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ABSTRACT 
 
According to modern seismic codes such as Eurocode 8, pile foundations in earthquake-prone areas must 

resist two different, yet simultaneous bending actions resulting from kinematic and inertial interaction. 
Due to the different nature of the two demands, pile must resist seismic actions following different patters, 

thus leading to different design requirements. In this work, analytical solutions are presented to define 
maximum and a minimum pile diameters required to resist kinematic and inertial effects in an essentially 
elastic manner, respectively. It is shown that the range of admissible diameters decreases with decreasing 

soil stiffness and with increasing design acceleration, collapsing into a single admissible diameter for 
certain problem configurations. Regions where no pile diameter can guarantee elastic response during 

strong seismic shaking are identified. 
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INTRODUCTION 
 
During strong earthquake shaking, piles are subjected to two different, yet simultaneous bending actions: 
(1) forces and moments imposed onto the pile heads due to structural vibrations transmitted through the 
cap (inertial forces), (2) curvatures imposed along the piles by the surrounding soil which deforms under 
the passage of the impinging seismic waves (kinematic effect). These types of loading are presented 
schematically in Fig. 1. Whereas inertial interaction is a well-known phenomenon, as it can be fully 
described in terms of imposed forces, kinematic interaction is more difficult to interpret and quantify, 
thereby it is rarely accounted for in design. On the other hand, analytical works (Margason, 1975; Dobry 
and O’Rourke, 1983; Mylonakis, 2001) and post-earthquake investigations have demonstrated the 
importance of the phenomenon, by revealing damage at depths where inertial forces are typically 
negligible, in deposits that have not suffered a loss of strength such as that induced by soil liquefaction 
(Mizuno, 1987; Nikolaou et al., 2001). The accumulated evidence has been recognized by some seismic 
codes, which require evaluating kinematic effects under certain conditions. For example Eurocode 8 states 
that: “piles shall be designed to resist the following two types of action effects: (a) inertia forces from the 
superstructure... ; (b) kinematic forces arising from the deformation of the surrounding soil due to the 
passage of seismic waves”, and: “bending moments developing due to kinematic interaction shall be 
computed only when all of the following conditions occur simultaneously: (1) the ground profile is of type 
D, S1 or S2, and contains consecutive layers of sharply differing stiffness; (2) the zone is of moderate or 
high seismicity, i.e. the product (agS) exceeds 0.10g; (3) the supported structure is of class III or IV”. 
Notwithstanding the importance of kinematic bending moments at soil layer interfaces, a significant 
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amount of published information (Kavvadas & Gazetas 1993, Nikolaou et al., 2001; Di Laora, 2009; Di 
Laora et al., 2011) has revealed the existence of significant kinematic bending at the pile head even in 
homogeneous,  when shear soil wave propagation velocity is sufficiently low. Di Laora (2009) and de 
Sanctis et al (2010) showed that a long fixed-head pile in homogeneous soil experiences a curvature at the 
top, which is approximately equal to that of soil in free-field conditions (i.e., pile-soil interaction is 
negligible). 
In one-dimensional conditions, curvature in homogeneous soil is: 
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where as and Vs are the acceleration and the shear wave velocity of the soil. 
Assuming equal soil and pile curvatures, the kinematic moment at pile head can be determined as: 
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where (1/R)p, Ep and Ip are curvature, Young’s modulus and cross-sectional moment of inertia of the pile, 
while as is the horizontal acceleration at soil surface. It is noted that head moment increases linearly with 
increasing design acceleration and parabolically with decreasing soil stiffness. 
 

 

 
 

Figure 1. Kinematic and inertial loading  
 
The above equation also indicates that kinematic moment is proportional to the fourth power of the pile 
diameter (i.e., proportional to d4). As the moment capacity of a circular cross section My, for a 
homogeneous material, is proportional to the third power of pile diameter (i.e., proportional to d3), it 
follows that kinematic action prevails over section capacity with increasing pile diameter. This suggests 
that there exists a maximum diameter beyond which the pile will not be able to withstand the 
kinematically imposed bending moments in an elastic manner. On the other hand, inertial actions provide 
a minimum diameter, as shown in the ensuing. 
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For the purposes of this investigation and focusing on fine-grained soils, it is reasonable to assume that the 
load carried by the pile under working conditions, Wp, is proportional to pile diameter (i.e., proportional to 
shaft resistance) and, therefore, that the inertial moment acting upon the pile is proportional to Wp x d (i.e., 
proportional to d2). The above observations have two main consequences, as illustrated in Fig. 2: 
 

1) Kinematic moments (Mkin) at the pile top tend to dominate over inertial ones (Min) with increasing 
pile diameter; 

2) Only a limited range of diameters allows a pile to undertake both kinematic and inertial moments 
(Mtot < My) and, therefore, is admissible from a seismic design viewpoint. 

