably lower lipid yields in nitrogen depleted conditions 

[3] than a number of strains investigated  previously, ranging from 41% to 51% of dry weight 

(Přibyl et al., 2012). This could indicate that limiting factors in this experimental setup prevented 

a higher accumulation of neutral lipids. Since the lipid productivity is highly dependent on the 

initial biomass concentration, higher productivities of M. neglectum appear to be readily 

attainable in further optimization studies e.g. in regard to higher culture densities (Li et al., 

2012b; Přibyl et al., 2012; Rodolfi et al., 2009).  

A highly interesting property for biofuel applications is the pronounced increase of C18:1 and 

C16:0 abundances in both of the investigated Monoraphidium strains as response to nitrogen 

starvation, with both fatty acids dominating the profile (up to 76% of total fatty acids in M. 

contortum and 83% of total fatty acids in M. neglectum under optimal lipid accumulation 

conditions, i.e. comparatively low culture densities) [2, 3]. It should be noted at this point, that 

the highest lipid content in the biomass does not necessarily correspond to the state of highest 

lipid productivity of the culture, as it was demonstrated before (Adams et al., 2013).  



Discussion 

36 
 

Considering the accumulation of specific fatty acids, there are further similarities between both 

Monoraphidium strains and S. obliquus. M. contortum showed a C18:1 content of 55% of total 

fatty acids under nitrogen starvation [2], while in M. neglectum C18:1 contributed to 61% of total 

fatty acids [3]. Therefore, both strains exhibited a very similar response to nitrogen starvation 

though a certain phylogenetic difference between M. neglectum and M. contortum according to 

their 18S rDNA is probable (Yu et al., 2012). A similar report of a strong increase of C18:1 

following nitrogen starvation is available for Ankistrodesmus falcatus strain UTEX 242, where 

oleic acid contents increased from 16% under nutrient replete conditions to 53% of total fatty 

acids under nitrogen limitation (Griffiths et al., 2011). Interestingly, the content of palmitic acid 

(C16:0) decreased from 26% to 11% of total fatty acids (Griffiths et al., 2011), contrasting the 

rather constant 22 - 24% contents of C16:0 of the total fatty acids in M. neglectum for both 

culture densities [3]. A similar pattern was reported for S. obliquus, where the C18:1 content 

increased from 22% in nutrient replete conditions to 50% under nitrogen limitation, while C16:0 

decreased from 18% to 14% of total fatty acids under nitrogen starvation (Breuer et al., 2012). 

Both fatty acids were found dominating the nitrogen starved S. obliquus fatty acid profiles of 

other strains in earlier studies (Mandal & Mallick, 2009; Piorreck & Pohl, 1984). Like 

Monoraphidium, Scenedesmus clusters within the Chlorophyceae, where it was shown as member 

of a neighboring branch that also includes Neochloris, Desmodesmus and Bracteacoccus strains 

(Krienitz et al., 2001). However, this pronounced increase of C18:1 was also observed in 

members of other algal groups, e.g. Coccomyxa sp., belonging to the Trebouxiophyceae, where 

44% were reached as response to nitrogen starvation. Interestingly, the fatty acid content of 

C18:1 in the TAG fraction was considerably higher, reaching 58% of the fatty acids therein 

(Msanne et al., 2012). 

Interestingly, the fatty acid composition of C. reinhardtii showed some pronounced differences 

[3], although it is also a member of the Chlorophyceae (Harris, 2009). The fatty acid composition 

of the strain CC1690 which was investigated in this work [3] corresponds in general well to other 

Chlamydomonas strains like CC3491 (La Russa et al., 2012) or CC-3269 (Boyle et al., 2012) or 

CC125 (Msanne et al., 2012), with notable contents of polyunsaturated fatty acids as C18:2, 18:3 

and some minor contents of polyunsaturated C16, as 16:4, detected even in nitrogen starved 

biomass. The increase of C18:1 appeared less pronounced than in other organisms like 
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Monoraphidium or Scenedesmus, indicating the possibility of a varying priority in the different 

mechanisms to accumulate fatty acids under nitrogen starvation. 

 

4.5. Light availability as bottleneck for efficient lipid accumulation 

A further important factor for the accumulation of lipids is the availability of light. High light 

intensities were shown to result in neutral lipid accumulation as pronounced before (Hu et al., 

2008). It was shown that a higher degree of irradiance was responsible for an increase of 

saturated and monounsaturated fatty acids in Nannochloropsis sp. (Rodolfi et al., 2009). Rodolfi 

et al. (2009) underlined that those fatty acids were mainly associated with storage lipids. This 

assessment is supported by the observation made in this work regarding the experiments 

concerning the BTA1 down-regulation in C. reinhardtii [5]. In nutrient replete conditions, 

Chlamydomonas showed comparatively high Nile Red fluorescence values in low culture 

densities, thereby indicating an increase in neutral lipids within the first hours of cultivation [5]. 

As pronounced by Hu et al., 2008, the synthesis of triacylglycerols can counterbalance an 

overproduction of NADPH under photo-oxidative stress, therefore relieving the cell of excess 

electrons. This is in accordance with the results within this work, since this effect was found to 

disappear with rising culture densities [5, Figure 2 B therein], with a concomitant decrease of 

light penetration. 

The role of light penetration into the cultures is also decisive for neutral lipid accumulation under 

nitrogen starvation, which could be also shown in this work [3]. The highest neutral lipid yields 

were obtained with low density cultures, causal of a better light penetration into the culture 

vessel. Dense cultures also showed an increase of neutral lipids under nitrogen starvation, but less 

pronounced. This finding was also reflected in the abundance of fatty acids, which were highest 

in the low culture densities for the investigated strains [3]. A similar observation was made when 

higher biomass densities of Parachlorella kessleri resulted in a lower accumulation of lipids of 

nutrient-limited cultures that were grown under identical illumination (Li et al., 2012b). 

Furthermore, Li et al. (2012) determined that the minimum light intensity required for the 

production of neutral lipids was about 150µmol m
-2

 s
-1

.  

Likewise, it was observed for C. reinhardtii that nitrogen starvation in high density cultures did 

not result in a pronounced increase of fatty acids within the total lipids, while an overall increase 



Discussion 

38 
 

of fatty acids was only observed at lower culture densities [3]. In high culture densities, C. 

reinhardtii showed an increase of neutral lipids but rather not in its fatty acid content [3]. Only 

when the light penetration into the culture was increased, a pronounced increase of fatty acids 

could be observed [3]. PDAT was shown to form triacylglycerol by DAG transacylation, using 

phospholipids and galactolipids as acyl donors (Yoon et al., 2012). The activity of this enzyme 

could therewith explain the clear increase of fatty acids in the neutral lipid fraction in the high 

density cultures, while the fatty acids within the polar fraction showed the tendency to decrease. 

The role of membrane recycling under nitrogen starvation in C. reinhardtii was also discussed 

recently, since several candidate TAG lipases were found up-regulated under these conditions 

(Boyle et al., 2012). This lead the authors suggest that lipases could play alternatively a 

prominent role in releasing fatty acids from membrane lipids for subsequent neutral lipid 

generation. It was previously suggested that after a two-day period of nitrogen starvation about 

30% of TAG could potentially derive from the conversion of membrane lipids as MGDG and PG 

towards triacylglycerol (Fan et al., 2011), which could explain the phenotype observed for C. 

reinhardtii at high culture densities in this work. For both Monoraphidium strains, this picture 

appeared completely different. Both, M. neglectum and M. contortum increased their overall fatty 

acid abundances already about two-fold in the higher density cultures [data not shown, 3]. 

Compared to C. reinhardtii [3], this effect was remarkable and opens the door to comparatively 

high density culturing with concomitant neutral lipid accumulation under nitrogen starvation.  

Nevertheless, very high light intensities can also negatively impact cells, since they can be also 

responsible for a suppression of triacylglycerol accumulation as stressed by Solovchenko (2012). 

However, within the investigated range of light intensity in this work, beneficial effects could be 

confirmed on neutral lipid accumulation for both Monoraphidium strains and C. reinhardtii. The 

high contents of C18:1 within the profiles of the investigated strains could be also attributed to 

the comparatively high light intensities applied in this work. Hu et al., 2008, pronounced that 

high light intensities favor the production of saturated and monounsaturated fatty acids while 

increased contents of polyunsaturated fatty acids are usually observed under low light conditions. 

Radakovits et al. (2012) reported to reach optimal lipid yields by applying starting culture 

densities of about 3.6g l
-1

, a value well above the initial culture density applied for nitrogen 

starvation here (0.8g l
-1

 in case of M. neglectum), so that a further experimental setup 

optimization is expected to yield substantially higher biomass and lipid productivities, especially 
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when combined with cultivation in thin layer bioreactors (Přibyl et al., 2012). Since both 

Monoraphidium strains showed a pronounced increase in fatty acids synthesis even in high 

density cultures, the next step would be to evaluate their response to different nitrate 

concentrations. It was shown recently that the highest lipid content of cells does not necessarily 

result in highest lipid productivities (Adams et al., 2013), optimal lipid productivities could be 

therefore reached by balancing biomass production and lipid accumulation, where the strain 

should ideally accumulate lipids under mild nitrogen starvation. A further increase of neutral 

lipid production was reported for Scenedesmus when optimized nutrient limitation was combined 

with a pre-treatment of cultures with glucose (Mandal & Mallick, 2009). The combination of 

mixotrophic or even heterotrophic growth with subsequent nitrogen starvation under phototrophic 

conditions could be a further possibility to optimize neutral lipid generation in M. neglectum. 

These findings show that a detailed investigation of Monoraphidium-related strains could be 

highly rewarding. Since the lipid accumulation patterns appear comparable between those strains 

as shown for M. neglectum and M. contortum, taking also into account Ankistrodesmus falcatus 

(Griffiths et al., 2011), as well as the rather distantly related Scenedesmus (Breuer et al., 2012; 

Griffiths et al., 2011; Mandal & Mallick, 2009; Piorreck & Pohl, 1984), the further isolation and 

screening of those organisms targeting primarily high biomass productivities and resistance to 

adverse environmental conditions could result into a more widespread application of these strains 

for biofuel related purposes. 

 

4.6. Salt stress and its effect on lipid accumulation 

Besides the described role of light intensity, higher salinities are considered a key parameter to 

allow the exploitation of an organism for biofuel production, therefore using outdoor cultivation 

systems (Pal et al., 2011). Salt tolerance generally allows an organism to adapt to variations of 

salinity in culturing conditions, e.g. provoked by evaporation of media or growth in brackish or 

marine waters (Schenk et al., 2008), therefore less relying on valuable freshwater sources. Both 

Monoraphidium strains showed a certain tolerance to increasing salt concentrations, with M. 

neglectum being more robust than M. contortum [2, 3]. M. neglectum was not impaired in its 

growth pattern when 86mM NaCl was applied and reached even slightly higher biomass densities 

than at lower salt concentrations at the end of cultivation [3]. Compared to other freshwater algae 
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as Chlamydomonas mexicana or S. obliquus, which showed growth optima at a salinity of about 

25mM (Salama et al., 2013), these values are comparatively high and underline the potential of 

M. neglectum for outdoor cultivation. The final biomass concentrations of M. neglectum grown in 

brackish water conditions with 86mM NaCl amounted up to 6.7g l
-1 

after a culturing period of 15 

days [3]. These are much higher biomass concentrations than the 1.12 7g l
-1

 obtained for A. 

falcatus previously (Griffiths et al., 2011), underlining furthermore the robustness of this strain. 

