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ABSTRACT

In this study, a new theory for the accurate simulation of the shear-mode behaviour of thin or thick
piezoelectric sandwich composite beams is developed. The effects of transverse normal stress and
transverse flexibility of layers are considered in the development of the proposed formulation. In order to
increase the computational accuracy, all kinematic and stress continuity conditions are satisfied at layer
interfaces. Moreover, for the first time, both the electrically induced strain components and the
transverse flexibility are taken into account in the proposed formulation. Despite the fact that the
number of unknown mechanical parameters in this theory is only one degree higher than the first order
shear deformation theory, the accuracy is surprisingly more pronounced for the thicker beams.

1. Introduction

In recent years, piezoelectric materials have been widely used in the construction of smart structures. These electromechanical
materials are able to control the responses of structures subjected to dynamic loading through sensing and actuating. A wide range of
application for these materials is recognized in high-tech industries. Conventionally, piezoelectric actuators in a smart structure are
inserted in the direction of the thickness and are usually bonded to the surfaces of the host structure. Such surface bonded actuators that
induce longitudinal strains are known as extension-mode piezoelectric. Due to their inherent brittleness installing on external surface of
host structures, where vulnerable to impact loads, a new adaptive sandwich structure has been suggested in which an axially poled
piezoelectric layer was used between substrate layers. With the aid of the shear properties of piezoelectric materials and through applying
external electric field in the thickness direction, this new approach makes it possible to induce shear strain in actuator layers and
consequently gain the desired deformations.

An extensive body of research has been carried out describing the extension-mode piezoelectric actuators. Various mathematical
models have been presented for structures containing extension-mode sensors and actuators. Crawley and de Luis [1], Tzou and Gadre [2],
Wang and Rogers [3] and Sung et al. [4] used induced strain models for the representation of actuator responses of piezoelectric materials.
By solving the governing differential equations for the three-dimensional (3D) theory of piezoelectricity, Brooks and Heyliger [5], and Ray
et al. [6,7] obtained exact solutions for static analysis of extension-mode piezoelectric laminates in cylindrical bending. However,
development of these solutions is a difficult task and the resulting solution cannot be expressed in a closed form for the general cases of
arbitrary geometry, boundary and loading conditions. Moreover, the cost of the 3D finite element analysis is relatively high, and it poses a
problem when piezoelectric layers are thin compared to the structure size. Hwang and Park [8], Suleman and Venkaya [9], Sheikh et al.
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[10], Kogl and Bucalem [11,12] Chee et al. [13], Jiang and Li[14], Shu [15], Thornburgh and Chattopadhyay [16], Fukunaga et al. [17]
and Mitchell and Reddy [18]used equivalent single layer theories (ESLT) for the analysis of extension-mode piezoelectric
beams/plates structures. The idea of layer-wise theory (LWT) or discrete-layer theory was presented and developed by Heyliger and
Saravanos [19], Saravanos and Heyliger [20], Saravanos et al.[21], Kusculuoglu et al. [22], Garcia Lage et al. [23,24] Robaldo et al. [25], and
Tzou and Ye [26]. Beheshti-Aval and Lezgy-Nazargah[27,28] used a sinus zigzag (ZZ) model for analyzing and controlling of smart
laminated piezoelectric beams. Kapuria [29], Kapuria et al. [30], and Kapuria and Alam[31] presented an efficient coupled ZZ theory for
static and dynamic analysis of extension-mode piezoelectric laminated/sandwich beams based on third order ZZ approximations.
Beheshti-Aval et al. [32] introduced a computationally low cost FE model for the static analysis of extension-mode piezoelectric
multilayered/sandwich beams based on global-local theory. For an overview on the modeling of extension-mode piezoelectric laminates,
readers can refer to Benjeddou[33].

The use of a shear-mode piezoelectric actuator was first proposed by Sun and Zhang [34]. In their work, they employed thickness-shear
piezoelectric patches to create transverse deflection in sandwich beams. Moreover, they demonstrated that shear-mode actuators can offer
many advantages over the extension-mode actuators. The analysis of this study was carried out using the ANSYS finite-element package.
Furthermore, Zhang and Sun [35] developed an analytical model to predict the static, as well as the dynamic behavior of a sandwich beam
which comprises of a core layer of shear-mode piezoelectric. The model relies on the assumptions that the face layers obey the Euler—
Bernoulli theory, while the core piezoelectric layer follows the Timoshenko theory. Moreover, closed-form solutions of a static cantilever
beam with shear-mode actuators were presented. Benjeddou et al. [36] proposed a finite element model of a sandwich beam with
extension and shear piezoelectric segments. To verify their model, they compared their finite element results with those obtained by
Zhang andSun. In addition, they presented the dynamic characteristics (i.e. natural bending frequencies and mode shapes) of two
sandwich beams; one with a shear-mode actuator and another with extension-mode actuators. Raja et al. [37] extended the finite element
model of Benjeddou's research team to include a vibration control scheme. Aldraihem and Khdeir [38-41] proposed analytical models and
analytical solutions for beams with shear and extension piezoelectric actuators. The models proposed by these researchers are based on
the first-order beam theory and higher-order beam theory. The analytical solutions are obtained using the state-space approach along
with the Jordan canonical form. The deflections of the beams with various boundary conditions were investigated. Vel and Batra [42]
obtained an exact 3D state-space solution for the static cylindrical bending of simply supported composite beams with shear-mode
piezoelectric actuators.