 
Whereas the first aspect has already been analyzed (Di Laora, 2009; Di Laora and Mandolini, 2011), the 
issue of selecting a proper diameter when designing a pile seems to be little explored (Di Laora et al., 
2011; Saitoh, 2005), and not covered by seismic codes. The analytical study presented in this paper aims 
at exploring the range of admissible diameters for steel piles with reference to head bending. Design issues 
deriving from such investigations are also discussed. 
 

 

Figure 2. Kinematic, inertial and yield moment as function of pile diameter 

 
 

ADMISSIBLE DIAMETERS FOR KINEMATIC AND INERTIAL LOADING 
 

Yield moment 
With reference to a cylindrical steel pile, the cross-sectional yield moment can be computed as: 
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εy and fy being the uni-axial yield strain and the corresponding stress of the material, A the cross-sectional 
area and Wp the axial load carried by the pile. 
 
Considering a perfectly floating pile (i.e., a pile with bearing capacity controlled exclusively by shaft 
resistance) in cohesive soil, Wp can be expressed as: 
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where Su is the undrained shear strength of the soil material, α the pile-soil adhesion coefficient (typically 
ranging from 0.3 to 1), and SF a global safety factor against axial bearing capacity failure. 

 

Kinematic Loading 
For a flexible pile in homogeneous soil, setting the kinematic demand moment in Eq. (2) equal to the yield 
moment in Eq. (3) and considering an axial load Wp given by Eq. (4), one obtains the following second-
order algebraic equation: 
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Equation (5) admits the solutions (roots) 
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the larger of which corresponds to the critical (maximum) pile diameter to withstand kinematic action. In 
the above expressions, qA =1(12t/d)2 is a dimensionless factor accounting for wall thickness, t, of a 
hollow pile. It should be noticed that in the realm of the above derivation, Wp was assumed not to generate 
lateral inertial loads on the pile (kinematic problem).  
The above expression can be cast in the alternative form: 
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which has the advantage that the term in brackets does not depend on soil stiffness and strength separately, 
but only on their ratio. 
In the extreme case of a pile carrying zero axial load (Wp = 0, which implies infinite safety against bearing 
capacity failure; SF → ∞), the term in brackets in Eqs. (6) and (7) tends to unity and the solution reduces 
to the simple expression: 
 

 
2

s
kin y

s

V
d 2

a
           (8) 

 
which can be obtained directly from Eqs. (2) and (3). As the vertical load carried by the pile is much 
smaller than its axial structural capacity, Eq. (8) can be used instead of Eq. (7), with an error of less than 
2-3%. 
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Inertial Loading 
Considering exclusively inertial action and assuming, as a first approximation, that the lateral load 
imposed on the pile is proportional to the axial gravitational load Wp, it is straightforward to show that the 
maximum moment at the pile head is 
 

 

11
44 psI

in a p
s

Eaq1
M S W d

4 g E

           
        (9) 

 
δ being the Winkler stiffness parameter (which of the order of 1 to 2 for inertial loading, as indicated by 
Roesset, 1980), qI = 1(12t/d)4 a dimensionless factor accounting for the wall thickness t of a hollow 
pile, Sa a dimensionless spectral amplification parameter, and g the acceleration of gravity. Setting the 
right sides of Eqs (3) and (9) equal, and employing Eq. (4), the following solution is possible: 
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which defines a critical (minimum) pile diameter to withstand inertial action. In the limit case of zero 
ground acceleration (as = 0), Eq. (10) reduces to 
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which corresponds to the minimum diameter to resist the gravitational load Wp. The same result can be 
obtained by setting as = 0 in Eq. (5). 

 
Combined Kinematic & Inertial Loading 
For the more realistic case of combined kinematic and inertial loading, Eqs. (2) and (9) can be added for 
the overall flexural earthquake demand at the pile head through the simplified expression 
 

 tot kin inM M M   (12) 

 
where subscript tot stands for “total”. In the above equations, Mkin and Min should be interpreted as 
statistical quantities (i.e., quantities multiplied by pertinent load combination factors), to account for 
possible phase differences between maximum kinematic and inertial actions. 
Setting the above moment equal to the yield moment in Eq. (3), one obtains the second-order 
dimensionless equation 
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which can be solved analytically for the pair of pile diameters 
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that correspond to a minimum (d1) and a maximum (d2) obtained for the upper () and lower sign (), 
respectively. Values between these two extremes define the range of admissible diameters for the conditions 
specified by the dimensionless ratios in the right side of Eq. (14). 
 