Interestingly, M. contortum showed a considerable increase of neutral lipids when salt 

concentration increased, from 3% of dry biomass at 17mM to 11% of dry biomass at 86mM and 

finally 23% of dry biomass after transfer to salt concentrations of 170mM [2]. Takagi et al. 

(2006) showed previously that an increase of salt concentration from 0.5M to 1M lead to an 

elevated amount of TAG in cells of the marine strain Dunaliella tertiolecta, while maintaining 

comparative growth and nitrate depletion patterns (Takagi et al., 2006). In the case of M. 

contortum, the increase of neutral lipids was accompanied by a sharp decrease of biomass 

productivity. This finding indicates a clear trade-off between growth and neutral lipid content in 

the case of M. contortum which is opposite to the described phenotype in D. tertiolecta (Takagi et 

al., 2006). It is therefore likely that the increase of neutral lipids can be rather attributed to the 

reduction of the growth rate caused by salt stress rather than to a more direct effect of the salt 

concentration as assumed in the case of D. tertiolecta (Takagi et al., 2006). Since the cells were 

still able to synthesize fatty acids, they retain a certain metabolic viability, though cessation of 

cell division. Furthermore, the fatty acid profile shifted strongly towards C18:1 and C16:0 fatty 

acids [2], similarly to the fatty acid pattern observed during lipid accumulation during nitrogen 

starvation. 

Two explanations for the pronounced increase of neutral lipids appear likely. Since 

triacylglycerols are considered as important storage compound in response to adverse 

environmental conditions (Hu et al., 2008), the cells could proceed with carbon fixation and 

conversion of sun energy through photosynthesis while cell division is inhibited by the high salt 

concentrations (Pal et al., 2011), providing them with a more convenient initial position as soon 

as environmental conditions improve for the cells (Siaut et al., 2011), e.g. decreasing salinity in 

water bodies after rain showers. On the other hand, cells show reduced growth rates and are 

therefore exposed to higher light intensities for a longer period of time. This could result in high 

photo-oxidative stress caused by generation of reactive oxygen species (ROS), and in cells 
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coping with these conditions by massive NADPH consumption through fatty acid synthesis as 

indicated by Hu et al., 2008. At this point further experiments are recommended to investigate the 

occurrence and the degree of ROS produced under these conditions. 

 

 

Figure 5 Electron micrographs of M. neglectum when grown in two different salt concentrations. Light 

spots within the cell indicate the presence of lipid droplets. At high salt concentrations, cells formed large 

complexes with multiple nuclei which were not observed at low salt concentrations (0.1%). Micrographs 

provided by courtesy of Uwe Kahmann, Bielefeld University. 

 

A similar tendency in the shift in the fatty acid profile was also reported for Nannochloropsis sp. 

and S. obliquus (Pal et al., 2011; Salama et al., 2013). Nannochloropsis sp. not only increased its 

total fatty acid content when grown in media with rising salinity, which was even more 

pronounced when combined with high light intensities (700µmol m
-2

 s-
1
), but also showed an 

enrichment of saturated C16 und mono-unsaturated C18 in its fatty acid profile (Pal et al., 2011). 

An enrichment of C18:1 in the fatty acid profile was also found for S. obliquus at salt 

concentrations of 40mM when compared to inferior concentrations (Salama et al., 2013). When 

the fatty acid pattern of M. contortum under higher salinities is compared to the fatty acid 
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distribution under nitrogen starvation, the high similarity could lead to the suggestion that similar 

responses could be triggered for the fatty acid synthesis under both adverse conditions in this 

species. Though an increase in neutral lipid contents at a sodium chloride concentration of 

170mM could be also observed for M. neglectum [3], its attribution to a decrease of growth rate 

appears likely, especially when combined with a better availability of light to the culture as 

discussed before in the case of M. contortum. However, cells of M. neglectum showed a distinct 

response to higher salinities [3, Figure 5], that was not found for M. contortum. A distinct 

phenotype with large cells emerged in cultures with 86mM sodium chloride, which became the 

dominant form observed in cultures with 170mM sodium chloride after a period of ten days. 

Electron microscopy revealed the presence of multiple nuclei as well as the presence of lipid 

droplets and starch granules (Figure 5), indicating the presence of valuable compounds that could 

be converted to liquid biofuels, whether directly as triacylglycerols (Hu et al., 2008) or after a 

further conversion step as in the case of starch (Sivakumar et al., 2010). 

 

4.7. M. neglectum as potential feedstock for liquid biofuels 

M. neglectum could be identified as a highly promising candidate for biofuel applications, 

showing robust biomass accumulation, supporting various salt concentrations and differences in 

pH, as well as an efficiently lipid accumulating organism under nitrogen starvation, even in 

higher culture densities [3]. The next step towards the use of a strain for liquid biofuel application 

is its optimization, which can be performed on various levels. One example is the optimization of 

growth conditions or lipid productivities as discussed before, providing an optimal environment 

for high neutral lipid production. The other possibility is to improve the organism, e.g. by UV 

mutagenesis or targeted genetic engineering. Since the genome was sequenced in the course of 

this work, the targeted approach becomes attainable. Therefore, several points require further 

elucidation, e.g. the underlying mechanisms for this lipid accumulating phenotype and where it 

can be further improved. Here, the integration of knowledge about the lipid metabolism and 

neutral lipid accumulating pathways of other organisms is required. The green algae C. 

reinhardtii is one of the most intensely studied model organisms (Harris, 2009; Liu & Benning, 

2013). Since the tools for targeted genetic modifications are well established and its genome 

sequence is publicly available as described before, it offers the possibility to directly interfere 

into metabolic pathways and to explore specific phenotypes. The availability of a comprehensive 
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set of transcriptomic, proteomic and metabolomic data allows deep insights and gain of 

knowledge of its functioning (Harris, 2009; Liu & Benning, 2013). Therefore, intense research 

has been carried out concerning its lipid metabolism, specifically to elucidate pathways leading 

towards the formation of triacylglycerols (Liu & Benning, 2013; Merchant et al., 2012). 

 

4.8. Lipid metabolism in model organism C. reinhardtii and implications on M. 

neglectum 

Two main pathways have been described for triacylglycerol synthesis in eukaryotic organisms, 

the acyl-CoA dependent pathway, which is also known as Kennedy pathway (Boyle et al., 2012; 

Coleman & Lee, 2004; Liu & Benning, 2013; Msanne et al., 2012; Yoon et al., 2012), and an 

acyl-CoA independent route which is mediated by phospholipid:DAG acyltransferases (PDAT) 

(Boyle et al., 2012; Yoon et al., 2012). Both pathways are present in C. reinhardtii and were 

intensely investigated (Liu & Benning, 2013). Due to recent findings, a further pathway for TAG 

synthesis is hypothesized which is located in the chloroplast (Liu & Benning, 2013). When 

metabolic pathways were reconstructed in the genome of M. neglectum in the course of this work, 

the respective enzymes could be also identified. 

 

4.8.1. The role of DGAT for TAG accumulation 

Triacylglycerol synthesis within the Kennedy pathway is characterized by a sequential acylation 

of glycerol-3-phosphate, with the final step being catalyzed by diacylglycerol-acyltransferases 

(DGATs) (Boyle et al., 2012; Coleman & Lee, 2004; Liu & Benning, 2013). Overexpression of 

DGAT was already shown to increase neutral lipids content, e.g. in Arabidopsis thaliana (Jako et 

al., 2001). The role of DGTT in neutral lipid accumulation was indicated by previous 

investigations (Boyle et al., 2012; Miller et al., 2010). Functional redundancy appears as 

important factor when genes of the lipid metabolism are targeted for over-expression or down-

regulation. So, DGAT type-1 showed a similar expression pattern under nitrogen depletion as 

DGTT1, and both reached a similar degree in transcript abundance after 48 hours of starvation 

(Boyle et al., 2012). Interestingly the final transcript abundance was for both, DGAT type-1 and 

DGTT1 at a similar level as DGTT2 and DGTT3, as also stressed by the authors of that study 

(Boyle et al., 2012). It was furthermore discussed that an increase of triacylglycerols in the 
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DGTT over-expression strains could have been reversed by lipid degradation [1]. In the light of 

the recent characterization of PDAT as a multi-functional enzyme, that does not only catalyze 

TAG synthesis but also functions as TAG hydrolase (Yoon et al., 2012), this reasoning is further 

supported, especially since PDAT transcript abundance was found up-regulated rapidly after 

nitrogen starvation was induced (Boyle et al., 2012). Therefore the TAG pool could be controlled 

by various players. Interestingly the knock-down of PDAT in C. reinhardtii resulted in a decrease 

of TAG contents under nutrient replete conditions but not in a significant change under nitrogen 

depletion (Yoon et al., 2012), furthermore stressing the potentially prominent role of functional 

redundancy within PDATs and DGATs for TAG generation.  

 

Table 4 List of DGAT type-2 homologues in C. reinhardtii 

Name NCBI 

Name according to 

Boyle et al., 2012 

Augustus transcript ID 

(Boyle et al., 2012) 

CrDGAT2a XP_001702848.1 DGTT1 Cre12.g557750.t1.3 

CrDGAT2b XP_001691447.1 DGTT2 Cre06.g299050 

CrDGAT2c XP_001694904.1 DGTT3 Cre06.g299050.t1.2 

CrDGAT2d XP_001693189.1 DGTT4 Cre03.g205050.t1.2 

CrDGAT2e XP_001701667.1 DGTT5 Cre02.g079050.t1.3 

 

It is noteworthy, that the carbon source appears to play also a role in DGAT expression, since 

DGAT type-1 appeared not responsive to nitrogen starvation under photoautotrophic conditions 

while DGTT3 and DGTT4 showed increased expression levels (Msanne et al., 2012). There is 

however some uncertainty about the regulation pattern, since DGTT4 was recently reported to be 

highly up-regulated under mixotrophic growth condition with a pronounced decrease of transcript 

abundance when investigated under nitrogen starvation in a starchless mutant of C. reinhardtii 

(Ramanan et al., 2013), which appears contrary to results of previous transcriptomic work (Boyle 

et al., 2012), but could also hint towards strain-specific differences. Since no increased 

triacylglycerol contents could be observed under neither nutrient replete conditions nor under 

nitrogen or sulfur starvation, the transcript abundance of DGTT1 to 3 appears not to be the 

bottleneck for TAG synthesis [1, Table 4]. It should be noted that another study on DGTT, 

overexpression and knockdown of three DGTT forms (DGTT1, DGTT3 and DGTT4 according 

to (Liu & Benning, 2013)) lead to an increase of lipids under nutrient replete as well as nitrogen 
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starvation conditions (Deng et al., 2012). This difference in result could be possibly attributed to 

varying degrees of transgene expression or the respective methods in lipid analysis as pronounced 

previously (Liu & Benning, 2013), so that the actual biological function of the various DGTT 

forms for TAG generation remains to be elucidated.   