Most of the studies on the modeling of laminated sandwich structures have focused on the extension-mode piezoelectric sensors and
actuators. In comparison with the extension-mode piezoelectric, the modeling of structures with embedded shear-mode piezoelectric
layers is still an unresolved challenge. The available theories for the laminated beams with shear-mode piezoelectric layers either do not
consider the transverse flexibility or do not impose the continuity conditions of the transverse normal stresses at the interfaces. However,
the transverse normal stresses and strains and the transverse flexibility have important roles in the analysis of such structures, especially
those with soft cores. The continuity conditions of the transverse shear stresses are also neglected in most of the available models.
Moreover, the available theories for the beams/plates with shear-mode piezoelectric layers neglect the in-plane electric field components.
Due to direct piezoelectric effect or applying non-uniform actuation potential along longitudinal direction (e.g., in using segmented
piezoelectric actuator layers), these electric field components cannot be neglected and should be considered in the analysis.

To overcome the limitations of the available theories, in the present study a coupled refined high-order global-local laminate theory is
developed based on the double superposition hypothesis for the static analysis of shear-mode piezoelectric sandwich composite beams. In
the presence of non-zero longitudinal electric field, the proposed theory not only satisfies the continuity conditions of the transverse
shear stresses at the top and the bottom surfaces of the piezoelectric layers, but the non-homogenous shear traction conditions are also
exactly satisfied. The boundary conditions of normal tractions are also fulfilled on the upper and the lower surfaces of the beam.
Besides, the continuity conditions of the displacement components, transverse normal stresses, and the transverse normal stress
gradient at the layer interfaces are satisfied. This novel coupled refined global-local theory is also able to capture the transverse normal
strains induced through the piezoelectric layers. In the proposed model, the in-plane displacement component is described by a
combination of polynomial and exponential expressions with a layerwise term which contains electrical unknowns. A combination of
continuous piecewise fourth-order polynomial with a combination of layerwise components and first order differentiation of electrical
unknowns is assumed for the transverse displacement component. As for the electric field component, a quadratic electric potential is
considered across the thickness direction of the piezoelectric layers. Considering some novel features, the present model is
computationally cost-effective more significantly, and has only one additional independent generalized unknown mechanical parameter
compared with FSDT.

Based on the proposed model, a three nodded shear locking-free beam element is employed. The virtual work principle leads to a
derivation that could include dynamic analysis. However, in this study only static problems have been considered. Various validation
examples of thin and thick beams are examined using a written computer code whose algorithm is based on the present model. The
obtained numerical results exhibit a good agreement with the 3D exact piezoelasticity solutions and the coupled 3D finite element
(ABAQUS) results.

2. Formulation of the theory
2.1. Geometry and the coordinate system

In this study, the considered piezoelectric beam is considered to be prismatic with a rectangular uniform cross section. The rectangular
cross section has a height of h and width of b.This beam is made of N layers with different linearly elastic materials. Each of these layers
may be shear-mode piezoelectric. The geometric parameters of the considered laminated beam and the Cartesian coordinate system (x, y, z)
are shown in Fig. 1. Moreover, in order to use the local components in the displacement equations, a transverse local coordinate system is
selected for the present piezoelectric beam model (Fig. 1).



Fig. 1. Geometric parameters, global and local coordinate system of the present laminated beam.

2.2. Constitutive coupled equations

In the present model, the piezoelectric and non-piezoelectric materials are assumed to be orthotropic and homogeneous along the
span of the beam. It is also assumed that the poling direction of the piezoelectric layers is in the x direction. Based on the previous
assumptions, the 3D linear constitutive equations for the k-th layer, in its global material coordinate system, can be written as
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where oy, ¢ and E; denote the stress tensor, the infinitesitmal stryin tensor and the electric field components respectively. D; is the electric
displacement vector components, and c,ej.y;; are the elastic, piezoelectric and dielectric material constants. For beams with small widths,
the following assumptions are made:
oyy=0, 7,20 74=0, Ey=0 2)
Using the conditions (2) and using the static condensation procedure, the 3D linear constitutive relations (1a) and (1b) could be
expressed as
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For the beams with infinite dimension along y direction, a state of plane strain exists, that is &,=0,y,,=0,y,,=0 and E,=0. For this case,
the 3D linear constitutive relations (1a) and (1b) could be expressed as
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2.3. Approximation of the electric potential

In this study the following quadratic electric potential has been considered across the thickness direction of the k-th shear piezoelectric
layer:

Px.y,2) = L@k x) + L5@dkx) + L@k (x) @)

where ¢’l§(x), #*(x) and ¢*(x) denote the electric potential at the bottom, the center and the top of the k-th piezoelectric layer, respectively.
L]’-‘(z) are the interpolation functions as follows:
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where z, = ayz—by,ay =2/ 1-2,bx = Zk1 + Zk/Zk1-2Zk- The electric field components can be related to the electric potential using the
following relations:
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2.4. Approximation of the displacement and the strain fields
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In the present study, the following refined high-order global-local displacement field is employed (k=1, 2, 3,..., N):

uk(x,y,2) = ug(x)—z Wo(x) x + z.€Xp (<Z(Z/h)2> [0(X) + Wo(X) ] + T (X, 2) + 11} (X, 2) (7a)
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where H(z) is the Heaviside's function. The functions u*(x, y, z) and wX(x, y, z) represent the horizontal (in-plane) and vertical (transverse)
displacement components, respectively. The ug(x), wo(x), w1(x), wa(x), w3(x) and wy(x) are global displacement parameters that are
independent of z coordinate. 6(x) denotes the shear-bending rotation around the y axis. y;(x)and¥;(x) are functions to be determined
to fulfill the transverse normal stress and stress gradient continuity conditions at the laminate interfaces. The local components U’L‘(x, z)and
ﬂl[(x,z) can be chosen based on the layerwise variations concept. Therefore, if they are chosen as combinations of the Legendre polynomial
to simplify the numerical integration process, one may write:
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A graphical illustration of the above high-order global-local displacement field (Eq. 7) is shown in Fig. 2. [43]

