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Development of roll-waves in power-law fluids with non-uniform initial 

conditions 

ABSTRACT 

The paper investigates the spatial evolution of a disturbance in an open-channel flow of a power-law 

fluid at non-uniform accelerated and decelerated initial profiles, up to the occurrence of roll-waves in 

mild and steep slope channels. Both theoretical and numerical analyses are applied to the depth-

averaged continuity and momentum conservation equations, deduced from the von Kármán’s integral 

method. For the theoretical investigation, the non-linear near-front expansion technique has been 

applied. Then, the full non-linear problem in its conservative formulation has been numerically solved. 

Independently on the rheology of the flowing medium, non-uniform initial conditions strongly 

influence the perturbation celerity, the disturbance evolution and the roll-waves development. For mild 

slope channels, an initially decelerated profile of shear-thinning fluids has a stabilizing effect, while the 

opposite is found for accelerated profiles. For shear-thickening fluids, only the stabilizing effect caused 

by a decelerated profile is observed. In steep slope channels, independently of the fluid rheology, 

decelerated initial conditions promote the roll-wave occurrence, while accelerated ones inhibit the 

perturbation growth. Although experimental verifications are needed, present results have to be 

properly accounted in defining roll-waves prediction methods and in assigning appropriate boundary 

conditions to enhance or to reduce their formation. 

Keywords: Gradually varied profile; power-law fluid; roll-wave; shock-capturing method; 

surface instability. 

1 Introduction 

Steady flow of thin layer of fluids with various rheologies in an inclined open channel may 

become unstable under certain conditions, up to the occurrence of surface waves which 

wavelength largely exceeds the layer thickness. Such a long-wave instability may degenerate 

into a series of progressing bores, known as roll-waves. The control of this instability 

concerns many processes involving both Newtonian and non-Newtonian fluids. In 

environmental hydraulics, water or muddy intermittent flows often occur in rivers, with 

clay/water mixture especially observed after torrential rains (Takahashi, 1991). Moreover, the 

formation of intermittent waves may follow volcano eruptions in magma (Kang & Chen, 

1995), which behaves as a non-Newtonian fluid (Pinkerton & Sparks, 1978). In several 

industrial applications large-amplitude superficial waves in non-Newtonian fluids can be 

useful, since they facilitate the mixing and in turn the mass and heat exchange; conversely, in 

other ones the interfacial instability would deteriorate the process performance, e.g. causing 

an uneven distribution of material in coating applications. The present paper aims to 

investigate the effect of initial gradually varied profiles, which characterize physical systems, 
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on the roll-waves development in the flow of a non-Newtonian fluid. 

For describing the behaviour of non-Newtonian fluids, rheological models accounting 

for the presence of a yield stress have been proposed. Indeed several linear, i.e. Bingham 

(e.g., Trowbridge, 1987; Liu & Mei, 1989; Liu & Mei, 1990; Balmforth & Craster, 1999; Mei 

& Yuhi, 2001; Hewitt & Balmforth, 2013) and non-linear, i.e. Herschel & Bulkley (e.g.,  

Coussot, 1994; Huang & Garcia, 1998; Balmforth & Liu, 2004; Chanson, Jarny & Coussot, 

2006; Di Cristo, Iervolino & Vacca, 2013a, 2013b, 2013c; Di Cristo, Iervolino & Vacca, 

2014) models have been used. In addition, the power-law fluid model, which does not account 

for the yield stress, remains one of the most widely adopted with either shear-thinning (n<1, n 

is the rheological index) or shear-thickening (n>1) behaviour. Such a model is particularly 

well-suited for analyzing fine sediment-water mixtures, magmas and mining residuals when 

the yield stress is negligible (e.g., Ng & Mei, 1994; Sonder, Zimanowski & Buttner, 2006; 

Burger, Haldenwang & Alderman, 2010; Longo, Di Federico & Chiapponi, 2015).  

Several laboratory experiments (e.g., Coussot, 1994; Wang, 2002; Forterre & 

Pouliquen, 2003) have shown that the roll-waves occurrence in non-Newtonian fluids, 

similarly to the clear-water in turbulent regime, is strictly related to surface instability, which, 

spatially growing along the channel, finally leads to the formation of shock waves. Such an 

observation prompted many researchers to the theoretical study of roll-waves formation 

through the stability analysis of the flow model, with either linear or quasi-linear approaches. 

In the framework of the long-wave approximation, the linear stability of a uniform 

flow of power-law fluid over an inclined plane has been investigated by Ng and Mei (1994), 

using the von Kármán’s integral method. Ng and Mei (1994) carried out a rigorous stability 

analysis for Reynolds number order of one showing that the von Kármán approximation 

adequately describes the essential features of both linear and non-linear instability. Hwang, 

Chen, Wang and Lin (1994) included the surface tension effect in the Ng and Mei (1994) 

model and enlightened that a decrease of the Weber number destabilizes the flow. The long-

wave perturbation along with the multiple scales method has been employed by Lin and 

Hwang (2000) to derive a non-linear evolution equation of film thickness. The results 

revealed that the system is more unstable when power-law exponent decreases. With 

reference to the flow model of Hwang et al. (1994), Dandapat and Mukhopadhyay (2001, 

2003) pointed out the role of both kinematic and dynamic waves, which may act together or 

individually to dominate the flow field. Miladinova, Lebon and Toshev (2004) investigated, 

using Benney’s long-wave approach, the non-linear evolution of falling uniform films of a 

power-law fluid flow over an inclined impermeable wall. Numerical simulations have shown 

that a non-linear interaction saturates up to the formation of a finite-amplitude permanent 

wave. Longo (2011) studied finite-amplitude permanent roll-waves in a shallow layer of 

down-sloping dry granular materials in a dense regime, rheologically described as a shear-
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thickening medium (Bagnold, 1954; Chen & Ling, 1996, 1998; Hunt, Zenit, Campbell & 

Brennen, 2002). Using the simplified von Kàrmàn’s momentum integral approach, the Author 

detected the conditions for the existence of a periodic discontinuous solution, constituted by 

smooth profiles with a monotonically increasing depth between periodic shocks.   

Following the weighted-residual technique originally introduced for Newtonian fluids 

by Ruyer-Quil and Manneville (1998, 2000), more complex models have been recently 

proposed to deeply analyze the motion of non-Newtonian films. Fernandez-Nieto, Noble and 

Villa (2010) provided a consistent thin-layer theory for power-law fluids considering an 

asymptotic expansion of the solution of the Cauchy momentum equations in the shallow-

water scaling and in the neighbourhood of the steady solution. Bouchut and Boyaval (2013) 

proposed a reduced form of the Upper-Convected Maxwell equations for viscoelastic fluids 

valid in general geometries. Noble and Villa (2013) developed a model for a power-law fluid 

through a second-order asymptotic expansion of the fluid velocity field and fluid strain in the 

shallow-water regime. Finally, Bouchut and Boyaval (2016) have proposed a unified 

approach for several fluid models for thin-layer regime based on a mathematical coherence 

property, which defines a reduced model when the rheology is specified.  

The modifications of the stability limit in a power-law film caused by the presence of 

additional external forcing, such as wind stress (e.g., Pascal & D'Alessio, 2007; Uma, 2012), 

bed porosity (e.g., Pascal, 2006; Sadiq & Usha, 2010; Usha, Millet, Ben Hadid & Rousset, 

2011; Di Cristo, Iervolino & Vacca, 2013d), the waviness bottom (e.g., Heining & Aksel, 

2010), have been investigated as possible ways to control, i.e. to inhibit or to enhance, the 

roll-waves occurrence. In particular, Usha et al. (2011) carried out a temporal stability 

analysis perturbing the two-dimensional Cauchy Momentum Equations coupled with the 

power-law rheological model, i.e. an Orr-Sommerfeld type analysis, in presence of both 

permeable and impermeable walls. In order to overcome the problem of the power-law flow 

model related to the divergence of effective viscosity at the free-surface of the film, a Carreau 

rheological model (Carreau, DeKee & Daroux, 1979) has been considered. With reference to 

an impermeable bottom, the Authors recovered the power-law model stability limit as an 

asymptotic behaviour of the Carreau fluid, deducing the limit condition predicted by the 

rigorous stability analysis of Ng and Mei (1994). This result indirectly confirms the ability of 

the depth-integrated approach in capturing the essential features of long-wave instability in 

thin liquid films, coherently with the conclusion of Smith (1990) for Newtonian fluid.  