Interestingly only three DGAT homologues could be found in the genome of M. neglectum, 

thereof one DGAT type-1 homologue and two DGAT type-2 homologues [3]. Higher number of 

DGAT genes were reported for another oleaginous organism, the Eustigmatophyte 

Nannochloropsis gaditana, where ten DGAT homologues could be found, which is a 

considerably high number when compared to five in the green algae C. reinhardtii or one in the 

red algae Cyanidioschyzon merolae (Radakovits et al., 2012). The role of the high number of 

gene homologues in N. gaditana is however not clear yet, since e.g. only one homologue could 

be identified for PDAT which was subsequently proposed for overexpression or knockout-studies 

(Radakovits et al., 2012). It was shown in a transcriptomic study of Neochloris oleoabundans that 

the expression of DGAT as well as phosphatidate phosphatase remained relatively unchanged 

under nitrogen starvation, while glycerol-3-phosphate O-acyltransferase (GPAT) and 1-

acylglycerol-3-phosphate O-acyltransferase (AGPAT) were up-regulated, leading the authors to 

the suggestion that post-transcriptional regulation of DGAT could play a crucial role (Rismani-

Yazdi et al., 2012). The interplay between gene expression, functional redundancy and post-

transcriptional regulation within the DGAT-PDAT complex are a highly interesting field for 

understanding and finally optimizing the generation of neutral lipids. A study addressing this 

issue was recently performed in the oleaginous yeast Yarrowia lipolytica (Zhang et al., 2012), 

showing that the combination of gene disruptions in PDAT, DGAT type 1 and DGAT type 2 

resulted in a prominent decrease of oil content. 

Taken together, the present results from the investigation of the different DGAT type-1 and the 

type-2 homologues in C. reinhardtii, other factors appear likewise important for the regulation of 

DGAT functioning as compartmentalization, e.g. in case of DGTT4 which is predicted to be 

localized in the chloroplast (Ramanan et al., 2013) or the role of metabolic flux as stressed by 

Boyle et al., 2012. 
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4.8.2. Down-regulation of BTA1 without impact on neutral lipid accumulation 

As an outcome of the up-regulation of the three DGAT transcripts, the down-regulation of 

enzymes responsible for the synthesis of polar lipids was suggested, to potentially increase the 

metabolic flux towards TAG formation [1], which therefore could result in increased neutral lipid 

contents under nutrient replete growth. Considering the role of metabolic flux towards 

triacylglycerol synthesis, metabolites as phosphatidylcholine (PC) gain importance, since it is 

known to play a distinct role in fatty acid desaturation in plants (Wallis & Browse, 2010) and was 

shown to be a substrate to phospholipase activity of PDAT (Yoon et al., 2012). Since PC is 

replaced in C. reinhardtii by DGTS (Giroud et al., 1988; Liu & Benning, 2013), the role of BTA1 

appears as interesting target to identify key enzymes involved in TAG synthesis and the lipid 

metabolism in C. reinhardtii. The transcript abundance of BTA1 was reported to be down-

regulated as response to nitrogen (Boyle et al., 2012; Miller et al., 2010) as well as sulfur 

(González-Ballester et al., 2010) starvation and since the protein was initially reported to be 

associated with lipid droplets in C. reinhardtii (Moellering & Benning, 2010), its role for TAG 

accumulation appeared rather diverse and highly interesting. When down-regulation of BTA1 

transcripts were investigated in the course of this work [5], no increase of neutral lipids could be 

found under nutrient replete conditions, therefore the deprivation of TAG precursors from the 

Kennedy pathway could have less impact on the basic level of triacylglycerols within the cell. In 

contrast, PDAT was previously shown to influence TAG contents under nutrient replete 

conditions, since a knock-down resulted in a significant decrease of the TAG concentration under 

nutrient replete conditions (Yoon et al., 2012). 

Taking into account a putative role of DGTS and its synthesis by BTA1 in the formation of lipid 

droplets, a distinct phenotype could be expected under nitrogen starvation, when neutral lipids 

accumulate in the form of lipid bodies. It could be shown in this work that in the investigated 

range of down-regulation neutral lipid accumulation was not impaired in C. reinhardtii [5]. This 

could be attributed to potential post-transcriptional regulation of this protein, the presence of 

other enzymes with similar functioning or that still enough transcript was available within the 

cell. BTA1 showed a rather dominant transcript abundance in various investigations, which is 

about 4-fold higher than the transcript level of DGTT3 before and about 2-fold higher after 48 

hours of nitrogen starvation (Boyle et al., 2012). A direct role of BTA1 in lipid droplet formation 
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as of phospholipids in plants discussed by Liu et al., 2012, could not be confirmed with the data 

obtained from BTA1 down-regulation within this work [5]. 

The presence of two genes in M. neglectum that code for BTA1 homologues indicates a 

potentially important function of this enzyme as well as a certain degree of conservation. As 

DGTS can be found in a large number of organisms (Dembitsky, 1996), a further important 

function might consist in overcoming limitation to phosphorous in aquatic environments (Liu & 

Benning, 2013; Van Mooy et al., 2009). Interestingly, the fatty acid profile of M. neglectum 

shows a higher degree of saturation than C. reinhardtii as shown in this work, so expression 

studies of BTA1 under nutrient replete as well as under nutrient starvation appears to be highly 

interesting to further elucidate its role, especially since two homologues could be identified 

within its genome. Since PC is the preferred substrate of PDAT as underlined by Boyle et al., 

2012, the interplay between BTA1, PDAT and their substrates should be highly interesting field 

of further research. However, when the accumulation of neutral lipids needs to be addressed, 

BTA1 appears apparently with a less pronounced role than previously assumed.  

The role of DGTS in C. reinhardtii could be possibly found within the fatty acid desaturation 

process, analogous to PC in plants (Wallis & Browse, 2010). DGTS as well as PC appear to be 

important substrates for the desaturation of oleic acid in Parietochloris incisa as underlined 

previously (Guschina & Harwood, 2006), therefore corrobating this reasoning. In 

Eustigmatophytes, DGTS was further discussed as donor of polyunsaturated C20 for the 

chloroplast (Guschina & Harwood, 2006). As underlined by Liu & Benning, 2012, PC is 

supposed to hold an important function in acyl exchange mechanisms in plants, so it appears 

highly interesting whether DGTS is able to substitute this function of PC in C. reinhardtii or 

whether other mechanisms, possibly mediated by PDAT, are involved. For biotechnological 

applications the possibility to substitute phospholipids by betaine lipids could be exploited by 

reducing the amount of phosphate within the nutrients supply while still maintaining growth of 

the organisms.  
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4.8.3. Further targets in lipid metabolism to increase TAG accumulation 

Considering the acyl-Co independent pathway for TAG formation, the overexpression of PDAT 

was shown to moderately increase the neutral lipid content as discussed previously (Merchant et 

al., 2012). In the light of recent findings of a rather moderate effect of PDAT on TAG contents 

(Yoon et al., 2012), other targets might be more promising. There are various other targets that 

have been proposed to overcome bottlenecks to increase neutral lipid contents, as increasing the 

activity of acetyl-CoA carboxylase (ACCase) or KAS I (Yu et al., 2011). The overexpression of 

thioesterases to bypass feedback inhibition mechanisms could be also a worthwhile target, since 

such an approach resulted in an increase of the triacylglycerol content in the diatom 

Phaeodactylum tricornutum (Gong et al., 2011). Further targets that were proposed to gain higher 

triacylglycerol contents are the increase of glycerol-3-phosphate levels (Yu et al., 2011). Yu et 

al., 2011, also speculated that modulating key regulators in lipid metabolism might have more 

pronounced effects on lipid accumulation. A recent work used a screening where microalgal 

cultures were supplemented with small organic compounds with subsequent investigation of lipid 

contents, identifying lipid productivity increasing substances (Franz et al., 2013). This approach 

appears highly interesting to overcome not only bottlenecks in lipid synthesis pathways, 

presenting new targets for genetic engineering approaches, but also to elucidate major triggers or 

check-points in TAG accumulation. 

In addition, as highlighted by Liu & Benning, 2012, the mechanisms of triacylglycerol 

accumulation not only between algae and higher plants but also within the algal realm show 

certain differences, so that the investigation of the lipid metabolism in its diversity within algae is 

required for a better understanding of the underlying mechanisms. A highly interesting point 

considers the storage of neutral lipids within the cells. The formation of cytosolic lipid bodies is 

well described for C. reinhardtii (Fan et al., 2011; Goodson et al., 2011; Moellering & Benning, 

2010). Interestingly, starchless mutants also accumulate lipid bodies in the chloroplast (Fan et al., 

2011; Goodson et al., 2011) which was not observed in the starch-accumulating wildtype 

(Goodson et al., 2011). Their exact structure in C. reinhardtii is currently under investigation 

(Huang et al., 2013; Moellering & Benning, 2010), resulting in the latest finding that the major 

lipid-droplet protein (MLDP) was rather associated with the ER than with lipid droplets (Huang 

et al., 2013). However, transcripts could be identified that encoded an oleosin-like protein, 

leading to the hypothesis of the development of oleosins from algae to higher plants. However, 
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after sequence comparisons with Chlamydomonas oleosin (AGG78364.1) and oleosin-like 

(AGG78363.1), no gene homologues could be identified in the genome of M. neglectum. 

 

4.9. Monoraphidium neglectum as oleaginous model organism 

Within this work, two different strains of the genus Monoraphidium were identified that show 

promising properties for liquid biofuel applications. Both strains, M. contortum [2] and M. 

neglectum [3], showed highly similar patterns in neutral lipid contents and fatty acid 

accumulation under nitrogen starvation. The higher robustness of M. neglectum in terms of 

biomass accumulation, salt tolerance and growth at different pH levels [3] lead to the 

recommendation of this strain for industrial applications. The large cell phenotype observed 

under distinct sodium chloride concentrations (Figure 3) indicates furthermore the potential of 

using M. neglectum to study adaptation mechanisms to salt stress. In addition, other 

Monoraphidium strains that were tested within the initial screening setup showed also rather high 

biomass productivities [2]. 

In previous work, Ankistrodesmus falcatus was presented as a species exhibiting promising lipid 

productivities (Griffiths & Harrison, 2009). The SAG strain 202-2 which was re-assigned as A. 

falcatus clustered closely to M. neglectum (Krienitz et al., 2001), therewith indicating a close 

relationship. Interestingly, both strains show different morphologies, as different arrangement of 

autospores and overall cell shape (Krienitz et al., 2001). A further strain of A. falcatus was 

recently isolated and proposed for lipid production (Talukdar et al., 2012). Therefore, the genome 

sequence of M. neglectum could not only become decisive to elucidate the lipid metabolism for 

this phylogenetic group but also offers the possibility to shed some more light into their general 

diversity and could offer the possibility of more detailed investigation of TAG accumulation in A. 

falcatus. This could be also the case for studies on the diversity of carbon concentrating and 

storage mechanisms of the various algal groups as they appear as interesting field of research 

(Hildebrand et al., 2013), so that comparative studies with the genome of M. neglectum can help 

to explore the underlying mechanisms within the green algal lineage. Combined with RNA 

sequencing, the draft genome sequence also opens the possibility for detailed comparison to 

Neochloris oleoabundans, another oleaginous organism that was shown to have comparable lipid 
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productivities (Griffiths & Harrison, 2009) and was recently subject to transcriptomic studies to 

elucidate its lipid metabolism (Rismani-Yazdi et al., 2012).  