Local variations of the transverse displacement component are represented by the two summations in Eq. (7b), employing a discrete-
layer concept. The continuity conditions of the displacement components at the laminate interfaces should be satisfied. Due to using a
layerwise description for the local term, the transverse displacement component satisfies the kinematic continuity condition
automatically. By imposing the continuity conditions on the in-plane displacement, the following two equations are resulted:

wxz)=u"xz) , k=23,..N (9a)

X zy=i"xz) ., k=2,3,..N (9b)
Eq. (9) leads to the following equations:

ub =k 4+ ubt k! (10a)
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Fig. 2. A graphical illustration for the refined high-order global-local displacement field: (a) in-plane displacement and (b) transverse displacement.

uf = (-1} (10b)
The transverse shear stress of the k-th layer may be determined from the following equation:
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where G, = C’§5 is the transverse shear modulus of the k-th layer. Note that the simplifying assumption wX(x, y,z) = wo(x)is used in the
computation of the transverse shear stress only to avoid the computational complexity. By imposing the transverse shear stress continuity
condition at the mutual interfaces of the adjacent layers(zX,(x, z;) = 7X;1(x, z;)), the following recursive condition is obtained:(k=2,3, ...,N)
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Furthermore, the boundary conditions of the prescribed values of the shear tractions (that are generally non-zero values) on the top
and the bottom surfaces of the shear piezoelectric laminated/sandwich beam should be satisfied. Thus, the following two boundary
conditions are obtained:
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where X (x) and X*(x) are the prescribed shear tractions of the bottom and the top surfaces of the beam, respectively. By using of
Egs. (10a) and (12), the following recursive equations are obtained:
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where the coefficientsF{andH}are(j=1, 2,...,10):
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Substituting Eq. (10b) into Eq. (13a) yields:
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The above equation expresses uf in terms of ul,ul, X, ¢}, ¢! and ¢]. Substituting Eq. (16) into the recursive Eq. (14) related uk and u¥ to
ul,ud (0 + wox).X".¢,.¢. and ¢! where i-1,2,...,PN and PN denotes the number of shear piezoelectric layers. After calculating u, u} and u)
from the recursive Egs. (14) and (16), respectively and substituting them into Eq. (13b), u} can be eliminated. Thus, Egs. (14) and (16) can
be rewritten as:
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where coefficients af, ok, o, g, §5. B5, 6%, 85, 65, 2%, 4K, 2K ik, ik ik, ik, ks, ik, 9K, 9%, 9%; are obtained from the procedure described above.
These coefficients are only dependent on the material properties and the global coordinates of the layers.
The transverse normal stress and stress gradient in the k-th layer are determined from the following equations:

PN . . .
ok, = CY3(Uox—2Wo i + J(@)(Ox + Woe) + T(2) Ul x + P@X ) x + R@(X ) 5 + xz (05 @) () x + 0572 (D)« + O @) ().

+C33(w1 +2zwWy + 322 Wy + 423 wy + Z wj H(z=2zj41) +2 2 ¥Yi(z-zj11) H(z-2zj11))
ih

bW g "’*’ + 150 %e d"’“ + 1) S0 d¢f (18a)
PN . . .

sz = Cha(- W +J@) 20+ Wo) +T@) 2t +POX )+ R0 + 3 (OF°2): )+ O3 @)z 0+ 0522600

+C33(2 Wy + 6z W3 + 1222 wy +2 Z ¥; H(z-zj1)) + e 3(LY (z)zdj) 3(z)Z d¢ 2(z)Z d(’bf (18b)
where
N =2 _
J@ =zexp-2/)+ £ Fak+ b 1)( + 32") n@ (x (Hz-20-H(z-21.1) (192)
N 52 _

Te)= ¥ sk + i 1){’2 L 32") ﬂé) é (Hz-2)~H(z-2i1)) (19b)

N 72
o= 3 nd+ b 1><2 e 32">f7€> é(H(z—zk)—Ha—zkH)) (190)



N
R@z)= 21 zi Ak + (H(z—z))~H(z~2y11)) (19d)

k=

-1) << 5z; 32k>
2i
N 2
0F@= 3 kit 1),( i 32")
k=1

N
05@= Y zdhi+ 37"‘2 1)( 52" = ()(x(H(z—zk)—H(z—zm» (19g)

N
elec =k
05 @= Y 7z +

() <X (H(z-z)-H(z=2)41)) (19e)

) x (H(z=z,)—H(z—2z41)) (19f)

Continuity of ¢, and ¢,,, must be fulfilled at N-1 interfaces:
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From the recursive Egs. (20),y(x) and ¥ (x) will have the following forms (k=1,2, ..., N-1):
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Moreover, the boundary conditions of the transverse normal stress and transverse normal stress gradient on the upper and lower faces
should be satisfied:
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where Z*(x) andZ (x) are the distributed lateral loads acting on the bottom and the top surfaces of the beam, respectively. From
Egs. (22), the unknowns wi,w,, ws and wy can be expressed in terms of U Wouxs O D) o (XH) 1o X 7)o 25,27, () 0 (B1) and
(p)x(i=1,2,...,PN):
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By substituting Egs. (23) into Eqgs. (21), w(x) and ¥, (x) can be rewritten as follows (k=1,2, ..., N-1):
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Finally by satisfying the continuity conditions and the boundary conditions, we have been able to determine all the mechanical
unknowns of the displacement fields (Eq. 7) in terms of four independent mechanical unknown parameters ug,wo, 6 and u} and electrical



unknowns ¢L,¢i and ¢i(i=1,2,...,PN). Therefore, the final displacement fields of the proposed coupled refined high-order global-local
theory can be written as:
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j= i=