Independently of the flow model considered to describe the dynamics of a power-law 

film, all the previous studies dealt with a uniform initial condition. However, this condition is 

essentially a mathematical abstraction, because in a real physical system the hypocritical 

(respectively hypercritical) flow profile may differ, even strongly, from the uniform one, 

depending on the boundary condition at the channel outlet (respectively inlet). With reference 
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to a Bingham fluid, recent experiments  (Tamburrino & Ihle, 2013) have shown that the free-

surface profile influences the roll-waves occurrence. From the theoretical point of view, for a 

turbulent Newtonian flow, the effect of gradually-varying depth profiles on the stability limit 

was enlightened by Dracos and Glenne (1967). Considering the spatial evolution of a 

wavefront determined by a discontinuity of the free-surface slope in the Saint-Venant model, 

the Authors showed that the accelerating or decelerating character of the initial profile 

strongly affects the linear stability condition. These results have been confirmed by 

Kranenburg (1990) through a multiple scaling technique. With reference to the kinematic 

wave approximation of the Saint-Venant equations, the fundamental role of small non-

uniformities on free-surface has been shown by Bohorquez (2010). It has been found that an 

initial condition with positive local free-surface slope is more stabilizing than a uniform one. 

The effects of an initial profile on a mud film, in mild slope channels, have been recently 

analyzed by Di Cristo, Iervolino and Vacca (2015) considering a Herschel & Bulkley fluid 

within the Saint-Venant framework (Ancey, 2007). It has been found that in hypocritical 

conditions, which are often encountered in mud-flows even in conjunction with roll-wave 

development, a proper choice of the outflow conditions, for instance able to induce a 

deceleration (respectively an acceleration) of the current, could prevent (respectively 

promote) the development of instabilities. The above literature review shows that, as far as 

power-law fluids are concerned, the influence of non-uniform initial profiles on the roll-

waves occurrence has not been analysed so far, although the problem is relevant in both 

environmental and industrial applications.  

In the present paper the occurrence of roll-waves in a power-law film with a gradually 

varying initial profile is investigated. The study considers the hyperbolic flow model 

proposed by Ng and Mei (1994), which, despite not being the most rigorous one, represents a 

good trade-off between the physics description and the mathematical complexity. Supported 

also by the convective character of the instability (Di Cristo et al., 2013d), the near-front 

expansion technique (Witham, 1974) is applied to study the linear and non-linear spatial 

evolution of a disturbance, assuming both hypocritical and hypercritical initial profiles. Fully 

non-linear numerical simulations are carried out in order to confirm the achievements of the 

theoretical analysis. Even if no comparison is performed within this paper with the scarce 

experimental available data relative to the influence of gradually varying initial profiles on the 

propagation of disturbances in power law fluids, the present study furnishes some useful 

information about the effect of boundary conditions .   

The paper is structured as follows. In Section 2 the governing equations are reported. 

Then the near-front expansion analysis is presented in Section 3, whereas the corresponding 

results are discussed in Section 4. Section 5 shows the results of the numerical simulations of 

the fully non-linear problem. Finally, conclusions are drawn in Section 6. 
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2 Governing equations 

Let us consider the two-dimensional laminar flow of a thin layer of power-law fluid over an 

impermeable fixed wall inclined at angle θ with respect to the horizontal plane (Fig. 1), 

without any lateral inflow or outflow. The flow resistances by the sidewalls are neglected 

with respect to those arising from the bottom. Assuming the longitudinal characteristic length 

of the flow to be much larger than the characteristic depth, measured along the z~  axis normal 

to the plane bed, the application of von Kármán’s integral method leads to the following 

depth-integrated continuity and streamwise momentum conservation equations (Ng & Mei, 

1994): 

 ( ) 0 =
∂

∂
+

∂

∂
h
~

u~

x~t
~
h
~

 (1) 

 ( ) ( )  0cossin 2 =+








∂

∂
−−

∂

∂
+

∂

∂

ρ
τ

θθβ b
~

x~
h
~

h
~

gu~h
~

x~
h
~

u~

t
~  (2) 

in which x~  and t
~

 are the streamwise coordinate and the time, respectively, h
~

 is the flow 

depth, u~  is the depth-integrated streamwise velocity component, 
b

~τ is the bottom stress, g 

and ρ are the gravity and the fluid density,  respectively. Figure 1 provides a sketch 

explaining these variables:  

 

 
Figure 1 Flow configuration.  

A power-law rheology is considered, which describes adequately fluids without appreciable 

yield stress, such as clay or kaolin suspensions. Adopting the model proposed by Ng and Mei 

(1994), the momentum correction factor β is expressed as:  

 1
23

12
2 >

+
+

=
n

n
β  (3) 

and the bottom stress reads: 
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n

nb
h
~
u~

n

n~ 






 +
=

12
µτ  (4) 

where n and µn are the exponent and the consistency of the power-law fluid, respectively. If 

the fluid behavior is shear-thinning then n < 1, whereas n > 1 corresponds to a shear-

thickening medium. Setting n = 1, the Newtonian case is recovered, with the consistency 

coinciding with the viscosity. Denoting with 
Nh
~

 the uniform flow depth, the corresponding 

depth-averaged velocity 
Nu~  becomes: 

 
n

n

n

N
N

hg

n

n
u

1

1
sin

~

12

~











+
=

+

µ
θρ

 (5) 

The following dimensionless variables are introduced:  

 

Nh
~
h
~

h = , 

Nl
~
x~

x = , t
~

l
~
u~

t
N

N= ,
Nu~

u~
u =    (6) 

where θcotNN h
~

l
~

= . Accounting for definitions (6), the dimensionless form of Eqs (1) and 

(2), in terms of the primitive variables, uT=(h, u) reads: 

 ( ) ( )us
u

uA
u

=
∂
∂

+
∂
∂

xt
  (7) 

with:  

 ( ) ( ) ( ) 













−+−=
u

h

u
hu

N

12
1

1
2

2

ββ
F

uA , ( )






















−=

h

b

N

τ
1

1
0

2
F

us  (8) 

where τb is the dimensionless bottom stress and FN denotes the Froude number at the uniform 

condition, expressed, respectively, by: 

  

n

b
h

u







=τ , 
θcos

~

~

N

N
N

hg

u
=F                                   (9) 

It is easy to verify that the Eqs (7) and (8) consitute a hyperbolic system and that the slopes of 

the two characteristic lines in the (t, x) phase plane, i.e. the eigenvalues of the A matrix, are: 

 ( )
2

21
N

h
uu

F
+−±=± βββλ  (10) 

whereas the corresponding left eigenvectors read: 
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( ) ( )
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















+−−−±

=±

1

1
1

1
2

2

N

h
u

hh

u

F
βββ

e  (11) 

Owing to the presence of the momentum correction coefficient, differently of the 

clear-water turbulent case, i.e. the Saint-Venant equations, a closed form of the Riemann 

invariants is not available, not even for the simple cross-section geometry considered herein. 

In the assumed initial steady state condition, henceforth denoted with subscript 0, the 

flow depth and the velocity have to satisfy the steady-state counterpart of Eq. (7): 

 0
0

0
d

d
s

u
A =

x
 (12) 

in which the expressions of A0 and of s0 follow from (8) setting u=u0(x) and read: 

          ( ) ( )
















−+−
=

02
0

2
0

00

0 12
1

1 u
h

u

hu

N

ββ
F

A ,                    

























−=

0

0

2
0 1

1

0

h

b

N

τ
F

s  (13) 

The dimensionless bottom stress τb0 is expressed by Eq. (9) with flow variables evaluated in 

steady conditions. Even if not explicitly indicated A0 and of s0 are function of the streamwise 

coordinate through h0, u0 and τb0. 

