
High Performance Regional Ocean Modeling with

GPU Acceleration

Ian Panzer∗, Spencer Lines∗, Jason Mak†, Paul Choboter∗, Chris Lupo∗

∗California Polytechnic State University, †UC Davis

Email: {ipanzer,slines,pchobote,clupo}@calpoly.edu, jwmak@ucdavis.edu

Abstract—The Regional Ocean Modeling System (ROMS) is an
open-source, free-surface, primitive equation ocean model used
by the scientific community for a diverse range of applications [1].
ROMS employs sophisticated numerical techniques, including a
split-explicit time-stepping scheme that treats the fast barotropic
(2D) and slow baroclinic (3D) modes separately for improved
efficiency [2]. ROMS also contains a suite of data assimilation
tools that allow the user to improve the accuracy of a simulation
by incorporating observational data. These tools are based on
four dimensional variational methods [3], which generate reliable
results, but require more computational resources than without
any assimilation of data.

The implementation of ROMS supports two parallel comput
ing models; a distributed memory model that utilizes Message
Passing Interface (MPI), and a shared memory model that utilizes
OpenMP. Prior research has shown that portions of ROMS can
also be executed on a General Purpose Graphics Processing Unit
(GPGPU) to take advantage of the massively parallel architecture
available on those systems [4].

This paper presents a comparison between two forms of paral
lelism. NVIDIA Kepler K20X GPUs were used for performance
measurement of GPU parallelism using CUDA while an Intel
Xeon E5-2650 was used for shared memory parallelism using
OpenMP. The implementation is benchmarked using idealistic
marine conditions. Our experiments show that OpenMP was the
fastest, followed closely by CUDA, while the normal serial version
was considerably slower.

I. IN T RO D U C T I O N

The Regional Ocean Modeling System (ROMS) is software
that models and simulates an ocean region using a finite
difference grid and time stepping. ROMS simulations can take
from hours to days to complete due to the compute-intensive
nature of the software. As a result, the size and resolution of
simulations are constrained by the performance limitations of
modern computing hardware.

The accuracy and performance of any ROMS simulation is
limited by the resolution of the finite difference grid. Increas
ing the grid resolution increases the computational demands
not only by the increase of the number of points in the domain,
but also because numerical stability requirements demand a
smaller time step on a finer grid. The ability to increase the
grid size to obtain a finer-grain resolution and therefore a
more accurate model is limited by the computing performance
of hardware. This is particularly true when performing data
assimilation, where the run-time can be orders of magnitude
larger than non-assimilating runs, and where accuracy of a
simulation is of paramount concern. In order for the numerical
model to give a desired accuracy with reasonable performance,

parallel implementations of ROMS currently exist to take
advantage of its grid based model. A shared memory model
using OpenMP enables ROMS to take advantage of modern
multi-core processors, and a distributed memory model using
Message Passing Interface (MPI) provides access to the com
puting power of multi-node clusters. Recent research has also
shown some success with an implementation using NVIDIA’s
CUDA framework for a Graphics Processing Unit (GPU) [4].

Graphics processing units have steadily evolved from spe
cialized rendering devices to general-purpose, massively par
allel computing devices (GPGPU). Because of the relative
low cost and power of GPUs, these devices have become an
attractive alternative to large clusters for high-performance sci
entific computing. With support for a large amount of threads,
an architecture optimized for arithmetic operations, and their
inherent data-parallelism, GPUs are naturally suitable for the
parallelization of large-scale scientific computing problems.

Modern GPUs are well suited to high-performance compute
applications. They allow general purpose computation in a
massively parallel fashion. Support for fast double-precision
calculations and error correcting memories mean that calcu
lations that require high degrees of accuracy can run with
performance that can exceed shared memory implementations
on sequential or even multi-core CPU architectures. A mature
software development environment including compilers, de-
buggers and profilers allows developers to optimize their code
for acceleration on a GPU in a manner similar to that of code
running on CPU systems.

This work extends the prior ROMS GPU implementation
to utilize features of NVIDIA’s newest Kepler architecture [5]
in a heterogeneous high performance compute solution. The
Kepler architecture has more memory and a larger number of
compute cores available than prior GPU offerings. Multiple
GPUs are used in addition to multiple parallel threads execut
ing on a traditional CPU. The implementation uses NVIDIA’s
Compute Unified Device Architecture (CUDA) framework [6]
and the Accelerated Fortran compiler developed by The Port
land Group (PGI) [7]. Like prior work, this implementation
focuses on the barotropic 2D stepping that occupies a sig
nificant proportion of time in a simulation. Simulations are
run on a Kepler K20X compute card as well as the previous
generation Fermi C2050 GPU.