Ak = 0lz + 032 + 032 + 0* + kfl Di(z-zj,1) Hz-zj:1) + .kiz Ci(z-zj1)* Hz-zj11) (26f)
j= j=

M2 = 65z + 637 + 632 + 637 +§1 Di(z—2j1) H(z—2j41) +jk§1 Ch(z-241) Hz=2j11) (269)

MA@ =0lz+ 032 + 032 + 0" + _ki]] D(z-zj,1) H(z-Zj11) + vkil] Ch(z-zj,1)* Hz-7j11) (26h)
j= i=

Af,3i(2) = 6§, 32 + 6] 37" + OF,57° + 64,37* +jk§1 Dlé+3i(z_zj+1) H(z-zj1) +jk§11 Ch,31(z-21)” H(z-211) (26))

A% 3i(2) = 67,32 + 67,37 + 03,37° + 67 37" +jk§1 DI}+3i(Z—Zj+1) H(z-z;,1) +jk§1 C]'7+3,-(Z—Zj+1)2 H(z-z,1) (26Kk)

Ak S(2) =0}, 52+ 02,52° + 03 ,52° + 04 5 2* +jk§1 D’éﬁi(z—zjﬂ) H(z-zj,1) +jk§1 C{mi(z_zm)z H(z-z;,1) (26m)

Using Cauchy's definition of the strain tensor, the in-plane, transverse shear and normal strain components may be calculated on the
proposed coupled global-local description of the displacement field as:

PN . . :
e = Ugx—ZWo,xx +J(2)(0x + Wo ) + T@) U], + P@X ) x + ROK )x+ X (055 @) (Bh) 5 + 057 (2) () x + 057°(@) () ) (279)
i=1

ez = AK(2) U0 x + A5(2) ,Woxx + 25(2) 05 + A5(2) ,(u])  + AK(@2) ,(XP) 4 + A§@) (X 7) 4

PN . . .
@)L+ 8522+ K (B30 Bh)x + (4530200 x + (45,50 (B0).0) (27b)

PN . . .
e =J@) 20 + Wo) + T@), Ui + P@X" +R@ X"+ ¥ (O5F°(@); ¢}y + 057(@); dL + 05°(2); ) (270)

Since the functions u(x,y, z) and w(x, y, z) are coupled in the strain expression, it is expected that the presented coupled refined global-
local theory compensates to some extent for the simplifying assumption w¥(x, z) = wy(x) used only in the computation of the transverse
shear stress.

3. Finite element model
In this section, a finite element representation of the displacement field described by Eq. (25) is introduced using appropriate shape

functions and nodal variables. As the highest derivative of wy in the expression of the strain energy is of second-order, this variable was
interpolated using C'- continuous Hermite cubic shape functions. The rotation @ is interpolated by quadratic Lagrangian shape functions to



ensure obtaining more accurate results. Furthermore, if an identical order is adopted for the shape functions of both wy and ¢ parameters
in the relevant transverse shear strain components, the shear locking phenomenon may be avoided due to using a consistent displacement
field [32,44]. Finally, ug, u},X*,X',Z*,Z',qﬁﬁ,,qﬁi and ¢! may be interpolated using Lagrangian quadratic shape functions. The proposed
piezoelectric beam element along with its nodal degrees of freedom are shown in Fig. 3. As shown in this figure, the beam element has
three nodes with a variable number of electric potential degrees of freedom at each node.

Based on Egs. (4), (6), (25), (27) and the nodal degrees of freedom, the electric potential, displacements, strain and electric field
components may be expressed in the following matrices form:

L A A e

uu=[<o wo 6 ul X+ X~ 7t z—]T , u¢=[<}; oL fpi]T

u:[( wi' . e=[s] g:[<exx e ra] E:[(’x E" (29)

and
1 z4+j@ J@ T(2) P(z) R(z) 0 0 308
= a
T od 11808 Mol Mol Aol kol o e
@ 05°@ 05@
A=l a Ak doak o d (30b)
6+3i dx 7+3i dx 8+3i dx
Ayy = [(’i(z) 1@ Lé(z)]( (300
(& &1l Jok T@L P@L R2L 0 0
Lu=|fi@.4 250.& 50.4 4.4 de.d oL A, 4, (30d)
I 0 1@, & 1@, T(), P@), R@), 0 o0
[0y d 034 05z 4
Lug;: ?g-ﬁi),z% (A§+3i),z% (A§+3i),z% (306)
0@, 0@, 05@,
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Lyp=— dL 2) dLi(2) dL2) (30f)
LN dz dz dz

Fig. 3. The proposed piezoelectric beam element: (a) mechanical degrees of freedom and (b) electric potential degrees of freedom.
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The vector of displacement and electric potential components u, and u, may be expressed in terms of the mechanical and electrical
nodal variables vectors uy and u, as follows:

b1l R o

where

uf,:{ Uy 01 Wo)y Wox1 (W) (X7 (@' (@) Wos XD wh; X3 X)3 @Y @)

ALY

Wl Wo)yts Wor)y Dy (XD (X7, @9, @) (322)
u;={(¢2>1 @ @ @hs @y @y @ @by @) (32b)
(K, 0 0O 0 0O 0 0 0 0O N3 0O 0 0O O O N, 0 O 0 0O 0 0O 0 0]