 

RESULTS 
 
With reference to a hollow steel pile, the range of admissible diameters is plotted in Fig. 3, as function of 
soil shear wave velocity Vs, for different values of surface seismic acceleration (as/g) and pile lengths L. 
Evidently, critical values are increasing functions of Vs leading progressively to a wider range of 
admissible diameters. The curves for purely kinematic (narrow dash) and inertial action (large dash) in 
Eqs. (7) and (10) bound the admissible range from above and below, respectively, which suggests that 
kinematic and inertial moments interact detrimentally for pile safety. The interaction is more pronounced 
with increasing pile length and seismic acceleration. Note that for piles in very soft soil such as peat (Vs 
less than 50 m/s), maximum pile diameter may be of the order of 1 m, as evident in the graphs. 
It is worth mentioning that there is always a minimum soil shear wave velocity for which the admissible 
range collapses to a single point corresponding to a unique admissible pile diameter (i.e., d1 = d2). This 
diameter can be obtained by setting the term in square root in Eq. (14) equal to zero, to get 
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Remarkably, this value is exactly one half that obtained for kinematic action alone under zero axial force 
(Eq. 8). Note that this diameter is independent of pile Young’s modulus, Ep, and wall thickness t.  
Such diameter, and the correspondent (minimum) stiffness, will be referred in the ensuing as “critical”.  In 
this context, the shear wave velocity in the above equation assumes the particular meaning of critical 
stiffness. Its value may be derived setting the square root in Eq. (14) equal to zero. Following some trivial 
mathematical manipulation, the critical velocity is obtained as: 
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Evidently, for shear wave velocities less than critical, no real-valued pile diameter can be predicted from 
Eq. (14), which suggests that it is impossible for the pile head to stay elastic under fixed-against-rotation 
conditions. 
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Figure 3. Admissible pile diameters against soil shear wave velocity (Es/Su = 500, fy = 275 MPa, 
Ep = 210 GPa, νs = 0.5, Sa = 2.5, FS = 3, t/d = 0.015, α = 0.7, δ = 1.2). Continuous lines represent 

pure kinematic and inertial actions whereas dashed lines refer to the combined action. 
 
The influence of design acceleration is explored in Fig. 4, where the region of admissible diameters is 
plotted for different values of as/g and two different pile lengths (L = 30, 50m). The first noteworthy 
observation is that although pile length does not affect pure kinematic limit diameter (Eq. 7), it plays a 
major role in determining the maximum admissible diameter, which also depends on inertial interaction. 
Second, for long piles in soft soil, low values of design acceleration are admissible. 
 
Figure 5 depicts the values of critical wave velocity as function of design acceleration, for different values 
of pile length and wall thickness. It is observed that the minimum admissible soil stiffness increases with 
as/g and L, due to the progressively detrimental effect of inertial moments. On the contrary, larger wall 
thicknesses lead to progressively smaller critical velocities. Note that for high critical velocities, the 
corresponding diameter (not shown) may be very large and, thereby, may be not meaningful for design. 
 
The influence of wall thickness t/d on pile diameter is explored in Fig. 6, where the regions of admissible 
diameters are plotted against soil stiffness for different values of wall thickness and design acceleration. 
Such regions decrease in size and translate with decreasing thickness, due to the decreasing moment 
capacity of the pile section.  Figure 6a indicates that in active seismic zones, piles need thick walls to 
withstand earthquake action. In d:Vs space, for constant acceleration and pile ultimate strain, critical 
diameters are located upon a parabola whose equation straightforward to be derived from Eq. (15). 
The aforementioned observations refer to piles designed to carry axial loads with a specific safety factor 
(SF). It is evident that a wider range of admissible diameters may be obtained by increasing SF, thereby 
leading to a pile foundation which over-satisfies axial bearing capacity requirements. 
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Figure 4. Admissible pile diameters against soil shear wave velocity (Es/Su = 500, fy = 275 MPa, Ep =

210 GPa, νs = 0.5, Sa = 2.5, FS = 3, t/d = 0.015, α = 0.7, δ = 1.2) 

 
Figure 5. Critical shear wave velocity against design acceleration (Es/Su = 500, fy = 275 MPa, Ep =

210 GPa, νs = 0.5, Sa = 2.5, FS = 3, α = 0.7, δ = 1.2) 
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To investigate this behavior, Figs 7a and 7b depict the admissible range by varying SF for two different 
values of as/g. The regions are bounded on the left by the curve of pure kinematic action, as it corresponds 
to an infinite value of SF (zero mass carried by the pile). The regions translate to the right by increasing 
design acceleration; for as/g = 0.45 (Fig. 7b) piles in soft soil must carry very small axial loads to 
guarantee elastic behavior for seismic action. 
 