 

4.10. Potential of M. neglectum for industrial applications 

A distinct feature of M. neglectum are the comparatively large cell complexes the organism can 

reach when cultivated at higher salt concentrations [3], especially when compared to other strains 

that are characterized by a rather small cell size as 2 - 5µm in the case of Nannochloropsis 

(Rodolfi et al., 2009). Though the cell walls appear also comparatively robust in M. neglectum 

when grown at lower salt concentrations, the larger spheres appear to be more fragile, and could 

be therefore an easier target for harvesting processes as Nannochloropsis exhibiting rather hard 

cells walls as pronounced by Rodolfi et al., 2009.  

Harvesting is an important, cost-critical factor, which needs careful consideration especially if 

bulk production of compounds for biofuel purposes is targeted (Griffiths & Harrison, 2009), 

emphasizing the importance of cell sizes that are larger than 20µm to allow low-cost straining 

and filtration methods. The importance of cheap harvesting methods lead therefore to the 

consideration, that not the growth system with the maximum yield but with the least effort of 

harvesting could contribute significantly to the commercialization of microalgal fuel (Griffiths & 

Harrison, 2009). M. neglectum showed an increase of cell size well above this threshold after 

transfer to brackish water conditions and exhibits a highly promising phenotype, which could be 

readily exploited for cost-efficient harvesting [Figure 3, 3]. It should be noted that those complex 

structures furthermore have increased neutral lipid contents already under nutrient replete 

conditions [3]. 

The fermentation of the biomass of M. neglectum resulted in comparatively high methane yields, 

which ranged on a similar level as C. reinhardtii [2], therefore its inclusion into biorefinery 

concepts, where the residual biomass is used for biogas generation, can be considered as highly 

interesting approach for commercial viability. 

In conclusion, the combination of robust growth under nutrient replete conditions, high neutral 

lipid contents under nitrogen starvation and a substantial increase of cell size when transferred to 

a salt concentration of 170mM NaCl underline the potential of M. neglectum as an organism 
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fitting to the various requirements for promising microalgal strains (Griffiths & Harrison, 2009; 

Mata et al., 2010). A further important point, when a strain is considered for industrial 

applications and up-scaling, is its resistance to contamination (Griffiths & Harrison, 2009). 

Within this work it could be shown that M. neglectum is able to tolerate different pH levels, 

which could be used to apply temporarily pH shifts to reduce contamination in open ponds 

systems (Mata et al., 2010). Therefore a three-stage process might be recommended, combining a 

biomass accumulation, lipid production and cell harvesting phase. Ideally, cultures should be 

grown under nitrogen limitation under outdoor conditions, and sodium chloride could be added 

after neutral lipid contents increased as response to nitrogen starvation. Increasing salt 

concentrations could be also easily reached by natural evaporation processes in outdoor pond 

systems under rather warm, non-humid climatic conditions.  
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5. Perspective 

In this work, Monoraphidium neglectum could be characterized as robust strain, able to 

accumulate a high amount of neutral lipids with a profile that is dominated by favorable fatty 

acids [3]. Together with its other physiological properties these findings indicate that a bioenergy 

concept based on this species could be highly rewarding. With the sequenced genome, targeted 

genetic engineering approaches come into reach to improve the traits desired for large-scale 

production. As an example, higher biomass productivities could be reached by generating small 

antenna mutants as shown for C. reinhardtii (Mussgnug et al., 2007), since it allows an improved 

penetration of light into the cultures but also a reduction of photodamage as pronounced 

previously (Schenk et al., 2008; Work et al., 2012). 

 

Traditional breeding programs with trait selection as mentioned before (Merchant et al., 2012), 

should be also promising alternatives to improve lipid productivity of strains as M. neglectum. 

Since starchless mutants of C. reinhardtii where shown to produce abundantly neutral lipids as 

storage compound, indicating a direct channeling of photosynthate into triacylglycerols (Liu & 

Benning, 2013), the generation of starchless M. neglectum strains could be a highly rewarding 

target for biofuel applications. It should be however taken into account that both Monoraphidium 

strains were not easily accessible to the widely used fluorescence dye Nile Red, probably due to 

their hard cell walls in freshwater conditions. To overcome these limitations, methods using 

HPLC coupled to CAD as described previously (Moreau, 2006) appear highly promising. 

 

Growth in wastewaters is considered as of high potential to establish microalgae strains for liquid 

biofuel production (Pittman et al., 2011; Yang et al., 2011a), therefore investigation of the growth 

properties of M. neglectum in recycled water and its improvement by breeding are additionally 

recommended. As pronounced previously (Merchant et al., 2012), the combination of breeding 

and molecular engineering can be of great help to create domesticated strains of microalgae that 

combine those traits that are required for successful large scale cultivations, uniting high lipid 

contents, strong growth and predation resistance. To reach those goals, Monoraphidium 
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neglectum appears as a highly promising species, showing a phenotype characterized by robust 

biomass accumulation, strong increase of neutral lipids as response to nitrogen starvation, 

formation of easy-to-harvest cell complexes under higher salt concentrations, all of which are 

highly promising awaiting further domestication. 
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[4] Isolation and comprehensive screening of strains on their potential for liquid 

biofuel generation 

 

C. Bogen 

 

Summary 

Due to the high diversity encountered in the lipid metabolism and fatty acid composition of 

microalgae, the isolation, identification and characterization of newly isolated strains is 

considered a worthwhile effort to gain lineages with high potential for liquid biofuel applications, 

especially when already adapted to local environmental conditions. In the course of this work, 

new strains of microalgae were isolated from various freshwater as well as marine environments, 

and characterized on their growth properties and lipid profiles. Several strains were found with a 

remarkably good performance in terms of biomass accumulation, clustering closely to Chlorella 

and Parachlorella based on plastid 23S rDNA analysis. Two diatom strains could be isolated, 

whose 23S rDNA showed a very high degree of similarity to the plastid of the dinoflagellate 

Durinskia baltica, therefore suggesting a close phylogenetic relationship of the isolate to the 

tertiary endosymbiont that has been engulfed by the ancestor of the dinoflagellate. 

 

Introduction 

Previous screenings of microalgal species 

Since the end of the Aquatic Species Program of the U.S. National Renewable Energy Laboratory 

in 1996 that comprised an intensive screening of a high diversity of microalgal species on their 

potential as sources for renewable fuels (Mata et al., 2010; Sheehan et al., 1998), many more 

strains have been investigated regarding lipid content and composition for various purposes, e.g. 

for use as live food in aquaculture or as a source for food supplements (Carlsson et al., 2007; 

Sasso et al., 2012; Shamsudin, 1992). In recent years, interest resurged in using microalgal oils 

for further conversion into liquid biofuels (Chisti, 2007; Hu et al., 2008; Mata et al., 2010; 
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Schenk et al., 2008; Tran et al., 2010). As a result, lipid contents and fatty acid profiles of several 

common and well-known algae species based on strains originating from existing algae 

collections were under further investigation (Bogen et al., 2013; Breuer et al., 2012; Gouveia & 

Oliveira, 2009; Griffiths et al., 2011; Huerlimann et al., 2010; Li et al., 2008; McNichol et al., 

2011; Přibyl et al., 2012; Rodolfi et al., 2009). Nonetheless, much of the potential of microalgae 

still remains unexplored due to the high heterogeneity of algal fatty acids and lipids that can be 

encountered among individual algal species even within the same division (Harwood & 

Guschina, 2009; Lang et al., 2011). 

Usually lipids are accumulated under specific stress conditions, when growth is generally 

decreased or arrested (Hu et al., 2008; Solovchenko, 2012). This tendency is considered to result 

into a pronounced trade-off between biomass and neutral lipid production (Basova, 2005; Gong 

& Jiang, 2011; Hu et al., 2008; Huerlimann et al., 2010; Sheehan et al., 1998), therefore reducing 

the overall lipid productivity. 

Lipid productivity is considered as an essential trait and major economic bottleneck to the further 

commercial utilization of microalgal oils (Griffiths & Harrison, 2009). Important characteristics 

for liquid biofuel production in the form of e.g. biodiesel comprise the presence of high neutral 

lipid contents and a fatty acid profile with a comparatively high degree of saturation (Knothe, 

2008; Mata et al., 2010; Napier & Graham, 2010). In addition, it has been recommended by 

Griffiths et al. (2009) to select strains that show fast growth and high productivity under local 

climatic conditions. 

Several species of interest have been identified so far and were intensively studied, e.g. 

Botryococcus braunii, where strains of race B contain high contents of terpenoid hydrocarbons 

that can be converted to various fuel fractions using conventional catalysts (Tran et al., 2010). 

However, several critical issues like slow growth rates have constrained its further use for 

biofuels until today (Chen et al., 2011; Mata et al., 2010; Tran et al., 2010).  

Some strains of the genus Nannochloropsis showed good performances in terms of lipid 

productivity; however, critical points as small cell size and hard cell walls currently limit 

economic downstream processing (Rodolfi et al., 2009).  
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Thus, further investigation of other algae species is required to identify oleaginous strains with 

properties that would render them highly promising candidates for future biofuel production (Hu 

et al., 2008; Tran et al., 2010).  

Current publications about recently isolated strains report not only relatively high neutral lipid 

productivities as for Pseudochlorococcum sp. (Li et al., 2011) but also a promising fatty acid 

composition as shown for Navicula spec. (Matsumoto et al., 2010), that makes them possible 

candidates as biodiesel feedstock and also indicate the potential of yet uninvestigated isolates to 

serve as a suitable source for diesel production.  

In this work, 20 microalgal strains were isolated from predominantly local water bodies and 

investigated on their potential for biofuel applications. They were cultivated under elevated light 

conditions and up-scaled to 1.5l batch cultures. Growth parameters were taken and biomass was 

harvested before the cultures reached the stationary phase to avoid unspecific starvation 

conditions. Total and neutral lipid contents were determined gravimetrically as well as their fatty 

acid compositions, which was investigated via GC-MS to identify promising new strains for 

biofuel applications. 

 

Materials and Methods 

Traditional isolation techniques were used for the isolation of new strains (Andersen, 2005; 

Barsanti, 2006). In detail, samples originating from freshwater or marine water bodies were 

transferred into defined liquid minimal media as described before (Bogen et al., 2013), without 

supplementary vitamins or energy rich carbon sources (Fig.1). The resulting enrichment cultures 

were subsequently sprayed on agar plates containing the respective medium and were inoculated 

under continuous light (about 50-100µmol m
-2

 s
-1

).  

After a period of approximately three weeks, single colonies were picked and streaked out on 

further agar plates. Material from these plates was then transferred into liquid media and after 

several days controlled for homogeneity of cells. In a reiterative step, cells were sprayed on plates 

and transferred as previously described to reduce the number of contaminating non-target 

organisms as well as to obtain cultures that potentially derive from individual cells.  
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Duplicates were identified by visual observation using 1,000x magnified microscopic images and 

discarded to avoid redundancy.  