N, O Ndf O O O OO O 0O O 0O O O ON, O N, 0 0 0O O O
0 N1 0 0 0 0 0 0 0 Ng 0 00 0 0 0 0 Nz 0 0 0 0 0 0 5
N 0 0 0 N, O 0 0 0 0 0 Ng 00 0 0 0 0 0 0 N, O 0 0 0
e 0O 0 0 0NN O O O O O O N,O O O O O O O ON 0 0 O
0 O 0 0O 0NN O 0O 0O O 0O ON O O O 0 O 0 0O 0 N, 0O O
0 0 0 0 0 0 Nl 0 0 0 0 00 Ng, 0 0 0 0 0 0 0 0 Nz 0
I 0 0 0 0 0 0 0 N1 0 0 0 00 0 N3 0 0 0 0 0 0 0 0 NZ_
(32%
K, 0 0 N3 0 0 N, 0 O
Ngo = N, 0 0 N;J O 0 N, O (32d)
o o & o o N; 0 0 N,

in which N; (i=1,2,3) are the Lagrangian quadratic shape functions defined as:
Ni=Ni(9=-¢ (1-9)/2 , Np=Np(©=¢ (1+8/2, N3=N3()=(1+9 (1-9 (33)
and the Hermitian shape functions are:

Ni=N1(®=1(1-8*2+9 , Na=Ny(®=12-5(1+¢7

Nd; =Nd (&) = £ (1-&*(1 +&) , Ndy =Ndy(&) = - (1-8)(1 + &)? (34)

where ¢ is the natural coordinate and I, denotes the length of the element (see Fig. 4).
Using Eqgs. (28) and (31), the displacements, electric potential, strain and electric field vectors may be expressed as follows:

SR o] SR ] Il o
A i S L ]

In Eq. (35a), V denotes the displacements and the electric potential interpolation matrix. Strains and electric fields interpolation matrix
is represented with B.

In the present study, the principle of virtual work is employed to extract the governing equations of the piezoelectric beam element.
According to this principle, for a piezoelectric medium of volume Q and regular boundary surface I, one may write [33]:

é B u® (35b)

Q

S =6U+sW=— [ seTodR+ /6uTF5 dr + /5uTFV do- (pﬁuTu do + /5E ™D dg—/ﬁ S¢ dr—/a Spd2=0 (36)
Q Q r

where Fs, Fy, g, Q and p are surface force vector, mechanical body force vector, electrical body charge, surface charge and mass density,
respectively. § u and § ¢ are admissible virtual displacement and potential. Substituting Egs. (3) and (35) into Eq. (36), and assembling the

-1 0 1
| >
X, X, X,

Fig. 4. The proposed element and its longitudinal local coordinate.



element equations, yields the following general static equation:
Kq=F (37)

The matrices and the vectors in the above equation are elastic matrix K= [ BT

e Rl e

Table 1
The material properties of the graphite-epoxy and PZT-5A shear actuator or sensor.

_poT
E ;]éd[z. and the loads vector

Property Graphite-epoxy PZT-5A
C11(GPa) 183.443 86.856
Cy(GPa) 11.662 99.201
C33(GPa) 11.662 99.201
C12(GPa) 4363 50.778
Cq3(GPa) 4.363 50.778
Cy3(GPa) 3.918 54.016
Caa(GPa) 2.870 22.593
Cs5(GPa) 7.170 21.100
Ces(GPa) 7170 21.100
C16(GPa) 0 0
Cy6(GPa) 0 0
C36(GPa) 0 0
Cas(GPa) 0 0
en(cm™) 0 15118
ejp(cm2) 0 -7.209
eiz(cm?) 0 -7.209
e1g(cm2) 0 0
ey1(cm72) 0 0
exn(cm?) 0 0
ex3(cm) 0 0
ey6(cm2) 0 12.322
e34(cm™2) 0 0
e3s(cm2) 0 12.322
711 (107°Fm™) 153.0 150.0
222(107°Fm™) 153.0 153.0
233(107°Fm™) 153.0 153.0
212(107°Fm™) 0 0

g(x) = —g, sin (%)

Z A
»
0.4H Graphite- epoxy
[o2n PZT-5A

0.4H Graphite- epoxy
T >
1 X

L

Fig. 5. Characteristics of the geometry, boundary conditions and loading of the sandwich beam including shear piezoelectric core.

Table 2
Results of the mesh convergence study for the sandwich beam with S = 10.

No. element Exact

3 5 9 12 15
W(0.5L,0) 16.919 16.960 16.966 16.966 16.966 16.938
1i(0,0.5H) -2.3097 -2.3094 -2.3093 -2.3093 -2.3093 -2.2864
xx(0.5L,0.5H) 60.079 61.866 62.571 63.242 62.773 62.267
Gx2(0,0) 3.9972 4.4586 4.6456 4.6825 4.6996 4.6845
G22(0.5L,0) 0.5004 0.5004 0.5004 0.5004 0.5004 0.5003

E;(0,0) -0.1035 -0.1029 -0.1028 -0.1028 -0.1028 -0.1028




Eq. (37) can be partitioned and re-arranged as:

] a7

where q, andq,, are the vectors of mechanical degrees of freedom and electrical degrees of freedom, respectively.

4. Numerical results and discussions

To assess the performance and the validity of the developed coupled theory, some examples of sandwich beams including shear
piezoelectric layer (actuator/sensor) in the different boundary condition have been analyzed using the presented finite element model.
The results of the present finite element are compared with the 3D exact piezoelasticity solution [42] and the 3D finite element (ABAQUS)
results. The present numerical results are obtained from a MATLAB program whose algorithm is based on the theoretical formulation
described in the previous section. The program allows any element at any layer to be made of different materials (piezoelectric or non-
piezoelectric).