Equations (12) and (13) show that in the absence of any lateral inflow or outflow, 

steady flow profiles have a constant flow rate (for unit width), corresponding to the uniform 

flow value 
NNN uhq ~~~ = . Therefore, the continuity requirement in dimensionless variables 

reads:  

 

0

0

1

h
u =  (14) 

Accounting for Eq. (14), the system (12) may be rewritten in terms only of the flow 

depth h0(x) as follows: 

 ( ) 23

0

12

0
12

0

0 11

d

d

N

n

n
h

h

hx

h

Fβ−

−
=

+

−
 (15) 

Similarly to the turbulent clear-water case, denoting with 3/1 2
Nch Fβ=  the 

dimensionless critical depth and with β1, =cNF  the corresponding critical Froude number 

value, a mild (respectively steep) slope channel is found whenever 
cNN ,FF < , i.e. hc < 1 

(respectively 
cNN ,FF > , i.e. hc > 1). The critical slope channel case in what follows is not 

discussed. 
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Equation (15) states that, for fixed values of the power-law exponent n and normal 

Froude number 
NF , the sign of xh dd 0

is function only of the flow depth itself. As it will be 

shown in the next sections, such a relation plays a key role in the stability of the initial 

gradually profile. In order to enlighten this aspect, in Fig. 2a the r.h.s. of Eq. (15) is 

represented for a shear-thinning fluid (i.e. n=0.2, 
cN ,F ~0.96), for both mild (

cN ,F =0.50) and 

steep (
cN ,F =1.50) slope channels. Figures 2b and 2c are the counterparts of Fig. 2a for the 

Newtonian fluid (n=1.0, 
cN ,F ~0.91) and for a shear-thickening fluid (n=1.5, 

cN ,F ~0.89), 

respectively. The considered power-law exponent value for the shear-thinning fluid is 

representative of natural estuarine muds dredged from Haihe River in Tianjin and Mazhou 

Island near Shenzhen (Zhang, Bai & Ng, 2010), whereas the value selected for the shear-

thickening fluid describes the rheology of dry granular flows (Chen & Ling, 1996; Chen & 

Ling, 1998; Hunt, Zenit, Campbell & Brennen, 2002). It is worth noting that also artificial 

fluids may exhibit the same rheological behavior. For instance, kaolinite suspensions with 

volume concentration of 10% are characterized by n~0.2 (Ng & Mei, 1994), whereas mixtures 

of water with cornstarch concentration of about 60% in weight present n~1.5 (Longo et al., 

2015). 

As expected from Eq. (15), independently of the n value, for high value of h0 

xh dd 0
 tends to one, whereas it diverges at the critical flow depth value. The main 

difference between Figs. 1a, 1b and 1c occurs for small h0 values. Indeed, for flow depth 

tending to zero, inspection of Eq. (15) leads to conclude that if n<1 xh dd 0
vanishes, while it 

diverges for n>1. A finite value, i.e. ( )21 NFβ , is attained in the Newtonian case. Such a 

difference has a non-negligible effect on the stability of the initial profile, as it will be shown 

in the next sections. 

 

   

Figure 2 Flow depth x-derivative as a function of the flow depth for mild and steep channels. 

(a) shear-thinning fluid (n=0.2); (b) Newtonian fluid (n=1); (c) shear-thickening fluid 

(n=1.5).  
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3 Near-front expansion analysis 

In its essential form, the near-front expansion analysis considers the initial profile perturbed 

by a jump discontinuity in the first derivative of flow variables. However, higher-order 

derivatives and other singularities can be in principle handled (Witham, 1974). Owing to the 

hyperbolic character of system (7)-(8), the discontinuities in the first derivative of u propagate 

along the characteristics and the equation governing their magnitude evolution can be 

obtained through a change of variable. Such a technique has been successfully applied for 

studying the stability of gradually-varying initial profiles by Dracos and Glenne (1967) for 

clear-water in turbulent regime, and by Di Cristo et al. (2015) for a Herschel & Bulkley fluid. 

Compared to these two rheologies, the power-law fluid model introduces two substantial 

differences: the bottom stress law and the momentum correction coefficient β ≠ 1, which 

affects the expression of characteristic lines (Eq. 10). Therefore, the results of above cited 

studies cannot be straightforwardly applied to the power-law case.  

The following variables transformation is introduced: 

 ,x=ξ xt ddd 0 −= +λη  (16) 

with ( )ξλλ ++ = 00
 denoting the maximum characteristic slope evaluated in the initial condition: 

 ( )
2

02
000 1

N

h
uu

F
+−+=+ βββλ  (17) 

Accounting for Eq. (16), the following identities hold: 

                   
η

λ
∂
∂

=
∂
∂ + uu

0
t

,                              
ηξ ∂

∂
−

∂
∂

=
∂
∂ uuu

x
 (18) 

and therefore system (7) may be rewritten in the new variables as: 

  ( ) ( )us
uu

uA
u

=








∂
∂

−
∂
∂

+
∂
∂+

ηξη
λ0  (19) 

A convenient way to analyze the evolution of a pointwise perturbation is to expand in 

series the unknown vector u behind the wavefront, i.e. around η = 0 (Dracos & Glenne, 

1967): 

 ( ) ( ) ...,, +
∂

∂
+

∂

∂
+=

== 2
0

2

0

2

2

0

η
η

η
η

ξηξ
ηη

uu
uu  (20) 

or equivalently:  

 ( ) ( ) ( ) ...+++= 2

210 ηξηξξ uuuu  (21) 
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Similarly, the matrix A and the source term s are expanded in Taylor series as 

follows: 

  (22) 

 ( ) ( ) ...10 ++= ηξξ sss  (23) 

where A0(ξ) and s0(ξ) are given by Eq. (13), whereas A1(ξ) and s1(ξ) have the following 

expressions, in which the dependency from ξ is omitted to simplify the notation: 

  (24) 

 ( )

























∂
∂

+
∂
∂

−=
1

0

1

0
2

1
1

0

u
hu

h
hh

bb

N

ττξ
F

s  (25) 

Accounting for the bottom stress relation (9), the derivatives in Eq. (25) read: 

 ( )
2

0

0

0

1
+

+−=
∂

∂
n

n

b

h

u
n

hh

τ
, 

1

0

1

0

0

+

−

=
∂

∂
n

n

b

h

u
n

hu

τ
 (26) 

Substituting Eqs (21)-(23) in Eq. (19), the following system is obtained: 

 

[ ] [ ] [ ]

[ ] [ ] .........

.........

++=+++
∂
∂

++−

++++
∂
∂

++++++
∂
∂+

ηηη
η

η

ηη
ξ

ηηη
η

λ

10

2

21010

2

21010

2

2100

ssuuuAA

uuuAAuuu

 (27) 

Accounting for Eq. (12) the system (27) at the zero-th order of η  leads to the 

following one: 

  (28) 

in which I denotes the identity matrix. Since +
0λ  is an eigenvalue of A0, the system (28) has a 

rank deficient matrix and u1 represents the right eigenvector of A0. It is easy to verify that, 

accounting for Eq. (17), all the solutions of Eq. (28) have to satisfy the following condition: 

 ( ) ( )











+−+−=

2

02
00

0

1
1 11

N

h
uu

h

h
u

F
βββ  (29) 

At the first order of η the system (27) leads to the following one: 

( ) ( ) ...++= ηξξ 10 AAA

( ) ( ) ( )
















−







−−

=
112

0

2

0
1

0

0

11

1 1221 uh
h

u
u

h

u

hu

ββξA

( ) 0100 =− +
uIA λ
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 ( ) 111
0

1
1

0200
d

d

d

d
2 suA

u
A

u
AuAI =−++−+

ξξ
λ  (30) 

Pre-multiplying both left and right sides for the transpose of the left eigenvector 
+
0e  of 

: 

 

( ) ( )


