II. ROMS

ROMS is open source software that is actively developed
by a large community of programmers and scientists. With
over 400,000 lines of Fortran code, ROMS numerically inte
grates the Reynolds-averaged Navier-Stokes equations under
the hydrostatic and Boussinesq approximations [1],
∂u ∂ φ ∂ ∂ u

+ u · Vu − f v = − − u'w' − ν + Fu + Du
∂ t ∂ x ∂ z ∂ z
∂ v ∂φ ∂ ∂ v

+ u · Vv + f u = − − v'w' − ν + Fv + Dv
∂t ∂ y ∂ z ∂z

∂ C ∂ ∂C
+ u · VC = − C 'w' − νθ FC + DC

∂ t ∂ z ∂ z

ρ = ρ(T , S, P),

∂ φ −ρg
= ,

∂ z ρ0

∂ u ∂ v ∂w
+ + = 0,

∂ x ∂ y ∂ z

which correspond, respectively, to the conservation of momen
tum in the x- and y-directions, time evolution of a scalar
concentration field C(x, y, z, t)(temperature or salinity), the
equation of state, the hydrostatic equation, and the continuity
equation.

ROMS models an ocean region and its conditions as fi
nite difference grids in the horizontal and vertical. For effi
cient time discretization of both the fast free-surface waves
and slower internal motions, ROMS uses split-explicit time-
stepping in which a large time step (baroclinic) computes 3D
equations and iterates through a sequence of smaller time
steps (barotropic) that compute depth integrated 2D equations
(step2D) [8]. Users determine the length and computational
intensity of a simulation by setting the resolution of the grid,
the number of large time steps (NTIMES), the amount of
real time each step represents (DT), and the amount of small
discrete time steps per large time step (NDTFAST). When
translated into source code, ROMS begins a simulation by
entering a loop that iterates through NTIMES large time steps,
where the large time step is represented by a function named
main3D. This function solves the 3D equations for the finite
difference grid and calls the small time step NDTFAST times.
Because the 3D and 2D equations are both applied to the entire
grid, they serve as the targets of parallelization.

III. PA R A L L E L I Z AT I O N

To run in parallel, ROMS partitions the grid into tiles [8]
Users enter the number of tiles in the I direction and the J
direction. For example, setting NtileI to 4 and NtileJ to 2
results in a partitioned grid of tiles that consists of 2 rows and
4 columns for a total of 8 tiles. The computations in ROMS
are applied to each grid point, so tiles can be assigned to
separate processors. ROMS can be run in parallel with either
OpenMP or MPI, an option that is selected at compile time

[8]. Currently, ROMS does not support using both options at
once. Each paradigm is discussed in the next sections.

A. OpenMP

OpenMP is a parallelization model designed for shared
memory systems. For most modern hardware, this refers to
multi-core processors on a single machine. In both its C
and Fortran specifications, OpenMP requires programmers
to insert directives around FOR loops. The OpenMP library
automatically assigns different iterations of a loop to multiple
threads, which are then divided among multiple processors.
In ROMS, the FOR loops of interest are located in main3D,
where the 3D equations are solved. Each function is applied to
the entire grid by looping over the partitioned tiles. Figure 1(a)
shows OpenMP directives applied to a loop in ROMS. Modern
multi-core processors are fast and can perform computations
over each tile quickly. However, the ideal minimum tile sizes
in the OpenMP implementation are limited by the number of
processor cores. Therefore, the parallelism offered by OpenMP
is coarse-grained and may have difficulty scaling for larger
problem sets.

B. MPI

Message Passing Interface (MPI) is a parallelization model
used for distributed memory systems. The targeted hardware of
this paradigm are multiple machines operating in a networked
cluster. In ROMS, this paradigm enables a simulation to be
parallelized with an arbitrarily large number of processors. As
its name implies, MPI uses message passing to facilitate mem
ory management across several machines. The drawback of
this distributed model occurs when different processes require
data sharing during computation, and network transfers incur
overhead. In ROMS, MPI differs from OpenMP because each
partitioned tile is sent to a different machine and computed as
its own process [8]. Computations require tiles to use grid
points from neighboring tiles. In a shared memory model,
these “ghost points” can be accessed in a straightforward
manner. MPI, however, requires message passing to retrieve
the ghost points, which adds network transfers to the cost of
computation. The experiments presented in this paper do not
use MPI, as all experiments are executed on a single compute
system.