4.1. Example 1

A simply supported piezoelectric sandwich beam with length to thickness ratio S(L/h) = 4 (thick beam),S = 10 (moderately thick beam)
andS = 40 (thin beam) is analyzed using the present coupled theory. As shown in Fig. 4, we consider a sandwich beam with the top and the
bottom layers made of graphite-epoxy and the central layer made of PZT-5A shear actuator or sensor. The ratio of the piezoelectric
thickness layer to the laminate thickness h is assumed to be 0.2 and the non-piezoelectric layers are assumed to have equal thickness. The
material properties of the graphite-epoxy and PZT-5A, shear actuator or sensor, shear actuator or sensor are given in Table 1.

4.1.1. Sensor case
A sinusoidal pressure q(x) = —qg sin (zx/L) has been applied on the top surface of the simply supported beam (Fig. 5). Results of the
mesh convergence study are shown in Table 2 for S=10.The obtained numerical results are normalized as follows:

Uj=uCo/Lqy &j=04/qo

Herein, Co =21.1 GPa is the representative value of the elastic modulus for PZT-5A.

Table 2 shows that the convergence rate of the proposed finite element model is very high. A mesh with 3 elements gives excellent
results in the prediction of deflection of the beam. Only 5 elements are adequate to predict the induced sensory electric field in the
piezoelectric layer and stress components. However, for the analysis of the problem, the beam was mathematically divided into 15 beam
elements of equal lengths and three layers.

The normalized numerical results for deflection, in-plane displacement, transverse shear and normal stresses, the induced electric field
at the sensory layer and in-plane stress are given in Table 3, for three values of length to thickness ratios S=4,S=10 andS =40. The
variation of the normalized stress and the displacement components (6., G xx, i, W) through the thickness (S =4 and S =40) are shown in
Fig. 6 and Fig. 7. The distribution of the induced electric field (E;) across the sensory layer is also shown in these figures. Through-the-
thickness variation of the normalized transverse normal stress is depicted in Fig. 8. Note that the transverse normal stresses have been
calculated using two different methods: (i) employing the constitutive equations; (ii) integrating the elasticity equations in terms of the
stress components, across the thickness of the beam. Results of these two approaches are shown in Fig. 8 by (C) and (E), respectively.

Table 3
Numerical results of the sandwich beam is subjected to the mechanical load.

S Present Error (%) Exact
Ww(0.5L,0) 4 1.9332 0.23 1.9287
10 16.9601 0.13 16.9378
40 930.278 0.01 930.191
i1(0,0.5H) 4 -0.4142 3.8 -0.3990
10 -2.3093 1 -2.2864
40 -36.1758 0 -36.1758
Gxx(0.5L,0.5H) 4 11.4028 2.02 11.1770
10 62.5706 0.48 62.2667
40 974.686 043 978.984
Gx2(0,0) 4 1.8957 0.02 1.8953
10 4.6825 0.04 4.6845
40 18.5128 0.96 18.6929
G2,(0.5L,0) 4 0.5027 0.47 0.5003
10 0.5004 0.01 0.5003
40 0.50002 0 0.50002
E,(0,0) 4 -0.0409 0.96 -0.0413
10 -0.1028 0 -0.1028

40 -0.4114 0.14 -0.4108




For deflection, the present model predicts the results with an error less than 0.23% for any length to thickness ratio. The model predicts
the in-plane displacement and in-plane stress at the top face of the thick laminated beam with the maximum error of 3.8% and 2.02%,
respectively. The error approaches zero for thin beams (S =40). The transverse shear and normal stress distributions obtained from the
present model are in excellent agreement with the exact solution for both thin and thick laminated beams. The coupled proposed theory is
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Fig. 6. Through-thickness distribution of W, il, & x, 6x, and E, for the simply supported sandwich beam (S =4).
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also capable of predicting the induced sensory electric field with very good accuracy for thin to thick laminated beams. The error in the
predicted sensory electric field is only 0.96% for thick beams. The error approaches zero for thinner beams.

It can be seen that the present theory is able to accurately predict the transverse normal stress from the constitutive equations.
Variations of the normalized deflection calculated at the middle of the sensory sandwich beam versus the aspect ratio are shown in Fig. 9.
Comparison of the present results with the results of the exact piezoelectricity solution reveals that the present beam element is free of
shear locking. These results demonstrate that the developed finite element model performs well in the prediction of the sensory behavior
of thick and thin sandwich beams.
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Fig. 8. Through-thickness distribution of normalized transverse normal stress (a) S=4 and (b) S=10.
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4.1.2. Actuator case

The actuating potential ¢(x) =—¢q cos(zx/L) and ¢(x) = ¢y cos(zx/L) has been applied on the top and bottom surfaces of the
piezoelectric layer, respectively (Fig. 10).Table 4 shows the results of the mesh convergence test for S=4. Similar to the sensor case,
the convergence rate of the present finite element is very high. The obtained numerical results are normalized as follows:

iy =1Co/eopg & =oiiL/eod Di=Di/xoho

where Cy=21.1 GPa,eg = 12.322 Cm™2 and y, =153 x 107! Fm™! are representative values of the elastic and piezoelectric modulus and
the electric permittivity, respectively for PZT-5A (¢¢ = 1.)

The normalized numerical results for the transverse electric displacement, stress and displacement components are compared in
Table 5 for length to thickness ratiosS =4,S =10 and S =40.