+−−−

=+

1

1
1

1
2
02

0
00

0

0
N

h
u

hh

u

F
βββ

e  (31) 

the following equation is deduced: 

 
++ =








−+ 0111

0
1

1
00

d

d

d

d
esuA

u
A

u
Ae

T

T

ξξ
 (32) 

Accounting for expressions (13), (15), (24), (25), (29) and (31), Eq. (32) may be 

rewritten in terms of the h1 function only as follows: 

 0
d

d

d

d
14

0
3

2

12
1

1 =







++− hf

h
fhf

h
f

ξξ
 (33) 

where: 

 ( ) ( )βλ
λ

ξ −== +
+

002

0

0
11 2 h

h
ff  (34) 

 ( )
2

0

4

0

2

3

0

2

00
022

23
2

2
2

Nhhh

h
ff

F

βββλ
λξ

+
−+

−
==

+
+

 (35) 

 ( ) ( )
( )[ ]









+

−−

−
==

+

+
β

ββλ
λβ

ξ 6
18

2

1
2

0

3

0

2

0

000

233
h

h

hh
ff N

N

F

F
 (36) 

 ( ) ( )
22

0
2

00
44

12
+

+ −−
==

n

N h

hn
ff

F

λ
ξ  (37) 

Equation (33) may be finally rewritten in the following compact form: 

 ( ) ( ) ( ) ( ) 0
d

d
1

2

1
1 =−− ξξγξξα

ξ
hh

h  (38) 

in which: 

 ( ) ( )
( )ξ
ξ

ξα
1

2

f

f
= , ( )

( )
( ) ( )








+−= ξ

ξ
ξ

ξ
ξγ 4

0
3

1 d

d1
f

h
f

f
 (39) 

0A
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It is worth noting that in Eq. (39) both α and γ functions depend on ξ only through the 

gradually varying initial profile h0(ξ). It is easy to verify that Eq. (38) is a Bernoulli-type 

equation and its closed-form solution is: 

 ( ) ( )
( )

( )

( ) ( ) ( )∫ ′′−

==
′Γ

Γ

ξ
ξ

ξ

ξξα

ξ
ξψ

0

1

1

1

d01
0

eh

e

h

h
 with ( ) ( )∫ ′′=Γ

ξ

ξξγξ
0

d  (40) 

where h1(0) is the disturbance magnitude at ξ = 0. For a given gradual flow depth profile 

h0(ξ), the behavior of ψ(ξ) function (Eq. 40) describes the growth or the decay of the initial 

disturbance, i.e. the occurrence of unstable or stable conditions. However, owing to the non-

linearity of Eq. (15), the h0(ξ) function has to be evaluated with a numerical method in a set of 

discrete points, and in turn the unstable character of an initial profile has to be numerically 

checked.  

Inspection of Eq. (40) reveals that due to the non-linear term in Eq. (38) and 

depending on the h1(0) value, h1 may diverge at some finite distance ξb from the inlet, i.e. 

( ) ∞→bh ξ1
, and a breaking wave may occur with the formation of a shock (Witham, 1974).  

Indeed, downstream to the wave breaking abscissa, the wave front technique is not 

more applicable and only the full numerical solution of the governing equations may allow 

describing the disturbance dynamics. In uniform flow, i.e. h0=1, the α and γ coefficients (Eq. 

39) assume the following constant values: 

 
( ) ( )

( ) 2

222

2

31222

NNN

NNNN
N

F

FF

βλλ
ββλβλ

α
−

+−−−
= ++

++

 (41) 

 
( )
( ) 2

12

NNN

N
N

n

F
++

+

−
−−

=
λβλ

λ
γ  (42) 

where: 

 ( )
2

1
1

N

N
F

+−+=+ βββλ  (43) 

In such an instance, the breaking wave distance ξb may be easily determined as: 

 
( )








+=

0

1
1ln

1

1hN

N

N

N,b α
γ

γ
ξ  (44) 

Under the hypothesis that the disturbance remains sufficiently small, the second-order 

term in Eq. (38) may be neglected and Eq. (40) simplifies into the following one:  

( )
( )∫ ′′

=

ξ
ξξγ

ξψ 0

d

e  (45) 
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The sign of γ(ξ) function along the initial profile h0(ξ) provides a preliminary 

indication about the stability to small disturbances (linear stability), as suggested for the 

turbulent clear-water case by Dracos and Glenne (1967). If γ(ξ) is positive (respectively 

negative) along the entire initial profile, the disturbance grows (respectively decays) along the 

channel, and therefore the initial condition may be classified as linearly unstable (respectively 

stable). Conversely, if γ(ξ) changes its sign along the channel, the evolution of small 

disturbances requires the numerical evaluation of Eq. (45).  

Finally, in uniform conditions of flow Eq. (45) becomes: 

 ( ) ξγξψ Ne=  (46) 

From Eq. (46) it follows that a uniform flow is linearly unstable whenever γN >0, or 

equivalently whenever the Froude number exceeds the limiting value:  

 
12 +

=
n

n*
NF  (47) 

which corresponds to the uniform marginal stability threshold deduced by Ng and Mei (1994) 

through normal mode analysis and by Di Cristo et al. (2013d) based on the study of the Green 

function.  

4 Results 

The results of linear and non-linear wave front analyses are separately discussed for mild and 

steep slope channels. Figure 3 represents the variability with the rheological index n of the 

uniform marginal stability Froude number expressed by Eq. (47) (Fig. 3a) and of the ratio 

between the critical Froude number and the uniform marginal stability one, *
, NcN FF  (Fig. 3b). 

For sake of clarity, Table 1 reports the β coefficient values, the uniform marginal stability and 

the critical Froude numbers for different rheological indexes.  

 

Table 1 Parameters β, F*
N and FN,c  for different rheological index values 

n β F
*

N  FN,c  

0.1 1.04 0.09 0.978 

0.2 1.08 0.17 0.963 

0.5 1.14 0.35 0.935 

1.0 1.20 0.58 0.912 

1.5 1.23 0.75 0.901 

2.0 1.25 0.89 0.894 

2.5 1.26 1.02 0.899 
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3.0 1.27 1.13 0.886 

 

Figure 3a indicates that *
NF  increases with n, assuming the values 0.17 for n=0.2 and 

0.89 for n=2.0. Figure 3b suggests that either for a shear-thinning (n<1) or for a shear-

thickening fluid, with n<2, the marginal uniform stability condition occurs in hypocritical 

conditions ( 1*
, >NcN FF ). For shear-thinning fluids, unstable uniform flows may occur in both 

mild and steep slope channels. For shear-thickening fluids with 1< n ≤ 2, Fig. 3b suggests that 

in mild slope channels the range of unstable uniform conditions is more limited. For shear-

thickening fluids with n > 2, uniform unstable conditions are always hypercritical 

( )1*

, <NcN FF  and therefore they occur only in steep slope channels.  

In what follows, in order to investigate the influence of gradually varying initial 

conditions on the stability of the base flow, for mild (respectively steep) slope channels only 

hypocritical, i.e. h0>hc (respectively hypercritical, i.e. h0<hc) initial conditions are considered. 

For mild slope channels h0>1 (respectively h0<1) corresponds to a decelerating (accelerating) 

profile, while the opposite occurs in steep slope ones. The results for shear-thinning and 

shear-thickening fluids will be separately presented in the following two sub-sections.  

  

Figure 3 Uniform marginal stability Froude number (a) and the ratio of the critical and 

uniform marginal stability Froude numbers (b) as a function of the rheological exponent.  

 

4.1 Shear-thinning fluids 

As pointed out in the previous section the knowledge of the γ  sign along an initial profile may 

allow to predict its linearly stable or unstable character. In Figure 4 the dependence of γ on 

the flow depth h0 is shown for n = 0.2. The analysis is carried out considering mild (Fig. 4a) 

and steep (Fig. 4b) slope channels, separately. For the considered fluid the uniform marginal 
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stability Froude number value is 17.0* =NF (Table 1) and the ratio *
, NcN FF  is 5.7. In mild 

slope channels (Fig. 4a) stable and unstable uniform conditions are therefore both permitted. 