C. CUDA

Figure 1 shows the previous implementation of the ROMS
call to the step2D function in CUDA. The experiments in
this paper also use this approach. The profiling data for ROMS
is shown in Table III, where it is clear to see that the step2D
occupies the largest percentage of the ROMS runtime.

IV. AP P ROAC H

After the initial setup of ROMS, ROMS was compiled to use
OpenMP and tested. The results showed a significant speedup
over previous serial runtimes. Some fine-tuning of the input
parameters allowed for slightly more gains. When attempting
to compile using CUDA, there were some difficulties at first,

1 DO my_iif=1,nfast(ng)+1 1 CALL step2d_host_to_device()

2 [...] 2 DO my_iif=1,nfast(ng)+1

3 !$OMP PARALLEL DO 3 [...]

4 DO thread=0,numthreads-1 4 CALL step2d_kernel<<<dim_grid, dim_block>>>

5 subs=numtiles/numthreads 5 (num_tiles,krhs(ng),kstp(ng),knew(ng),

6 DO tile=subs*thread,subs*(thread+1)-1,+1 6 nstp(ng), nnew(ng),PREDICTOR_2D_STEP(ng),

7 CALL step2d (ng, tile) 7 iif(ng), Lm(ng), Mm(ng), iic(ng),

8 END DO 8 nfast(ng),dtfast(ng), ntfirst(ng),

9 END DO 9 gamma2(ng), rho0, work_dev)

10 !$OMP END PARALLEL DO 10 [...]

11 [...] 11 END DO

12 END DO 12 CALL step2d_device_to_host()

(a) OpenMP (b) CUDA

Fig. 1: OpenMP and CUDA parallelization

TABLE I: Runtime profiling data of a ROMS simulation.

Function Runtime (sec) Percentage
2D stepping

GLS vertical mixing parameterization
Harmonic mixing of tracers
3D equations predictor step

Corrector time-step for tracers
Corrector time-step for 3D momentum

Pressure gradient
3D equations right-side terms
Equation of state for seawater

Other

614
261
43
41
38
36
35
34
25
26

53.3%
22.6%
3.7%
3.5%
3.3%
3.1%
3.0%
2.9%
2.2%
2.3%

which resulted in the acquisition of erronous data. After
overcoming those challenges, the results closely paralleled
those of OpenMP. The parameters of the input were also
varied in order to find a more optimal solution. Finally, the
CUDA version was compiled for a different architecture and
the results were compared.

V. RE S U LT S

A. Hardware

ROMS running in serial is compared with OpenMP and
with CUDA runnign one a single GPU. The CPU used for all
experiments is an Intel Xeon E5-2650 processor with 64 GB
of RAM. The CUDA implementation of ROMS uses Kepler
K20X GPUs. These cards feature 6 GB of memory and 2688
cores clocked at 732 MHz [5]. These cards support up to
28672 threads running concurrently.

B. Simulations

The upwelling example was contributed by Anthony Macks
and Jason Middleton and consists of a periodic channel
with shelves on each side [1]. There is along-channel wind
forcing and the Coriolis term leads to upwelling on one side
and downwelling on the other side. The upwelling case is
idealized and enables us to easily modify our simulation
parameters. Therefore, we appropriately use the example to
test the performance of the parallel implementations of step2D
using different grid sizes.

TABLE II: Runtime of ROMS Simulations using Various
Compute Techniques.

Technique Runtime (sec) Percentage of Serial Runtime
Serial 6700 100.0%
CUDA on Fermi 130 1.95%
CUDA on Kepler 117 1.75%
OpenMP 35 0.522%

C. Summary

Considering overall runtime as compared to the serial
version, OpenMP was slightly faster than CUDA, by 1.45%
and 1.25% compared to the Fermi and Kepler architectures
respectively, and both were much faster the the serial version,
OpenMP by 99.5% and CUDA be 98.15%. When compiled
with CUDA, ROMS ran faster on the newer Kepler architec
ture than on the the Fermi architecture by 0.1%.

TABLE III: Step2d Runtime for Various Compute Techniques.