The role of ratio Es/Su is similar to that exerted by SF. Specifically, an increase in the ratio between 
stiffness and strength of the soil material leads, for a given value of Vs, to a reduction in strength and, 
hence, a lower mass carried by the pile. To highlight this issue, Fig. 7c and 7d depict the range of 
admissible diameters by varying Es/Su. The analogous behaviour with the upper graphs is evident in the 
results. 
 

 
Figure 6. Admissible pile diameters against soil shear wave velocity (Es/Su = 500, fy = 275 MPa, 

Ep = 210 GPa, νs = 0.5, Sa = 2.5, FS = 3, L = 40 m, α = 0.7, δ = 1.2) 
 
 

STEEL VS CONCRETE PILES 
 
The practical significance of the present work becomes more evident for the more common case of 
concrete piles. A concrete section of equal moment capacity to that of a steel section requires higher pile 
flexural stiffness, which, thereby, attracts a larger kinematic moment. Due to space limitations, the 
complete analytical study for concrete piles is not provided here. Instead, a limited set of results is 
reported in Fig. 8, comparing critical diameters against soil stiffness for steel and concrete piles and two 
different values of design acceleration. In the graph, the percentage of reinforcement in the concrete 
section As/Ac is taken as equal to the wall thickness ratio t/d in the steel pile, as they typically assume 
values within the same range. 
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Figure 7. Admissible pile diameters against soil shear wave velocity (fy = 275 MPa,  

Ep = 210 GPa, νs = 0.5, Sa = 2.5, L = 40 m, α = 0.7, δ = 1.2) 
 

 
Figure 8. Admissible pile diameters against soil shear wave velocity (Es/Su = 500, fcd = 14.2MPa,

fy = 275 MPa, fy,reinf = 373 MPa, Ep,s = 210 GPa, Ep,c = 30 GPa, νs = 0.5, Sa = 2.5, FS = 3, 
t/d = As/Ac = 0.015, c = 5 cm, L = 15 m, α = 0.7, δ = 1.2). 
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Contrary to steel piles, the design of concrete piles is strongly affected by the level of earthquake 
acceleration: even for moderate values of as/g, piles in soft soil do not withstand the overall seismic 
demand. To overcome the problem, a design strategy could be to decrease the inertial demand may be to 
increase the safety factor for axial bearing capacity failure, leading to piles that operate under low values 
of axial load. 
 
 

CONCLUSIONS 
 
Kinematic and inertial forces arising in a piled foundation during earthquakes are of different nature and, 
thereby, are affected by pile size in a different manner. It was shown that kinematic bending at the pile 
head is associated with a maximum tolerable diameter, whereas inertial forces with a minimum tolerable 
diameter. The contemporary presence of both types of forces implies the existence of a limited range of 
diameters, which may resist the overall seismic demand. Exploring this range has been the subject of this 
work. A number of conclusions may be derived based on these results: 
 

1) For very soft soils (Vs <100m/s), kinematic interaction dominates pile response. In this case, the 
maximum diameter may be very small and, thereby, it may strongly affect design. Increasing the 
piles number and/or length has no effect against seismic action. 

2) For stiffer soils, inertial interaction might be dominant. This implies a minimum diameter, which 
for moderate-to-high design acceleration, may be quite large 

3) The range of admissible diameters narrows with increasing acceleration, soil strength and pile 
length, whereas it widens with increasing soil stiffness, pile safety factor and wall thickness. 

4) There is always a critical soil shear wave velocity below which no pile diameter is admissible. 
This suggests that below the particular soil wave propagation velocity, a fixed-head pile cannot 
stay elastic regardless of pile diameter. In the limit case Vs = 0 (a pile embedded in water), no 
diameter is admissible, which makes no sense, as the pile cannot be stressed kinematically along 
its length. This should not be viewed as paradoxical, as the strong interplay between Vs and as, (as 
may strongly decrease at low Vs’s) was not considered in this study. 

5) Concrete piles generally have a more limited range of admissible diameters as compared to steel 
piles. 

 
Despite the simplified approach adopted in this study, issues of practical importance related to pile design 
in seismic areas have been highlighted. Exploring the topic using more sophisticated models and less 
restrictive assumptions may represent a goal for future research. 
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