In the steep slope channel (Fig. 4b) *
NN FF is always larger than 6 for the considered fluid 

and therefore any uniform flow is unstable. In Figure 4a (respectively Fig. 4b) the 

investigated flow depth range starts (respectively ends) at the critical value hc. Having 

neglected the curvature effects, the free surface slope for h0 ≈ hc negatively diverges and 

therefore the results in the proximity of critical depth have to be taken with caution.  

For both channel types, Fig. 4 clearly indicates that the linear stability of an initial 

profile is governed by both *
NF  and h0 values. Similarly to Herschel & Bulkley fluids (Di 

Cristo et al., 2015), in mild slope channels (Fig. 4a), independently of the *
NN FF ratio, 

γ(h0) > 0, i.e. the linearized flow model predicts disturbance growth in a range of flow depth

( )''' h,h 00
. For sake of clarity, Figure 4a shows the ( )''' h,h 00

 pair only for the 5.0* =NN FF

curve. Both the lower ( )'
h0

 and the upper ( )''
h0

 bounds of the instability range increase with 

the Froude number. However, while '
h0

remains always below the unity (accelerating profile), 

the upper bound becomes larger than the uniform value whenever *
NN FF > . In steep slope 

channels (Fig. 4b), independently of the Froude number value, a tendency to a stabilization is 

expected provided that the flow depth is larger than a value '''h0 <hc . The '''h0  bound increases 

with the Froude number.  

 

Figure 4 Dependence of the  γ function on the flow depth h0 for the shear-thinning fluid 

(n=0.2): (a) mild and (b) steep slope channels.  

For mild slope channels, Fig. 5a depicts the dependence of both 'h0
 and 

''h 0
 on the 

Froude number FN , for different values of the power-law exponent, furnishing linear stability 
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maps. The interval ( )''' h,h 00
 in which linear unstable conditions may occur reduces with an 

increase of n. Figure 5b is the counterpart of Fig. 5a for steep slope channels, depicting '''

0h .  

Remembering that γ is negative for '''hh 00 > , Fig. 5b indicates that an increase of the 

rheological exponent has again a stabilizing effect, reducing the flow depth range in which 

linear instability may occur. The results of both Figs 4 and 5 indicate that both the initial 

profile and the fluid rheology influence the occurrence of instabilities of a fixed flow 

condition.   

  

Figure 5 Linear stability maps for shear-thinning fluid: (a) mild and (b) steep slope channels. 

In order to deeply investigate the effect of the initial profile on the spatial evolution of 

a disturbance, for the same fluid of Fig. 4 (n=0.2), two linearly unstable uniform flow 

conditions have been considered and analyzed. The first one pertains to a mild slope channel 

with 25.05.1 * == NN FF , with 
cNN ,26.0 FF =  and 410.hc = ; the second one considers a steep 

slope channel, with 
cNNN ,

*
75.11069.1 FFF ===  and 451.hc = . For the former case, three 

downstream boundary conditions have been assigned, namely h0,D =1.0 (Uniform Profile, 

UP), h0,D =0.6 (Accelerated Profile, AP), h0,D =2.0 (Decelerated Profile, DP). Similarly, three 

upstream boundary conditions have been imposed to the steep slope case, namely h0,U =1.0 

(Uniform Profile, UP), h0,U≅0.9hc=1.3 (Accelerated Profile, AP), h0,U =0.5 (Decelerated 

Profile, DP). The initial profiles have been determined integrating numerically Eq. (15) 

through a standard second-order Runge-Kutta method for a fixed dimensionless channel 

length of L=20 with a mesh resolution ∆ξ=2∙10-2. Figures 6a and 6b represent the resulting 

profiles for mild and steep slope channels, respectively.   
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Figure 6 Initial flow depth profiles for shear-thinning fluid (n=0.2) in (a) mild and (b) steep 

slope channels.  

 

For each initial profile, the spatial evolution of the perturbation has been estimated 

integrating Eq. (38) using the same numerical method with a perturbation imposed at the 

channel inlet.  

For the three initial profiles in the mild slope channel, Fig. 7 shows the spatial 

evolution of the perturbation, obtained with three different disturbance amplitudes, namely 

h1(0)= 10
-10

 (Fig. 7a), representative of the linear regime, 5·10
-3

 (Fig. 7b) and 10
-2 

(Fig. 7c)
 
, 

for exploring the non-linear effects. Figure 7a shows that all profiles are linearly unstable. 

However, as already suggested by Fig. 4a, the decelerated initial profile induces a neat decay 

of the disturbance for abscissas larger than ξ~18, whereas very close to the channel outlet the 

accelerated one produces a slight increase of the disturbance amplitude with respect to the 

uniform flow case. The same behavior is illustrated by the plots of Fig. 7b. However, owing 

to the non-linear term in Eq. (38), in the accelerated and the uniform profiles the perturbation 

evolves towards a breaking wave while reaching the channel outlet, while this is not observed 

in the decelerated profile. With a further increase of the disturbance amplitude, Fig. 7c shows 

nearly coincident disturbance profiles, all with a non-linear wave breaking at the abscissa 

ξb ~ 17, which corresponds to the ξb,N value given by Eq. (44). Such a result complies with the 

consideration that for ξ ≤ ξb the three initial profiles essentially overlap each other (Fig. 7a). 
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Figure 7 Disturbance evolution in terms of ψ(ξ) function (Eq. 40) along the spatial abscissa 

ξ for shear-thinning fluid (n=0.2) in mild slope channel: (a) h1(0)=10
-10

; (b) h1(0)= 5 10
-3

; and 

(c) h1(0)=10-2.  

 

As far as the steep slope channel is concerned, the disturbance spatial evolution is 

shown in Fig. 8. In this case, two different perturbation amplitudes have been considered, 

namely h1(0) = 10-10 (Fig. 8a) and h1(0) = 10-2 (Fig. 8b), for exploring both linear and non-

linear regimes.  

 

 

Figure 8 Disturbance evolution in terms of ψ(ξ) function (Eq. 40) along the spatial abscissa 

ξ  for the shear-thinning fluid (n=0.2) in steep slope channel: (a) h1(0)=10
-10

; and (b) 

h1(0)=10
-2

. 

Figures 8a and 8b indicate that for all profiles the disturbance magnitude increases 

with ξ, with the growth rate of the accelerated (respectively decelerated) profile smaller 

(respectively larger) than the uniform one, as suggested by the γ function behavior (Fig. 4b). 

In the linear regime (Fig. 8a) no wave breaking is observed within the considered channel 

length. When the non-linear terms are triggered (Fig. 8b), wave breaks in both uniform (ξb~ 

20) and decelerated (ξb~13) profiles, while this is not observed in the accelerated one, within 

the considered channel length. 

4.2 Shear-thickening fluids 

The counterpart of Fig. 4 for a shear-thickening fluid (n=1.5) for both mild and steep slope 

channels is represented by Fig. 9. For such a fluid 75.0* =NF  and the ratio between the critical 

Froude number 
cN ,F  and the stability limit *

NF  is 1.2. Therefore the uniform flows in steep 

slope channels are always linearly unstable. In mild slope case, both stable and unstable 
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conditions may occur, although the range of Froude numbers in which unstable conditions are 

found is very narrow, as suggested by Fig. 3b. Also in this case, in Figure 9a (respectively 

Fig. 9b) the flow depth range starts (respectively ends) at the critical value for the mild 

(respectively steep) slope channel. 

 

 

Figure 9 Dependence of the γ function on the flow depth h0 for shear-thickening fluid (n=1.5): 

(a) mild and (b) steep slope channels. 

 

As far as mild slope channels are concerned, differently from the shear-thinning fluid, 

Fig. 9a indicates that for *

NN FF <  the flow is linearly stable for any depth. On the other hand, 

similarly to the shear-thinning fluid for *
NN FF ≥ there exists a flow depth range ( )''' h,h 00

 in 

which γ > 0. Therefore, as well as the n<1 case, a tail-water boundary condition inducing a 

decelerated profile with ''

D, hh 00 >  could exert a stabilizing effect. Conversely, the linear 

instability cannot be promoted by an accelerating initial profile. 