Culture conditions and growth analysis 

An additional criterion for strain selection was successful up-scaling to 1.5l batch cultures under 

elevated light intensities to obtain strains with a high potential for robust and competitive growth 

in outdoor cultivation setups (Figure 1).  

 

 

Figure 1 Overview of the screening strategy to identify strains with dominant biomass production and 

suitable lipid profiles under photoautotrophic conditions 

 

Therefore strains were transferred from agar plates to 20ml of liquid media. After 1-2 weeks, the 

cultures were transferred into 200ml fresh media that was flushed air enriched with 3% CO2. For 
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the following experiments, cells were harvested by centrifugation. The supernatant was 

discarded, the wet biomass weight was determined and 0.5g were transferred to 1.5l batches of 

minimal media, flushed with 3% CO2 enriched air at 350-400µmol m
-2

 s
-1

 at room temperature 

(25-28°C). Growth was monitored by determination of optical density at 750nm (OD750), cell 

number (Beckman Coulter Z2, Krefeld, Germany) and dry biomass (cell pellets were washed 

with de-ionized water, pelleted at 6,000 x g and dried at 105°C overnight).  

Determination of total lipids and fatty acid abundances 

The strains were investigated on total lipid contents using a modified Folch extraction protocol 

(Folch et al., 1957), while the overall fatty acid abundances and fatty acid composition were 

determined by using a TraceGC gas chromatograph connected to a PolarisQ ion trap mass 

spectrometer following the protocols as described before (Bogen et al., 2013). The fatty acid 

composition of commercially available rapeseed oil was determined as control. 

Phylogenetic characterization of strains 

A tentative identification of strains was performed using the plastid 23S rDNA as described 

previously (Sherwood et al., 2008; Sherwood & Presting, 2007). DNA was extracted using the 

Chelex method as it was applied for colony PCR on Chlamydomonas (Cao et al., 2009). 

DNA extraction, 23S rDNA amplification and sequencing of Parachlorella kessleri (CCAP 

211/11H) and Monoraphidium contortum (SAG 47.80) was performed as control. The 

phylogenetic tree was constructed based on the Maximum Composite likelihood method using 

Mega5 (Tamura et al., 2011). 

 

Results 

The search for new promising strains remains a continuing and challenging task in research that 

is dedicated to establish microalgal strains for biofuel applications (Hu et al., 2008). Therefore, 

microalgae were isolated from local water bodies and screened on robust growth properties to 

identify promising strains for outdoor cultivations. 
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Isolation and strain selection 

In total, 77 strains were isolated from various habitats, thereof 35 strains from a freshwater 

location in Bielefeld, 21 strains originating from a freshwater location in Gruenberg/Germany, 

one strain from a well close to the Bielefeld University (Dornberg), five further strains from the 

Lippesee/Germany, one strain deriving from an algal bloom of a river in Spain and another strain 

originating from a cooling water circuit in our lab. In addition, a number of saltwater strains were 

isolated: seven from the North Sea/Denmark and seven from the Baltic Sea/Germany. A further 

strain was isolated from an acidic lake enrichment culture (Lausatia/Germany). Visual 

observation of cultures grown in liquid media was performed to identify potential duplicates and 

resulted in a high reduction of the number of strains. Of the remaining strains, 20 showed 

generally robust biomass productivities in smaller scale setups and could be finally up-scaled to 

1.5l batch cultures (Table 1).  

Tentative identification of strains 

A further, more detailed characterization is required to assess the novelty of a strain and to 

compare its general growth pattern and fatty acid profile to well-known organisms. Universal 

primers were used to amplify a suitable marker sequence of the plastid 23S rDNA (Sherwood et 

al., 2008), that was subsequently used to assign the isolates to already known organisms (Figure 

2).  

Most of the isolated strains clustered within the chlorophytes, while only two were found in a 

separate branch clustering with the evolutionary distinct diatoms (Figure 2). 

The comparison of the sequencing data revealed the presence of five potential duplicates 

concerning the strains isolated from a pond in the Oetker Park (Oe2a, Oe9b, Oe14a I, Oe14b II, 

Oe15a). Further two duplicates were found to cluster with Chlamydomonas geitleri sequences 

(Oe11a II, Oe11a III). These strains exhibited a rather non-uniform appearance when investigated 

microscopically; therefore they were not removed after visual examination. This high degree of 

redundancy was not observed for the isolation of strains from another water body, a freshwater 

location in Brunnental/Gruenberg, where several distinct lineages could be isolated from the 

same enrichment culture.  
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However, these duplicates allowed investigating their micro-biodiversity in terms of biomass 

accumulation and fatty acid composition, which appears worthwhile since recent reports point out 

the high diversity in physiological and genetic patterns that can be encountered in individuals of 

the same species, even within the same bloom (Loret et al., 2002; Medlin et al., 2000). 

 

Table 1 Strains isolated from the environment that have been successfully up-scaled to 1.5l batch cultures 

 

Origin ID 

1 Acidic Lake, Lusatia, Germany AL-1 

2 Pond, Brunnental, Gruenberg, Germany Br5b 

3 Pond, Brunnental, Gruenberg, Germany Br6a II 

4 Pond, Brunnental, Gruenberg, Germany Br7a 

5 Pond, Brunnental, Gruenberg, Germany Br10a 

6 Pond, Brunnental, Gruenberg, Germany Br21 

7 Baltic Sea, Hohwacht, Kiel, Germany BS2-I 

8 Baltic Sea, Hohwacht, Kiel, Germany BS5-I 

9 Cooling water circuit, Bielefeld, Germany HL1 

10 Lake, Lippesee, Germany LS1 

11 Lake, Lippesee, Germany LS2 

12 Pond, Oetker Park, Bielefeld, Germany Oe2a 

13 Pond, Oetker Park, Bielefeld, Germany Oe9b 

14 Pond, Oetker Park, Bielefeld, Germany Oe11a II 

15 Pond, Oetker Park, Bielefeld, Germany Oe11a III 

16 Pond, Oetker Park, Bielefeld, Germany Oe14a I 

17 Pond, Oetker Park, Bielefeld, Germany Oe14b II 

18 Pond, Oetker Park, Bielefeld, Germany Oe15a 

19 Well, Dornberg, Bielefeld, Germany Sp2 

20 River, Rio Yuso, Spain Spain1 

 

 

As a further outcome of the 23S rDNA sequence analysis of the isolates, the diatom strain isolate 

Br5b showed a 100% nucleotide identity in 329 bases of the plastid 23S rDNA to a 

dinoflagellate’s plastid that has been recently published (Imanian et al., 2010). The other diatom 

isolate LS2, which originated from a different freshwater location, showed also a high sequence 

similarity with 99%. Their identity as diatoms was however confirmed by microscopic 

observations.  
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Figure 2 Tentative identification of strains using the evolutionary relationships of taxa. The evolutionary 

history was inferred using the Minimum Evolution method (Rzhetsky & Nei, 1992). The optimal tree with 

the sum of branch length of 0.5421 is shown. The percentage of replicate trees in which the associated 
taxa clustered together above 50% in the bootstrap test (1000 replicates) are shown next to the branches 

(Felsenstein, 1985). The tree is drawn to scale, with branch lengths in the same units as those of the 

evolutionary distances used to infer the phylogenetic tree. The evolutionary distances were computed 

using the Maximum Composite Likelihood method (Tamura et al., 2004) and are in the units of the 
number of base substitutions per site. The ME tree was searched using the Close-Neighbor-Interchange 

(CNI) algorithm (Nei & Kumar, 2000) at a search level of 1. The Neighbor-joining algorithm (Saitou & 

Nei, 1987) was used to generate the initial tree. The analysis involved 32 nucleotide sequences. All 
positions containing gaps and missing data were eliminated. There were a total of 144 positions in the 

final dataset. Evolutionary analyses were conducted in MEGA5 (Tamura et al., 2011). 
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About half of the strains showed a distinct clustering to known organisms, while the other 

isolates (namely the five Oe duplicates, BS2-1, Br7a and Br21) appear to be of a certain distance 

to other well-known organisms according to the investigated stretch of the 23S rDNA sequence. 

 

Biomass productivities and lipid contents 

High biomass productivity combined with considerable lipid contents in large-scale cultivation 

systems are regarded as a crucial property of strains that are considered for biofuel applications 

(Hu et al., 2008). To identify candidates that could most probably meet those requirements, 

strains were up-scaled to 1.5l in minimal media and investigated on growth properties and lipid 

contents. 

All investigated strains showed robust growth in minimal media, therefore being able to 

accumulate biomass without further supplementation with vitamins. Five strains showed mean 

biomass productivities exceeding 300mg l
-1

 d
-1

 during the cultivation period, including with Sp2 

and Spain1 two isolates with productivities even higher than 400mg l
-1

 d
-1

 (Table 2). The lipid 

content of both strains with 17.6 ± 1.8% and 21.6 ± 0.7% of the dried biomass for Sp2 and Spain 

respectively was in the medium range.  

Highest total lipid contents were determined for Br5b (35.7 ± 1.0% of the dried biomass) and 

LS2 (30.5 ± 1.8% of the dried biomass), while their biomass accumulation was considerably 

lower when compared to the other isolated strains (Table 2). LS2 showed with a mean of 64mg l
-1

 

d
-1

 higher biomass accumulation than Br5b, that was however 7fold lower than of the best 

performer Sp2. Total lipid yields were surprisingly low for the Oetker Park isolates, namely for 

Oe2a, Oe9b, Oe14a I, Oe14b II and Oe15a ranging from 13.5 to 16.3% of dry biomass. Oe11a I 

and 11a III showed higher total lipid yields (17.4 - 19.4% of dried biomass), also combined with 

a higher mean biomass productivity. 

With the exception of Br6a II and Br7a with a mean increase of biomass of 0.177 and 0.187mg l
-1

 

d
-1

 respectively, biomass productivity was comparatively low for the strains isolated from the 

Brunnental location, a finding also observed for the isolates originating from the Baltic Sea 

(mean biomass productivities of 55 and 20mg l
-1

 d
-1

). 
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Table 2 Mean increase of biomass during the culturing period and total lipid content. Biomass 

increase was measured by the determination of dry biomass accumulated after the cultivation 

period, divided by the number of days of cultivation. Total lipid amounts of the dry biomass were 

determined gravimetrically and the standard deviation determined from three technical replicates. 

 

 

Fatty acid composition 

When the fatty acid compositions of the strains were investigated, distinct differences were found 

between the strains that were assigned as diatoms and the Chlorophyte strains (Fig.2, Table 3). 

Both diatom strains (Br5b and LS2) showed the presence of saturated C14 fatty acids as well as 

comparatively high contents of C16:1 with 49.6% and 43.9% of the total fatty acids (Table 3). 

Furthermore, about 10% of the total fatty acids could be assigned to C20:5, which were only 

found to smaller percentages (3.1 – 3.6% of total fatty acids) in the marine isolates BS2-1 and 

BS5-I. While the Chlorophyte strains exhibited considerable amounts of mono- and dienoic C18 

fatty acids, both compounds were below the 1% threshold of total relative abundances in Br5b 

and LS2. However, when overall abundances of fatty acids were considered, both diatoms 
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showed highest contents per unit biomass (172 and 144 for Br5b and LS2 respectively, compare 

to Table 3). 