The model predicts the in-plane displacement, deflection and in-plane stresses of thin to thick sandwich beams with an error less than
3.05%. For transverse electric displacement, the present theory predicts the results with a maximum error of 0.38%, for any length to
thickness ratio. Similar to the sensor model, the transverse shear stress distributions deduced from the present model are in excellent
agreement with the exact solution. The error in case of thick beams, S =4is less than 2.55%. In cases with higher values of S (thinner
widths), the accuracy is even more pronounced. Through-the-thickness distributions of W,il,6x,62,6x; and D, for thick and thin beams are
shown in Figs. 11 and 12.

Considering the various values for the aspect ratio, the normalized deflection of the active sandwich beam is shown in Fig. 13 along
with the exact piezoelectricity solutions. It can be inferred from this figure that the present finite element does not suffer from shear
lucking. Furthermore, these results demonstrate that the proposed model is efficient in predicting the actuator behavior of thick and thin
smart sandwich beams.

Table 4
Results of the mesh convergence study for the smart sandwich beam with S =4.

No. element

3 5 9 12 15 exact
W(0.5L,0) 3.6941 3.7031 3.7044 3.7047 3.7047 3.6911
(0, 0.5H) -0.4279 -0.4279 -0.4279 -0.4279 -0.4279 -0.4153
Gx¢(0.5L,0.5H) 11.0616 11.3937 11.5244 11.6488 11.5619 11.2403
Gx2(0,0) -0.8902 -0.9928 -1.0347 -1.0430 -1.0468 -1.0436
max(6,2(0.5L,2)) 0.0994 0.1024 0.1036 0.1048 0.1039 0.1098
D,(0,0.1H) 14.6361 14.6361 14.6361 14.6361 14.6361 14.6135

Table 5
Numerical results of the sandwich beam is subjected to the actuating potential.

S Present Error (%) Exact
w(0.5L,0) 4 3.7031 0.32 3.6911
10 9.2638 0.14 9.2505
40 37.070 0.11 37.030
Ww(0.5L,0.5H) 4 3.7440 0.9 3.7103
10 9.2767 0.14 9.2631
40 37.073 0.11 37.033
1(0,0.5H) 4 -0.4279 3.03 -0.4153
10 -0.4448 0.67 -0.4471
40 -0.4481 1.34 -0.4541
6xx(0.5L, 0.5H) 4 11.3937 136 11.2403
10 12.1106 0.05 12.1044
40 12.1998 0.76 12.2940
6x2(0,0) 4 -1.0430 0.05 -1.0436
10 -0.4434 212 -0.4530
40 -0.1121 2.52 -0.1150
D,(0,0.1 H) 4 14.6361 0.15 14.6135
10 14.6435 0.29 14.6872

40 14.6450 0.38 14.7020




4.2. Example 2

In this example, a cantilever smart sandwich beam with length L=10 cm, cross section width b=1cm and height h=1cm is
considered. Thickness of the piezoelectric layer is 0.2 h and thickness of the face sheets is assumed to be 0.4 h. The face sheets are made of
graphite-epoxy and the central layer made of PZT-5A shear actuator or sensor. Material properties of the smart sandwich beam of the
present example are the same as those of the previous example. Since no exact 3D piezoelasticity solution is available, for the considered
example, a coupled 3D finite element analysis was performed in ABAQUS with a very refined mesh, using the 20-node piezoelectric solid
element (C3D20RE). It should be noted that, the displacements and stresses are normalized as

Ui =uiCo/€odpo &ij= oyl /€ocpo
for the applied electric load and
i =uiCo/Lqy &= 0ii/qo

for the applied mechanical load. Here Co=21.1 GPa and eq =12.322 Cm™2 are representative values of the elastic and piezoelectric
modulus, respectively for PZT-5A.

4.2.1. Sensor case

The sensory sandwich beam is subjected to distributed sinusoidal pressureq(x) = —sin (zx/L) on its top surface (Fig. 14). In order to
analyze the problem, the beam was mathematically divided into 15 beam elements of equal lengths. In Fig. 15, through-the-thickness
distributions of the stress and displacement components and the induced sensory electric field are shown. It may be observed that the
depicted in-plane displacement component based on the present formulation is in excellent agreement with the coupled 3D finite
element results. The error in present finite element results is 2.8% for the in-plane stress, less than 6% for the sensory electric field and
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Fig. 11. Through-thickness distribution of the stress and displacement components and the transverse electric displacement for the active sandwich beam (S =4).
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Fig. 13. The normalized transverse deflection versus the aspect ratio for the active sandwich beam.

0.18% for the transverse displacement. The proposed finite element model predicts the transverse shear stresses of the sensory sandwich
beam with an error less than 1.5%. Moreover, the transverse normal stresses predicted from the constitutive equations are also in good

agreement with those extracted from the coupled 3D finite element analysis. These results confirm the accuracy of the proposed

formulation in the prediction of the sensory behavior of sandwich beams.
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Fig. 15. Variations of the stress and displacement components and the induced transverse electric field for the cantilever sandwich beam.

4.2.2. Actuator case
In this case, the cantilever sandwich shear piezoelectric sandwich beam is subjected to the actuating potential ¢(x) = —¢q cos (zx/L) and
¢(X) = ¢y cos (zx/L) on its top and bottom surfaces, respectively (Fig. 16). The results corresponding to this case study are plotted in Fig. 17.
As shown in Fig. 17, the prediction of the deflection by the present finite element model agrees well with the results of ABAQUS due to
the inclusion of the effects of both the transverse flexibility and the electrical transverse normal strains. The model predicts the maximum
deflection of the active sandwich beam with an error of less than 0.5%. Moreover, the depicted in-plane displacement component based
on the present theory has an excellent agreement with the coupled 3D finite element results. The model estimates the in-plane and
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transverse shear stresses with a maximum error of 0.4% and 1.5%, respectively. The effectiveness of the present theory in the prediction of
the active behavior of smart sandwich beams is confirmed through these results.