In the steep slope case (Fig. 9b), similarly to the shear-thinning fluid, the instability 

region is upper-bounded by the flow depth 
chh <'''0 , while γ <0 for '''

00 hh > . Then, the 

tendency to a stabilization is expected for accelerating profiles. However, differently from the 

shear-thinning case, the γ function diverges for 00 →h , implying an unbounded disturbance 

growth. Such a different behavior between shear-thinning and shear-thickening fluids is 

essentially due to the asymptotic behavior of the profile slope for vanishing h0 (see Figs. 2a 

and 2c).  

In Fig. 10, for different values of the power-law exponent, the dependence of the 

( )'''
h,h 00

 pair (Fig. 10a) and of the '''
h0

value (Fig. 10b) on the Froude number NF  is depicted, 

for mild and steep slope channels, respectively. Figure 10a suggests that while the lower 

bound 'h0
 slightly depends on the power-law exponent and the Froude number, the upper 
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bound ''
h0

strongly increases with n and with 
NF . The lower bound '

h0
 is always larger than 

unity (uniform depth) and therefore an accelerating initial profile is not linearly destabilizing, 

independently of the n value. Conversely, as far as the steep slope channel is concerned, Fig. 

10b indicates that the '''

0h value decreases with n similarly to the shear-thinning fluid, although 

in a smaller range.  

 

Figure 10 Linear stability maps for shear-thickening fluid: (a) mild and (b) steep slope 

channels. 

 

Since for shear-thickening fluids in mild slope channels, the range of Froude numbers 

corresponding to linearly unstable conditions is extremely narrow (see also Fig. 3b), the 

spatial evolution of the perturbation is analyzed only with reference to steep slope channels. 

To this aim, the same fluid of Fig. 9 has been considered (n=1.5) and the Froude number has 

been set equal to 34 * == NN FF  ( 232.hc = ). Two upstream boundary conditions have been 

considered, i.e. h0,U ≅ 0.9hc = 2.0 (Accelerated Profile, AP) and h0,U = 0.5 (Decelerated Profile, 

DP), along with the uniform one (UP: h0,U = 1.0). The initial flow profiles, represented in Fig. 

11a, follow from the numerical solution of Eq. (15), also in this case evaluated over a 

dimensionless channel length L = 20 with mesh spacing ∆ξ = 2∙10-2. In addition, for the sake 

of comparison, the Newtonian case has been considered, assuming 3.24 * == NN FF  ( )86.1=ch . 

As far as the decelerated profile is concerned, the boundary condition h0,U has been fixed 

equal to 0.5, while for the accelerated one the value h0,U ≅ 0.9hc = 1.7 has been considered. 

Figure 11b reports the computed profiles. 
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Figure 11 Initial flow depth profiles in steep slope channel. (a) Shear-thickening fluid 

(n=1.5); (b) Newtonian fluid (n=1). 

 

Two different perturbation amplitudes have been considered, namely h1(0) = 10
-10

 and 

h1(0) = 10-2  again in order to explore both linear and non-linear conditions. The spatial 

evolution of the disturbances is represented in Figs. 12a and 12b for h1(0) = 10
-10

 and  h1(0) = 

10-2, respectively, for the shear-thickening fluid. The counterpart of Fig. 12 for the Newtonian 

fluid is Fig. 13. 

 

Figure 12 Disturbance evolution in terms of ψ(ξ) function (Eq. 40) along the spatial abscissa 

ξ  for shear-thickening fluid (n=1.5) in steep slope channel: (a) h1(0) = 10-10; (b) h1(0) = 10-2.  
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Figure 13 Disturbance evolution in terms of ψ(ξ) function (Eq. 40) along the spatial abscissa 

ξ  for Newtonian fluid (n=1) in steep slope channel: (a) h1(0) = 10
-10

; (b) h1(0) = 10
-2

.
 
  

 

As far as the linear case is concerned, Fig. 12a shows an exponential disturbance 

growth on the uniform initial profile, without wave breaking within the considered channel 

length. In both accelerated and decelerated cases, the initial free-surface profile induces 

considerable differences in the growth-rate values close to the inlet, i.e. for ξ ≤ 10. According 

to the γ(ξ) function behavior (Fig. 9b), the decelerated (respectively accelerated) profile 

shows a larger (respectively smaller) disturbance growth-rate compared to the uniform one. 

For the accelerated profile, owing to the negative sign of γ(ξ) in the first part of the channel 

(Fig. 9b), the disturbance magnitude reduces, i.e. ψ < 1, then a successive increase along the 

channel follows. For ξ > 10 the disturbance growth-rate is essentially independent of the 

initial profile. In fact for ξ > 10 the flow profile, either in the accelerating or in the 

decelerating case, closely approaches the uniform condition (Fig. 11a). The non-linear effects
 

(Fig. 12b) do not alter the qualitative spatial evolution of the disturbance over the uniform and 

the accelerated profiles, even if a quantitative increase of the disturbance amplitude is 

detected. In the decelerated profile, the non-linearity induces a breaking wave at ξb ≈ 15, 

significantly upstream compared with the corresponding value computed in uniform condition 

ξb,N ≈ 37 from Eq. (44). As far as the accelerated profile is concerned, the wave breaking point 

does not occur in the considered channel length. Therefore, similarly to the shear thinning 

case, the initial profile may shift downstream or upstream the roll-waves development 

dependently on the free-surface profile.  

From the qualitative point of view, the results for the Newtonian fluid (Fig. 13) 

strongly resemble those of the shear-thickening fluid, with minor quantitative differences. 

Indeed, independently of the amplitude of the disturbance, the shear-thickening behavior 

amplifies the portion of the channel in which the ψ function is smaller than one. Conversely, 
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for the decelerated profile, the breaking wave occurs closer to channel inlet in the Newtonian 

case than in the shear-thickening one.  

The above results jointly indicate that in a power-law shear-thinning fluid flowing in 

a mild slope channel, independently of the Froude number of the uniform flow, a decelerated 

initial profile reduces the disturbance spatial growth compared with the uniform condition, 

while for an accelerated profile the opposite is found. Only the former feature has been 

detected for shear-thickening fluids. Conversely, in a steep slope channel, independently of 

the n value, an acceleration of the profile induces a smaller disturbance growth compared with 

the uniform one whereas a deceleration enhances it. To confirm the above conclusions, in the 

next section the results of fully non-linear simulations are reported.  

5 Fully non-linear analysis  

In order to confirm the influence of the steady initial profile on the disturbance growth-rate, 

the spatio-temporal evolution of a flow depth perturbation has been analyzed through the 

solution of the full non-linear problem expressed by the system (7)-(8), written in its 

conservative form. To this aim, a finite-volume numerical method has been employed. The 

associated Riemann problem, i.e. the evaluation of convective fluxes on interfaces of finite-

volumes, is handled with the second order Runge-Kutta-TVD scheme (Gottlieb & Shu, 1998; 

Harten, 1983). A concise description of the adopted numerical method is reported in the 

Appendix. At the channel inlet, the following Gaussian perturbation is imposed on the 

discharge:  

  (48) 

where δ, tp and ε  are the perturbation parameters. To effectively simulate the disturbances 

leaving the channel outlet without spurious reflections, even in presence of hypocritical flow 

condition, i.e.: for λ− < 0, a non-reflecting boundary condition is required. Herein the local 

absorbent boundary condition technique proposed by Paz, Storti and Garelli (2011) has been 

applied. Some details of this technique are provided in the Appendix. All simulations have 

been carried out discretizing the domain into 50000 volumes of equal size with a CFL number 

based on +λ  order of 10-2. For clear-water roll-waves simulations, the results by Bohorquez 

and Rentschler (2011) demonstrated that under these conditions the second-order method 

performs comparably well to a more involved fifth-order WENO.  