Technique Percentage of Runtime Percentage vs Serial
Serial 82.8% 100%
OpenMP 55.9% 67.6%
CUDA on Fermi 20.0% 24.1%
CUDA on Kepler 12.4% 15.0%

However, most of the optimizations occur in the step2D
function. It is useful to see how much time each version of
ROMS spends in this function, to compare the efficiency of
the various optimizations. The serial version spent 82% of
the runtime in the step2D function. When using OpenMP,
ROMS only spent 55% of the total runtime in step2D, a 33%
improvement. CUDA takes this optimization even further, with
the Fermi architecture spending 24% of runtime in step2D
and Kepler spending 15%. The alterations

VI. FU T U R E WO R K

This work leaves several opportunities to increase the per
formance of ROMS and demonstrate the power of GPUs.
Because the step2D kernel is over 2000 lines long, many
possible optimizations remain including loop unrolling and
divergence removal. Shared memory is another promising opti
mization found in various CUDA applications. Because GPUs

are often limited by memory latency, and shared memory acts
as a cache for slower global memory, there is great potential
for additional speedup [6].

In addition to kernel-level optimizations, other paralleliza
tion models involving CUDA should be investigated. The use
of a larger number of GPUs should be explored, which would
enable further subdivision of the ROMS grid and have each
GPU process a smaller piece.

The use of CUDA with MPI should also be investigated
by implementing a model that uses a cluster of servers with
GPUs. Combining the two implementations would enable an
MPI process to use a GPU to perform the heavy computations
on the ROMS tile assigned to the process. This solution may
be scalable for very large grid sizes. The work in this paper
focuses specifically on the shared memory implementation of
the step2D function that occupies a large percentage of the
runtime in a simulation. Overall performance may be further
improved by running more functions on the GPU. Because
the existing tile partitioning in ROMS was reused to convert
OpenMP loops to CUDA code for step2D, all computations
of ROMS that are parallelized with OpenMP can be rewritten
in a similar fashion to run on the GPU. Therefore, it is possible
to have the majority of a ROMS simulation run entirely on the
GPU.

VII. CO N C L U S I O N

This paper presents a comparison between two types of
parallelism, OpenMP and CUDA as applied to the ocean
modeling software, ROMS, using both CPU and GPU based
models. The work is motivated by the limitations on grid sizes
and accuracy caused by the increased runtimes of simulations.
The challenges faced in craeting a stable working environment
and obtaining valid data are discussed. The results demonstrate
that both OpenMP and CUDA have great potential for drasti
cally decreasing the runtime of this and other simulations. The
advantage of using either of these methods is that the hardware
is relatively inexpansive and the gains are immense. As
both GPUs and CPUs continue to evolve, the interoperability
between them will continue to benefit the ROMS community.
This work shows the potential of these devices used as a
substitue for traditionally more expensive methods.

RE F E R E N C E S

[1]	 ROMS. [Online]. Available: http://www.myroms.org
[2]	 A. F. Shchepetkin and J. C. McWilliams, “The Regional Oceanic

Modeling System (ROMS): A split-explicit, free-surface, topography
following-coordinate oceanic model,” Ocean Modelling, vol. 9, no. 4,
pp. 347 – 404, 2005. [Online]. Available: http://www.sciencedirect.com/
science/article/pii/S1463500304000484

[3]	 E. D. Lorenzo, A. M. Moore, H. G. Arango, B. D. Cornuelle, A. J.
Miller, B. Powell, B. S. Chua, and A. F. Bennett, “Weak and strong
constraint data assimilation in the inverse Regional Ocean Modeling
System (ROMS): Development and application for a baroclinic coastal
upwelling system,” Ocean Modelling, vol. 16, no. 3-4, pp. 160 – 187,
2007. [Online]. Available: http://www.sciencedirect.com/science/article/
pii/S1463500306000916

[4]	 J. Mak, P. Choboter, and C. Lupo, “Numerical ocean modeling and
simulation with CUDA,” in OCEANS 2011, MTS/IEEE KONA - Oceans
of Opportunity: International cooperation and partnership across the
Pacific, September 2011.

[5]	 NVIDIA Kepler compute architecture. [Online]. Available: http:
//www.nvidia.com/object/nvidia-kepler.html

[6]	 “CUDA parallel programming and compute platform,” NVIDIA, 2013.
[Online]. Available: http://www.nvidia.com/object/cuda home new.html

[7]	 PGI CUDA Fortran compiler. [Online]. Available: http://www.pgroup.
com/resources/cudafortran.htm

[8]	 K. S. Hedstr ̈om, “Technical manual for a coupled sea-ice/ocean cir
culation model (version 3),” U.S. Department of the Interior Minerals
Management Service, 2010.