4.3. Example 3

In this example, the previous smart sandwich beam with the same geometry, material and boundary conditions is considered. The
aforementioned beam is subjected to sinusoidal pressures Z* =-0.5sin(zx/L) and Z~ =0.5sin(zx/L), and shear tractions X* =5 and
X~ =-5 on its top and the bottom surfaces, respectively (Fig. 18).

Through-the-thickness distributions of the stress and displacement components are plotted in Fig. 19. These results are compared with
the results of the 3D finite element analysis (ABAQUS) as a benchmark. It may be observed that the displacement components based on
the present formulation are in excellent agreement with the finite element results. The error of the present results is 2.17% for the in-plane
displacement and 0.64% for the transverse displacement. Moreover, the proposed finite element model predicts the in-plane stress with an
error less than 8.8%. As shown in Fig. 19, the prediction of the transverse shear and normal stresses by the present theory agrees well with
the results of ABAQUS due to the inclusion of the effects of the non-zero shear and normal tractions. The model predicts the transverse
shear and normal stresses of the sensory sandwich beam with an error less than 5% and 3%, respectively.

4.4, Example 4

In order to compare the behavior of beams with shear and extension actuation mechanisms, two sets of beams with small width are
considered in this example. The first set concerns beams with shear-mode piezoelectric actuators, while the second set represents beams
with extension-mode piezoelectric actuators. The geometric configurations, stacking sequence and poling direction of these two sets of
beams are presented in Fig. 20. The piezoelectric layers are made of PZT-5A. The material properties considered for the aluminum are
Young's modulus E =73 GPa and Poission's ratio v=0.3. In order to bend the beams, voltages are applied at the top and the bottom
surfaces of the piezoelectric layers. For both shear and extension actuation mechanisms, the actuating potential ¢(x) =1 V is applied to the
top surface of the piezoelectric layer, while the bottom surface is grounded.

The deflection induced by the actuators is calculated for beams with C-F (clamped-free), S-S (simply support) and C-C (clamped-
clamped) boundary conditions. For these various boundary conditions, the transverse deflection of beams with shear and extension
piezoelectric actuators is shown in Fig. 21. Through-the-thickness distribution of the in-plane stress at different sections of beams is also
shown in Fig. 22. In case of C-F boundary conditions, it is observed that the tip deflection is slightly smaller for the beams with shear
actuation mechanism. However, as can be seen from Fig. 22, the maximum in-plane stress in the shear piezoelectric actuator is about 20%
lower than the extension piezoelectric actuator. The transverse shear and normal stresses for both shear and extension piezoelectric
actuators are negligible. It can be observed from Figs. 21 and 22 that unlike the extension actuation mechanism, which cannot produce
bending deflection in the C-C beam, the shear actuation mechanism can generate deflection in the C-C beam at a low stress level. In the
case of S-S boundary conditions, the shear actuation mechanism cannot produce bending deflection in the beam.

This example shows that the main advantage provided by the shear actuation mechanism is in its lower stresses in the piezoelectric
actuator. Since piezoelectric materials are very brittle, high stresses are detrimental for the structural integrity of the actuator. Moreover,
in conditions such as beams with C-C boundary conditions, the shear-mode piezoelectric actuators can generate deflection in the
host beam.

5. Conclusions

A computationally economic and accurate coupled refined global-local finite element model is presented for static response of shear
piezoelectric sandwich beams. By using this proposed theory, all kinematic and stress boundary conditions are satisfied at the interfaces
of the piezoelectric layers with non-zero longitudinal electric field. Moreover, both electrical transverse normal strains and transverse
flexibility are taken into account for the first time in the present theory. Also, the non-zero shear and normal traction boundary conditions
on the top and the bottom surfaces of the beam are satisfied for any electrical boundary conditions. The describing expression of the
in-plane displacement of the beam contains a high-order polynomial, an exponential expression and a layerwise term containing the
electrical unknowns. The transverse displacement is introduced using a combination of continuous piecewise fourth-order polynomial
with layerwise components and a first order differentiation of electrical unknowns. A quadratic electric potential is also assumed in the
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Fig. 20. The geometric configurations, stacking sequence and poling direction in the beams with shear and extension actuation mechanisms. (a) shear actuation mechanism
and (b) extension actuation mechanism.
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piezoelectric layers. In the proposed finite element formulation, the mechanical number of the unknown parameters is very small and is
independent of the number of the layers. Besides, the shear locking phenomenon does not appear in the proposed smart beam element.

In order to verify the accuracy of the proposed finite element formulation, some comparisons have been made with the results
obtained from the coupled 3D finite element (ABAQUS) analysis and 3D theory of piezoelasticity. To this end, various electro-mechanical
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bending tests for shear piezoelectric sandwich beams with different geometric parameters and boundary conditions are considered. The
comparisons show that the presented coupled finite element formulation, besides its advantages of low computational time due to using
small number of the unknown parameters, is sufficiently accurate in the modeling of thin and thick piezoelectric sandwich beams under
different mechanical and electrical loading conditions. The presented theory not only shows its superiority for thin beams (S = 40) but also
presents its higher level of accuracy for thick beams (S =4).
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