To assess at the full non-linear level the effect of the initial condition, the same initial 

flow profiles discussed in the previous section have been considered, along with the same 

shear-thinning and shear-thickening fluids. The perturbation parameters have been chosen as 

δ = 5·10-2, tp = 1 and ε = 10 (100 for the shear-thinning mild slope channel), in order to 

suitably trigger the non-linearity of the flow model. 

( ) ( )2
--

e ptt
tD

εδ=
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Figure 14 represents the space-time evolution of the nonlinear disturbance h-h0 for the 

three considered initial conditions depicted in Fig. 6a for the shear-thinning fluid in mild 

slope channel. Three instantaneous flow profiles at t= 1.5, 3, 4.7 are compared. Owing to the 

non-linearity, in all the considered profiles the smooth flow disturbance evolves into a 

downstream-propagating shock, whose shape clearly resembles roll-waves. A negative 

depression wave is also always observed upstream the shock. Even if the perturbation 

evolution is qualitatively similar, the accelerated profile produces a slightly increased growth 

of the disturbance respect to the uniform flow solution. Differently, the decelerated profile has 

a more significant effect on the wave evolution, with a sensible reduction in the disturbance 

growth, along with a celerity increase (see the close-up box of Fig. 14). 

 

 

Figure 14 Disturbance spatial evolution for shear-thinning fluid (n=0.2) in mild slope channel. 

Flow profiles at t = 1.5, 3, 4.7. 

 

For the same rheology, the steep slope initial profiles of Fig. 6b have been also 

considered. Figure 15 compares the evolution of the disturbance in these three initial profiles 

at t= 5, 7.5, 10. The results reveal an even more appreciable effect of the initial condition than 

in the mild slope case, with a noticeable change in both wave shape and migration speed. The 

perturbation in the uniform flow is characterized by a downstream front progressively 

steepening and evolving into a bore, with positive amplitude growing in time. On the 

upstream tail of the perturbation a depression wave is detected, with its negative height 

progressively increasing in time too. In the accelerated initial profile case the behavior is 

qualitatively similar, but with a smaller perturbation growth-rate and celerity respect to 

uniform case. On the other hand, the decelerated initial profile strongly promotes the growth 

of the perturbation amplitude and the wave celerity. It is also observed that a further shock 
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develops on the upstream tail of the perturbation with the formation of a second smaller bump 

lagging behind the main one.  

 

 

Figure 15 Disturbance spatial evolution for shear-thinning fluid (n=0.2) in steep slope 

channel. Flow profiles at t = 5, 7.5, 10. 

 

Finally Fig. 16 reports the space-time evolution of the perturbation in the shear-

thickening fluid in steep slope channel for the initial conditions of Fig. 11a, depicting the 

same instantaneous profiles of Fig. 15 (t= 5, 7.5, 10). It is easily to recognize that the 

accelerated initial profile has a stabilizing effect, which inhibits the disturbance to develop 

into a shock within the considered channel length, with also an appreciable reduction of its 

migration speed. At the opposite, the decelerated initial condition produces an increase of 

both the growth and the migration velocity of the perturbation, promoting the development of 

a discontinuous roll-wave-like disturbance.  

 

 

Page 26 of 70

URL: http://mc.manuscriptcentral.com/jhr

Journal of Hydraulic Research

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



 

27 

 

Figure 16 Disturbance spatial evolution for shear-thickening fluid (n=1.5) in steep slope 

channel. Flow profiles at t = 5, 7.5, 10. 

 

For sake of comparison, the same simulation has been carried out also for Newtonian 

fluid (n=1) and Fig. 17 reports the space-time evolution of the perturbation, considering the 

initial flow profiles depicted in Fig. 11b. As noted for the near-front expansion analysis, the 

qualitative behavior is similar to the shear-thickening case. A closer investigation reveals that 

the Newtonian fluid undergoes a slightly more pronounced growth for any of the three initial 

conditions, consistently with the results found with the near-front expansion analysis. 

 

Figure 17 Disturbance spatial evolution for Newtonian fluid (n=1) in steep slope channel. 

Flow profiles at t = 5, 7.5, 10. 

 

In conclusion, the results of the full non-linear simulations demonstrate a strong effect 

of the initial profile on the disturbance evolution, influencing its growth-rate and celerity. 

Substantial differences are found in mild and steep slope channels. The results of the near-

front expansion analysis confirm the stabilizing (respectively destabilizing) effect of an 

initially decelerated (respectively accelerated) profile for a shear-thinning fluid in a mild slope 

channel. On the contrary, in a steep slope channel, independently of the shear-thinning or 

shear-thickening behavior of the flowing medium, an initially decelerated profile enhances the 

instability of the flow profile up to the formation of finite non-linear perturbations with roll-

wave shape. Finally, the full non-linear analysis shows that independently of the fluid 

rheology, in mild slope channel the increase of disturbance growth-rate slows down the 

perturbation migration, whereas the opposite occurs in steep slope channels.  

Well-documented experiments may provide the definitive confirmation of the present 

theoretical results. In the following, a preliminary design of the experimental conditions is 

provided, addressing both the rheological properties of the fluids and the flow conditions 
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considered in the theoretical analysis. As a suitable shear-thinning fluid, a kaolinite 

suspension with a volume concentration of about 10%, with typical values of n=0.2, 

ρ = 1200 kgm-3 and µn=1.4 Pa sn ( 17.0* =NF , 96.0, =cNF ) has been considered for the 

experiment design (Ng & Mei, 1994). The shear-thickening fluid may be prepared with a 

mixture of water and cornstarch according to Longo et al. (2015), resulting in the following 

rheological parameters: n=1.5, ρ = 1220 kgm-3 and µn=0.4 Pa sn ( 75.0* =NF , 90.0, =cNF ). With 

these two fluids, the shear-thinning flow conditions herein investigated could be reproduced 

in a tiltable laboratory flume 35 m long, 0.8 m wide. A flume length of 3 m is sufficient for 

the shear-thickening case. Table 2 reports the data for a set of possible experimental tests, i.e. 

the channel slope and the dimensional flow rate for unit width, along with the corresponding 

dimensional uniform and critical flow depths and the Froude number. 

 

Table 2 Design data for experiments 

Test sinθ  
Nq~ (m2s-1) 

Nh
~

(m) 
ch
~

(m) FN/F*
N  

1 – shear-thinning, mild slope 0.012 0.002 0.021 0.008 1.5 

2 – shear-thinning, steep slope 0.02 0.019 0.024 0.035 10.0 

3 – shear-thickening, steep slope 0.40 0.173 0.072 0.160 4.0 

 

Different initial profiles in both steep and mild slope channels may be obtained by 

properly operating with a gate at the inlet or at the outlet of the flume. 

6 Conclusions  

In the paper the spatial evolution of a disturbance superposed to non-uniform flows of a 

power-law fluid has been studied, in order to investigate the effect of initial gradually varied 

profiles on the roll-waves development. The considered flow model is based on the von 

Kàrmàn’s integral method, which allows capturing the physics of the process without 

increasing the mathematical complexity. The study is carried out combining theoretical and 

numerical approaches to track the evolution of the initial disturbance. The former approach 

has been developed using the nonlinear near-front expansion technique, which reproduces the 

results of linear stability analysis in the limit of small perturbation magnitude. This technique 

exploits the hyperbolic character of the considered flow model to follow the evolution of an 

initial perturbation in a moving reference frame. The numerical analysis has been carried out 

through a Finite Volume second-order Runge-Kutta TVD scheme. A generalization for 

power-law fluids of the locally adsorbing boundary conditions, originally proposed for clear-

water shallow water equations, has been provided. Both the approaches concur to state that 

for both shear-thinning and -thickening fluids non-uniform initial conditions strongly 
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influence the disturbance space-time evolution, affecting consequently the conditions in 

which instabilities occur. 