Both marine isolates (BS2-I and BS5-I) showed some amounts of long chained fatty acids 

(C20:1, C20:3 and C24:0), that did not reach the 1% threshold in any of the other investigated 

strains. Their overall fatty acid contents were comparatively high, ranging between relative 

abundance values of 94 and 102 per unit biomass. 

Most of the Chlorophyte strains showed high abundances of C16:0 as well as C18:1 and C18:2. 

Interestingly between 15 and 19% of C16:4 could be detected for a number of strains (AL-1, 

Br7a, Br10a, Br21, Oe11a I and Oe11a III) as well as some minor amounts of C18:4 (ranging 

from 5.3 to 7.1% of total fatty acids) in all non-diatom strains isolated from the Brunnental 

location. The overall fatty acid abundances of the Chlorophytes were typically found to range 

below 50% of the fatty acid contents encountered in both diatom strains. 

 

Discussion 

Screening strategy 

Several screenings have been applied before to identify promising strains for biofuel applications, 

either based on strains that were available from well-known culture collections (Breuer et al., 

2012; Griffiths et al., 2011; Rodolfi et al., 2009) or focussing on organisms that have been 

recently isolated from environmental samples (Chaichalerm et al., 2012; Lim et al., 2012; Yang 

et al., 2012). While culture collections cultivate generally a wide variety of different organisms as 

emphasized by Mata et al., 2010, the isolation of new strains from the environment for a specific 

purpose can already apply targeted selection processes through the use of minimal media and 

removal of strains with slow growth properties as it was performed in this work. 
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Table 3 Fatty acid profiles [% of total fatty acids] of the 20 selected isolate strains from nutrient replete 

conditions. The fatty acid composition was determined by GC-MS and the relative fatty abundances 

within the total lipid fractions were calculated as specified in the material and methods sections. Values 
represent the mean of three technical replicates. Relative abundances below 1% were not included. 
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The screening strategy that was applied here resulted in the selection of 20 strains that are able to 

grow abundantly under photoautotrophic conditions with elevated light intensities in minimal 

media, therefore providing the basis to potentially reduce cultivation costs that could arise e.g. 

from supplementation with high-value substrates as vitamins.  

The accumulation of biomass of the isolates showed clear, strain-specific differences with a 

certain variation even between isolates of the same marker sequence. This heterogeneity in 

biomass productivity when various strains of the same species is investigated was also shown 

previously (Chen et al., 2011; Loret et al., 2002), therewith underlining the physiological 

biodiversity and the potential that can be encountered when new strains are isolated, even when 

originating from the same water body. 

Sufficient supply with carbon plays a crucial role to allow optimal algal growth (Mata et al., 

2010). Especially if photoautotrophic biomass generation is used as a sink for CO2 (Chen et al., 

2011; Mata et al., 2010; Schenk et al., 2008), its efficient uptake and conversion to biomass are 

important parameters for industrial applications. Since all of the strains were supplied with equal 

amounts of CO2 in the up-scaled cultivations, the strains Sp2 and Spain1 would be highly 

interesting targets for carbon sequestration due to their high biomass productivity under these 

conditions. 

It should be noted that the strains of the cultivations in this work not necessarily axenic, similar to 

other comparative studies before (Huerlimann et al., 2010; Lim et al., 2012). 

The cultures showed no considerable increase of contamination during the culturing period in 

autotrophic conditions as it was controlled by microscopic observation. Nevertheless, it cannot be 

excluded, that potential symbionts could provide the algal cells with additional essential 

compounds or growth increasing factors (Lorenz et al., 2005), consequently leading to a decrease 

of growth when treated with antimicrobial agents to obtain axenic cultures. 

Interestingly, solely green algae and diatoms were identified in the course of the screening 

performed in this work, showing the same tendency as it was reported for the outcome of the 

Aquatic Species Program (ASP) (Sheehan et al., 1998). When the collection of the ASP was 

reduced to the most promising candidates, mostly chlorophytes and diatoms came into closer 

consideration (Hu et al., 2008). Only few other strains from other phylogenetic branches are 
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currently in the focus of biofuel related research, as for example the Eustigmatophyte 

Nannochloropsis (Pal et al., 2011; Radakovits et al., 2012; Rodolfi et al., 2009; Simionato et al., 

2013). 

The high number of strains whose 23S rDNA sequence appeared rather distant to other published 

strains is likely to be reduced as soon as more information on plastid S rDNA is available. In a 

complementary approach, the nuclear 18S rDNA could be another target to assign those rather 

distantly related strains to known organisms as it has been performed in some other investigations 

(Lim et al., 2012; Yang et al., 2012; Yu et al., 2012). This was however not in the scope of this 

work, which was mainly focused on finding strains for biofuel purposes, but could be however 

highly interesting for future research on these isolates. 

Potential isolation of a close relative of a tertiary endosymbiont 

The high degree of nucleotide identity of the two diatom’s 23S rDNA with the plastid of the 

dinoflagellate Durinskia baltica (Imanian et al., 2010) points towards a close phylogenetic 

relationship of their plastids. This finding is unusual since dinoflagellates and diatoms can be 

found on different phylogenetic branches (Keeling et al., 2005). The diatom origin of the 

dinoflagellate’s plastid in an event of tertiary endosymbiosis has been investigated by Imanian et 

al., 2010.  

The finding of a close relative of the original tertiary endosymbiont could therewith offer the 

possibility to investigate an apparently relatively recent event of tertiary endosymbiosis in more 

detail. The fact that even two diatoms have been isolated that apparently share this close 

relationship, could indicate to the wide distribution of this species in the environment. The 

genomic and cellular structure of Br5b and LS2 could furthermore possibly help to identify 

mechanism that could facilitate their integration into the dinoflagellate cell in the frame of 

tertiary endosymbiotic processes.  

Comparison of biomass and lipid production 

Usually strains with high basal lipid contents showed the lowest biomass productivities, therewith 

exemplifying the trade-off between high lipid content of cells and dominant growth as it was 

stated before (Chen et al., 2011; Rodolfi et al., 2009; Sheehan et al., 1998). 
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The most abundantly biomass accumulating strains (Sp2, Spain1) clustered closely to Chlorella, 

a genus whose members are well known for their high biomass productivity (Breuer et al., 2012; 

Laurens et al., 2012; Přibyl et al., 2012). Both isolates showed basic lipid contents and overall 

fatty acid abundances that were in the medium range when compared to the other strains. The 

most abundant fatty acids in Chlorella vulgaris were found to be C18:3, C18:2, C16:0 and C16:3 

under nutrient replete conditions with a pronounced increase of C18:1 under nitrogen starvation 

(Breuer et al., 2012). This increase of C18:1 in the fatty acid profile was also observed for a C. 

vulgaris strain when grown in a thin-layer photobioreactor, where a total lipid content of 31% 

was reached (Přibyl et al., 2012). Since lower light intensities were applied by Breuer et al., 2012 

and high maximum irradiances between 100 and 960µmol m
-2

 s
-1

 were measured within other 

studies (Přibyl et al., 2012), the presence of high contents of C18:1 in the fatty acid profiles of 

Sp2, LS1 and Spain1 could be attributed to the comparatively high and constant irradiance 

applied in this work. The content of C18:3 was reported to decrease dramatically, even below the 

detection limit under nutrient depletion (Laurens et al., 2012), so it could be a rather variable 

factor, responding quickly to the respective culturing conditions in case of Chlorella species. It 

should be noted that pronounced contents of C18:3 could be detected for other strains 

investigated with the same method in this work as well as previously (Bogen et al., 2013). The 

content of C18:2 (about 18% of total fatty acids) however corresponds well to other values 

reported from literature (Laurens et al., 2012; Přibyl et al., 2012). 

Another candidate with high biomass productivity was identified with HL1, which clusters with 

Parachlorella kessleri. This species was shown to be able to be scaled up in thin-layer 

photobioreactors, showing there an outstanding increase of biomass (Li et al., 2012). However, 

under nutrient replete conditions, the lipid content remained comparatively stable at a low level 

during the first four days of cultivation (Li et al., 2012). It could be also shown by Li et al, 2012, 

that the cells required at least light intensities of about 150µmol m
-2

 s
-1

 for neutral lipid 

production, underlining the importance of light penetration to the cultures to increase the lipid 

yields. The high irradiance applied here might therefore also contribute to the comparatively high 

contents of total lipids encountered in HL1 besides potential strain-specific differences. The high 

contents of C18:2 (41% of total fatty acids) found in this work correspond well to the 

comparatively stable presence of C18:2 (40-43% of total fatty acids, in most cases) shown by Li 

et al., 2012, while there were pronounced differences in the contents of C18:0, C18:1 and C16:1. 
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As well as C. vulgaris, P. kessleri showed high overall lipid productivities when grown under 

nutrient depletion (Přibyl et al., 2012), so the application of nitrogen starvation should result in a 

substantial increase of total lipid contents and overall fatty acid abundances for those promising 

isolates.  

Br6a II clusters with Scenedesmus obliquus, which is a well-known organism in biofuel-related 

research on algae (Breuer et al., 2012; Mandal & Mallick, 2009; Piorreck & Pohl, 1984). Its 

biomass productivity as it was investigated here was however at an average level. Therefore other 

isolates of this screening appeared with higher potential, e.g. those strains closely clustering to 

Chlorella. 

The finding of polyunsaturated fatty acids with high chain length in case of the two diatom 

isolates Br5b and LS2 is consistent with the fatty acid profile of the marine diatom Navicula 

salinicola, investigated before (Bogen et al., 2013), showing also notable amounts of C20:5 

(14.5% of total fatty acids). Some amounts of C20:5 and C20:4 have been reported previously for 

diatom strains (Hu et al., 2008). In addition, both isolates show considerably high contents of 

C16:1. High abundances of C16:1 were also found in N. salinicola (39.4% of total fatty acids) 

(Bogen et al., 2013) and were reported from other diatom strains (Hu et al., 2008). Therefore 

these fatty acids appear to be characteristic for the investigated diatom species.  

When microalgal biomass is converted to liquid biofuels, the fatty acid composition plays a 

crucial role. Preferable fatty acid profiles for biodiesel should provide C16:1, C18:1 and C14:0 in 

a ratio of 5:4:1 (Schenk et al., 2008). In this work, C14:0 was only detected to some amounts in 

the two isolated diatom strains Br5b and LS2. Though both isolates showed considerably high 

percentages of C16:1 (44 – 50% of total fatty acids), the lack of C18:1 as well as their 

comparatively poor growth performances are the main obstacles for larger scale applications. In 

contrast, the isolated strain LS1 also showed high contents of C16:1 (23% of total fatty acids) 

with a considerable amount of C18:1 and C16:0 (35% and 12% of total fatty acids respectively). 

Its biomass accumulation was robust (219mg l
-1

 d
-1

) but not as high as the best performer Sp2 and 

Spain1, which accumulated almost twice the biomass in the investigated time period. 

Recent studies lead to the identification of candidate strains of S. obliquus and Chlorella 

zofingiensis, being able to retain high biomass productivities with concomitant prominent neutral 

lipid accumulation within the first few days of nitrogen starvation (Breuer et al., 2012), which 
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also appears as an interesting strategy to be applied to robustly growing strains as Sp2 or Spain1. 