For shear-thinning fluids, for which uniform linearly unstable conditions occur in 

both mild and steep slope channels, a different influence of the initial profile has been found 

dependently on the channel slope. Indeed, accelerated profiles promote the disturbance 

growth, compared with the uniform condition, in mild slope channels and inhibit it in steep 

slope ones. An opposite behavior has been found for the decelerated profiles, which reduce 

the spatial growth of the disturbance in the mild slope channel and enhance it in steep slope 

channel. Moreover, as far as the mild slope channel is concerned, while the accelerated profile 

does not substantially modify the perturbation celerity, with respect to the uniform condition, 

the decelerated one increases it. In presence of steep slope channels, the dependence of the 

perturbation celerity on the initial profile is visible in both accelerated and decelerated 

profiles. Indeed in the former (respectively latter) case the celerity is smaller (respectively 

larger) than the corresponding one in uniform condition. 

For shear-thickening fluids, while in steep slope channels the same behavior of shear-

thinning ones is observed in terms of both spatial growth and celerity of the perturbation, in 

mild slope channels only the stabilizing attitude of a decelerated initial profile has been found.  

Although accurate experiments are needed for a definitive confirmation, present 

theoretical results indicate that the analyses assuming uniform condition, instead of the actual 

initial gradually varying profile, may lead to overestimate or underestimate the growth rate of 

the disturbance and therefore the spatial roll-waves prediction. Such a conclusion has to be 

accounted for in formulating predictive criteria for the occurrence of roll waves in mud flow 

based on the channel length. Moreover, the influence of the initial condition on the stability 

suggests the adoption of proper boundary conditions as a passive way to control the roll-

waves development, either for inhibiting or for promoting their occurrence. The former action 

is of interest in environmental engineering while the latter may improve the performance of 

industrial processes.  
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Appendix. Numerical method  

The numerical solution of system (7)-(8) is sought for starting from the corresponding 

conservative form: 
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  (A.1) 

where: 

 ( ) ( )













−=















+=







=

22

2
2

0

2

1

N

b

N

hh
hu

hu

hu

h

F

  , 

F

   , τ
β wPwFw  (A.2) 

which have been discretised by a conventional Finite-Volume approach: 
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where ∆x is the space interval, W denotes the average value of the conserved variable in the 

volume, F
*
 is a properly defined numerical approximation of the flux at the volume interfaces, 

and P* is the volume-averaged value of the source term. In the present numerical method, the 

Harten-Lax-Van Leer (HLL) scheme (Harten, 1983), is adopted for the evaluation of the 

interface numerical flux: 
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The HLL schemes operates on the values of the conserved variables at the two sides 

of the interface, wL and wR, that are in turn estimated by a piecewise linear reconstruction 

limited by the minmod operator (Gottlieb & Shu, 1998). The volume-averaged source term P
*
 

is evaluated based on pointwise approximation. The time integration is performed according 

to the two-step Runge-Kutta scheme proposed by Gottlieb and Shu (1998): 

  (A.6) 

with: 
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A locally adsorbing boundary condition is required at the outlet. In clear-water 

shallow flows, a customary implementation of this condition consists in enforcing a constant 
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value of the Riemann Invariants of the governing equations. Unfortunately, for the PDEs 

system (7)-(8) the closed form expression of Riemann Invariants is not readily available. To 

overcome this difficulty, the method proposed by Paz et al. (2011) has been adopted. The 

Authors show that for a diagonalised linear PDE system, boundary conditions have to be 

prescribed on the characteristic components V according to the sign of the characteristic 

celerities at the boundaries. This can be expressed in a compact mathematical form through 

the Projection Matrices in the space of the characteristic components V: 

 
( )
( ) Lx

x

V

V

==−

==−
−

+

at  0

0at  0

D

U

VVΠ

VVΠ
 (A.8) 

where VU and VD denote the prescribed states at the two boundaries and the two Projection 

Matrices read: 

  (A.9) 

The expression of the projection matrices in the primitive variables u easily follows from the 

change of basis 1−±± = QQΠΠ Vu
 where Q denotes the matrix which diagonalizes the original 

linear system. 

Since the problem is non-linear the flux Jacobian A in Eq. (7) and the projection 

matrices ±
uΠ  in Eq. (A.9) depend on the flow variables. It may be however assumed that the 

flow is composed of small perturbations around a reference state, according to which the 

projection matrix can be computed. Following the ULSAR strategy proposed by Paz et al. 

(2011), the previous state is assumed as the reference one. The transmissive outlet boundary 

condition is therefore described by the following linear system: 

  (A.10) 

which matrix can be expressed as: 
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To show the effectiveness of the present approach, Fig. A.1 plots the solution of the 

shear-thinning fluid in mild slope channel discussed in Section 5 (uniform initial condition) 
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starting from t =  4.7 (last time step of Fig. 14) and with subsequent time levels shifted of 

0.0625. The considered time window corresponds to the developed perturbation leaving the 

computational domain through the channel outlet under hypocritical conditions. It is noted 

that the shock-wave impinging the downstream end does not exhibit any spurious reflection 

despite the hypocritical regime and the strong unsteadiness of the flow. 

 

Figure A.1 Disturbance spatial evolution for shear-thinning fluid (n=0.2) in mild slope 

channel. Flow profiles from t = 4.7 every 0.0625. 

 

The matrix operator defined in Eq. (A.11) may be usefully employed to model the 

free-surface power-law flow problem when a change of flow regime dynamically takes place. 

The change of regime is problematic from several points of view. For instance, the 

assignment of non-reflecting boundary conditions at a fictitious outlet allows saving 

computational resources, truncating the real unbounded domain. Moreover, the boundary 

conditions herein provided for a power-law fluid may automatically account for the change of 

Jacobians structure, when the flow regime changes from hypocritical to hypocritical or vice-

versa. 

Notation 

A = coefficient matrix (-)   

D = Gaussian perturbation (-) 

�� = left eigenvectors of the A matrix (-) 

F = Flux vector (-) 

F
* = Numerical Flux vector (-) 

f1, f2, f3, f4, = dimensionless coefficients (-) 

NF  = Froude number with reference to the uniform condition (-) 

*
NF  = Froude number in marginal stability condition (-) 
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g = gravity acceleration (ms
-2

) 

h = dimensionless flow depth (-) 

'

0h , ''

0h  = lower and upper bounds of the instability range in a mild slope channel (-) 

0h ′′′  = upper bound of the instability range in a steep slope channel (-) 

I = identity matrix (-) 

L = dimensionless channel length (-) 

Nl
~

 = reference length scale (m)  

n = exponent of the power-law fluid (-) 

P = source term vector (-)  

P
*
 = volume-averaged value of the source term (-) 

Q = diagonalizing matrix (-) 

Nq~  = unit discharge (m
2
s

-1
) 

s = source vector (-)  

t = dimensionless time (-) 

u = dimensionless depth-integrated streamwise velocity(-) 

u , w = primitive and conservative variables vector 

V = characteristic components vector (-)  

W = cell-averaged conservative variables vector (-) 

w
L, wR = conserved variables at the two sides of the interface (-) 

x = dimensionless streamwise coordinate (-) 

α = dimensionless function (-) 

β = momentum correction factor (-) 

γ = dimensionless function (-) 

δ = perturbation parameter (-) 

∆ξ,  ∆x = mesh spacing resolution (-)  

ε = perturbation parameter (-) 

ξ, η = transformed variables (-) 

θ = angle of bottom slope (rad) 

�� = eigenvalues of A (-) 

λL , λR
 =  minimum characteristic slopes at the two sides of a cell interface (-) 

µn = consistency of the power-law fluid (Pa s
n
) 

±
uΠ  , 

±
VΠ  = projection matrices (-) 

ρ = fluid density (kgm
−3

) 

τb = dimensionless bottom stress (-) 

ψ = perturbation amplitude ratio (-) 
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Subscript 

0  steady state conditions 

1  perturbed conditions at the first order 

2  perturbed conditions at the second order 

N  normal flow conditions 

D  downstream channel section (outlet) 

U  upstream channel section (inlet) 

b  breaking wave point 

c  critical condition 

 

Superscript 

~  dimensional quantities  
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