Light penetration was also shown to be a critical factor for neutral lipid accumulation in previous 

work (Li et al., 2012), therefore optimized culturing and starvation conditions need to be applied 

to assess the whole potential of those strains of interest. 

 

Summary 

A one phase strategy under nutrient replete conditions was applied to identify candidates for 

liquid biofuel production. Some strains as Sp2 and Spain1 showed a remarkably good 

performance in terms of biomass accumulation and are therefore highly interesting strains for 

carbon sequestration. The investigation of total lipid contents and relative abundances of fatty 

acids revealed strains with comparatively high fatty acid contents, unfortunately combined with 

rather poor growth properties. The application of nitrogen starvation in a two stage setup is able 

to increase lipid productivity drastically and is therefore recommended to be applied to the most 

promising strains of this screening in terms of biomass productivity and lipid profile, which are 

LS1, Sp2 and Spain1. The finding of two diatoms that share a high similarity of their plastid 23S 

rDNA with a recently published sequence of a dinoflagellate offer furthermore the possibility for 

comparative studies of a relatively recent event of tertiary endosymbiosis. 
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[5] Investigation of the influence of BTA1 down-regulation  on the neutral lipid 

content in C. reinhardtii 

 

C. Bogen 

 

Summary 

High contents of neutral lipids are generally considered as important factor to establish strains for 

liquid biofuel generation. In the past, a number of different targets of the glycerolipid metabolism 

were investigated on their influence on triacylglycerol (TAG) synthesis. Following an approach 

to potentially increase the metabolic flux towards TAG generation, BTA1 was down-regulated 

since it directly relies on the TAG precursor DAG for the synthesis of the non-phosphorous lipid 

DGTS. The down-regulation using artificial microRNAs resulted in expression levels of about 

60% of the transcript level of the wildtype and the empty vector transformant. When the neutral 

lipid contents were investigated under nutrient replete conditions, no increase could be observed 

for the down-regulated transformants. This was also the case when nitrogen starvation was 

applied. Therefore further investigations are required to investigate the role of BTA1 in 

glycerolipid metabolism in C. reinhardtii.  

 

Introduction 

The accumulation of neutral lipids, namely triacylglycerols (TAG), in plants and in other 

photosynthetic organisms has developed to one of the predominant motives in research that is 

dedicated to the generation of renewable liquid biofuels (Liu & Benning, 2013). 

Several pathways and mechanisms were subject to detailed investigations, especially in the plant 

model organism Arabidopsis thaliana (Stahl et al., 2004) and the green algae Chlamydomonas 

reinhardtii (Boyle et al., 2012; Fan et al., 2011; La Russa et al., 2012; Yoon et al., 2012). This 

work was expanded to other promising organisms, especially to the Heterokontophyte genus 

Nannochloropsis (Radakovits et al., 2012) as well as to diatoms, resulting into the finding that the 
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lipid metabolism between evolutionary diverse organism shows some pronounced differences 

(Hockin et al., 2012; Liu & Benning, 2013). It was confirmed that the lipid metabolism of the 

green algae C. reinhardtii exhibits a certain similarity to higher plants, with some notable 

exceptions (Liu & Benning, 2013).  For instance, C. reinhardtii is characterized by the absence of 

phosphatidylcholine (PC), which is potentially replaced by the betaine lipid diacylglycerol-

N,N,N-trimethylhomoserine (DGTS) (Wada et al., 2009), as well as a distinct pathway of TAG 

synthesis relying on glycerolipid precursors derived from the chloroplast that has been recently 

postulated (Fan et al., 2011). 

In the past years, several green algal strains gained increasing attention as production host for 

liquid biofuels, especially due to their high biomass productivity (Bogen et al., 2013; Breuer et 

al., 2012; Li et al., 2012).  Consequently results that were obtained from the investigation of C. 

reinhardtii are expected to promote targeted genetic engineering in other green algae to create 

strains with superior lipid qualities. 

For the elucidation of pathways involved in neutral lipid accumulation in C. reinhardtii, over-

expression strategies of diacylglycerol acyltransferases (DGAT) enzymes (Deng et al., 2012; La 

Russa et al., 2012) were applied as well as knock-down of specific enzymes as the 

phospholipid:diacylglycerol acyltransferase (PDAT) (Yoon et al., 2012) or the characterization of 

insertional mutants in the case of PDAT and a nitrogen response regulator (NRR) (Boyle et al., 

2012). Most of this work resulted in either no increase (La Russa et al., 2012) or even a decrease 

of TAGs under nutrient replete conditions as shown in the case of PDAT down-regulation, 

leading to an alteration of polar lipid composition instead (Yoon et al., 2012). 

Therefore, it has been suggested that down-regulation of polar lipids depriving the Kennedy 

pathway of TAG precursors, could result into an increase of metabolic flux towards TAG 

synthesis. DGTS was proposed as such a candidate (La Russa et al., 2012) since it is directly 

synthesized from diacylglycerol (Riekhof et al., 2005).  

Betaine lipids are distinct in their chemical structure, since a glycerolipid containing two fatty 

acids is linked to the permethylated derivative of hydroxyamino acid by an ether bond at the sn-3 

position (Dembitsky, 1996). These lipids are widespread in nature (Dembitsky, 1996; Kato et al., 

1996; Künzler & Eichenberger, 1997), but have not been detected in flowering plants so far 

(Künzler & Eichenberger, 1997). They are however prominent in algae, and have been found in 
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several chlorophytes, including C. reinhardtii (Dembitsky, 1996).  The total lipid fraction in C. 

reinhardtii was reported to consist to 18% of DGTS (Mendiola-Morgenthaler et al., 1985), 

therefore contributing to a prominent part to the polar lipid fraction. Due to its fatty acid 

composition, a cytoplasmic origin of DGTS could be corroborated (Giroud et al., 1988). Since 

the contents of DGTS and PC in various investigated organisms appears to be in an inverse 

relationship, DGTS is expected to functionally replace this phospholipid (Klug & Benning, 2001; 

Liu & Benning, 2013; Moore et al., 2001). PC is a characteristic phospholipid of extraplastidic 

membranes in higher plants, with a distinct role in the desaturation of C18:1 fatty acids that were 

synthesized in the chloroplast and have been subsequently transferred into the endoplasmic 

reticulum (Wallis & Browse, 2010). 

In C. reinhardtii it was shown before, that BTA1 is able synthesize DGTS (Riekhof et al., 2005). 

BTA1 was about 2.6 fold down-regulated in C. reinhardtii wild-type under sulfur starvation 

(González-Ballester et al., 2010), a finding confirmed by microarray data, where  BTA1 showed 

a decrease in abundance under sulfur starvation (Nguyen et al., 2011). This physiological state of 

the cells coincided with an accumulation of neutral lipids (Matthew et al., 2009), therefore the 

down-regulation of BTA1 became an interesting target for more detailed investigation. It was 

expected that the TAG content could increase under nutrient replete growth conditions by an 

increased flux towards the acyl-CoA dependent diacylglycerol:acyltransferase mediated TAG 

formation as a result of BTA1 down-regulation. 

BTA1 was furthermore reported to be associated with lipid bodies in C. reinhardtii, being part of 

an abundant lipid body protein fraction (Moellering & Benning, 2010), which appears 

contradictory the decrease of transcript abundance under nitrogen and sulfur starvation 

(González-Ballester et al., 2010; Miller et al., 2010). Consequently, other studies could not 

confirm that this protein was connected to lipid bodies (Huang et al., 2013; Wang et al., 2009).  

Therefore, the down-regulation of BTA1 should not result in a phenotype that is compromised in 

lipid body formation. This was subsequently tested by applying nitrogen deprivation to the down-

regulated transformants. 
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Material and Methods 

Strain and culture conditions 

C. reinhardtii wild type CC3491 cw15 mt- (Chlamydomonas Resource Center, University of 

Minnesota, USA) was investigated on BTA1 expression and for the down-regulation approach. 

The strain was chosen to ensure comparability with previously published work (La Russa et al., 

2012; Toepel et al., 2011).  

Cultures were grown as liquid cultures in Tris–acetate–phosphate (TAP) medium (Harris, 2009). 

Transformants were screened in 20ml batch cultivations in Erlenmeyer flasks. Wild type, empty 

vector transformants and transformants carrying the construct targeting the BTA1 transcript were 

inoculated to an optical density of 0.05 measured at 750nm (OD750, determined via a Genesys20, 

Thermo Spectronic, USA) from cultures in the logarithmic growth phase. OD750 was chosen since 

this parameter ensures a similar light penetration of cultures. Cultivations were performed 

mixotrophically at light intensities of about 150µmol m
-2

 s
-1

 at room temperature on a rotary 

shaker at 110rpm. Growth was controlled by cell counting (Beckman Coulter Z2, Krefeld, 

Germany) and OD750 as indicated before. 

To compare the physiology of the identified down-regulated transformants with wild-type and 

empty vector control strains, growth was investigated in 200ml batch cultures under nutrient 

replete conditions. 

To induce nitrogen starvation, 50ml of culture were harvested by centrifugation (2,500 x g, 5 

minutes), washed twice with medium deprived of a nitrogen source and resuspended in the same 

amount of nitrogen deficient medium. Cultivation was performed at the same light intensities as 

indicated above. Following the same procedure, a control was transferred to nutrient replete 

conditions. For RNA extractions, samples were harvested via centrifugation (2,500 x g, 2 

minutes) and frozen in liquid nitrogen. 

Downregulation of BTA1 

The design of the amiRNA construct, which targets the transcript of BTA1, was carried out as 

indicated by (Molnar et al., 2009). Oligonucleotides were designed based on the coding sequence 
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for BTA1 under the accession number AY656806.1 via Web Micro RNA designer 3 

(http://wmd3.weigelworld.org) and examined for support by expressed sequence tags via Blast 

search versus the Kazusa database (http://est.kazusa.or.jp/en/plant/chlamy/EST/index.html, 

(Asamizu et al., 2004)). After EST support could be confirmed, the phosphorylated (5') and 

HPLC purified oligonucleotides (amiFor_mm 5' ctagtTTGACCCTTCTGCGCTGTATA-

tctcgctgatcggcaccatgggggtggtggtgatcagcgctaTATATGGCGCAGAAGGGTCAAg 3' and 

amiRev_mm 5'ctagcTTGACCCTTCTGCGCC-ATATAtagcgctgatcaccaccacccccatggtgccgatcag-

cgagaTATACAGCGCAGAAGGGTCAAa 3', ordered from Sigma-Aldrich) were annealed and 

cloned into the SpeI restriction site according to Molnar et al., 2009, to generate the construct 

pChlamiRNA3:BTA. The vector was then amplified in E. coli and purified. The insertion site 

with the target sequence was sequenced to confirm its integrity before the vector was used for the 

transformation of C. reinhardtii CC3491 via the glass beads method as described by (Kindle, 

1990). Cultures were plated on TAP agar plates containing paromomycin (10 g l
-1

) and screened 

for colonies. Positive transformants were picked and cultivated on paromomcyin containing TAP 

agar plates for storage in low light intensities (40 µmol m
-2

 s
-1

). In parallel, transformants were 

generated carrying the empty vector (eV) as a control. 

Expression analysis via RTqPCR 

RNA extraction was performed according to (Chomczynski & Sacchi, 1987). Primers (forward 

GCTCGTACCTGTCCCAAGAC, reverse AGATCGATCGCCAGAAGAAA, with a product 

size of 117bp) were designed using Primer3 (http://frodo.wi.mit.edu/, (Rozen & Skaletsky, 

2000)). 

Quantitative real-time polymerase chain reactions (qPCR) were prepared using the SensiMix 

SYBR One-step Kit (Bioline, Luckenwalde, Germany) in a total reaction volume of 25µl with the 

following composition: RNA sample 8 µl, 2x Sensimix buffer 12.5µl, primer forward 10µM 1µl, 

primer reverse 10µM 1µl, RNAse inhibitor 0.5µl and water 2µl. RT qPCR was subsequently 

performed on a DNA Engine Opticon (MJ Research, Miami, US) and analyzed via the Opticon 

Monitor Analysis Software (version 1.06) of the same supplier as the instrument. 
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Expression levels of BTA1 were calculated relative to Cyclophilin (Stürzenbaum & Kille, 2001) 

(CYN19-3 fw GCCAACCCCTTGGTCTACTT, CYN19-3 rev GAAGTTCTCCGCAGTCTTGG 

as designed by Lutz Wobbe) using the equation according to (Livak & Schmittgen, 2001): 

Amount of target = 2
-ΔΔCT

 

-ΔΔCT = (CTBTA1 - CTCyclophilin) 

Neutral lipid measurements 

Neutral lipids were determined using Nile Red as fluorescence dye as described previously (La 

Russa et al., 2012). Therefore cultures were diluted to cell concentrations between 1-3 × 10
5
 cells 

ml
-1

. 4µl of Nile-Red (250 µg ml
-1

) were added to 2ml of cell suspension in 20% DMSO and 

vortexed for 30 seconds. Fluorescence was measured from 200µl of suspension in a flat 

transparent Greiner 96 well plate with an excitation wavelength of 530nm and emission 

wavelength of 580nm using an Infinite Reader M200 (Tecan, Männedorf, Switzerland). 

Statistical analysis 

Student’s T-test was performed for pairwise comparisons to investigate the transcript down-

regulation (n=18 for each investigated strain) using EXCEL (Microsoft). P-values were 

considered significant when < 0.001. 

 

Results 

Expression of BTA1 in transformants 

BTA1 transcripts were found consistently down-regulated in two (BTA1-1 and BTA1-9) of 48 

transformants to about 60 % of the expression level in the wildtype and empty vector 

transformant (eV) under nutrient replete (BTA1-1 with 63% ± 1 and BTA1-9 with 58 ± 6% of 

WT, as shown Fig. 1, grey bars) and nitrogen starvation conditions (BTA1-1 with 66% ± 5 and 

BTA1-9 with 62% ± 6 of WT, Fig.1, white bars). No further transformants were found via a 

screening applying qPCR that were consistently down-regulated among biological replicates. 
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Figure 1 BTA1 down-regulation after 24 hours cultivation in nutrient replete conditions (grey bars) and 
after 16 hours of nitrogen depletion (white bars). Error bars indicate standard deviation of at least three 

technical replicates. 

 

The degree of down-regulation was found to fluctuate in a certain range (Figure 1); however was 

found to be highly significant. When the degree of down-regulation compared to WT was 

investigated in a pairwise Student’s t-test, the two transformants showed highly significant 

differences (p>0.001) in the expression pattern when compared to wild type and eV. 

Growth and neutral lipid contents in down-regulated BTA1 transformants 

When growth was investigated under nutrient replete conditions, BTA1-1 showed a reduced 

growth rate in the beginning but eventually reaches the same culture densities as the wild-type 

and the control eV (Figure 2A). In contrast, BTA1-9 showed a comparable growth pattern to WT 

and eV, while maintaining the same reduced transcript abundances as BTA1-1 (Figure 1).  When 

the content of neutral lipids was investigated, a pronounced increase of Nile Red fluorescence 

could be observed within the first 10 hours of growth following the inoculation of denser pre-

cultures. However, with rising cell number the Nile Red fluorescence per cell decreased, 

indicating a reduction of neutral lipids within the cells. The decrease was found less pronounced 

in the transformant BTA1-1 within the first 56 hours but then reached comparative levels as 

BTA1-9 and the controls. 

Neutral lipids are usually accumulated under nitrogen starvation (Miller et al., 2010). Therefore, 

growth pattern and neutral lipid content of the two transformants were investigated under these 

conditions. 
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Figure 2 (A) Growth of transformants down-regulated in BTA1 expression (BTA1-1 and BTA1-9) 
compared to wildtype (WT) and a transformant carrying the basic amiRNA construct without BTA1 

targeting sequence (eV) under nutrient replete conditions. The cell numbers represent means of two 

replicates. (B) Neutral lipid content of the investigated strains at the respective time points of culturing. 

Error bars indicate standard deviation of at least four technical replicates. 

 

Growth was arrested for down-regulated transformants and controls within 24 hours after 

starvation was applied, with the number of cells remaining on a similar level (Figure 3A). 

Furthermore, the content of neutral lipids increased in the cells (Figure 3B), with the highest 

neutral lipid contents reached in the control carrying the empty vector after 120 and 144 hours of 

nitrogen deprivation. Wildtype and transformants remained on a similar level of fluorescence. 

BTA1-9 showed a more pronounced increase of neutral lipids after 120 hours of nitrogen 

starvation, however not being confirmed by BTA1-1. 
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Figure 3 (A) Growth of transformants down-regulated in BTA1 expression (BTA1-1 and BTA1-9) 
compared to wildtype (WT) and a transformant carrying the basic amiRNA construct without BTA1 

targeting sequence (eV) under nitrogen deprivation. The cell numbers represent means of two replicates. 
(B) Neutral lipid content of the investigated strains at the respective timepoints of culturing. Error bars 

indicate standard deviation of at least four technical replicates. 

 

These general tendencies could be confirmed by further replicates in view of growth, Nile Red 

fluorescence and degree of down-regulation. 

 

Discussion 

Since comparable levels of neutral lipids were found during the logarithmic growth phase, no 

persistent change in the metabolic flux towards TAG synthesis via Kennedy pathway could be 

observed by down-regulating the transcript abundance of BTA1 in the investigated range. 

Unfortunately, no anti-body was available to confirm the down-regulation via immunoblotting on 

the protein level. 
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The TAG pool has been suspected to play not only a role for the storage of carbon and energy, 

but to represent also an important and flexible system for membrane remodeling with enzymes as 

PDAT assigned to crucial functions, especially in nutrient replete growth conditions (Yoon et al., 

2012). Therefore, even if a down-regulation of BTA1 resulted in an increase of the metabolic flux 

towards TAG synthesis, multi-functional enzymes as PDAT could act as counterplayer, 

channeling triacylglycerols immediately to the polar lipid fraction. This flexibility is mirrored by 

the finding of another enzyme that shuffles acyl-chains between DAG and polar lipids, therewith 

decreasing the degree of saturation within the neutral lipid fraction (Napier & Graham, 2010). 

Since it was recently suggested that neutral lipid precursors can be also synthesized in the 

chloroplast under nitrogen starvation (Fan et al., 2011), DAG from the chloroplast could also 

potentially bypass main routes of the Kennedy pathway to generate TAG. 

The comparatively high number of transcripts found for BTA1 in Chlamydomonas under nutrient 

replete conditions (González-Ballester et al., 2010; Miller et al., 2010), especially when 

considered with post-transcriptional regulation mechanisms, could result into a sufficiently high 

translation, leading to a mitigation of the down-regulation effect that was achieved using 

amiRNAs.  

The transformants were furthermore investigated under lipid induction conditions to assess the 

influence of down-regulated BTA1 transcript abundance on cells suffering nitrogen starvation. 

The accumulation of neutral lipids under nitrogen starvation was not found to differ consistently 

between wild-type and down-regulated transformants, leading to the suggestion that the reduction 

of BTA1 transcript abundance does not result in a phenotype compromised in its lipid 

accumulation pattern under these conditions. 

Whether BTA1 was associated with lipid bodies (Moellering & Benning, 2010) or not (Huang et 

al., 2013), DGTS was suggested to hold structural roles as it was identified as prominent 

component of the polar lipid monolayer (Wang et al., 2009). Its function could be possibly 

replaced by phospholipids in the investigated range of down-regulation; therewith increasing the 

cells need for phosphorous. 

In Arabidopsis thaliana, 18:1 fatty acids derived from the chloroplast are incorporated into PC 

for further desaturation (Wallis & Browse, 2010). Therefore, a down-regulation of BTA1 could 

result in an alteration of the fatty acid profile of the TAG fraction. This could be used to alter the 
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fatty acid composition towards a higher degree of saturation, which is in general more favorable 

for liquid biofuel applications due to higher oxidative stability and cetane number of the fuel (Hu 

et al., 2008).  

However, it remains unclear whether DGTS in C. reinhardtii possesses similar function to PC in 

higher plants as Arabidopsis. The ether bond between the diacylglyceryl moiety and the betaine 

headgroup exhibits a higher stability than the ester bond of phospholipids, therefore a frequent 

conversion of DGTS into DAG and subsequent TAG appears rather doubtful as pronounced by 

Liu and Benning (2012).  

Here, PDAT could provide a more elegant solution. PDAT could be responsible for the shuffling 

of fatty acids from DGTS to DAG after they underwent desaturation while connected to DGTS. It 

has been already shown that PC is a suitable target for its lipase activity (Yoon et al., 2012), so 

taken the structural similarity with DGTS, it could also lay within the functional range of PDAT. 

Since BTA1 down-regulation did apparently not increase metabolic flux or lead to a persistent 

increase of TAG levels under the conditions tested, other targets might be more promising to 

increase overall TAG abundance. A different approach to yield higher TAG contents was 

suggested by blocking the TAG catabolism, which proved to be rather complicated since beta-

oxidation plays an important role in the metabolism and unfavorable phenotypes have been 

reported from various approaches (Radakovits et al., 2010). Further targets could be the over-

expression of thioesterases, which were already shown to increase neutral lipid levels in 

Phaeodactylum (Gong et al., 2011), therewith bypassing potential feedback inhibition in fatty 

acid generation.  

 

Conclusions 

The transcript abundance of BTA1, an enzyme responsible for generation of the polar lipid 

DGTS, was significantly down-regulated to about 60% of the expression found in wildtype. 

However, down-regulation did not result in a phenotype compromised in growth rate, leading to 

the suggestion that either the remaining transcript abundance is sufficient to maintain its overall 

cellular functioning or it could be readily replaced by phospholipids. No sustained increase in 

neutral lipid accumulation was observed in the down-regulated transformants, so the transcript 
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abundance of BTA1 appears to be without a major influence on TAG levels. However, further 

investigation of BTA1 down-regulated mutants are recommended to elucidate the potential role 

of DGTS in the generation of polyunsaturated fatty acids that are abundantly found in C. 

reinhardtii (La Russa et al., 2012), since a higher content of saturated and monounsaturated fatty 

acids could promote the organisms suitability for biorefinery concepts. 
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